地震予知研究ノート No.3

佃 炳成
（東京大学地震研究所 地震地殻変動観測センター）

2008年9月
目次

前兆現象の研究のための観測点

佃 為成 3〜11

前兆現象研究観測点の概要（1995年〜2008年）

佃 為成 12〜38

兵庫県猪名川町井戸水温上昇変化

佃 為成 39〜40

東海地方の水温上昇変化

佃 為成 41〜42

2004年紀伊半島沖地震（M7.4）の前兆的水温変化と地殻変動

佃 為成 43〜49

2008年四川大地震（M8.0）と海潮温泉の水温上昇変化

佃 為成 50〜51

温泉の電気伝導度測定

佃 為成 52〜53

和歌山観測所地電位観測

佃 為成 54〜61

樹木電位観測

佃 為成 62〜72

井戸水電位観測

佃 為成 73

亀岡市の井戸水の濁り

佃 為成 74〜75

静岡市中島下水処理センター内地下水観測点設置の手続き

佃 為成 76〜81

焼津市大富小学校内地下水観測点設置の手続き

佃 為成 82〜87
淡路市ぬるゆ温泉地下水観測点設置の手続き
佃 炳成 88

重点観測点について
佃 炳成 89〜91

付録：地下水化学分析結果および試料一覧 92〜106
付録：水温・水位データグラフ一覧（抜粋） 107〜118
和歌山観測所地電位観測

佃 徹成

鳥取大学の故宮脇潤一郎教授が和歌山地震観測所に設置された電極を用いて以下のような地電位の観測を1997年12月に開始した。当初の4ヶ月間のデータの概要を示す。

使用電極は図1の2チャンネル。測定器は白山工業のLS-2000という2チャンネルのデジタル・データロガーである。サンプリング間隔は10分が標準とした。

電極間の抵抗値はテスター（デジタル）で測ると、ch1:350-450kΩ、ch2:2.2MΩであった。入力インピーダンスが各チャンネル1Mオームなので、ch2では電圧降下が大きい。

短時間の試験的な観測では、1秒、10秒のサンプリング間隔を利用している。

図1 は電極の配置図である。電極P3（山の中にあるある）を基準に、観測点の入口に押し込んだP2と観測点の奥にある観測室の壁に押し込んだP0の電位を測定する。電位のデータは2チャンネルのデータロガー（白山工業製LS-2000）で記録する。各チャンネルは次の電極間の電位差を記録する。

ch1: P2-P3 350-450kΩ
ch2: P0-P3 2.2MΩ

図2は各電極の種類と信号系（分電盤端子配置）である。これらはP0, P2, P3の3本の電極を用いた。

図3に4ヶ月間の地電位変化（1997.11.13-1998.3.16）を示す。

図4, 5, 6に雨による地電位の変動の例を示す。雨センサーを、金属（銀）板で、観測所敷地内の木にぶら下げている。ch1は雨の影響が大きい。

図7, 8には1日間の地電位変化の例を示す。昼間は電車のノイズが入る。

自然の地電位変動と思われる例を図9, 10, 11に示す。

電車のノイズはパルスの重ね合わせである。電車が加速されたり減速されるとときの強い電流が漏れて伝搬したものである。パルス波形の例を図12, 13に示す。数10秒の継続時間がある。
図 1. 電極について ch.1: P2-P3 350-450k Ω ch.2: P0-P3 2.2M Ω

<table>
<thead>
<tr>
<th>electrodes</th>
<th>Composition</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pb-PbCl₂ rod</td>
<td>Concrete wall in the observation cave</td>
</tr>
<tr>
<td></td>
<td>Carbon rod</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pb-PbCl₂ rod</td>
<td>Ground in the observation cave</td>
</tr>
<tr>
<td></td>
<td>Carbon rod</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pb-PbCl₂ rod</td>
<td>Ground in the observation cave</td>
</tr>
<tr>
<td></td>
<td>Carbon rod</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pb-PbCl₂ rod</td>
<td>Slope over the observation cave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 2. 電極の種類と信号系統（分電盤端子配置）
図3. 4ヶ月間の地電位変化（1997.11.13-1998.3.16）。10分サンプリング

図4. 4ヶ月間の地電位変化（1997.11.13-1998.3.16）と雨。

雨センサーは、金属（銀）板で、観測所敷地内の木にぶら下げてある。
ch1は雨の影響が大きい。
図5. 雨センサーのデータ

図6. 雨センサーのデータ（拡大の例）。冬季の記録であるが、図の信号は雨であって雪ではない。
図 7. 1 日間の地電位変化。昼間は電車のノイズあり。

図 8. 地電位変動の例。11/28 22:00 ～ 11/30 09:00 に断続的に雨。12/2 の昼頃から下に凸の変動あり（継続時間約 1 日）。
図9. 地電位変動の例。1週間ぐらいの間に緩やかに変化するトレンドが見える。

図10. 地電位変動の例（2週間）。緩やかな変動。
図11. 地電位変化（半日間）。
10秒サンプリング

図12. 電車のパルスの例。
1秒サンプリング
図 13. 電車のパルスの例。1秒サンプリング。