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Birational Symmetries, Hirota Bilinear Forms and

Special Solutions of the Garnier Systems in

2-variables

By Teruhisa Tsuda

Abstract. Hirota bilinear forms of the Garnier system in 2-vari-
ables, G(1, 1, 1, 1, 1), are given. By using Hirota bilinear forms we
construct new birational symmetries of G(1, 1, 1, 1, 1). We obtain spe-
cial solutions of the Garnier system in n-variables, which are described
in terms of solutions of the Garnier system in (n − 1)-variables. We
investigate also algebraic solutions for n = 2.

Introduction

The Painlevé equations PJ (J = I, · · · , V I) are derived from the theory

of monodromy preserving deformation of the linear differential equation of

second order:

(LJ)
d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0.(0.1)

R. Fuchs ([1]) had obtained the sixth Painlevé equation PV I by considering

monodromy preserving deformation of (0.1). In fact, PV I is deduced from

complete integrability conditions for an extended system of (0.1). For each

of the other Painlevé equations PJ (J = I, · · · , V ), such construction from

integrability conditions was established firstly by R. Garnier ([2]) without

any mention about monodromy property and later more precise consid-

eration has been done by M. Jimbo, T. Miwa, K. Ueno ([4, 16]) and by

K. Okamoto ([11]). In this paper we do not enter into details of the theory

of monodromy preserving deformation; we give below the list of singularities
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356 Teruhisa Tsuda

of linear equations LJ (J = II, · · · , V I).

Singularities of LJ

PV I (1, 1, 1, 1)

PV (1, 1, 2)

PIV (1, 3)

PIII (2, 2)

PII (4)

(0.2)

In this table, (r1, r2, · · · , rm) means that LJ has m singular points with

the Poincaré ranks, r1 − 1, r2 − 1, · · · , rm − 1, respectively. We can thus

regard each Painlevé equation PJ (J = II, · · · , V I) as corresponding to a

partition of 4 through the monodromy preserving deformation. Note that

the first Painlevé equation PI contains no constant parameter and there is

no correspondence to any partition of 4.

A generalization of the sixth Painlevé equation PV I was also obtained by

R. Garnier ([2]) from the viewpoint of the theory of monodromy preserving

deformation. He considered the monodromy preserving deformation of the

linear differential equation of second order of the form (0.1), with n + 3

regular singularities and n apparent singularities x = λj , whose Riemannian

scheme is given by


 x = 0 x = 1 x = ∞ x = ti x = λj

0 0 α 0 0

κ0 κ1 α+ κ∞ θi 2


 , i, j = 1, · · · , n,(0.3)

where

α = −1

2

(
κ0 + κ1 + κ∞ +

∑
i

θi − 1

)
.

Then he obtained the system of nonlinear partial differential equations for

λj = λj(t), called the Garnier system in n-variables.

It is known ([3, 7, 12]) that through a certain change of variables the

Garnier system in n-variables is equivalent to the following Hamiltonian

system:
∂qi
∂sj

=
∂Hj

∂pi
,

∂pi
∂sj

= −∂Hj

∂qi
, (i, j = 1, · · · , n),(0.4)
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with Hamiltonians:

Hi =
1

si(si − 1)


∑

j,k

Ei
jk(s, q)pjpk −

∑
j

F i
j (s, q)pj + κqi


 .(0.5)

Here Ei
jk = Ei

kj , F
i
j ∈ C(s)[q] are given by

Ei
jk =




qiqjqk, if i �= j �= k �= i,

qiqj(qj −Rji), if i �= j = k,

qiqk(qi −Rik), if i = j �= k,

qi(qi − 1)(qi − si) −
∑
l( �=i)

Silqiql, if i = j = k,

(0.6)

F i
j =




Aqiqj − θiRijqj − θjRjiqi, if i �= j,

(κ0 − 1)qi(qi − 1) + κ1qi(qi − si)
+ θi(qi − 1)(qi − si)
+
∑
k( �=i)

(θkqi(qi −Rik) − θiSikqk), if i = j,

(0.7)

with

Rij =
si(sj − 1)

sj − si
, Sij =

si(si − 1)

si − sj
,(0.8)

A = κ0 + κ1 +
∑
l

θl − 1, κ =
1

4
(A2 − κ2

∞).(0.9)

In the same way as the Painlevé equations, we can regard the Garnier system

in n-variables as corresponding to the partition (1, 1, · · · , 1) of n+ 3.

It is well known that the confluence of singularities of LJ causes the

step-by-step degeneration of the Painlevé equations PJ ([12]). In a way

similar to the Painlevé equations, the degeneration of the Garnier system

can be considered. Many degenerate Garnier systems are studied by several

authors ([5, 6, 8, 9, 15]). Each of degenerate Garnier systems corresponds

to a certain partition of natural number through the theory of monodromy

preserving deformation. In this paper we denote byG(#) the Painlevé equa-

tion or the (degenerate) Garnier system corresponding to the partition (#).

For example, we refer by G(1, 1, 1, 1, 1) the Garnier system in 2-variables,

by G(1, 3) the fourth Painlevé equation PIV and so on; see Figure 1.
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Painlevé equations

(1, 1, 1, 1) (1, 1, 2) (1, 3) (4)

(2, 2)

✲ ✲ ✲
✟✟✟✯ ❍❍❍❥

Garnier systems in 2-variables

(1, 1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 3) (1, 4) (5)

(1, 2, 2) (2, 3)

✲ ✲ ✲
✟✟✟✯

✲

✲
❍❍❍❥✟✟✟✯ ❍❍❍❥

Fig. 1. degeneration scheme

In this paper we study special solutions, Hirota bilinear forms, and bira-

tional symmetries of the Garnier system in 2-variables G(1, 1, 1, 1, 1). Par-

ticular solutions of the system which are described in terms of hypergeomet-

ric functions in 2-variables, are known ([14]), and we discuss in the present

article other types of particular solutions; we consider special solutions of

G(1, 1, 1, 1, 1), given in terms of solutions of the sixth Painlevé equation PV I ;

see Theorem 2.1. Moreover, we will see that for (#) = (1, 1, · · · , 1), the Gar-

nier system G(1,#) has particular solutions given in terms of solutions of

G(#). It is natural to make the following conjecture.

Conjecture. For any partition (#) of an integer n(≥ 4), G(1,#) has

a particular solution written in terms of solutions of G(#).

If the statement of the conjecture is true, we denote this fact simply by

G(1,#) ⊃ G(#).(0.10)

For example, we obtain (0.10) for (#) = (1, 1, · · · , 1); see Theorem 6.1.

Moreover we can verify (0.10) for (1, 1, 2), (1, 3), (4), (5); details will be

discussed in forthcoming papers.

The second subject of the investigation concerns Hirota bilinear forms

of the Garnier system G(1, 1, 1, 1, 1), which plays very important roles in

this paper. In fact, we study special solutions and birational symmetries by

means of them.
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Let us consider, for example, PII , which is equivalent to the following

Hamiltonian system H(α):

dq

ds
=
∂H

∂p
,

dp

ds
= −∂H

∂q
,(0.11)

with the Hamiltonian H = H(α):

H =
1

2
p2 −

(
q2 +

s

2

)
p−

(
α+

1

2

)
q.(0.12)

By defining d log τ(α) = H(α)ds, Hirota bilinear forms of PII are described

as (
D2 +

s

2

)
g · f = 0,(0.13) (

D3 +
s

2
D − α

)
g · f = 0,(0.14)

where f = τ(α), g = τ(α − 1) and D is the Hirota derivative with respect

to d/ds. If we put f = 1 and α = −1/2, above bilinear forms reduce to the

linear differential equation for g:(
d2

ds2
+
s

2

)
g = 0,

which is the Airy differential equation. This gives a classical solution of PII ;

see [15].

Return to bilinear forms (0.13)-(0.14), it is easy to see that these are

invariant under the action w : (f, g;α) 
→ (g, f ;−α). This trivial symmetry

can be lifted to a birational canonical transformation of H(α). And the

fixed solution with respect to w, (f, g;α) = (exp(−s3/24), exp(−s3/24); 0),

gives a rational solution of PII , (q, p;α) = (0, s/2; 0).

In the present article we study mainly the Garnier system in 2-variables

G(1, 1, 1, 1, 1). We will give particular solutions which are described in terms

of solutions of PV I (Theorem 2.1), Hirota bilinear forms (Theorem 3.2),

birational symmetries (Theorem 4.1, 4.3) and consider algebraic solutions.

Finally we consider the Garnier system in n-variables, where we denote it

by Gn. We obtain particular solutions of Gn given in terms of solutions of

Gn−1 (Theorem 6.1).
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1. Hamiltonian System of G(1,1,1,1,1)

The Garnier system G(1, 1, 1, 1, 1) is equivalent to the Hamiltonian sys-

tem
∂qi
∂sj

=
∂Hj

∂pi
,

∂pi
∂sj

= −∂Hj

∂qi
, (i, j = 1, 2),

with Hamiltonians:

s1(s1 − 1)H1 =

(
q1(q1 − 1)(q1 − s1) −

s1(s1 − 1)

s1 − s2
q1q2

)
p21(1.1)

+ 2q1q2

(
q1 −

s1(s2 − 1)

s2 − s1

)
p1p2

+ q1q2

(
q2 −

s2(s1 − 1)

s1 − s2

)
p22

−
{

(κ0 − 1)q1(q1 − 1) + κ1q1(q1 − s1)

+θ1(q1 − 1)(q1 − s1)

+θ2q1

(
q1 −

s1(s2 − 1)

s2 − s1

)
− θ1

s1(s1 − 1)

s1 − s2
q2

}
p1

−
{
θq1q2 − θ2q1

s2(s1 − 1)

s1 − s2
− θ1q2

s1(s2 − 1)

s2 − s1

}
p2

+κq1,

and H2 is of the form obtained by the replacement

{q1 ↔ q2, p1 ↔ p2, s1 ↔ s2, θ1 ↔ θ2},

in H1. Here we consider &κ = (κ0, κ1, κ∞, θ1, θ2) ∈ C
5 as parameters and put

κ = (θ − κ∞)(θ + κ∞)/4, θ = κ0 + κ1 + θ1 + θ2 − 1.

2. Particular Solutions

It is known ([14]) that G(1, 1, 1, 1, 1) with certain special values of pa-

rameters admits a particular solution expressed in terms of Appell’s hy-

pergeometric function F1(α, β, β
′, γ;x, y). In this section we show that

G(1, 1, 1, 1, 1) admits a particular solution expressed in terms of the sixth

Painlevé transcendent; in fact we have the
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Theorem 2.1. If θ2 = 0, then G(1, 1, 1, 1, 1) has a particular solution

of the form:

q2 = 0,
∂q1
∂s2

=
∂p1
∂s2

= 0.

Moreover (q1, p1) satisfy

s1(s1 − 1)
∂q1
∂s1

= 2q1(q1 − 1)(q1 − s1)p1

−
{

(κ0 − 1)q1(q1 − 1) + κ1q1(q1 − s1)

+ θ1(q1 − 1)(q1 − s1)
}
,

s1(s1 − 1)
∂p1
∂s1

= −
{

3q21 − 2(s1 + 1)q1 + s1

}
p21

+
{

(κ0 − 1)(2q1 − 1) + κ1(2q1 − s1)

+ θ1(2q1 − s1 − 1)
}
p1 − κ,

which is equivalent to the sixth Painlevé equation PV I . And p2 satisfies

Riccati type equations whose coefficients are polynomials in (q1, p1).

Proof. Consider the case θ2 = 0. Take q2 = 0 then

s1(s1 − 1)H1 = q1(q1 − 1)(q1 − s1)p21
−((κ0 − 1)q1(q1 − 1) + κ1q1(q1 − s1)

+ θ1(q1 − 1)(q1 − s1))p1 + κq1.

This is nothing but the Hamiltonian of PV I . And it can be verified by

computations,

∂q1
∂s2

=
∂H2

∂p1
= 0,

∂p1
∂s2

= −∂H2

∂q1
= 0.

Thus q1(s1), p1(s1) are solved by the solutions of PV I . Also it can be seen

easily that p2(s1, s2) satisfies Riccati type equations:

s1(s1 − 1)
∂p2
∂s1

=
s2(s1 − 1)

s1 − s2
q1p

2
2

−
{

(2q1p1 − θ)q1 +
s1(s2 − 1)

s2 − s1
(2q1p1 − θ1)

}
p2
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+
s1(s1 − 1)

s1 − s2
(q1p1 − θ1)p1,

s2(s2 − 1)
∂p2
∂s2

=

(
s2(s2 − 1)

s2 − s1
q1 − s2

)
p22

+

{
s2(s1 − 1)

s1 − s2
(2q1p1 − θ1) + 1 − κ0 − κ1s2

}
p2

−(q1p1 − θ)q1p1 +
s1(s2 − 1)

s2 − s1
(q1p1 − θ1)p1 − κ. �

As is shown by Theorem 2.1, we have G(1, 1, 1, 1, 1) ⊃ G(1, 1, 1, 1); the

sixth Painlevé equation PV I is contained in the two dimensional Garnier

system, G(1, 1, 1, 1, 1).

3. τ-functions and Hirota Bilinear Forms

We can verify that, for the Hamiltonians of the Garnier system,

∂Hi

∂sj
=

∑
k=1,2

(
∂Hi

∂qk

∂qk
∂sj

+
∂Hi

∂pk

∂pk
∂sj

)
+

(
∂

∂sj

)
Hi

=
∑
k=1,2

(
∂Hi

∂qk

∂Hj

∂pk
− ∂Hi

∂pk

∂Hj

∂qk

)
+

(
∂

∂sj

)
Hi

=

(
∂

∂sj

)
Hi,

where (∂/∂sj) denotes differentiation with respect to sj such that (q, p) are

viewed to be independent of s. By the use of (1.1), we have

∂H1

∂s2
=
∂H2

∂s1
=
A(q, p, s)

(s1 − s2)2
,(3.1)

A(q, p, s) = q1q2p
2
1 − 2q1q2p1p2 + q1q2p

2
2(3.2)

+ (θ2q1 − θ1q2)p1 + (θ1q2 − θ2q1)p2.

It is not difficult to show the

Proposition 3.1 ([7]). The 1-form ω ≡ H1ds1 +H2ds2 is closed.
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Then we can define, up to multiplicative constants, the τ -function, τ =

τ(&κ), related to G(1, 1, 1, 1, 1) as follows:

ω = d log τ.(3.3)

Now we set a pair of τ -functions (f, g) as

d log f = H1ds1 +H2ds2,(3.4)

d log g = H1ds1 +H2ds2,(3.5)

where

siH i = siHi + xi, xi = −qipi, (i = 1, 2).(3.6)

Remark. (i) Existence of the function g = g(s1, s2) satisfying (3.5) is

assured by means of the equation:

s2
∂x1

∂s2
= s1

∂x2

∂s1
.

(ii) If we write as f = τ(&κ), then we will see later that g = τ(ρ(&κ)) =

τ(Rτ (&κ)), where ρ(&κ) = (κ0 + 1, κ1 − 1, κ∞, θ1, θ2) and Rτ (&κ) = (−κ0 +

1,−κ1 + 1,−κ∞,−θ1,−θ2).

Now we recall the definition of Hirota derivatives (in 2-variables):

P (D1,D2)g · f = P (D1, D2)(g(s+ t)g(s− t))|t1=t2=0 ,(3.7)

where P (D1,D2) is a polynomial in (D1,D2) and Di is a derivation. In this

paper we deal with

Di = si
∂

∂si
.(3.8)

By definition we have

Dig · f = (Dig)f − g(Dif),(3.9)

DiDjg · f = (DiDjg)f − (Dig)(Djf) − (Djg)(Dif)(3.10)

+ g(DiDjf),
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for i, j = 1, 2. It is easy to verify the following identities:

Di log
g

f
=

Dig · f
g · f ,(3.11)

DiDj log gf =
DiDjg · f
g · f − Dig · f

g · f
Djg · f
g · f ,(3.12)

D2
iDj log

g

f
=

D2
iDjg · f
g · f − D2

i g · f
g · f

Djg · f
g · f(3.13)

−2
DiDjg · f
g · f

Dig · f
g · f + 2

(Dig · f
g · f

)2 Djg · f
g · f ,

for i, j = 1, 2.

For the pair of τ -functions (f, g), we have the

Theorem 3.2. The pair of τ -functions (f, g) satisfies bilinear equa-

tions of the forms:

B1(g, f ;&κ) + s1(s2 − 1)B2(g, f ;&κ) = 0,(3.14)

s1 − 1

s1
B3(g, f ;&κ) +

(s1 − 1)2

s1
B4(g, f ;&κ) +

s21 − s2
s1s2

B5(g, f ;&κ)(3.15)

+2(κ0 − κ1)(s1 − s2)B2(g, f ;&κ) +B6(g, f ;&κ) = 0,

and satisfies also the equations obtained by the replacement {s1 ↔ s2, θ1 ↔
θ2} in (3.14), (3.15). Here Di is the Hirota derivative and Bi(g, f ;&κ) are

given by:

B1(g, f ;&κ) = (s1 − 1)D2
1g · f(3.16)

+ {(κ1 + θ1)s1 − (κ0 + θ1 − 1)}D1g · f
+ (s1 + 1)g ·D1f,

B2(g, f ;&κ) =
1

s1 + s2

(
2D1D2g · f + θ2D1g · f + θ1D2g · f

)
,(3.17)

B3(g, f ;&κ) = (s1 − 1)D3
1g · f(3.18)

+ {(κ1 + θ1)s1 − (κ0 + θ1 − 1)}D2
1g · f

+ (s1 + 1)D1g ·D1f

+
s1

s1 − 1

(
{(κ0 − κ1 − κ∞)(κ0 − κ1 + κ∞)

+ θ1(2κ0 + 2κ1 + θ1 − 2)}D1g · f
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+(κ1 − κ0)(g ·D1f +D1g · f) + 2θ1κg · f
)
,

B4(g, f ;&κ) = 2D2
1D2g · f + θ2D2

1g · f + θ1D1D2g · f,(3.19)

B5(g, f ;&κ) = (s2 − 1)D1D2
2g · f(3.20)

+ {(κ1 + θ2)s2 − (κ0 + θ2 − 1)}D1D2g · f
+(s2 + 1)D1g ·D2f,

B6(g, f ;&κ) = θ2(2θ1 + θ2)D1g · f + 2θ1(κ0 + κ1 − 1)D2g · f.(3.21)

Remark. (i) If we put θ2 = 0,
∂g

∂s2
=
∂f

∂s2
= 0, then above bilinear

forms (3.14)-(3.15) reduce to the following:

(s1 − 1)D2
1g · f + {(κ1 + θ1)s1 − (κ0 + θ1 − 1)}D1g · f(3.22)

+ (s1 + 1)g ·D1f = 0,

(s1 − 1)D3
1g · f + {(κ1 + θ1)s1 − (κ0 + θ1 − 1)}D2

1g · f(3.23)

+ (s1 + 1)D1g ·D1f

+
s1

s1 − 1

(
{(κ0 − κ1 − κ∞)(κ0 − κ1 + κ∞)

+ θ1(2κ0 + 2κ1 + θ1 − 2)}D1g · f

+(κ1 − κ0)(g ·D1f +D1g · f) + 2θ1κg · f
)

= 0.

These are equivalent to the bilinear forms of PV I ([15]).

(ii) If we put κ = 0, f = 1, then the bilinear forms of G(1, 1, 1, 1, 1) reduce to

the system of linear partial differential equations for g, which is equivalent

to Appell’s hypergeometric differential equation.

Proof of Theorem 3.2. Recall the definitions of τ -functions (f, g):

siHi = Di log f, siH i = Di log g,(3.24)

where

siH i = siHi + xi, xi = −qipi,(3.25)

for i = 1, 2. Using the formulae (3.11)-(3.13), we have expressions of Hirota

derivatives of (f, g), in terms of xi and Hi, as follows:

Dig · f
g · f = xi,(3.26)
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DiDjg · f
g · f = 2Dj(siHi) +Djxi + xixj ,(3.27)

D2
iDjg · f
g · f = D2

i xj − (2Di(siHi) +Dixi + x2
i )xj(3.28)

−2(2Dj(siHi) +Djxi + xixj)xi + 2x2
ixj .

Put these into Bi(g, f ;&κ), we can verify the bilinear relations (3.14) and

(3.15) by computations. �

4. Birational Symmetries

In this section we consider birational symmetries of G(1, 1, 1, 1, 1). The

Hamiltonians Hi (i = 1, 2) are invariant under the action: κ∞ 
→ −κ∞. This

trivial symmetry can be lifted to a birational canonical transformation of

G(1, 1, 1, 1, 1).

On the other hand, from the viewpoint of monodromy preserving de-

formations, H. Kimura constructed birational symmetries of G(1, 1, 1, 1, 1)

which act on the parameters as permutations; see [3].

Then combining the above results, we obtain the following theorem.

Theorem 4.1. There exist birational canonical transformations

H(&κ) → H(R∆(&κ))

of G(1, 1, 1, 1, 1), where H(&κ) = (q(&κ), p(&κ), H(&κ), s). Here the transforma-

tions R∆ : (q, p) 
→ (Q,P ) are given as follows:

R∆ action on &κ Qi (i = 1, 2) Pi (i = 1, 2)
Rκ∞ κ∞ 
→ −κ∞ Qi = qi Pi = pi

Rκ1 κ1 
→ −κ1 Qi = qi Pi = pi −
κ1

q1 + q2 − 1

Rκ0 κ0 
→ −κ0 Qi = qi Pi = pi −
κ0

si(q1/s1 + q2/s2 − 1)

Rθ1 θ1 
→ −θ1 Qi = qi P1 = p1 − θ1/q1, P2 = p2

Rθ2 θ2 
→ −θ2 Qi = qi P1 = p1, P2 = p2 − θ2/q2

(4.1)
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Furthermore, another birational symmetry can be derived from the Hi-

rota bilinear forms.

Proposition 4.2. Hirota bilinear forms of G(1, 1, 1, 1, 1) are invariant

under the action

Rτ : (f, g;&κ) 
→ (g, f ;Rτ (&κ))

where Rτ (&κ) = (−κ0 + 1,−κ1 + 1,−κ∞,−θ1,−θ2).

Proof. If P (D) is a monomial, then we have:

P (D)g · f = −P (D)f · g (P : odd),

P (D)g · f = P (D)f · g (P : even),

and it is easy to verify that

g ·D1f = D1f · g + f ·D1g,

D1g ·D1f = −D2
1f · g −D1f ·D1g,

D1g ·D2f = −D1D2f · g −D1f ·D2g,

which we use in the following.

Consider the exchange of τ -functions f ↔ g in Hirota bilinear forms of

G(1, 1, 1, 1, 1), (3.14)-(3.15), then we obtain again Hirota bilinear forms of

G(1, 1, 1, 1, 1) with parameters Rτ (&κ) = (−κ0 + 1,−κ1 + 1,−κ∞,−θ1,−θ2).
For example we compute:

B1(g, f ;&κ) = (s1 − 1)D2
1g · f(4.2)

+ {(κ1 + θ1)s1 − (κ0 + θ1 − 1)}D1g · f
+ (s1 + 1)g ·D1f

= (s1 − 1)D2
1f · g

+ {(−κ1 − θ1 + 1)s1 − (−κ0 − θ1)}D1f · g
+ (s1 + 1)f ·D1g

= B1(f, g;Rτ (&κ)),

similarly we have B2(g, f ;&κ) = B2(f, g;Rτ (&κ)) and Bi(g, f ;&κ) =

−Bi(f, g;Rτ (&κ)) for i = 3, 4, 5, 6. We obtain thus Hirota bilinear forms

of G(1, 1, 1, 1, 1) with parameters Rτ (&κ). �
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This symmetry of τ -functions can be lifted to a birational canonical

transformation of G(1, 1, 1, 1, 1).

Theorem 4.3. There exists a birational canonical transformation

Rτ : H(qi, pi;&κ) → H(Qi, Pi;Rτ (&κ))

of G(1, 1, 1, 1, 1) where Rτ (&κ) = (−κ0+1,−κ1+1,−κ∞,−θ1,−θ2) described

as

Qi =
sipi(qipi − θi)

(α+ q1p1 + q2p2)(α+ κ∞ + q1p1 + q2p2)
,(4.3)

QiPi = −qipi,(4.4)

for i = 1, 2 with α = −(θ + κ∞)/2.

Proof. The transposition of τ -functions Rτ : f ↔ g yields the trans-

position of Hamiltonians Hi ↔ H i; we have (4.4) from (3.6). On the other

hand, since g = τ(Rτ (&κ)), the following relation holds:

Hi(Q,P, s,Rτ (&κ)) = H i = Hi(q, p, s, &κ) −
qipi
si
.(4.5)

Using this and (4.4), we obtain (4.3). �

Remark. We can construct a birational canonical transformation for

G(1, 1, 1, 1, 1), called a contiguity relation, which realizes the action on the

space of parameters as translation. Put

ρ = Rκ1 ◦Rτ ◦Rθ1 ◦Rθ2 ◦Rκ∞ ◦Rκ0 ,(4.6)

then we have a birational canonical transformation

ρ : H(&κ) → H(ρ(&κ)),

where ρ(&κ) = (κ0 + 1, κ1 − 1, κ∞, θ1, θ2). The relation between the Hamil-

tonians is

ρ(Hi) = Hi −
qipi
si
, (i = 1, 2),(4.7)

hence we have

H i = ρ(Hi) = Rτ (Hi), (i = 1, 2),(4.8)

i.e., g = τ(ρ(&κ)) = τ(Rτ (&κ)).
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5. Algebraic Solutions

Now consider the birational canonical transformation, w = Rτ ◦ Rθ1 ◦
Rθ2 ◦Rκ∞ :

w : H(qi, pi;&κ) → H(Qi, Pi;w(&κ));

we have w(&κ) = (−κ0 + 1,−κ1 + 1, κ∞, θ1, θ2) and

Qi =
sipi(qipi − θi)

(α+ q1p1 + q2p2)(α+ κ∞ + q1p1 + q2p2)
,(5.1)

QiPi = −qipi + θi,(5.2)

for i = 1, 2.

Put κ0 = κ1 = 1/2, then there is a fixed point with respect to the action

w:

(qi, pi) = ±
(
θi
√
si

κ∞ ,

κ∞
2
√
si

)
i = 1, 2.(5.3)

This gives an algebraic solution of G(1, 1, 1, 1, 1). By using birational sym-

metries, we can construct many other algebraic solutions. For example,

when κ0 = 1/2, κ1 = −1/2, we have

qi =
θi
√
si

κ∞
,(5.4)

pi =
κ∞

2
√
si

· θ1
√
s1 + θ2

√
s2 − κ∞ −√

si
θ1
√
s1 + θ2

√
s2 − κ∞

.(5.5)

For κ0 = 1/2, κ1 = 3/2, we have

qi =
θi
√
si

κ∞
· (θ1

√
s1 + θ2

√
s2 − κ∞)2 − si

(θ1
√
s1 + θ2

√
s2 − κ∞)2 − 1

,(5.6)

pi =
κ∞

2
√
si

· (θ1
√
s1 + θ2

√
s2 − κ∞)2 − 1

(θ1
√
s1 + θ2

√
s2 − κ∞)(θ1

√
s1 + θ2

√
s2 − κ∞ −√

si)
.(5.7)

For κ0 = κ1 = −1/2, we have

qi =
θi
√
si

κ∞
,(5.8)

pi =
κ∞

2
√
si

(5.9)

·
(θ1

√
s1 + θ2

√
s2 − κ∞ −√

si)(
θ1√
s1

+ θ2√
s2

− κ∞ − 1√
si

) − 1

(θ1
√
s1 + θ2

√
s2 − κ∞)( θ1√

s1
+ θ2√

s2
− κ∞)

.
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6. Particular Solutions of the Garnier System in n-variables

Theorem 6.1. For special values of parameters, the Garnier system in

n-variables Gn admits a particular solution expressed in terms of solutions

of Gn−1.

Proof. If θn = 0, Gn admits a particular solution as qn = 0. Take

qn = 0, we obtain

∂qi
∂sn

=
∂Hn

∂pi
= 0,

∂pi
∂sn

= −∂Hn

∂qi
= 0,

for 1 ≤ i ≤ n− 1, i.e., (qi, pi) do not depend on sn. Put θn = 0, qn = 0 into

the HamiltoniansHi (0.5) for 1 ≤ i ≤ n−1, then we obtain the Hamiltonians

for Gn−1. We do not enter into detail of computation. �

Remark. In her paper [10], M. Mazzocco obtains the same type of

particular solutions, by considering the monodromy preserving deformation

of a linear differential equations such that some monodromy matrices are

reduced to ±I.
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