三陸沖暖水塊の短期変動予測

谷口麻也子・川村宏
東北大学大気海洋変動観測研究センター

三陸沖暖水塊は、本州東方沖（三陸沖）の海況を支配する重要な海洋構造として知られており、古くから様々な観測や研究が行われている。その変動メカニズムに関しては、コンター力学 (CD) モデルを用いた研究が大きな成功を収めた。我々の研究によると、3週間程度の短期間変動現象に関して、CD モデルを用いた現象再現が可能であることが確認されている。本研究では、1) 変動追跡に不可欠な高頻度高空間分解能 SST データセットを長期間にわって作成し、2) それによって三陸沖暖水塊の短期変動パターンを系統的に抽出し、3) それぞれの特性に対して CD モデルによる現象再現を試みる。本研究の目的は、これまでの多々の事例研究を越えて、長期間（~10 年）にわたる衛星 SST 画像時系列と簡便な数値モデルによる三陸沖暖水塊短期変動の系統的解析を行い、この現象の短期変動予測への道を探ることである。

CD モデルは、海洋中の渦を一定渦位のパッチとして近似して取り扱う簡便な力学モデルである。本研究では、従来の研究と同様に、衛星 SST 画像を用いる水温フロントをモデル上の渦の境界線として採用する。長期高解像度衛星 SST データとして、東北大学大気海洋センターにおいて作成されている「A-HIGHERS」を使用する。これは、毎日送信されている NOAA/AHRR-HRPT データを用い、高精度大気補正、格子化 (0.01 度単位)、高精度雲域除去等の処理を施して作成した海面水温時系列画像で、1989年11月から現在までの約 1 年分のデータが存在する。このデータを用いて三陸沖 SST 画像の高頻度時系列を作成し、1991年から1998年までに見られた三陸沖暖水塊の短期変動現象を抽出した。

8年間の解析対象期間中に、81ケースの短期変動現象が抽出された。特に、全ての変動現象をその変動過程・渦の構造等により、以下の4タイプに分類した：1) 完全合体 (2 つの以上が相互作用後 1 つになる: 7 ケース), 2) 部分合体 (渦の強い渦に弱い渦の一部が吸収される: 38 ケース), 3) 渦合放出型の変形 (三重構造をもつ渦から低渦位部が放出される。フィラメントの放出や分裂など: 19 ケース), 4) 回転 (背景・流れの影響による変形も含む: 17 ケース)。全体として以上の変動発生位置が沿岸から約 200 km 付近の日本海側付近に集中し、これは沿岸状態による南北方向に分布していた。これら以外の変動については、黒潮流系統 (流) の影響と相互作用が見られる。タイプ別に見ていくと、渦の構造自体を大きく変化させるような完全合体タイプは少なく、暖水ストリーマーを介した暖水のやり取りを代表されるような部分合体タイプが頻繁に起こっている。また黑潮流系付近では部分合体が多々見られ、同流系からの暖水塊の供給が示唆される。変形を伴う回転現象が北海道沿岸付近で多く見られる。これは、この海域で北上した暖水塊が拡散するのに、同時に周辺の流系系による背景流れの影響が顕著になることによるものと考えられる。

抽出されたすべての三陸沖暖水塊短期変動について、CD モデルによる解析を行った。その結果、すべての短期変動の形態の変化をほぼ再現することに成功し、この現象に対する CD モデルの有効性、特に頻繁に観測される暖水ストリーマーの放出のような自然変動の再現に対する有効性を確認することが出来た。今後は、変動現象が変まる以前の暖水塊の動きや海象に着目し、短期変動予測に繋がる知見を蓄積していきたいと考えている。

CTDデータ処理の新手法

岩尾尊徳
気象研究所海洋研究部

これまで CTD データの処理において水温と電気伝導度の応答速度を考慮する手法が種々考案されているが、CTD を一定速度で降下させることが困難なことから応答速度の差を考慮しきれない難しさに直面し、実際の観測データから算出される塩度には依然として不自然なスパイク構造が残っている。

今回は、海洋において短時間内での電気伝導度の大半が水温によって決定される状況を利用して、水温の変動特性を電気伝導度のそれと合わせ完全に合わせる新しい手法 (TCC 法) を考案した。

TCC 法では水温と電気伝導度の大まかな応答速度の差を見積もるだけで、CTD の降下速度には注意しなくても非常に現実的なデータが得られることになる。TCC 法によって推定された水温値を使って算出される塩分分布は異常値 (スパイク) は大幅に抑えられ、密度の逆転もあまり見られず、各要素間の整合性もよく取れていった。

更に TCC 法では、電気伝導度の速い応答速度に合わせることによって、解釈の高い水温、塩分データを作成することができ、海洋構造のより詳細な把握が可能となる。