Comparative Concepts
PhilLogMath 2
Seiryo Keikan, Tokyo, 14-03-12

Richard Dietz
rdietz@l.u-tokyo.ac.jp

Department of Philosophy
University of Tokyo

March 14, 2012
1 Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2 Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3 A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts

Richard Dietz
rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
Comparative Concepts
Overview

1 Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2 Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3 A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts
Categorical vs comparative concepts

Categorical concepts
- type of concepts expressed by general terms in natural languages, such as “high”, “exactly 10 meters high”, “cat” or “chair”.
- rules of partitioning a set of objects.

Comparative concepts
- type of concepts expressed by comparative constructions embedding a general term, such as “is higher than”, “is less tall than” or “to look more red”.
- rules of ordering objects.
Varieties of evidence on ordering behaviour

- explicit comparisons (e.g., of the form “x is F-er than y”).
- orders induced by probabilities of positive categorisation (Hampton [1998, 2007]).
- orders induced by choice probabilities assigned to ordered pairs (the probability that the one item is picked out—as an F—as compared to the other item) (Suppes et al. [1989]).
The Epistemology of Orderings

Questions

- What kind of cognitive structures underly our ability to order objects in certain ways?
- Why do we order objects in certain ways, and not in different ways?
Suppose we examine a sample of colour patches x_1, \ldots, x_n, where the series is monotonically increasing in greenness. That is, we have a case where for each $0 < i \leq n$, x_i is *greener* than x_{i-1}. Suppose t designates the present point of time. It makes then extensionally no difference to say that we have a case where for each $0 < i \leq n$, x_i is *gruer* than x_{i-1}, where this relation is defined as follows: for any pair of colour patches x and y, x is gruer than y just in case either (a) x and y are examined by point t, and x is greener than y, or (b) x and y are both examined after t, and x is bluer than y.

Richard Dietz
rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo

Comparative Concepts
Suppose we examine the colour patches x_1, \ldots, x_n in the temporal order of their mention here, and that there are two other colour patches in the sequence, x_{n+1} and x_{n+2}, which are still hidden. Given n is sufficiently high, it would seem only natural to predict that x_{n+2} is greener than x_{n+1}. On the other hand, the prediction that x_{n+2} is gruer than x_{n+1} would seem quite bizarre—for it would imply that x_{n+2} is bluer than x_{n+1}.
Gradable concepts

- **Gradable concepts**: type of concepts expressed by *gradable terms*, that is, general terms such as “high” or “red” that embed in comparative constructions.

- **Bridge principles**: in order to have a concept of redness, it seems that we need to know that anything redder than something red must be red as well; and also that for something to be distinguishable as red from something else, the former is to be redder than the latter.

 - Put aside delineation based approaches to comparatives (Klein [1980], van Benthem [1982], van Rooij [2009]).
Aim

- Outlining a novel approach to comparative concepts that
 1. supplies means of characterising naturalness for comparative concepts, and
 2. has constraining effects on the theory of gradable concepts.

- Method: Carrying Peter Gärdenfors’ conceptual spaces approach (Conceptual Spaces [2000]), which focusses on ungraded categorisation rules, over to comparative concepts.
Overview

1. Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2. Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3. A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts

Richard Dietz rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
Conceptual spaces

- **Spaces** are sets D_1, \ldots, D_n of *quality dimensions*, i.e., kinds of features with respect to which objects may be judged as more or less similar.

- A **point** in a space is defined by a vector $v = \langle d_1, \ldots, d_n \rangle$ where each index represents a dimension.

- Each dimension has typically a **geometric** structure.

- **Objects** (‘stimuli’) are represented as points in a space.

- **Concepts** are represented as sets in a space.
Conceptual spaces – cont.

examples

- **colours**: a space with the dimensions hue, chromaticness and brightness.

- **geometric figures**: a space with the dimensions shape, size, and angular orientation.
Gärdenfors on Natural Properties

Conceptual spaces – cont’

a side note

- Stalnaker’s formulation of a bare particular anti-essentialism (in [1979]).
- Lambert’s and van Fraassen’s account of analyticity (in [1970]).
- Churchland’s naturalistic approach to linguistic meaning (in [1986]).
- Bromberger’s realism about types in linguistic theory (in [1992]).
A geometric approach to similarity

A metric model of distances

A two-place real-valued function d on a set M is said to be a metric iff:

- **D1** $d(a, b) \leq 0$ and $d(a, b) = 0$ only if $a = b$; (minimality)
- **D2** $d(a, b) = d(b, a)$; (symmetry)
- **D3** $d(a, c) \leq d(a, b) + d(b, c)$. (triangular inequality)

Similarity and distance

Similarity is inversely related to distance: linear (Tversky [1975]), exponential (Shepard [1987]), Gaussian function (Nosofski [1986]).
A geometric approach to similarity – cont.

Power metric model

\[d(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^r \right)^{\frac{1}{r}} \]

- for \(r = 2 \): Euclidean metric.
- for \(r = 1 \), city block or Manhattan metric.
Properties (Gärdenfors [2000])

- **Separable dimensions:** can be perceived/cognised independently from each other
 - e.g., hue, chromaticness and brightness are not separable from each other.

- **Domains:** sets of dimensions that are not pairwise separable, but all separable from other dimensions.

- **Properties:** are concepts that refer to so-called *domains*
 - e.g., compare colour concepts with *apple*, which refers to more than one domain (such as colour, shape or texture).
Criteria for naturalness (Gärdenfors [2000])

1. **connectedness**: A region X is said to be *connected*, if and only if, for all regions Y and Z such that $Y \cup Z = X$, it holds that $C(Y, Z)$. X is *disconnected*, if and only if X is not connected.

2. **star-shapedness**: A subset C of a conceptual space S is said to be *star-shaped with respect to point* p, if and only if, for all points x in C, all points between x and p are also in C.

3. **convexity**: A subset C of a conceptual space S is said to be *convex*, if and only if, for all points x and y in C, all points between x and y are also in C.

Richard Dietz rdietz@l.u-tokyo.ac.jp

Department of Philosophy, University of Tokyo
Gärdenfors on Natural Properties

Convexity criterion P (Gärdenfors [2000])

A natural property is a convex region of a domain in a conceptual space.
Gärdenfors on Natural Properties

Related discussion

- Oddie [2005] on ‘natural’ value properties.

- evolutionary arguments (from evolutionary psychology: Shepard [1987]; from evolutionary game theory, see Jäger [2009] and Jäger et al. [2009]).

- but see Mormann [1993] for an argument to the effect that the convexity constraint is unnecessarily strong.

- Gärdenfors’ argument from prototype theory ([2000]) (sect. 3).
Overview

1 Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2 Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3 A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts
Convexity Criteria for Naturalness

Modelling orders of points as orders of sets

- for any partially ordered set $\langle P, \geq \rangle$ and any subset Q of P, Q is said to be an order filter (or upward closed set) if, whenever $x \in Q$, $y \in P$ and $y \geq x$, we have $y \in Q$.

- for any arbitrary set Q of P, we define:
 - $\uparrow Q := \{ y \in P \mid (\exists x \in Q) \, y \geq x \}$.

- \uparrow is an isomorphism between $\langle P, \geq \rangle$ and $\langle \uparrow P, \subseteq \rangle$.

Richard Dietz rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
Convexity criteria for naturalness

Criterion C1

A strict partial ordering \(> \) referring to one domain in a conceptual space is a natural comparative concept only if for all points \(x \) in the space, the corresponding set \(\{ y \mid y > x \} \) is a convex region.

E.g., criterion C1 implies that for any triple of patches \(x, y \) and \(z \) where both \(x \) and \(y \) are redder than \(z \), any patch in between in colour shade between \(x \) and \(y \) should be redder than \(z \) as well.
Almost-connectedness

- R is almost connected: $x > y \rightarrow (z > y \lor x > z)$.
- (strict) weak orders: (strict) partial orders that are almost connected.
- indifference $(x \not> y \land y \not> x)$ is transitive.
Convexity criteria for naturalness – cont.

Criterion C2

A strict weak ordering \succ referring to one domain in a conceptual space is a natural comparative concept only if for all points x in the space, the corresponding set $\{y \mid y \succ x \lor (x \not\succ y \land y \not\succ x)\}$ is a convex region.

E.g., criterion C2 implies that for any triple of patches x, y and z where both x and y are at least as red as z, any patch in between in colour shade between x and y should be at least as red as z as well.
Sivik and Taft [1994]

‘Isosemantic lines’ in the colour space, i.e., areas of colours that test persons tended to categorise as equally red, brown, or other, circumscribed a convex area in space.
From Comparative to Categorical Concepts

Overview

1 Introduction
- The epistemology of orderings
- Gärdenfors on natural properties

2 Natural Comparative Concepts
- Convexity criteria for naturalness
- From comparative to categorical concepts

3 A Prototype-theoretic Approach
- Preliminaries
- Voronoi diagrams I: From prototype type points to areas
- Voronoi diagrams II: From categorical to comparative concepts

Richard Dietz rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
Associatedness

For any given comparative concept \succ and any given categorical concept F, \succ and F are said to be associated with each other iff they satisfy:

B1. $x \succ y \rightarrow (F(y) \rightarrow F(x))$.

B2. $(F(x) \land \neg F(y)) \rightarrow x \succ y$.

Note

- F may be interpreted both in terms of binary and in terms of gradable classification criteria.

- On failure of almost-connectedness, the transitive closure of indifference may include pairs of objects that should be treated differently in terms of F-ness.

Richard Dietz rdietz@l.u-tokyo.ac.jp Department of Philosophy, University of Tokyo

Comparative Concepts
The no-gap condition

- For any given strictly partially ordered set $\langle P, > \rangle$, a pair $\langle P_1, P_2 \rangle$ is said to be a cut in $\langle P, > \rangle$ iff:
 1. $\{P_1, P_2\}$ is a bipartition in P;
 2. if $x \in P_1$ and $y \in P_2$, then $x > y$.

- A strictly partially ordered set $\langle P, > \rangle$ is then said to satisfy the no-gap condition iff for every cut in the set, either $\langle T_1, > \rangle$ has a minimal element or $\langle T_2, > \rangle$ has a maximal element.
Theorem

Let \(\langle P, > \rangle \) be a strict weak ordering that satisfies the no-gap condition, and let \(F \) be a subset in \(P \), where \(> \) and \(F \) are associated with each other. Then for some member \(x \) of \(P \), either

- \(F = \{ y \in P \mid y > x \} \), or
- \(F = \{ y \in P \mid (y > x) \lor (y \not> x \land x \not> y) \} \).
Overview

1 Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2 Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3 A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts
Introduction
Natural Comparative Concepts

A Prototype-theoretic Approach

Preliminaries

Agenda

- **Approach**: modelling comparative concepts in terms of conceptual space representations of prototypes.

- **Focus** on comparative concepts that:
 - refer to one domain (Euclidean metric).
 - are (strict) weak orderings.
 - which satisfy the no-gap condition.
 - are associated with a categorical concept.

- Optional constraint: prototype points for F-ness are maximal elements in $\langle M, >_F \rangle$ (*Maximality*).
Disclaimers – Open issues put aside

- Comparative concepts without prototypes? How about concepts such as *long* or *late*? (Kamp and Partee [1995] vs Hampton [2007]; Tribushinina [2008, 2009])

- Prototypes without comparative concepts? How about *dog*, *apple*, or *city*? (Schwartzchild [2008] vs Sasson [2007])

- Concepts that refer to more than one domain, e.g., plausibly, *grue*/*gruer*.

- Comparative concepts that are less precise: multi-dimensional concepts (*cleverer than*), interval orderings (*later than*), semi-orderings (*definitely larger*) (for the latter types of cases, see Suppes et al. [1989]).
Similarity, typicality, and graded membership

Naive prototype theory

- Typicality (T_F) is a strictly increasing function of similarity to a prototype.
- Graded membership (M_F) is a strictly increasing function of typicality.

Fuzzy semantics

Interpretating graded membership as similarity to the closest prototypical element (Ruspini [1991], Dubois and Prade [1997], Dubois et al. [2001]).
Preliminaries

Similarity, typicality, and graded membership – cont.

Osherson and Smith [1997]

- \(T_{bird}(robin) > T_{bird}(woodpecker) \).
- but: \(M_{bird}(robin) = M_{bird}(woodpecker) = 1 \).

Hampton [2007]

\(M_F \) is a cumulative normal distribution function of \(T_F \), which has 0 as its infimum and 1 as its supremum (i.e., \(M_F(x) := \text{Prob}(X \leq x) \), where the random variable \(X \) takes \(T_F \) values).
Similarity, typicality, and graded membership – cont.’

Hampton [1998]

Typicality does not always provide a good prediction of graded membership (experiments on artifact concepts).
Open questions

1 What prototypes are relevant?
 1.a non-contrastive accounts: F-er is given for a conceptual space by some prototype for F-ness in the space.
 1.b contrastive accounts: F-er is given for a conceptual space by some set of disjoint prototypes including the prototype for F-ness.

2 In what way are prototypes relevant?
 2.a distance infima (suprema): the infimum (or supremum) of distances between a particular point and any point in the prototype area.
 2.b scaling factors: the factor by which the prototype area is to be expanded/contracted in order to reach a particular point.

...
Working hypothesis

Combining [1.b] with [2.a].
Introduction

1. Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2. Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3. A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts
Voronoi diagrams – standard

Two variants

A Given a set of ‘prototypical’ points in a metric space, a Voronoi diagram divides the space into subsets, where each subset contains one and only one ‘prototypical’ point \(p \) and consists of all points with respect to which there is no closer ‘prototypical’ point than \(p \) (Okabe et al. [1992 [2000]]).

B Given a set of ‘prototypical’ points in a metric space, a Voronoi diagram divides the space into subsets, where each subset contains one and only one ‘prototypical’ point \(p \) and consists of all points with respect to which \(p \) is closer than any other ‘prototypical’ point (Aurenhammer and Klein [2000]).
For Euclidean n-spaces, Voronoi regions are convex.

Let $\{M, d\}$ be a Euclidean metric space and P be a subset (in that space) of points p_1, \ldots, p_n. Then for each p_i in P, the Voronoi region associated with p_i relative to P is convex.
How to deal with prototype *areas*?

Generalised Voronoi Categorisation (for 2D-spaces)

An object represented as a point in a conceptual space belongs to the category for which the corresponding prototypical circle is the closest (Gärdenfors [2000]).

Nearest Neighbour Categorisation (for finite sets of prototype points)

An object represented as a point x in a conceptual space belongs to the category for which the prototype instance that is closest to x is included (cf. Reed [1972]).

Richard Dietz rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
How to deal with prototype areas? – cont.

Average Distance Categorisation

An object represented as a point x in a conceptual space belongs to the category to which x has the smallest average distance (Nosofski [1988]).
How to deal with prototype *areas*? – cont.'

Collated Voronoi Categorisation

An object represented as a point x in a conceptual space belongs to the category for which, for each prototype instance y, x at least as close to y as to any prototype instance of any ‘competing’ category.

Collated Voronoi categorisation

Let $R = \{r_1, \ldots, r_n\}$ be a distribution of disjoint prototype areas. The set of prototype point distributions for R is defined as:

$$\Pi(R) := \{P = \langle p_1, \ldots, p_n \rangle \mid p_i \in r_i\}.$$

The Voronoi region associated with a point p relative to P, where $P \in \Pi(R)$ and $p \in P$ is defined as

$$v(p, P) := \{q \mid d(q, p) \leq d(q, p'), \text{ with } p' \in P \text{ and } p' \neq p\}.$$

Accordingly, the Voronoi region associated with a set r_i relative to R comes to

$$u(r_i, R) := \bigcap_{P \in \Pi(R)} \{v(p, P) \mid p \in r_i\},$$
Convexity result (Douven et al. [forthcoming: sect. 3])

Let \(\{M, d\} \) a Euclidean metric space and \(P \) be a subset (in that space) of points \(p_1, \ldots, p_n \). Then for each \(p_i \) in \(P \), the collated Voronoi region associated with \(p_i \) relative to \(P \) is convex.
How to deal with *comparative* concepts which are associated with a prototype area?

Collated Voronoi Categorisation Generalised

Overview

1. Introduction
 - The epistemology of orderings
 - Gärdenfors on natural properties

2. Natural Comparative Concepts
 - Convexity criteria for naturalness
 - From comparative to categorical concepts

3. A Prototype-theoretic Approach
 - Preliminaries
 - Voronoi diagrams I: From prototype type points to areas
 - Voronoi diagrams II: From categorical to comparative concepts
An equivalence result on collated Voronoi categorisation

Theorem (T1)

Let \(\langle M, d \rangle \) be a metric space and \(R \) be a set of disjoint subsets \(r_1, \ldots, r_n \) in \(M \). Then Voronoi region associated with a set \(r_i \) relative to \(R \), \(u(r_i, R) \), is given by:

\[
\{ p \in M \mid \sup \{ d(p, x) \mid x \in r_i \} \leq \inf \{ d(p, y) \mid y \in r_j \in R, j \neq i \} \}.
\]

Informally \ldots

Collated Voronoi Categorisation’: An object represented as a point \(x \) in a conceptual space belongs to the category \(F \) for which the supremum of distances between \(x \) and any point in the prototype area of \(F \) is no greater than the infimum of distances between \(x \) and any point in any prototype area for any ‘competing’ category.
Collated Voronoi categorisation generalised

Graded Collated Voronoi Categorisation

- For any λ where $0 \leq \lambda \leq 1$, call distances scaled by λ-distances.

- For any λ where $0 \leq \lambda \leq 1$, an object represented as a point x in a conceptual space belongs relative to λ to the category for which, for each prototype instance y, the λ-distance between x and y is no greater than the $(1 - \lambda)$-distance between x and any prototype instance of any ‘competing’ category.
Collated Voronoi categorisation generalised

Graded Collated Voronoi Categorisation – more formally

The *Voronoi region associated with a point* \(p \) *relative to* \(P \) *and a factor* \(\lambda \) where \(P \in \Pi(R) \), \(p \in P \), and \(0 \leq \lambda \leq 1 \) is defined as

\[
\nu(p, P, \lambda) := \{ q \mid \lambda \cdot d(q, p) \leq (1 - \lambda) \cdot d(q, p'), \text{ with } p' \in P \text{ and } p' \neq p \}.
\]

The *Voronoi region associated with a set* \(r_i \) *relative to a set* \(R \) *and factor* \(\lambda \) *is defined as*

\[
u(r_i, R, \lambda) := \bigcap\{ \nu(p, P, \lambda) \mid p \in r_i \}.\]
Collated Voronoi categorisation generalised – cont.

limiting case

For $\lambda = 0.5$, graded collated Voronoi categorisation amounts to collated Voronoi categorisation.
An equivalence result on graded collated Voronoi categorisation

Theorem (T2)

Let $\langle M, d \rangle$ be a metric space and R be a set of disjoint subsets r_1, \ldots, r_n in M. Then for any $0 \leq \lambda \leq 1$, the Voronoi region corresponding with r_i, R and λ, $u(r_i, R, \lambda)$, is given by:

$$\{ p \mid \sup \{ \lambda d(p, x) \mid x \in r_i \} \leq \inf \{ (1 - \lambda)d(p, y) \mid y \in r_j \in R, j \neq i \} \}$$

Richard Dietz rdietz@l.u-tokyo.ac.jp
Department of Philosophy, University of Tokyo
Comparative Concepts
Informally ...

For any λ with $0 \leq \lambda \leq 1$, an object represented as a point x in a conceptual space belongs relative to λ to the category for which the supremum of λ-distances between x and prototype instances is no greater than the infimum of $(1 - \lambda)$-distances between x and any prototype instances of any ‘competing’ category.
A restricted convexity result

Theorem (T3)

Let \(\langle M, d \rangle \) be a Euclidean \(n \)-space, with a prototype set distribution \(R := \{r_1, \ldots, r_n\} \). For any \(r_i \) from \(R \) then, the graded collated Voronoi region \(u(r_i, R, \lambda) \) is convex if \(\lambda \geq .5 \).
Let \(\langle M, d \rangle \) be a metric space and \(R \) be a set of disjoint subsets \(r_1, \ldots, r_n \) in \(M \). Then for any \(0 \leq \lambda \leq 1 \), for any pair of distinct ‘prototypical points’ \(x \) and \(y \) (where for some \(P \in \Pi(R) \), \(x, y \in P \)), the Voronoi diagram for \(x, y \) and \(\lambda \) is given by the equation:

\[
\Sigma_{1 \leq i \leq n} (\lambda p_i - \lambda x_i)^2 = \Sigma_{1 \leq i \leq n} ((1 - \lambda) p_i - (1 - \lambda) y_i)^2
\]

\(\lambda = .5 \)

Equation of a hyperplane that separates the space into two half-spaces:

\[
\Sigma_{1 \leq i \leq n} (a_i \times p_i) + b_i \leq 0, \text{ where } p_i \text{ is the only variable,}
\]

The half-spaces are (assuming a Euclidean metric) convex.
A restricted convexity result – cont.’’

\[
\lambda \neq .5
\]

- equation of a hypersphere centred on \(a_i \), with the radius being \(\sqrt{c_i} \):

\[
\Sigma_i(p_i - a_i)^2 \leq c_i, \text{ where } p_i \text{ is the only variable and } c_i > 0,
\]

The area circumscribed by the hypersphere is (assuming a Euclidean metric) a convex area, whereas the complement is not convex.

- for \(\lambda > .5 \) (\(\lambda < .5 \)), the hypersphere is centred on \(x \) (\(y \)).
Nestedness Lemma

For any metric space $\langle M, d \rangle$, with a prototype set distribution $R := \{r_1, \ldots, r_n\}$, for any $\lambda \in [0, 1]$ and $\lambda' \in [0, 1]$, if $\lambda \geq \lambda'$, then $u(r_i, R, \lambda) \subseteq u(r_i, R, \lambda')$.
Collated Voronoi orderings: definition

For any n-space with a metric d, $\langle M, d \rangle$, with a prototype area distribution $R := \{r_1, \ldots, r_n\}$, for any λ where $0 \leq \lambda \leq 1$, let $u(r_i, R, \lambda)$ be the category corresponding to r_i, R and λ. For any set $r \in R$, for any x and y in $\langle M, d \rangle$ then:

$$x >^{c_{\langle R, r \rangle}}_{\langle R, r \rangle} y \iff df$$

$$(\exists \lambda : 0 \leq \lambda \leq 1) \ (x \in u(r_i, R, \lambda) \land y \notin u(r_i, R, \lambda)).$$
Collated Voronoi orderings: features

- If the metric is **Euclidean**, then $\succ_{\langle R,r \rangle}^{cV}$ validates C_1 and C_2 only restrictedly— with respect to any Voronoi region $u(r_i, R, \lambda)$, where $\lambda \geq .5$.

- $\succ_{\langle R,r \rangle}^{cV}$ is a **strict weak** ordering.

- If the metric is **Euclidean**, then any categorical concept that is associated with $\succ_{\langle R,r \rangle}^{cV}$ is convex, if it is identical with $\{y \mid y \succ_{\langle R,r \rangle}^{cV} x\}$, or identical with $\{y \mid (y \succ_{\langle R,r \rangle}^{cV} x) \lor (y \nsucc_{\langle R,r \rangle}^{cV} x \land x \nsucc_{\langle R,r \rangle}^{cV} y)\}$, for some member x of $u(r, R, \lambda)$ where $\lambda \geq .5$.

Richard Dietz rdietz@l.u-tokyo.ac.jp

Department of Philosophy, University of Tokyo

Comparative Concepts
Collated Voronoi orderings: features – cont.

- \(>^c_{\langle R,r \rangle} \) does not satisfy **Maximality**. E.g.:

 Suppose \(R = \{ p_1, \cdots p_3 \} \),
 where \(p_1 = [0, 1], p_2 = [2, 3], p_3 = [5, 6] \).
 Then for \(x = 2 \) and \(y = 3 \), \(x, y \in p_2 \),
 but \(y >^c_{\langle R, p_2 \rangle} x \).

 Suppose \(R = \{ q_1, \cdots q_3 \} \),
 where \(q_1 = [0, 2] \times [0, 1], q_2 = [3, 5] \times [0, 1], q_3 = [0, 2] \times [2, 3] \).
 Then for \(x = \{2, 0\} \) and \(y = \{1, 1\} \), \(x, y \in q_2 \),
 but \(y >^c_{\langle R, q_2 \rangle} x \).
The collated Voronoi tessellation method in Douven et al. [2009], which accommodates prototype areas, can be furthermore generalised for graded cases of categorisation.

Gärdenfors’ convexity criterion P for natural properties may be recovered in terms of the convexity criteria C1 and C2 for order filters.

C1 and C2 supply even more sufficient means of motivating a generalisation of the convexity criterion P for graded categorisation.

The criteria C1 and C2 are logically independent from P, and they have intuitive force of their own.

Food for thought: More general models which still have some psychological reality (concepts more than one domain; doing without prototypes; doing without geometric criteria in the first instance).
References

Jäger, G. [2009] “Natural color categories are convex sets”, manuscript.

References – cont.’

Rooij, R. van [2009] “Up and down the scale: Adjectives, comparisons, and measurement”, manuscript.
References – cont.”

Thank you!