博士論文（要約）

論文題目 Ethnicity, Language, and Economy

(エスニシティ・言語と経済)

氏名 中川 万理子
Ethnicity, Language, and Economy

Mariko Nakagawa
Graduate School of Economics, University of Tokyo

May 1, 2016
Contents

Introduction iii

1 Segregation Patterns in Cities: Ethnic Clustering without Skill Differences 1
 1.1 Introduction ... 1
 1.2 Framework .. 5
 1.2.1 Settings .. 5
 1.2.2 Households .. 6
 1.2.3 Production ... 9
 1.2.4 Instantaneous equilibrium (high-skilled wage determination) 10
 1.3 Residential equilibrium .. 11
 1.3.1 Majority’s residential patterns ... 11
 1.3.2 Minority’s residential patterns .. 12
 1.4 Equilibrium residential patterns for low commuting costs 14
 1.5 Equilibrium residential patterns for high commuting costs 16
 1.5.1 High-skilled minority’s residential distribution 16
 1.5.2 Low-skilled minority’s residential distribution 17
 1.6 Discussion on efficiency ... 19
 1.7 Comparison between the center and suburb 20
 1.7.1 Ethnicity characteristics .. 20
 1.7.2 Skill levels .. 22
 1.8 Conclusion ... 24
Appendix 1.A Proof of Lemma 1.3.1 ... 26
Appendix 1.B Non-occurrence of the simultaneous commute of minority workers .. 28
Appendix 1.C Proof of excluded combinations 29
Appendix 1.D Proof of stability of equilibria in (M_HD/LS) (m_HC/LC) 30
Appendix 1.E Nonexistence of stable interior equilibria of the high-skilled and low-skilled minority interior solution ... 31
Appendix 1.F Discussion on Pareto efficiency 32
2 Which Has Stronger Impacts on Regional Segregation: Industrial Agglomeration or Ethnolinguistic Clustering?

2.1 Introduction ... 33
2.2 Model ... 38
2.3 Industrial agglomeration or ethnic mix 43
2.4 When does the segregation/dispersion equilibrium break? 49
2.5 Social optimum and equilibrium 50
2.6 Conclusions ... 54
Appendix 2.A Social optimal configurations 55
Appendix 2.B Data sources .. 56

3 Linguistic Distance and Economic Development: Costs of Accessing Domestic and International Centers 57

General Conclusion 58
Introduction

Ethnically heterogeneous society is inevitably affected by the socio-economic activities of residents in it, whether they are indigenous or immigrant, and whether majorities or minorities. Impacts on the host country given by the existence of multiple ethnic groups are negligible from socio- and politico-economic viewpoints. Ethnic heterogeneity is considered one of the essential factors influencing government institutional quality and public goods provision (Alesina et al., 1999; La Porta et al., 1999; Baldwin and Huber, 2010). Further, Fearon and Laitin (2003) examine ethnic diversity and societal and political stability of a country. As for economic activities, ethnic diversity may give positive effect on productivity through production complementality if integration and coordination of different ethnic and cultural groups are successfully maintained. Especially, advanced countries such as the United States and European nations are more likely to enjoy positive impacts of ethnic diversity on economic success (Alesina and La Ferrara, 2005; Ottaviano and Peri, 2006; Alesina et al., 2013; Bellini et al., 2013).

Ethnicity is not a single concept, but connotes several categories of characteristics of individuals such as language, religion, culture, and genetic race. Because various groups of people with different ethnic backgrounds scatter and spread around the world, they must influence political and economic relationships between countries, not only including the commodity/service flow but also intra- and international people flow or migration. After immigrants of different foreign origins have reached destination countries/regions/cities, they may be considered ethnic minorities there, contrasted with indigenous residents. In such society of ethnic heterogeneity, harmonized integration of various ethnic groups of people is vital for economic success. Hence, this dissertation aims at providing economic analysis in the domain of ethnic heterogeneity and diversity.

Turning our eyes toward social phenomena associated with ethnic heterogeneity, residential separation by ethnic or linguistic groups is observed, known as ethnic segregation, whose spatial scale spans a wide spectrum from a neighborhood level to a regional one. Neighborhood segregation, where minorities’ residential distributions are more geographically concentrated, such as Chinatowns, can be seen in cities in the United States, Europe, and elsewhere (Musterd, 2005). Similarly, examples of regional segregation according to ethnolinguistic characteristics are found in many regions, partly as a consequence of the regional (or local) administrative division’s choice of the official language, due to historical
and political reasons.1

Which factors bear ethnolinguistic segregation? Put differently, what are the benefits borne by proximity to the residents who share common ethnic characteristics, particularly for ethnic minorities such as immigrants? The advantage of geographical cluster by ethnicity is that ethnic minorities are more likely to enjoy the benefits of stronger ethnic networks when clustered, which may improve their socio-economic outcomes (Yancey et al., 1976): residentially clustered ethnic minorities tend to perform better in the labor market (Dietz, 1999; Munshi, 2003) and in the housing market (Soholt, 2001). Further, public goods provision reflecting ethnic-oriented preference is another important factor related to ethnic clustering (Boustan, 2007). Residential segregation of ethnic minorities may increase their utility though better access to the ethnicity specific local goods which are provided once a certain threshold of population of the same ethnicity is reached in the neighborhood: as for education, for example, schools for foreign-oriented students may be more easily established when a sufficient number of foreign children reside in the local community.

While the societal aspects of ethnolinguistic heterogeneity mentioned above are such that found within a country, investigation of economic activities associated with it between countries is also worth conducting. In the global economy, it is not rare that individuals with different backgrounds of language, ethnicity, and culture meet and work together, and hence, ethnic heterogeneity is more commonly experienced than in the domestic context. When people of various ethnic backgrounds are in collaboration, communication costs attributed to cultural and linguistic difference necessarily emerge. Especially, difference in language use is a crucial obstacle which hinders smooth interaction and cooperation. Then, English as an internationally widely spoken language overcomes this communication barrier, gluing the linguistically heterogeneous individuals together. Ability to use a globally common language can enhance worldwide connection such as international trade, which contributes to economic growth.

The same can be said to the domestic communication in ethnically diverse countries, because exchanging ideas and cooperative work in those countries are highly costly without shared languages. In those cases, official or national languages should act as connection of different linguistic groups when within-country communication is taken place. Moreover, smooth interaction via domestic central languages could be a bridge between opposed ethnic groups, which would improve political stability and lessen disparities among them, leading to economic success. Considering the coordination costs among ethnolinguistically distant individuals as well as productivity benefits borne by ethnic and cultural diversity must be an important related issue.

Since societies and economies are affected by ethnolinguistic heterogeneity at different

1Well-known examples of linguistic segregation by regions in a country are found in Switzerland, Canada, Spain, and the former Soviet Union countries (see Chapter 2).
levels of geographical scales—within and across cities, regions, and countries,—analyzes in this dissertation span the following three spatial scales of intra- and international socio-economic activities and phenomena: (i) within a city, (ii) between regions within a country, and (iii) between countries.

For the featured subjects in this dissertation, the following two topics are covered: (a) ethnolinguistic segregation and (b) economic development and the cost of diversity in used languages in a country. Segregation by ethnolinguistic groups, which are observed worldwide, reveals historical persistence as will be shown in Chapter 2. Ethnic segregation is an issue of interest in a research field coping with ethnic heterogeneity from the sociological point of view. Furthermore, investigating the impacts of ethnolinguistic diversity on economic and political activities has been recently attracting academic attention. Ethnic/cultural diversity and economic performance are jointly analyzed in a vast literature, wherein benefits of production complementality stemming from ethnic diversity are expected to improve economic conditions. Unexpectedly, however, existence of the ethnolinguistic heterogeneity shows negative impact on economic success on balance. The reason is simple—hidden behind this production benefits are the impacts on economic development given by the cost of integrating different ethnolinguistic groups. The present focus is on how linguistic heterogeneity affects the cross-national economic income differences, where the communication cost among different linguistic groups is captured as linguistic distance between languages. The use of linguistic distance as between-language communication cost is based on the idea that more distant languages from one’s mother tongue may be more difficult to acquire.

From the above-mentioned aspects of spatial scales and topics of socio-economic interests, this dissertation covers the following subjects on ethnicity, language and economy, which are split into three chapters:

1. Ethnic segregation in a city
2. Regional ethnolinguistic segregation and industrial agglomeration in a country
3. Domestic and international linguistic distance and economic development

Each chapter is briefly summarized below.

Chapter 1 analyzes residential segregation by introducing the concept of ethnic clustering externality. In an economy with two areas, namely the center and suburb, households with different ethnic characteristics (termed the majority and minority), both of which have identical skill levels, endogenously choose their residential locations in the long run. By analyzing stable residential equilibria, we show that, because of their ethnic clustering preferences, minority residents are more likely to cluster in one area than majority residents. In addition, when the commuting cost is low, minority residents always cluster,
widening the population gap between areas. At the same time, majority households migrate to a less crowded area to avoid residential congestion caused by minority clustering, thus reducing the population gap. In this sense, the majority acts as an equalizer of population sizes between the center and suburb under low commuting costs.

Chapter 2 investigates how regional segregation patterns are affected by industrial agglomeration and ethnic clustering, by adding the externality of ethnicity to the model of agglomeration and trade proposed by Ottaviano et al. (2002). We show that ethnic segregation patterns are persistent, while ethnic mixing distribution appears only when trade costs are intermediate and ethnic clustering preferences are less intense. Further, discrepancies of the social optimum and equilibrium are caused by that the social optimum is less sensitive to a change in trade costs, when the population of farmers (immobile factors affecting ethnic utilities) is sufficiently large.

Chapter 3 (omitted)
Chapter 1

Segregation Patterns in Cities: Ethnic Clustering without Skill Differences

1.1 Introduction

We often observe the residential separation of two or more ethnic groups into different neighborhoods, also known as segregation. For instance, ethnic areas such as Chinatowns have emerged in many places and immigrants or minorities sometimes reside in clusters. The term “segregation” has been negatively perceived because it often implies a gap between the rich and poor. Originally, however, segregation indicates a situation in which people of various ethnic or racial groups reside in clusters based on ethnic characteristics.

The phenomenon that minorities’ residential distributions are more geographically concentrated can be found in cities in the United States, Europe, and elsewhere (Musterd, 2005). Some well-known examples of residential clustering include the Maghreb immigrants in France (Wacquant, 1993), Turkish immigrants in Germany (O’Loughlin, 1980), and Malayans in Singapore (Van Grunsven, 1992). Wacquant (1993) also discusses the difference between segregation in the ghettos of New York and in the suburbs of Paris.

The mechanism of segregation has been of great interest in the socio-economic field. However, because the U.S. inner-city problem has attracted social concerns, researchers of segregation mechanisms have focused on the uneven residential distribution of minorities in U.S. cities. Kain (1968), for example, examines the relationship between residential segregation by race and differences in unemployment rate (or income level) between races from a sociological viewpoint. Indeed, researchers of segregation in U.S. cities have succeeded

1 I would like to thank Takatoshi Tabuchi for the thoughtful comments and suggestions. I am also grateful to Dan Sasaki, Masahisa Fujita and the seminar participants at the University of Tokyo, ARSC meeting at Kyoto University and JEA meeting at Kanagawa University. Further, I appreciate anonymous referees’ comments which have drastically improved this chapter. All remaining errors are on the author’s responsibility. This research is partially supported by the Grants-in-Aid for Scientific Research (Research project number: 13J10130) for JSPS Fellows by the Ministry of Education, Science and Culture in Japan.

2 “Spatial mismatch” is a social phenomenon wherein the area of job offered by firms and the residence of unemployed job applicants geographically differ. Theoretical explanations for the spatial mismatch
in theoretically explaining these mechanisms by associating ethnicity characteristics with income level (or years of education). Many studies have analyzed the segregation mechanism by examining the income levels of multiple types of households, using the traditional bid rent curve analysis of Alonso (1964),³ analytically explaining U.S. inner-city problems and the tendency for whites to reside in the suburbs under the core assumption that the blacks have lower income levels. In other words, they assume the assumption that majorities are more likely to be better educated and more affluent than minorities.

However, in reality, some minorities are richer than majorities, although we cannot necessarily conclude that ethnicity characteristics are strongly associated with skill levels.⁴ Taking this stance, this chapter does not assume that majorities are richer than minorities. Put differently, the analysis of ethnic segregation presented in this chapter is conducted under the assumption of skill/income-level homogeneity among ethnic groups, and assume that the majority and minority have identical skill levels. Discarding the usual assumption that the majority tends to be better educated or earn higher incomes is sometimes reasonable. In the United States, while Hispanics and African Americans are likely to be less educated than whites, the academic performance of Asians is superior still. Moreover, in countries such as Malaysia and South Africa, minorities (Chinese and whites, respectively) have a much stronger influence on the economy. Thus, one cannot assert that the income and skill levels of the majority are greater than those of the minority. What is unusual and possibly characterizes the present analysis is that even without assuming a difference in skill level between majority and minority groups, we still draw a conclusion that ethnic segregation occurs.

To go in this direction, more support for adopting the assumption that the group tendency of skill/income level of the majority and minority is identical is needed. Reardon et al. (2015) show that black and Hispanic middle-class households tend to reside in neighborhoods that contain larger proportions of their same ethnic groups than those of similar earning white households in U.S. cities, and argue that wealth differences alone do not explain the disproportionate residential concentration of black households. Bayer et al.’s (2014) empirical study more clearly shows this segregation tendency of black residents in U.S. cities, highlighting that the increasing proportion of better educated blacks is leading to an expanding set of available neighborhood options. As a result, highly educated black

³See, for example, Fujita (1989, Chapter 4, Part I) for the segregation mechanism by income level for multiple types of households. As for the theoretical literature on segregation mechanisms, see Fujita and Thisse (2013, Chapters 6 and 7), who consider social interactions in a land market model without assuming a city center as exogenously given. In addition, the body of research from this perspective includes Mossay and Picard’s (2013) segregation analysis.

⁴Nevertheless, we do not deny the existence of an ethnicity bias in skill levels. Coulton et al. (1996) suggest that the geographical concentrations of poverty and affluence can be partially explained by racial and ethnic segregation. Clark and Blue (2004) examine the relationship between residential separation and income or education levels.
residents are moving from predominantly white neighborhoods into those of middle-class blacks. This finding suggests that highly educated blacks prefer to live with black neighbors of middle- or high-income class if they are available. Even after eliminating income or skill level difference among ethnicities, which may be one of the reason to bring about ethnic segregation, there still remains preference to their own ethnicity. In other words, even after eliminating the income- or skill-level differences among ethnicities, a preference for own ethnicity remains.

Which factors other than income and skill differences might cause ethnic segregation? The benefit provided by residential proximity to the same minority group, or ethnic residential clustering, especially for minority rather than majority residents, is one important factor. For example, minorities or immigrants are more likely to face language difficulties. As suggested by Yancey et al. (1976), the effect of an ethnic network is stronger among members who are geographically clustered, indicating that common occupational positions and dependence on local institutions and services are important factors bearing ethnic clustering benefits.

As for public goods provision, racial division may reflect different preferences for public goods consumption (Boustan, 2007). Further, Besley et al. (2004) argue that residential proximity and sharing group identity with local politicians play a role when considering public goods provision. Ethnicity clustering is also beneficial from an educational viewpoint. For instance, when a sufficient number of foreign children reside in a community, schools for such students may be more easily established. The mechanism considered to explain the residential segregation of minorities is the fact that once a certain threshold is reached in a neighborhood, specific “community goods” may be provided to the minority, which increases its utility. In other words, better accessibility to “community goods” related to ethnic-oriented preferences is a key factor generating the benefits of ethnic clustering.

In terms of the housing market, minority communities may play important roles. Calomiris et al. (1994) show that community development banks may eliminate search costs by creating an alternative source of funds for minority residents in the mortgage

5 In addition to these U.S. city examples, in Tokyo, foreign residents from North America or Europe, who are as wealthy as native Japanese residents, tend to reside in clusters in Minato, Setagaya, or Shibuya Wards. See http://www.toukei.metro.tokyo.jp/gaikoku/2015/ga15010000.htm (in Japanese).

6 Some may deem that the way in which educational factors affect ethnic segregation is a sort of negative externality. For example, in the U.S. context, whites may avoid living close to blacks because blacks are less educated, and thus have children who perform worse at school, which may lead to negative externalities for white children. However, as in the examples of the clustering of American or European residents in Tokyo, these negative externalities caused by minorities’ lesser educational attainments are not the only factor creating ethnic segregation, because such a large gap in educational level among foreign residents from rich countries and native Japanese might not exist. Nevertheless, American and European children in Tokyo are likely to choose international schools rather than Japanese public schools, which is indicated by the fact that a large proportion of international schools in Tokyo are located in Minato Ward, where American and European residents are clustered.
market. The benefits of ethnic clustering in the housing market have also been empirically shown. For instance, Söholt (2001) shows that ethnic groups with denser networks enjoy higher home acquisition rates. In addition, networks within the same ethnic group create more favorable consequences for minorities in the labor market. Mexican immigrants in the United States are more likely to be employed when the ethnic network is larger (Munshi, 2003). Dietz (1999) reveals that migrant networks positively affect the labor market performance of ethnic Germans, suggesting that such networks support minority enclaves in Germany.

To highlight the driving forces of ethnic clustering, we introduce the concept of “ethnic clustering preference” in the minority’s utility function, since the above-mentioned factors are more related to minority residents than the majority group. Unlike in the extant literature on segregation related to negative externalities such as prejudice against minority residents, this chapter thus emphasizes aspects induced by the residential proximity in the minority group. As noted already, although differences in skill level among ethnic groups have long been considered an important factor of ethnic segregation, elements associated with the minority’s preference cannot be ignored when analyzing residential segregation by ethnicity. Indeed, a segregation analysis under the assumption of identical skill-level tendencies by ethnicity can be meaningful, particularly if our primary interest is the effect of minority residents’ clustering preferences. This chapter investigates this sorting process on the basis of a minority group’s positive externalities rather than the negative externalities induced by residential proximity to other ethnic members, as in Rose-Ackerman (1975) and Yinger (1976). The present segregation analysis uses a model that captures the externalities stemming from residential proximity to the same ethnic community, especially for minority residents.

In the present model, both high- and low-skilled workers are perfectly mobile within a closed city that contains the center (high-skilled intensive area) and suburb (low-skilled intensive area) as workplaces. There are two types of ethnic characteristics, majority and minority, in the economy; thus, in addition to a skill level, each individual is endowed with an ethnic characteristic. Further, we assume that both ethnic groups have the same high-/low-skilled population ratios. Minority residents obtain utility from proximity to residents of the same minority group. As for land consumption, for the sake of tractabili-

7 Note that in this chapter, clustering does not mean industrial clustering or agglomeration as is used in new economic geography contexts.

8 When considering the mechanism of segregation by ethnicity, especially in the context of the United States, whites’ prejudice against minorities is a key issue. Rose-Ackerman (1975), Yinger (1976), and Courant and Yinger (1977) consider a situation in which white residents hesitate to live close to black residents because of the negative externalities created by such residential proximity.

9 Kanemoto (1980, Chapter 7) suggests ways in which to express the externalities stemming from proximity to another type of household. Thus, this chapter defines externalities from proximity to the same type of household by employing Kanemoto’s (1980) model, in which externalities are defined as negative ones that affect the utility levels of other ethnicity groups when near another community’s residence.
ity, we draw on Helpman (1998) and assume that residents in the same area consume the same amount of land. If a minority individual’s residence and workplace are in different areas, she faces a trade-off between the benefits of ethnic clustering and distant commuting (as well as disutility of residential congestion). The existence of this trade-off for minority people is empirically investigated by Liu (2009) in the context of Latino workers in the United States.

The main results are as follows. When the commuting cost is low, minority residents always cluster, while majority residents move to a less crowded area to avoid residential congestion. Although this model does not directly tackle the spatial mismatch hypothesis, its key factors are deeply related to some of those in this hypothesis such as commuting costs and access to job centers (Ihlanfeldt and Sjoquist, 1990, 1991), both of which are deemed to be important in the present context.

The remainder of this chapter is organized as follows. Section 1.2 presents the framework of the model. We employ Krugman’s (1991) model as the base model. Section 1.3 introduces the notion of a long-run residential equilibrium and classifies the possible equilibrium configurations. Sections 1.4 and 1.5 discuss the residential patterns in response to low and high commuting costs. Section 1.6 briefly discusses efficiency. Section 1.7 compares the population distribution gap between the central and suburban areas on the basis of stable residential equilibrium paths. Section 1.8 concludes.

1.2 Framework

1.2.1 Settings

This section models an economy in which people with various ethnic characteristics reside. As mentioned in Section 1.1, people with the same ethnic characteristics prefer to cluster, ceteris paribus. To define a mechanism that brings about this tendency, we first consider two types of ethnic groups—a majority group with a larger population, L_X, and a minority group with a smaller population, L_x. To express different population sizes, assume $L_X > L_x$. In addition, there are two types of workers: high- and low-skilled. κ_X is defined as the high-skilled share of the majority and κ_x the minority, such that $1 - \kappa_X$ is the low-skilled share of the majority and $1 - \kappa_x$ is that of the minority. In this way, the economy is characterized in terms of population share. There are four types of households in the economy: high-skilled majority, low-skilled majority, high-skilled minority, and low-skilled minority. Thus, the population of each household type is $\kappa_X L_X$ for the high-skilled majority, $(1 - \kappa_X) L_X$ for the low-skilled majority, $\kappa_x L_x$ for the high-skilled minority, and $(1 - \kappa_x) L_x$ for the low-skilled minority. By normalization, we set $L_X = 1$ so that $L_x < 1$.

An attempt was made to adopt a bid rent approach to deal with the topic in question, considering a spatially continuous city in this chapter; however, this makes the analysis cumbersome.
1. Following discussions on the ethnic segregation without skill heterogeneous tendency according to ethnic groups in Section 1.1, we set $\kappa_X = \kappa_x = 1/2$.11

Next, we describe the geographic characteristics of the economy. Consider a closed city with a central and suburban area. Since we assume a closed city, there is no migration into or out of the economy (of course, internal migration is allowed in the long run). Both the center and suburb are assumed to compose one unit of land and no space exists between them; thus, the center and suburb play the role of not only production areas but also residential areas. For the production areas, assume that the differentiated good is produced in the center, while the homogeneous good is produced in the suburb. Differentiated goods production needs high-skilled labor as input, whereas low-skilled labor is the sole input in homogeneous good production. We ignore goods transportation costs in the economy.12 As for the residential areas, both the center and suburb accommodate households and each household incurs an iceberg-type commuting cost, τ, if she is a commuter (i.e., the workplace and residence are located in different areas). If she is a non-commuter (i.e., the workplace and residence are in the same area), there are no commuting costs. Because in some U.S. and European nations, not firms but workers incur commuting costs, it is not unnatural to assume that the income reduces in line with iceberg commuting costs.

1.2.2 Households

Because there are two types of households in terms of ethnic characteristics in the economy (majority and minority), different utility functions are assumed for each ethnic group. As mentioned in Section 1.1, people with the same ethnic characteristics tend to cluster and this tendency is stronger in the case of a minority. Thus, utility stemming from ethnic residential clustering, especially for the minority, should be included in the utility function. In addition, the utility function includes a land consumption term. Following Krugman’s (1991) model, we formulate the utility function of a household living in area j ($j = C$ or S, C; C denotes the center and S the suburb) with ethnicity characteristic e ($e = X$ or x; X denotes a majority and x a minority) as follows:

$$U^j_e = \alpha \log M + (1 - \alpha - \beta) \log A + \beta \log (H^j) + \gamma_e \log (X^j_e)$$ \hspace{1cm} (1.1)

11Some may suspect the existence a certain level of ethnicity bias. For example, in the United States, Hispanics and African Americans are likely to be less educated than the Whites, so that $\kappa_X > \kappa_x$ may hold. However, as mentioned in Section 1.1, one cannot necessarily assert that the high-skilled ratio of the majority is greater than that of the minority. In addition, in the present model, skill levels are exogenously given for each ethnicity. For a model in which skill differences endogenously emerge through neighborhood interactions in the presence of peer community influence, see Bénabou (1993) and Bénabou (1996). Further, Billings et al. (2014) empirically examines the effects of racial segregation on educational attainment.

12Here, although goods transportation costs are ignored, consumer commuting costs are not; such as the assumption employed in the context of a traditional bid rent curve analysis (Fujita, 1989).
with
\[M = \left[\int_0^n m(i)^{\frac{\sigma - 1}{\sigma}} \, di \right]^{\frac{1}{\sigma - 1}}, \quad \sigma > 1, \]
where \(M \) and \(A \) denote the consumption of the CES composite of varieties of the differentiated goods and the homogeneous good, respectively. \(m(i) \) is the consumption of variety \(i \), \(n \) is the mass of varieties produced in the economy, and \(\sigma > 1 \) is the elasticity of substitution between any two varieties (Dixit and Stiglitz, 1977). \(H^j \) is the amount of land consumption in area \(j \) and \(X_e^j \) is the composition of households in area \(j \) in terms of ethnicity; that is,
\[X_e^j = \frac{N_e^j}{N^j} = \frac{N_e^j}{\sum_{e \in \{X,e\}} N_e^j}, \]
where \(N^j \) is the total population residing in area \(j \) and \(N_e^j \) is the population with ethnic characteristic \(e \) living in area \(j \). The consumption share parameter \(\alpha \) satisfies \(0 < \alpha < 1 \), and the housing consumption parameter \(\beta \) also satisfies \(0 < \beta < 1 \). As for the ethnicity clustering parameter \(\gamma_e \), we assume
\[\gamma_e = \begin{cases} \gamma > 0 & \text{if } e = x \\ 0 & \text{otherwise}, \end{cases} \]
which captures the tendency that minority households more strongly prefer residential proximity to the same ethnic groups than the majority.

With this expression of the ethnicity clustering parameter, minorities derive utility from clustered residences by ethnicity, while majority households are indifferent to it. However, the question remains whether majority households derive utility from clustering with people with the same ethnicity characteristics. In reality, even though a fervent answer cannot be provided, some defense can be offered. Clark and Blue (2004) empirically show that even if ethnicity characteristics differ between groups, their affinity levels toward other ethnic groups are not as low if the education (or income) levels are somewhat the same among groups. With this, consider the assumption of a lack in the majority’s clustering preference by ethnicity. Suppose that the social status of the majority is higher than that of the minority (unlike in the present model), so that the income levels widely vary between ethnic groups. In this case, a realistic reason underlying the majority’s propensity to reside in a cluster is that it would be safer, that is, richer areas are thought to be safer with lower crime rates. In this model, however, skill levels (high-skilled ratios) are assumed to be the same between the majority and minority, and thus, the anxiety that

This expression of residential externality from different racial households living in a neighborhood is borrowed from Kanemoto (1980). It may be questioned as to why the ethnicity externality term \(X_e^j \) is not a level but a share. As mentioned in Section 1.1, local governments’ decisions are more likely to be influenced by minority residents, that is, if they are not negligible. In other words, the ethnicity composition of the area may be directly related to the level of ethnic clustering utility, making the employment of a share more rationalizable than a level.
the majority residents feel regarding safety can be disregarded.

Next, consider the budget constraint of households. The wage rate of a household with skill level s ($s = h$ or l; h denotes high- and l low-skilled) is denoted by w_s, and each household is assumed to be endowed with one unit of labor. An individual supplies her labor endowment inelastically, and thus, the household income with skill level s is w_s. In addition, she pays rent for land consumption and we assume that the land in area j is equally owned by the residents in the area, so that each household earns land rent income. The assumption that all land rent is collected and equally redistributed among the residents in the same area is also adopted in Ottaviano et al. (2002). We choose the homogeneous good as the numéraire and denote the price of variety i by $p(i)$. Then, the budget constraint of a household that possesses skill level s, lives in area j, and works in area k is given by

$$\int_0^n p(i)m(i)di + A + r^jH^j = \frac{w_s}{\tau^{jk}} + R^j, \quad (1.2)$$

where

$$\tau^{jk} = \begin{cases} \tau > 1 & \text{if } j \neq k \quad \text{(commuter)} \\ 1 & \text{otherwise} \quad \text{(non-commuter)}. \end{cases}$$

As mentioned above, commuters incur commuting costs, while non-commuters do not. r^j is the rent for land consumption H^j, and R^j is the land rent paid to her. Following Helpman (1998), we assume that the total supply of land in area j is set to unity, and each resident in area j owns and consumes the same amount of land. Then, we get the following utility function and budget constraint:\footnote{Some may oppose the assumption that land is equally consumed and owned by residents in the same area (public land ownership by area). Thus, we introduce certain modifications to the model in terms of land consumption and ownership. First, we remove the assumption that each resident in the same area consumes the same amount of land, and assume public land ownership, where residents obtain the same share of total land rent in the city. Numerical exercises show that the outcome does not contradict the analytical solutions of the original model; thus, the result obtained from the main analysis on the basis of this assumption can be deemed robust. Details of the analysis can be made available upon request.}

$$U^j_e = \alpha \log M + (1 - \alpha - \beta) \log A + \beta \log \left(\frac{1}{N^j}\right) + \gamma_e \log \left(\frac{N^e_j}{N^j}\right), \quad (1.3)$$

and

$$\int_0^n p(i)m(i)di + A = \frac{w_s}{\tau^{jk}}. \quad (1.4)$$

In utility function (1.3), the interpretation of β is important. Since the land consumption per person in area j, $1/N^j$, decreases as the total population of area j increases, a larger population in area j (the area where the household resides) means lower utility from housing consumption. This implies an alternate interpretation of the term $\beta \log(1/N^j)$, which is the disutility created by residential congestion. It turns out that in the long-run equilibrium analysis, the congestion parameter β is a key parameter. Each household
maximizes the utility function (1.3) subject to the budget constraint (1.4). The first-order conditions yield the following demand functions:

\[m(i) = \alpha \frac{w_s}{\tau_j} p(i)^{-\sigma} P^{\sigma - 1}, \quad M = \alpha \frac{w_s}{\tau_j} P^{-1}, \quad A = (1 - \alpha - \beta) \frac{w_s}{\tau_j}, \tag{1.5} \]

where \(P \) is the price index of the differentiated good:

\[P = \left[\int_0^\infty p(i)^{1-\sigma} d\iota \right]^{\frac{1}{1-\sigma}}. \]

1.2.3 Production

Firms in the differentiated goods sector are monopolistically competitive and employ only high-skilled workers. In addition, we assume free entry and exit. To produce \(q(i) \) units of variety \(i \), \(f + cq(i) \) units of high-skilled input are required. The fixed requirement of high-skilled labor \(f \) exhibits increasing returns to scale, so that each variety \(i \) is produced by a single firm. On the other hand, the homogeneous good sector is perfectly competitive and employs low-skilled labor as its only input. To produce one unit of a homogeneous good, one unit of low-skilled labor input is required, so that the technology in the homogeneous good sector exhibits constant returns to scale. Since the low-skilled labor market is perfectly competitive, the wage rate in the homogeneous good sector, or the wage rate of low-skilled workers, is 1 \((w_l = 1) \).

Firm \(i \) maximizes its profit:

\[\Pi(i) = [p(i) - cw_h] D(i) - f w_h, \tag{1.6} \]

where \(D(i) \) is the total demand for the variety produced by firm \(i \). By profit maximization, the price of variety \(i \) is

\[p(i) = \frac{\sigma}{\sigma - 1} cw_h, \tag{1.7} \]

which is a constant markup on the marginal cost. Because of free entry and exit and the zero profit condition, the high-skilled labor demand of a firm is rewritten as

\[f + cq(i) = \sigma f. \tag{1.8} \]

On the other hand, the high-skilled labor supply as a whole\(^{15}\) is given by

\[\sum_{e \in \{X, x\}} \kappa_e L_e = \kappa_X L_X + \kappa_x L_x = \frac{1}{2} (1 + L_x), \]

\(^{15}\)Here, we simply assume fixed working hours, such that the high-skilled labor supply equals the total amount of high-skilled labor.
so that for the high-skilled labor market to clear, the equilibrium mass of firms is

\[n^* = \frac{1 + L_x}{2\sigma f}. \]

Thus, we obtain the price index

\[P = \frac{\sigma}{\sigma - 1} cw_h \left(\frac{1 + L_x}{2\sigma f} \right)^{\frac{1}{\sigma}}. \] (1.9)

1.2.4 Instantaneous equilibrium (high-skilled wage determination)

In this section, we derive the income of high-skilled workers. First, we examine how many residents in the economy choose to commute. We define \(\lambda_{es} \) as the center-residing ratio of households with skill level \(s \) and ethnic characteristic \(e \), so that \(1 - \lambda_{es} \) is the suburb-residing ratio of households \(es \). Because the consumption amount of differentiated and homogeneous goods of commuters is less than that of non-commuters owning to commuting costs, defining \(\lambda_{es} \) allows us to derive the net income (in the present context, this is the income remaining after paying commuting costs). The total net income of each group of households \(es \), \(y_{es} \), is then given by

\[y_{Xh} = \frac{wh}{2} \left(\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} \right), \quad y_{XI} = \frac{1}{2} \left(\frac{\lambda_{XI}}{\tau} + 1 - \lambda_{XI} \right) \]
\[y_{Xh} = \frac{whL_x}{2} \left(\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} \right), \quad y_{xl} = \frac{L_x}{2} \left(\frac{\lambda_{xl}}{\tau} + 1 - \lambda_{xl} \right). \]

From these equations, we obtain the net income of the economy as a whole:

\[Y = \sum_{e \in \{X,x\}} \sum_{s \in \{h,l\}} y_{es} \]
\[= \frac{wh}{2} \left[\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} + L_x \left(\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} \right) \right] \]
\[+ \frac{1}{2} \left[\frac{\lambda_{XI}}{\tau} + 1 - \lambda_{XI} + L_x \left(\frac{\lambda_{xl}}{\tau} + 1 - \lambda_{xl} \right) \right]. \]

Combining this expression with the zero-profit condition (setting \(\Pi(i) = 0 \) in (1.6)), (1.7), (1.8), and (1.9) with the demand functions in (1.5) yields the equilibrium wage rate for
high-skilled workers:

\[w_h^* = \frac{\alpha \sum_{e \in \{X,x\}} (1 - \kappa_e) L_e \left(\frac{\lambda X}{\tau} + 1 - \lambda e \right)}{\sum_{e \in \{X,x\}} \kappa_e L_e \left[1 - \alpha \left(\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} \right) \right]} \]

\[= \frac{\alpha \left(\frac{\lambda X}{\tau} + 1 - \lambda_{Xl} + L_x \left(\frac{\lambda X}{\tau} + 1 - \lambda_{Xl} \right) \right)}{1 + L_x - \alpha \left[\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} + L_x \left(\lambda_{Xh} + \frac{1 - \lambda_{Xh}}{\tau} \right) \right]} . \]

1.3 Residential equilibrium

In this section, we analyze the long-run equilibrium, where each household can migrate within this economy (\(\tau \) is no longer treated as fixed); that is, households can choose to reside in either the center or suburb. To analyze the long-run behavior of households, we compute indirect utility differentials. For a household with skill level \(s \) and ethnicity characteristic \(e \), the indirect utility differential is defined as

\[\Delta V_{es}(\lambda) \equiv V_{es}^C(\lambda) - V_{es}^S(\lambda) , \]

where \(\lambda \equiv (\lambda_X, \lambda_x) \equiv (\lambda_{Xh}, \lambda_{Xl}, \lambda_{Xh}, \lambda_{Xl}) \). In the definition provided in (1.10), \(V_{es}^j(\lambda) \) is the indirect utility an individual can attain when residing in area \(j \), so that \(\Delta V_{es}(\lambda) \) is the extra utility attained when residing in the center rather than in the suburb. She chooses to reside in the center if \(\Delta V_{es}(\lambda) > 0 \), and in the suburb if \(\Delta V_{es}(\lambda) < 0 \), in the long run.

1.3.1 Majority’s residential patterns

By definition of the indirect utility differential, we can identify \(\Delta V_{Xh}(\lambda) \) and \(\Delta V_{Xl}(\lambda) \). Further, by plugging the budget constraint (1.4) into the utility function (1.3), and replacing \(w_s \) with \(w_h = w_h^* \) and \(w_l = 1 \), respectively, the indirect utilities of the high- and low-skilled majority living in the center and suburb are

\[(V_{Xh}^C(\lambda), V_{Xh}^S(\lambda)) = (B_h - \beta \log(N^C), B_h - \log \tau - \beta \log(N^S)) \]

\[(V_{Xl}^C(\lambda), V_{Xl}^S(\lambda)) = (B_l - \log \tau - \beta \log(N^C), B_l - \beta \log(N^S)) , \]

where \(B_h \equiv \alpha \log(\alpha w_h^* P^{-1}) + (1 - \alpha) \log[(1 - \alpha) w_h^*] \) and \(B_l \equiv \alpha \log(\alpha P^{-1}) + (1 - \alpha) \log(1 - \alpha) \), respectively, so that the indirect utility differentials of high- and low-skilled majority are given by

\[(\Delta V_{Xh}(\lambda), \Delta V_{Xl}(\lambda)) = \left(\log \tau - \beta \log \left(\frac{N^C}{N^S} \right), -\log \tau - \beta \log \left(\frac{N^C}{N^S} \right) \right) . \]
Note that indirect utility differentials do not depend on individual income levels because one’s place of residence does not affect earned income. In fact, the only factor affecting income is skill level. Thus, after subtracting the indirect utilities when living in areas \(j \) and \(k \), incomes cancel each other out, so that there should be no residual terms related to wages. This result means that the indirect utility differential can ignore the wage level.

By analyzing (1.11), we obtain the following lemma.\(^{16}\)

Lemma 1.3.1. If the commuting cost is low \((1 < \tau < \tau_X \equiv (1 + 2L_x)\beta)\), then there are two possibilities:

- **(M\(_{HD/LS}\)):** low-skilled majority households cluster in the suburb, whereas high-skilled majority households reside in both areas \((\lambda^*_{Xh} \in (0, 1) \text{ and } \lambda^*_{Xl} = 0)\).
- **(M\(_{HC/LD}\)):** high-skilled majority households cluster in the center, whereas low-skilled majority households reside in both areas \((\lambda^*_{Xh} = 1 \text{ and } \lambda^*_{Xl} \in (0, 1))\).

If the commuting cost is high \((\tau \geq \tau_X)\), then

- **(M\(_{HC/LS}\)):** high-skilled majority households cluster in the center, whereas low-skilled majority households cluster in the suburb, no majority households commute \((\lambda^*_{Xh} = 1 \text{ and } \lambda^*_{Xl} = 0)\).\(^{17}\)

To elaborate on Lemma 1.3.1,\(^{18}\) when the commuting cost is low, avoiding residential congestion is more important for consumers than low commuting costs; thus, they prefer to live in a less crowded area. Note that not all consumers live in the same residential area to avoid heavy residential congestion. On the other hand, in the case of high commuting costs, consumers choose to reside in the area of their workplace because they can avoid paying expensive commuting costs and are less concerned about residential congestion within their neighborhoods.

1.3.2 Minority’s residential patterns

As with the majority’s residential patterns, we identify \(\Delta V_{zh}(\lambda)\) and \(\Delta V_{zl}(\lambda)\). Because the indirect utilities of the high- and low-skilled minority living in the center and suburb are

\[
(V^C_{zh}(\lambda), V^S_{zh}(\lambda)) = (B_h - (\beta + \gamma) \log(N^C) + \gamma \log(N^C_x), B_h - \log \tau - (\beta + \gamma) \log(N^S) + \gamma \log(N^S_x)),
\]

\[
(V^C_{zl}(\lambda), V^S_{zl}(\lambda)) = (B_l - (\beta + \gamma) \log(N^C) + \gamma \log(N^C_x), B_l - (\beta + \gamma) \log(N^S) + \gamma \log(N^S_x)),
\]

\(^{16}\)See Appendix 1.A for the proof.

\(^{17}\)Note that, in this model, “cluster” does not mean industrial clustering but residential clustering in terms of ethnicity.

\(^{18}\)\((M_{HD/LS})\) stands for a pattern in which Majority, High-skilled workers **Disperse** across areas and Low-skilled workers cluster in the **Suburb**. \((M_{HC/LS})\) means that Majority, High-skilled workers cluster in the **Center** and Low-skilled workers cluster in the **Suburb**.
respectively, the indirect utility differentials of the high- and low-skilled minority are given by

\[
(\Delta V_{zh}(\lambda), \Delta V_{zl}(\lambda)) = \left(\log \tau - (\beta + \gamma) \log \left(\frac{N_C}{N^S} \right) + \gamma \log \left(\frac{N_C}{N^S} \right), -\log \tau - (\beta + \gamma) \log \left(\frac{N_C}{N^S} \right) + \gamma \log \left(\frac{N_C}{N^S} \right) \right).
\]

(1.12)

Analyzing (1.12) yields the following possible cases of minority residential patterns.\(^{19}\)

- **(m_HC/LC):**
 \[B_x < \tau^{-1} \Rightarrow \Delta V_{zh}(\lambda) > 0 \text{ and } \Delta V_{zl}(\lambda) > 0 \Rightarrow \lambda_{zh}^* = 1 \text{ and } \lambda_{zl}^* = 1 \]

- **(m_HC/LD):**
 \[B_x = \tau^{-1} \Rightarrow \Delta V_{zh}(\lambda) > 0 \text{ and } \Delta V_{zl}(\lambda) = 0 \Rightarrow \lambda_{zh}^* = 1 \text{ and } \lambda_{zl}^* \in (0, 1) \]

- **(m_HC/LS):**
 \[\tau^{-1} < B_x < \tau \Rightarrow \Delta V_{zh}(\lambda) > 0 \text{ and } \Delta V_{zl}(\lambda) < 0 \Rightarrow \lambda_{zh}^* = 1 \text{ and } \lambda_{zl}^* = 0 \]

- **(m_HD/LS):**
 \[B_x = \tau \Rightarrow \Delta V_{zh}(\lambda) = 0 \text{ and } \Delta V_{zl}(\lambda) < 0 \Rightarrow \lambda_{zh}^* \in (0, 1) \text{ and } \lambda_{zl}^* = 0 \]

- **(m_HS/LS):**
 \[B_x > \tau \Rightarrow \Delta V_{zh}(\lambda) < 0 \text{ and } \Delta V_{zl}(\lambda) < 0 \Rightarrow \lambda_{zh}^* = 0 \text{ and } \lambda_{zl}^* = 0, \]

where \(B_x \equiv \left(\frac{N_C}{N^S} \right)^{\beta + \gamma} \left(\frac{N_C}{N^S} \right)^{-\gamma}. \)

A review of the above five cases shows that the residential patterns with \(\lambda_{zh}^* \in (0, 1) \) and \(\lambda_{zl}^* \in (0, 1) \), and \(\lambda_{zh}^* = 0 \text{ and } \lambda_{zl}^* = 1 \) are excluded. The excluded residential patterns correspond with the situations in which both high- and low-skilled minority workers commute at the same time.\(^{21}\)

Since this section lists the possible residential equilibrium patterns for majorities and minorities, in the next section, we examine the combinations of majority and minority residential patterns that are in equilibrium.

\(^{19}\)The possible residential patterns of the minority are derived in almost the same manner as those of the majority. Details are provided for readers upon request.

\(^{20}\)(m_HC/LS) stands for a pattern where the minority, High-skilled workers cluster in the Center and Low-skilled workers who cluster in the Suburb. (m_HC/LD) stands for a pattern where as for the minority, High-skilled workers cluster in the Center and Low-skilled workers Dispersed across both areas.

\(^{21}\)If \(\lambda_{zh} \neq 1 \), some high-skilled minority workers commute because their workplaces are in the center. (Note that if \(\lambda_{zh} \neq 1 \), some high-skilled minority workers live in the suburb.) Similarly, if \(\lambda_{zl} \neq 0 \), some low-skilled minorities commute because their workplaces are in the suburb. (Note that if \(\lambda_{zl} \neq 0 \), some low-skilled minority residents live in the center.) For a further discussion, see Appendix 1.B.
1.4 Equilibrium residential patterns for low commuting costs

Here, we consider the residential equilibrium patterns that may emerge in the case of low commuting costs ($1 < \tau < \tau_X$). When considering the two majority and five minority residential patterns, we do not need to examine all 10 combinations. Adopting the assumptions for population and skill levels, we proved that only (M_{HD}/LS) (m_{HC}/LC) and (M_{HC}/LD) (m_{HS}/LS) hold.\(^{22}\)

By analyzing (M_{HD}/LS) (m_{HC}/LC), we obtain a stable equilibrium,\(^{23}\)

$$\lambda_{Xh}^* = \frac{2(\tau^\frac{3}{2} - L_x)}{\tau^\frac{3}{2} + 1} \in (1 - L_x, 1), \quad \lambda_{XI}^* = 0, \quad \lambda_{xh}^* = 1, \quad \lambda_{xl}^* = 1.$$

In this residential equilibrium, λ_{Xh}^* increases as τ increases. Since λ_{Xh}^* is the ratio of high-skilled majority households living in the center, if commuting becomes more expensive, fewer high-skilled majority workers will choose to commute and the number of high-skilled majority households preferring to reside in the center compared to the suburb increases.

Next, consider the effect on λ_{Xh}^* by L_x and β, the parameters related to residential congestion. λ_{Xh}^* decreases as L_x and β increase. In this residential equilibrium, the total population in the center is larger than that in the suburb. This implies that if the high-skilled majority’s negative response to congestion worsens (i.e., β gets larger), they will tend to increasingly flee from the center to the suburb to escape the congestion. Similarly, because all minority households reside in the center, a larger L_x means an increasing central population. This population increase forces the high-skilled majority to migrate to the suburb.

As in the combination (M_{HD}/LS) (m_{HC}/LC), (M_{HC}/LD) (m_{HS}/LS) is proved to bear a stable equilibrium.\(^{24}\)

$$\lambda_{Xh}^* = 1, \quad \lambda_{XI}^* = \frac{1 + 2L_x - \tau^\frac{3}{2}}{\tau^\frac{3}{2} + 1} \in (0, L_x), \quad \lambda_{xh}^* = 0, \quad \lambda_{xl}^* = 0.$$

Examining the residential equilibrium, we see that a larger τ decreases λ_{XI}^*, whereas an increase in β and L_x increases λ_{XI}^*. The interpretations of these impacts are almost the same as in (M_{HD}/LS) (m_{HC}/LC). To sum up this section, we present the following proposition.

Proposition 1.4.1. When the commuting cost is low ($1 < \tau < \tau_X$), two types of residential equilibria emerge:

\(^{22}\)For the proof, see Appendix 1.C.

\(^{23}\)The stability notion used here is that of local stability with respect to relocation dynamics to higher utility locations. For the derivation and more detailed explanation of equilibrium stability, see Appendix 1.D.

\(^{24}\)Since the proof is similar to that in the cases of (M_{HD}/LS) (m_{HC}/LC) in Appendix 1.D, it has been omitted.
Pattern $L\tau\cdot mC$: Minority clustering in the center ($\lambda^* = \left(\frac{2(\frac{1}{\tau} - L_x)}{\tau^2 + 1}, 0, 1, 1\right)$) corresponding to $(M_{HD/LS}) (m_{HC/LC})$

Pattern $L\tau\cdot mS$: Minority clustering in the suburb ($\lambda^* = \left(1, \frac{1+2L_x - \tau^2}{\tau^2 + 1}, 0, 0\right)$) corresponding to $(M_{HC/LD}) (m_{HS/LS})$.

Both residential patterns are perfectly mixed in terms of skill levels and imperfectly mixed (or equivalently, partially segregated) in terms of ethnic characteristics.

Proposition 1.4.1 can be restated in a simpler way: If the commuting cost is low, the minority group always clusters and there is perfect skill mixing. In addition, ethnic mixing occurs only in the location where the minority group clusters.\(^{25}\) Figure 1.1 graphically depicts patterns $L\tau\cdot mC$ and $L\tau\cdot mS$.\(^{26}\) In pattern $L\tau\cdot mC$, the suburb is occupied only by the majority group, while the center is occupied by both majority and minority residents. Thus, in terms of ethnicity characteristics, this residential pattern is called an imperfectly mixed pattern (featured on the suburb), or equivalently, a partially segregated pattern (featured on the center). As for skill levels, this pattern is interpreted as a perfectly mixed pattern because both areas accommodate high- and low-skilled workers. A corresponding example of this residential pattern is Harlem, New York, where African Americans live in the central area and the Whites live in the suburban area. In $L\tau\cdot mS$, the center is occupied only by majority residents, while the suburb is occupied by both majority and minority residents. In the real world, $L\tau\cdot mS$ may correspond to the Banlieue suburb in Paris, where immigrants from the Maghreb mainly reside.

We conclude this section with a comment on patterns $L\tau\cdot mC$ and $L\tau\cdot mS$. In $L\tau\cdot mC$, the population in the center (the more crowded area in the economy) can be denoted as $N^C = \frac{\tau^{1/\beta}(1 + L_x)}{(1 + \tau^{1/\beta})}$. In $L\tau\cdot mS$, the population in the suburb (the more crowded area) is also represented by $N^S = \frac{\tau^{1/\beta}(1 + L_x)}{(1 + \tau^{1/\beta})}$. Therefore, $N^j = \frac{\tau^{1/\beta}(1 + L_x)}{(1 + \tau^{1/\beta})}$.

\(^{25}\)I thank an anonymous referee for suggesting this clear restatement of Proposition 1.4.1.

\(^{26}\)Pattern $L\tau\cdot mC$ stands for a residential pattern where for a L_{low} (commuting cost), minority residents cluster in the Center.
\(\tau^{1/\beta}(1 + L_x)/(1 + \tau^{1/\beta}) \) is the population size when the majority residents reach the limit of their endurance of disutilities stemming from residential congestion in area \(j \), where they live. In contrast, the less crowded area still has room to accommodate more residents (so that the residents in the crowded area can migrate to the less crowded area). This is the essence of the later discussion on equilibrium paths in terms of skill levels (Section 1.7.2).

1.5 Equilibrium residential patterns for high commuting costs

In this section, the commuting cost \(\tau \) is so high (\(\tau \geq \tau_X \)) that no majority workers commute. Therefore, the population distribution of the majority is already given by \(\lambda^*_X = (1, 0) \) and what is left to be analyzed is \(\lambda^*_x \). Before analyzing this, we consider the “sustain points” for high- and low-skilled minority workers. In this chapter, the “sustain point” is the threshold value of the commuting cost such that either high- or low-skilled minority workers start commuting. That is, the sustain point for high-skilled minority workers, \(\tau^S_{xh} \), is defined as \(\tau^S_{xh} \in \{ \tau \mid \Delta V_{zh}(\lambda) \mid \lambda=(1,0,1,0) = 0 \} \), and that for low-skilled minority workers, \(\tau^S_{xl} \), is defined as \(\tau^S_{xl} \in \{ \tau \mid \Delta V_{zl}(\lambda) \mid \lambda=(1,0,1,0) = 0 \} \). By definition of the sustain points, \(\Delta V_{zh}(\lambda) \mid \lambda=(1,0,1,0) > 0 \) for \(\tau > \tau^S_{xh} \) and \(\Delta V_{zl}(\lambda) \mid \lambda=(1,0,1,0) < 0 \) for \(\tau > \tau^S_{xl} \). Then, from \(\Delta V_{zh}(\lambda) \mid \lambda=(1,0,1,0) = 0 \) and \(\Delta V_{zl}(\lambda) \mid \lambda=(1,0,1,0) = 0 \), we obtain \(\tau^S_{xh} = \tau^S_{xl} = 1 \).

Since we now consider the case with \(X = (1 + 2L_x) \), the commuting cost is always greater than the sustain points for both high- and low-skilled minority workers. This implies the following lemma.

Lemma 1.5.1. If the commuting cost is sufficiently high (\(\tau \geq \tau_X \)), the residential pattern such that no one commutes is a stable equilibrium (\(\lambda^* = (1, 0, 1, 0) \)).

In other words, if the commuting cost is high, residents hesitate to incur commuting costs so that households are likely to choose the non-commuting option. Lemma 1.5.1 means that combination (M_HC/LS) (m_HC/LS) is a stable equilibrium.

1.5.1 High-skilled minority’s residential distribution

We have just seen that the combination (M_HC/LS) (m_HC/LS) shows a stable equilibrium, but for the convenience of further explanation, consider (M_HC/LS) (m_HC/LS), (M_HC/LS) (m_HD/LS), and (M_HC/LS) (m_HS/LS) together. In all of these combinations, the population distribution of low-skilled minority workers is \(\lambda^*_{xl} = 0 \), while that of high-skilled minority workers remains undetermined. Since the population distribution of low-skilled minority workers (and, of course, that of majorities) can be treated as fixed, we can focus on the residential decision of the high-skilled minority. In the combinations under consideration, the population of each area is given by \(N^C = (1 + \lambda_{zh}L_x)/2 \), \(N^S = [1 + (2 - \lambda_{zh})L_x]/2 \), \(N^C_x = \lambda_{zh}L_x/2 \) and \(N^S_x = (2 - \lambda_{zh})L_x/2 \), where \(\lambda_{zh} \in [0, 1] \).

16
First, we immediately derive one of the stable equilibria, $\lambda_{xh}^* = 0$, from this population
and define $\lambda_{xh} \equiv (\lambda_{Xh}, \lambda_{Xl}, \lambda_{xl})$ for the convenience of the later discussion. Because
\[
\lim_{\lambda_{xh} \to 0} \Delta V_{xh}(\lambda) \big|_{\lambda_{xh}=(1,0,0)} = -\infty, \text{ assuming } \tau \text{ is finite, we have } \Delta V_{xh}(\lambda^*) < 0 \text{ when } \lambda_{xh}^* = 0.
\]

Lemma 1.5.2. Residential clustering of the minority in the suburb is always a stable equilibrium under sufficiently high commuting costs ($\tau \geq \tau_X \Rightarrow \lambda^* = (1,0,0,0)$).

According to Lemma 1.5.2, (M_HC/LS) (m_HS/LS) is a stable equilibrium. This lemma is not as intuitive as Lemma 1.5.1. In the case of high commuting costs (Lemma 1.5.2), no majority chooses to commute and they reside in the area where they work. This means that both areas are not prohibitively crowded, so that minority residents do not hesitate to incur disutilities stemming from residential congestion. Instead, they may prefer to gain utility from ethnicity clustering, and thus, residential clustering may occur in one area (in this case, the suburb).\(^{27}\)

1.5.2 Low-skilled minority’s residential distribution

In (M_HC/LS) (m_HC/LC), (M_HC/LS) (m_HC/LD), and (M_HC/LS) (m_HC/LS), the population distribution of high-skilled minority workers is $\lambda_{xh}^* = 1$, while that of low-skilled minority workers remains undetermined. The population of each area is then given by
\[
N_C = \left[1 + (1 + \lambda_{xl})L_x\right]/2, \quad N_S = \left[1 + (1 - \lambda_{xl})L_x\right]/2, \quad N_C^x = (1 + \lambda_{xl})L_x/2 \quad \text{and} \quad N_S^x = (1 - \lambda_{xl})L_x/2,
\]
where $\lambda_{xl} \in [0,1]$. Similar to that in the previous section, it is shown that $\lambda_{xl}^* = 1$ is always a stable equilibrium because
\[
\lim_{\lambda_{xl} \to 1} \Delta V_{xl}(\lambda) \big|_{\lambda_{xh}=(1,0,1)} = \infty, \quad \text{assuming } \tau \text{ is finite.}
\]

Lemma 1.5.3. Residential clustering of the minority in the center is always a stable equilibrium under sufficiently high commuting costs ($\tau \geq \tau_X \Rightarrow \lambda^* = (1,0,1,1)$).

According to Lemma 1.5.3, (M_HC/LS) (m_HC/LC) is a stable equilibrium. Because the interpretation of this proposition is the same as that of Lemma 1.5.2, it is omitted. As for an interior equilibrium, no solution exhibits stability such as in the analysis of the residential distribution of the high-skilled minority, thus there is no further discussion.\(^{28}\)

Summing up Lemmas 1.5.1–1.5.3, we obtain the following proposition, although it contains certain repetitive messages.

Proposition 1.5.1. When the commuting cost is high ($\tau \geq \tau_X$), three types of residential equilibria emerge:

- **Pattern H_r-mD:** Minority and majority dispersion across both areas ($\lambda^* = (1,0,1,0)$) corresponding to (M_HC/LS) (m_HC/LS)

\(^{27}\)In this model, there is no stable interior equilibrium for the minority residential distribution. For a further discussion, see Appendix 1.E.

\(^{28}\)See Appendix 1.E.
Pattern $H_{\tau}-mC$: Minority clustering in the center and majority dispersion ($\lambda^* = (1, 0, 1, 1)$) corresponding to $(M_{HC/LS}) (m_{HC/LC})$

Pattern $H_{\tau}-mS$: Minority clustering in the suburb and majority dispersion ($\lambda^* = (1, 0, 0, 0)$) corresponding to $(M_{HC/LS}) (m_{HS/LS})$

Pattern $H_{\tau}-mD$ exhibits a perfectly segregated pattern in terms of skill levels, while patterns $H_{\tau}-mC$ and $H_{\tau}-mS$ exhibit imperfectly segregated (or equivalently, partially mixed) patterns. From the viewpoint of ethnicity characteristics, $H_{\tau}-mD$ exhibits a perfectly mixed pattern, whereas $H_{\tau}-mC$ and $H_{\tau}-mS$ exhibit imperfectly segregated patterns (partially mixed patterns). Simply put, Proposition 1.5.1 states that if the commuting cost is high, the majority group never commutes, and the minority group does not commute or clusters either in the center or suburb. Figure 1.2 shows the above three equilibrium patterns. In pattern $H_{\tau}-mD$, the commuting cost is sufficiently high, so that no one commutes. This implies that only high-skilled (low-skilled) workers reside in the center (suburb). In this sense, this pattern shows perfect segregation with respect to skill levels. In addition, it shows that both majority and minority households reside in both areas. In fact, this is the most remarkable

Figure 1.2: Patterns of residential equilibrium in the case of high commuting costs

29I thank an anonymous referee for suggesting this clear restatement.

30Pattern $H_{\tau}-mD$ stands for a residential pattern in which for a high τ (commuting cost), minority households disperse across both areas. Pattern $H_{\tau}-mC$ denotes a residential pattern where for a high τ, minority households cluster in the center.

18
The main messages of this analysis are contained in Propositions 1.4.1 and 1.5.1. Minority group households always cluster when the commuting cost is low, but they may or may not cluster residentially when the commuting cost is high. We conclude this section with a comment on Propositions 1.4.1 and 1.5.1, which is loosely related to the real world. Combining Propositions 1.4.1 and 1.5.1, it may be asserted that under less costly commuting, ethnic segregation is more likely to occur compared to the case with more costly commuting. In Musterd and De Winter (1998) and Musterd (2005), European cities exhibit less ethnically segregated patterns than U.S. cities. As for commuting, on the other hand, the average journey-to-work travel time is shorter in U.S. cities than in European cities, meaning that commuting is more costly in Europe than in the United States. (Kenworthy and Laube, 1999). Combining these two empirical results, cities with more costly commuting exhibit less segregated ethnic distributions as in Europe, while those with less costly commuting show a high segregation pattern as in the United States, which loosely matches the theoretical results in Propositions 1.4.1 and 1.5.1.

Discussion on efficiency

Thus far, we have derived equilibrium population distribution by ethnicities and skill levels. Solely investigating equilibrium patterns may sometimes be inadequate, especially in normative viewpoints. Then, hereafter, we briefly discuss Pareto efficiency, i.e., whether equilibrium distribution λ^* is Pareto efficient or not.

By definition of Pareto efficiency, a residential distribution λ is Pareto efficient if someone’s utility level cannot be increased without decreasing that of other individuals. In our context, by this, equilibrium population distribution λ^* is *not* Pareto efficient if there exists other population distribution λ such that the utility level of households es living in area j increases and that of other households does not decrease. On the contrary, it can be asserted that λ^* is Pareto efficient if utility level of households es living in area j does
not increase or that of some other households decreases when \(\lambda \) differs from \(\lambda^* \).^31

By inspecting all equilibrium patterns, none of them bears room for Pareto improvement by changing population distribution \(\lambda \) from the equilibrium distribution \(\lambda^* \). That is, when the population distribution is in equilibrium \(\lambda^* \), if a part of residents relocate in the other area, some households decrease (or, at least, do not increase) their utility levels.

1.7 Comparison between the center and suburb

Thus far, we have seen stable equilibrium patterns for high and low commuting costs; however, a simple list of stable equilibria does not lead us to comprehensive insights. Here, we look at these equilibria from a different point of view—the population gap between the center and suburb. As a reminder, the residential equilibrium patterns are

\[
\lambda_{L\tau-mC}^* = \left(\frac{2(1 - L_x)}{\tau^3 + 1}, 0, 1, 1 \right), \quad \lambda_{L\tau-mS}^* = \left(\frac{1 + 2L_x - \tau^3}{\tau^3 + 1}, 0, 0 \right)
\]

\[
\lambda_{H\tau-mD}^* = (1, 0, 1, 0), \quad \lambda_{H\tau-mC}^* = (1, 0, 1, 1), \quad \lambda_{H\tau-mS}^* = (1, 0, 0, 0).
\]

1.7.1 Ethnicity characteristics

First, we examine the extent of the population gap of the minority and majority residents between the center and suburb and measure the population gap between the areas. The simplest index is the center’s minority population share of the total minority population:

\[
\psi_x \equiv \frac{N^C_x}{\sum_{j \in \{C,S\}} N^j_x}.
\]

To calculate \(\psi_x \) for each residential pattern, we add a subscript indicating the various residential patterns. For example, \(\psi_{x(L\tau-mC)} \) is the center’s minority population share of the total minority population in the residential equilibrium pattern \(L\tau-mC \), that is,

\[
\psi_{x(L\tau-mC)} \equiv \frac{N^C_x}{\sum_{j \in \{C,S\}} N^j_{x(L\tau-mC)}}, \quad \text{where } N^j_{x(L\tau-mC)} \text{ is the minority population in area } j \text{ under the residential pattern } L\tau-mC.
\]

Calculating \(\psi_x \) for each pattern, we obtain

\[
\Psi_x \equiv \left(\psi_{x(L\tau-mC)}, \psi_{x(L\tau-mS)}, \psi_{x(H\tau-mD)}, \psi_{x(H\tau-mC)}, \psi_{x(H\tau-mS)} \right) = \left(1, 0, \frac{1}{2}, 1, 0 \right).
\]

^31 Detailed illustrations of this discussion on Pareto efficiency are in Appendix 1.F.
The center’s majority population share of the total majority population is defined as $\psi_X \equiv \frac{N_X^C}{\sum_{j \in \{C,S\}} N_X^j}$. Calculating ψ_X for each pattern yields

$$\Psi_X \equiv \left(\psi_X(L\tau-mC), \psi_X(L\tau-mS), \psi_X(H\tau-mD), \psi_X(H\tau-mC), \psi_X(H\tau-mS)\right)$$

$$= \left(\frac{\tau^\beta - L_x}{\tau^\beta + 1}, \frac{1 + L_x}{\tau^\beta + 1}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right).$$

Figures 1.3 and 1.4 show how ψ_x and ψ_X change with commuting cost τ in the stable equilibrium patterns, respectively. Each line expresses a combined set of stable equilibria.

From Figure 1.3, we immediately realize that there are three stable equilibrium paths for the minority’s residential distributions when the commuting cost is high: the paths exhibiting clustering in the center ($\psi_x = 1$), clustering in the suburb ($\psi_x = 0$), and equal dispersion across the two areas ($\psi_x = 1/2$). Explaining the performance of the minority’s equilibrium paths is more tractable after examining the majority’s equilibrium paths.

Unlike the minorities’ equilibrium paths, Figure 1.4 shows that the majority population is equally dispersed between both areas when the commuting cost is high (namely, $\psi_X = \frac{N_X^C}{\sum_{j \in \{C,S\}} N_X^j} = 1/2$). The reason underlying this single stable equilibrium path, where there is an equal distribution of the majority population, is that no majority chooses to commute when the commuting cost is sufficiently high ($\tau \geq \tau_X$). However, once the commuting cost have fallen below τ_X (the level at which the majority workers begin to commute), the majority population gap between the center and suburb widens along with lower commuting costs. Behind the equilibrium path with a smaller ψ_X, which corresponds to pattern $L\tau-mC$, all the minority households cluster in the center, and thus, some high-skilled majority workers choose to live in the suburb to escape the center’s residential congestion, which makes ψ_X smaller as the commuting cost becomes cheaper. Similarly,
behind the stable equilibrium path with a larger ψ_X, which corresponds to pattern Lτ-mS, all minority residents reside in clusters in the suburb, so that some low-skilled majority workers migrate to the center to flee the suburban congestion. Hence, the equilibrium path of ψ_X moves upward as the commuting cost decreases.

Returning to the analysis of the minority’s equilibrium paths, when the commuting cost is high, no majority workers commute, so that if the minority group clusters in one area then this area becomes heavily crowded and all minority households are accommodated in the more crowded area. If minority workers choose to cluster in one area to gain ethnic utility, the minority commuters have to incur high commuting costs as well as residential congestion disutility in their residential area. If minority workers choose not to commute, they do not incur high commuting costs and residential congestion, although they cannot obtain ethnic utility. In short, both ethnic clustering and ethnic dispersion have advantages for the minority group. Therefore, minority dispersion in the two areas, as well as clustering in one area, can lead to a stable equilibrium.

On the other hand, when the commuting cost is lower than τ_X, some majority workers choose to commute. In this case, even if all minority households reside in a cluster in one area, the area where they cluster cannot become prohibitively crowded because some of the majority households have left the crowded area. Hence, a minority’s dispersed residential configuration cannot be a stable equilibrium path, unlike in the case of high commuting costs. This is because the utility losses from commuting costs and residential congestion do not exceed the utility gains from ethnicity clustering when the commuting cost is low. Together, these factors make the equally distributed equilibrium path of the center’s minority population share, ψ_x, disappear.

1.7.2 Skill levels

Next, we examine the population gap of high- and low-skilled residents between areas. The adopted measure is the center’s high-skilled (low-skilled) population share of the total high-skilled (low-skilled) population:

$$\psi_s \equiv \frac{N^C_s}{\sum_{j \in \{C,S\}} N^j_s},$$

where $s = h$ (high-skilled) or l (low-skilled) and N^j_s is the population of consumers with skill level s living in area j. Calculating ψ_h and ψ_l for each pattern, we obtain

$$\Psi_h \equiv \left(\psi_h(L\tau-mC), \psi_h(L\tau-mS), \psi_h(H\tau-mD), \psi_h(H\tau-mC), \psi_h(H\tau-mS)\right)$$

$$= \left(\frac{\tau^\pi(2 + L_x) - L_x}{(\tau^\pi + 1)(1 + L_x)}, \frac{1}{1 + L_x}, 1, \frac{1}{1 + L_x}\right).$$
How ψ_h and ψ_l change with the commuting cost τ in the stable equilibrium patterns is shown in Figure 1.5. The high-skilled equilibrium paths (solid lines) in Figure 1.5 show

\[
\Psi_l \equiv \left(\psi_l(L\tau-mC), \psi_l(L\tau-mS), \psi_l(H\tau-mD), \psi_l(H\tau-mC), \psi_l(H\tau-mS) \right) = \left(\frac{L_x}{1+L_x}, \frac{1+2L_x - \tau\frac{2}{3}}{(1+L_x)(\tau\frac{2}{3} + 1)}, 0, \frac{L_x}{1+L_x}, 0 \right).
\]

Figure 1.5: Center’s share of the total high-skilled (low-skilled) population

that the number of high-skilled residents accommodated in the center is higher than that in the suburb in both of the stable equilibrium paths ($\psi_h = N_h^C / \sum_{j \in \{C,S\}} N_j^h > 1/2$). Since unnecessary commuting never occurs as mentioned in Section 1.3.2 and Appendix 1.B, this is natural.32

Moreover, the stable equilibrium path with a larger ψ_h in Figure 1.5, which shows a wider high-skilled population gap between areas, begins to decline as commuting becomes cheaper. This less equally distributed equilibrium path compared to the equilibrium path with a smaller ψ_h originates in the residential $H\tau-mD$, $H\tau-mC$, and $L\tau-mC$. The upper ψ_h path expresses the residential patterns where the center is more crowded than the suburb (patterns $H\tau-mD$ and $H\tau-mC$). On this path, the high-skilled majority workers suffer from residential congestion caused by a minority’s clustered residence in the center. When the commuting cost is sufficiently high ($\tau \geq \tau_X$), commuting is too expensive for the high-skilled majority workers, so that they stay in the center ($\psi_h = 1$). For sufficiently low commuting costs ($\tau < \tau_X$), a slight decline in the commuting cost enables the high-skilled majority households residing in the center to migrate to the suburb. Such majority behavior under low commuting costs leads to a less unequally distributed equilibrium path.

32If $\psi_h = N_h^C / \sum_{j \in \{C,S\}} N_j^h < 1/2$, both high- and low-skilled workers commute in vain without reducing congestion, because if no one commutes, then $\psi_h = 1/2$. $\psi_h > 1/2$ means that some low-skilled workers choose to commute when the entire majority group chooses to commute. The possibility that this situation occurs is excluded from the list of five possible residential patterns of the minority group (Section 1.3.2).
In this sense, one can assert that the lower commuting cost acts as an equalizer for the high-skilled population gap between the areas.

As for the lower ψ_h path, the center is not as crowded as the suburb. This implies that the residential congestion level has not yet reached its limit for the high-skilled majority. Hence, even if the commuting cost becomes cheaper, there is no migration of high-skilled majority households to the suburb. Thus, the stable equilibrium path remains constant, that is, $\psi_h = 1/(1 + L_x)$.

1.8 Conclusion

This chapter exploited ethnicity clustering externalities to analyze the mechanism of residential segregation under the assumption of skill-level homogeneity according to ethnicity. The presented findings showed that when the commuting cost is high, the minority group does not necessarily cluster in one area and that their dispersed residential patterns can lead to a stable equilibrium. By contrast, when the commuting cost is low, the minority group always clusters in one area. As for majority group residents, they do not commute when the commuting cost is high and thus suffer from residential congestion caused by the clustered residence of the minority group. Because of this immobility stemming from costly commuting, both the center and the suburb have the same majority population size under high commuting costs. As the commuting cost declines, the majority population gap between areas increases. In short, the majority faces a trade-off between commuting costs and residential congestion, while the minority group faces a trade-off between commuting costs, ethnic clustering, and residential congestion.

Further, because ethnic preferences exist in the minority group, minority households are more likely to migrate to one area, meaning that they always cluster when the commuting cost is low, further widening the population gap between the areas. On the contrary, majority households migrate to the less populated area to avoid the residential congestion caused by minority residential clustering, thus reducing the population gap between areas. In this sense, majority residents are forced to function as adjusters or equalizers of the population sizes in the center and suburb.

Despite this chapter’s contribution, it possesses certain limitations, which are left to be addressed by future research. First, this chapter assumed that the skill/income levels are the same for both ethnicities, as it focused on how the minority’s clustering preferences affect ethnic segregation. However, we do not deny the existence of an ethnic bias in skill/income levels, and accounting for this income aspect may allow us approaching the reality. In this extension of employing skill/income level difference among ethnicities, an ex post labor market difference among groups after being segregated or mixed should also be considered, because being surrounded by high- or low-skilled residents may lead to having higher or lower skill levels through positive or negative feedback loops. Also, taking con-
sideration on majorities’ preference for the proximity to residents sharing the same ethnic characteristics is one direction of the extension. As for geography, a segregation analysis in a city with multiple areas and multiple ethnic groups could be conducted. The results for such geographical conditions (one center and several suburbs, namely a mono-centric city) may be as follows. If the commuting cost is high, the center is ethnically mixed, while the suburbs are completely segregated (i.e., some suburbs are completely occupied by the majority group and the rest are accommodated by minority groups). If the commuting cost is low, all areas (including the center) are completely occupied by one ethnic group and ethnic mixing cannot thus occur. In addition, tackling the analysis in the open city framework unlike in this chapter, where we employed the closed city assumption, would be another promising extension.
Appendix 1.A Proof of Lemma 1.3.1

Lemma 1.3.1 is proved by examining the possible residential patterns of the majority. Before examining Cases 1–9, note that at this point \(\frac{N_C}{N_S} \) is not yet determinate.

Case 1 — \(\lambda_{Xh} \in (0, 1) \) and \(\lambda_{XI} \in (0, 1) \)

For this residential pattern to be in equilibrium, it is necessary that \(\Delta V_{Xh}(\lambda) = \Delta V_{XI}(\lambda) = 0 \). By (1.11),

\[
\Delta V_{Xh}(\lambda) = \Delta V_{XI}(\lambda) = 0 \iff \log \tau = \beta \log \left(\frac{N_C}{N_S} \right) \quad \text{and} \quad \log \tau = -\beta \log \left(\frac{N_C}{N_S} \right)
\]

But an appropriate \(\tau \) satisfying this condition does not exist, since \(\tau > 1 \).

Case 2 — \(\lambda_{Xh} \in (0, 1) \) and \(\lambda_{XI} = 1 \)

For this residential pattern to be in equilibrium, conditions \(\Delta V_{Xh}(\lambda) = 0 \) and \(\Delta V_{XI}(\lambda) > 0 \) are necessary. By (1.11),

\[
\Delta V_{Xh}(\lambda) = 0 \text{ and } \Delta V_{XI} > 0 \iff \log \tau = \beta \log \left(\frac{N_C}{N_S} \right) \quad \text{and} \quad \log \tau < -\beta \log \left(\frac{N_C}{N_S} \right)
\]

Clearly, this is a contradiction.

Case 3 — \(\lambda_{Xh} \in (0, 1) \) and \(\lambda_{XI} = 0 \)

For this residential pattern to be in equilibrium, it is necessary that \(\Delta V_{Xh}(\lambda) = 0 \) and \(\Delta V_{XI}(\lambda) < 0 \). By (1.11),

\[
\Delta V_{Xh}(\lambda) = 0 \text{ and } \Delta V_{XI} < 0 \iff \log \tau = \beta \log \left(\frac{N_C}{N_S} \right) \quad \text{and} \quad \log \tau > -\beta \log \left(\frac{N_C}{N_S} \right)
\]

\(\tau \) such that \(\tau = \left(\frac{N_C}{N_S} \right)^\beta \) satisfies both conditions above. But note that, by the assumptions on population and skill levels, \(0 < N_C < \frac{1}{2} + L x \) and \(\frac{1}{2} < N_S < 1 + L x \) are derived and these imply \(0 < \frac{N_C}{N_S} < 1 + 2L x \). For \(\tau = \left(\frac{N_C}{N_S} \right)^\beta \) to exist, it must be that \(\tau < (1 + 2L x)^\beta \).

Case 4 — \(\lambda_{Xh} = 1 \) and \(\lambda_{XI} \in (0, 1) \)

For this residential pattern to be in equilibrium, conditions \(\Delta V_{Xh}(\lambda) > 0 \) and \(\Delta V_{XI}(\lambda) = 0 \) are necessary. By (1.11),

\[
\Delta V_{Xh}(\lambda) > 0 \text{ and } \Delta V_{XI}(\lambda) = 0 \iff \log \tau = -\beta \log \left(\frac{N_C}{N_S} \right) \quad \text{and} \quad \log \tau > \beta \log \left(\frac{N_C}{N_S} \right)
\]
\[\tau \text{ such that } \tau = \left(\frac{N^C}{N^S} \right)^{-\beta} \text{ satisfies both conditions above. As in Case 3, however, note that} \]
\[\frac{1}{2} < N^C < 1 + L_x \text{ and } 0 < N^S < \frac{1}{2} + L_x \text{. This leads to} \]
\[\frac{1}{1+2L_x} < \frac{N^C}{N^S}. \text{ For } \tau = \left(\frac{N^C}{N^S} \right)^{-\beta} \text{ to exist, } \tau \text{ must satisfy } \tau < (1 + 2L_x)^\beta. \]

Case 5 — \(\lambda_{Xh} = 0 \) and \(\lambda_{XI} \in (0, 1) \)

For this residential pattern to be in equilibrium, conditions \(\Delta V_{Xh}(\lambda) < 0 \) and \(\Delta V_{XI}(\lambda) = 0 \) are necessary. By (1.11),

\[
\Delta V_{Xh}(\lambda) < 0 \text{ and } \Delta V_{XI} = 0 \iff \log \tau = -\beta \log \left(\frac{N^C}{N^S} \right) \text{ and } \log \tau < \beta \log \left(\frac{N^C}{N^S} \right)
\]

Obviously, this is a contradiction.

Case 6 — \(\lambda_{Xh} = 1 \) and \(\lambda_{XI} = 1 \)

For this residential pattern to be in equilibrium, it is necessary that \(\Delta V_{Xh}(\lambda) > 0 \) and \(\Delta V_{XI}(\lambda) > 0 \). By (1.11),

\[
\Delta V_{Xh}(\lambda) > 0 \text{ and } \Delta V_{XI} > 0 \iff \log \tau < -\beta \log \left(\frac{N^C}{N^S} \right) \text{ and } \log \tau > \beta \log \left(\frac{N^C}{N^S} \right)
\]

\[\tau \text{ such that } \tau < \left(\frac{N^C}{N^S} \right)^{-\beta} \text{ may be a candidate for an appropriate } \tau, \text{ but note that in this case } N^C > 1 \text{ and } N^S < L_x \text{ so that } \left(\frac{N^C}{N^S} \right)^{-\beta} \text{ is necessarily less than 1. This contradicts } \tau > 1. \]

Case 7 — \(\lambda_{Xh} = 1 \) and \(\lambda_{XI} = 0 \)

For this residential pattern to be in equilibrium, it is necessary that \(\Delta V_{Xh}(\lambda) > 0 \) and \(\Delta V_{XI}(\lambda) < 0 \). By (1.11),

\[
\Delta V_{Xh}(\lambda) > 0 \text{ and } \Delta V_{XI} < 0 \iff \log \tau < \beta \log \left(\frac{N^C}{N^S} \right) \text{ and } -\log \tau < \beta \log \left(\frac{N^C}{N^S} \right)
\]

\[\iff \tau^{-1} < \left(\frac{N^C}{N^S} \right)^{\beta} < \tau
\]

As in the previous cases, \(\frac{1}{2} < N^C < \frac{1}{2} + L_x \text{ and } \frac{1}{2} < N^S < \frac{1}{2} + L_x \text{ by the restrictions of population and skill level. These imply} \]
\[(1 + 2L_x)^{-\beta} < \left(\frac{N^C}{N^S} \right)^{\beta} < (1 + 2L_x)^{\beta}. \text{ For an appropriate } \tau \text{ to exist under these restrictions, } \tau \geq (1 + 2L_x)^{\beta} \text{ must be satisfied.} \]

Case 8 — \(\lambda_{Xh} = 0 \) and \(\lambda_{XI} = 1 \)

For this residential pattern to be in equilibrium, it is necessary that \(\Delta V_{Xh}(\lambda) < 0 \) and \(\Delta V_{XI}(\lambda) > 0 \).
0. But these cannot be satisfied at the same time because
\[\Delta V_{Xh}(\lambda) < 0 \text{ and } \Delta V_{Xl} > 0 \iff \log \tau < \beta \log \left(\frac{N^c}{N^s} \right) \quad \text{and} \quad \log \tau < -\beta \log \left(\frac{N^c}{N^s} \right) \]
cannot hold simultaneously.

Case 9 — \(\lambda_{Xh} = 0 \) and \(\lambda_{Xl} = 0 \)
For this residential pattern to be in equilibrium, conditions \(\Delta V_{Xh}(\lambda) < 0 \) and \(\Delta V_{Xl}(\lambda) < 0 \) must hold. By (1.11),
\[\Delta V_{Xh}(\lambda) < 0 \text{ and } \Delta V_{Xl} < 0 \iff \log \tau < \beta \log \left(\frac{N^c}{N^s} \right) \quad \text{and} \quad \log \tau > -\beta \log \left(\frac{N^c}{N^s} \right) \]
\(\tau \) such that \(\tau < \left(\frac{N^c}{N^s} \right)^{\beta} \) satisfies both conditions. But note that the population distribution of each area in this case is \(0 \leq N^c < L_x \) and \(1 \leq N^s < 1 + L_x \). This yields \(\left(\frac{N^c}{N^s} \right)^{\beta} < 1 \) and this contradicts with \(\tau > 1 \).

Combining these cases yields Lemma 1.3.1.

Appendix 1.B Non-occurrence of the simultaneous commute of minority workers

Why do situations wherein both high- and low-skilled minority workers simultaneously commute not occur? A simple example provides us with an intuitive answer.

Consider a situation where a high-skilled minority individual \(h \) and a low-skilled minority individual \(l \) choose to commute at the same time (situation A), and both individuals \(h \) and \(l \) do not choose to commute (situation B). Note that here individual \(h \) lives in the suburb and individual \(l \) lives in the center. (The workplace of individual \(h \) is the center and she commutes, which together imply that she lives in the suburb. Further, the workplace of individual \(l \) is the suburb and he commutes, which implies that he lives in the center.) When maintaining the population distribution of individuals other than \(h \) and \(l \) (\(N^c = \tilde{N}^c \), \(N^s = \tilde{N}^s \), \(N^c_x = \tilde{N}^c_x \), and \(N^s_x = \tilde{N}^s_x \)), situations A and B bring about the same population distribution, that is, \(N^c |_A = \tilde{N}^c + 1 - 1 = \tilde{N}^c = N^c |_B \), \(N^s |_A = \tilde{N}^s - 1 + 1 = \tilde{N}^s = N^s |_B \), \(N^c |_A = N^c_x + 1 - 1 = \tilde{N}^c_x = N^c |_B \), and \(N^s |_A = \tilde{N}^s_x + 1 = \tilde{N}^s_x = N^s |_B \), meaning that the residential congestion disutility levels and the ethnic clustering utility levels in situations A and B are the same.

However, from the viewpoint of commuting costs, these two situations—both individuals
h and l commute (situation A) or both choose not to commute (situation B)—are entirely different. In situation A, both individuals h and l incur commuting cost τ, which means that their indirect utility levels are lower by $\log \tau$. On the other hand, in situation B, they do not suffer from this indirect utility loss since none of them commute (so that they do not lose indirect utility levels by $\log \tau$). Thus, a rational individual must prefer situation B (no commuting) rather than situation A (unnecessary commuting).

Appendix 1.C Proof of excluded combinations

(M$_{HD}$/LS) (m$_{HC}$/LS), (M$_{HD}$/LS) (m$_{HD}$/LS), and (M$_{HD}$/LS) (m$_{HS}$/LS):
Since \((N^C / N^S)^\beta = \tau > 1\) in (M$_{HD}$/LS), we have $N^C > N^S$. Also in (M$_{HD}$/LS), $N^C_X < N^S_X$ holds. These imply that N^C_X is necessarily greater than N^S_X. By the skill-level assumption ($\kappa_x = \frac{1}{2}$), it is necessary that some low-skilled minority households reside in the center and that the high-skilled majority cluster in the center for N^C_X to be greater than N^S_X. This means only (m$_{HC}$/LC) and (m$_{HC}$/LD) can hold in (M$_{HD}$/LS).

(M$_{HC}$/LD) (m$_{HC}$/LC), (M$_{HC}$/LD) (m$_{HC}$/LD), and (M$_{HC}$/LD) (m$_{HC}$/LS):
Because of the similar discussion as outlined above, the proof is omitted.

(M$_{HD}$/LS) (m$_{HC}$/LD):
Here the population distribution is $N^C = \frac{1}{2} [\lambda_x h + (1 + \lambda_x l) L_x]$, $N^S = \frac{1}{2} [2 - \lambda_x h + (1 - \lambda_x l) L_x]$, $N^C_X = \frac{1}{2} (1 + \lambda_x l) L_x$ and $N^S_X = \frac{1}{2} (1 - \lambda_x l) L_x$. By (m$_{HC}$/LD), $(N^C / N^S)^\beta + \gamma \left(N^C_X / N^S_X \right)^{-\gamma} = \tau^{-1}$ must be satisfied. Also by (M$_{HD}$/LS), $(N^C / N^S)^\beta$ = τ must be satisfied. These together yield $N^C / N^S = \left(N^C / N^S \right)^{\frac{\beta + \gamma}{\beta}}$, and thus,

$$\tau = \left(\frac{N^C_X}{N^S_X} \right)^{\frac{\beta + \gamma}{\beta}} = \left(\frac{1 + \lambda_x l}{1 - \lambda_x l} \right)^{\frac{\beta \gamma}{\beta + \gamma}}. \tag{1.13}$$

Since $1 < \tau < (1 + 2L_x)^{\beta}$ must hold, we get

$$1 < \left(\frac{1 + \lambda_x l}{1 - \lambda_x l} \right)^{\frac{\beta \gamma}{\beta + \gamma}} < (1 + 2L_x)^{\beta} \iff 0 < \lambda_x l < \frac{(1 + 2L_x)^{\frac{2 \beta + \gamma}{\gamma}} - 1}{(1 + 2L_x)^{\frac{2 \beta + \gamma}{\gamma}} + 1}.$$
Solving (1.13) for x_d, we obtain $\lambda_{x_d}^* = \frac{\tau(2\beta + \gamma) / \beta \gamma - 1}{\tau(2\beta + \gamma) / \beta \gamma + 1} \in \left(0, \frac{(1+2L_x)(2\beta + \gamma) / \beta \gamma - 1}{(1+2L_x)(2\beta + \gamma) / \beta \gamma + 1}\right)$.

Next, consider $\lambda_{x_h}^*$. By solving $\left(\frac{N_C}{N_S}\right)^\beta = \tau$ for λ_{x_h} and substituting $\lambda_{x_d}^*$ obtained above,

$$\lambda_{x_h}^* = \frac{L_x(\tau^\frac{1}{2} - 1) + 2\tau^\frac{1}{2}}{\tau^\frac{1}{2} + 1 - \frac{L_x(2x^\beta + \gamma)(\frac{2\beta + \gamma}{\beta \gamma + 1})}{\tau^\frac{1}{2} + 1}}.$$

When $1 < \tau < (1 + 2L_x)^2$, $\lambda_{x_h}^*$ above is shown to be greater than 1, which is not defined. Thus, $(\text{M}_{\text{HD/LS}})$ $(\text{m}_{\text{HC/LD}})$ does not bear an equilibrium.

$(\text{M}_{\text{HC/LD}})$ $(\text{m}_{\text{HD/LS}})$:
Because of a similar discussion as outlined above, the proof is omitted.

Appendix 1.D Proof of stability of equilibria in $(\text{M}_{\text{HD/LS}})$ $(\text{m}_{\text{HC/LC}})$

In this combination, the population distribution is given by $N_C = \frac{1}{2}\lambda x_h + L_x$, $N_S = 1 - \frac{1}{2}\lambda x_h$, $N_C^\alpha = L_x$ and $N_S^\alpha = 0$. By $(\text{m}_{\text{HC/LC}})$, $\left(\frac{N_C}{N_S}\right)^{-(\beta + \gamma)} \left(\frac{N_C}{N_S}\right)^\gamma > \tau$ has to be satisfied. Because the LHS of this inequality goes to infinity under this population distribution, this inequality always holds. By $(\text{M}_{\text{HD/LS}})$, we obtain

$$\tau = \left(\frac{N_C}{N_S}\right)^\beta = \left(\frac{\lambda x_h + 2L_x}{2 - \lambda x_h}\right)^\beta. \quad (1.14)$$

For τ to lie within the interval $(1, (1 + 2L_x)^2)$, it must be that $1 < \left(\frac{\lambda x_h + 2L_x}{2 - \lambda x_h}\right)^\beta < (1 + 2L_x)^2 \Leftrightarrow 1 - L_x < \lambda x_h < 1$. By this, we made sure that there exists an interior solution $\lambda_{x_h}^* \in (1 - L_x, 1)$. Solving (1.14) for λx_h yields $\lambda x_h^* = \frac{2(\tau^\frac{1}{2} - L_x)}{\tau^\frac{1}{2} + 1}$. Next, we need to check whether $\lambda^* = (\lambda x_h^*, 0, 1, 1)$ is stable. The stability notion used here is that of local stability with respect to relocation dynamics to higher utility locations, i.e., $\dot{\lambda}_{es} = \Delta V_{es}(\lambda)$, where the dot indicates time derivative. First, consider the stability of the corner equilibrium λ. Because $\dot{\lambda}_{x_l} = \Delta V_{x_l}(\lambda x_h, 0, 1, 1) < 0$ for any $\lambda x_h \in (1 - L_x, 1)$, $\dot{\lambda}_{x_h} = \Delta V_{x_h}(\lambda x_h, 0, 1, 1) > 0$ for any $\lambda x_h \in (1 - L_x, 1)$, and $\dot{\lambda}_{x_l} = \Delta V_{x_l}(\lambda x_h, 0, 1, 1) > 0$ for any $\lambda x_h \in (1 - L_x, 1)$, what is left to be considered in terms of equilibrium stability is the local stability of λx_h around λx_h^*, where $\dot{\lambda}_{x_h} = \Delta V_{x_h}(\lambda x_h, 0, 1, 1) = 0$. Because

$$\left.\frac{\partial \Delta V_{x_h}(\lambda)}{\partial \lambda x_h}\right|_{\lambda = (\lambda x_h^*, 0, 1, 1)} = -\beta \left(\frac{1}{\lambda x_h^*} + \frac{1}{2 - \lambda x_h^*}\right) < 0,$$

this equilibrium is shown to be stable.
Appendix 1.E Nonexistence of stable interior equilibria of the high-skilled and low-skilled minority interior solution

Stability of high-skilled minority interior solution:
We show that no stable interior equilibria emerge in this model. Suppose there exists an interior solution x^*_h. Then, by $\Delta V(x^*_h) = 0$, x^*_h must satisfy
\[
\tau = \left[1 + \lambda^*_x L_x \right]^{\beta+\gamma} \left(\frac{2 - \lambda^*_x}{\lambda^*_h} \right)^\gamma.
\] (1.15)
In addition, for x^*_h to be a stable equilibrium, it is necessary that x^*_h satisfies
\[
\frac{\partial \Delta V(x^*_h)}{\partial \lambda^*_x} \bigg|_{x^*_h = (1,0,0)} < 0.
\] (1.16)
By (1.16),
\[
\frac{\partial \Delta V(x^*_h)}{\partial \lambda^*_x} \bigg|_{x^*_h = (1,0,0)} < 0 \iff \lambda^2_x - 2\lambda^*_x + \frac{\gamma(1 + 2L_x)}{\beta(1 + L_x) + \gamma} < 0.
\]
By analyzing the stability condition (1.16), we get
\[
\frac{\partial \Delta V(x^*_h)}{\partial \lambda^*_x} \bigg|_{x^*_h = \lambda^*_x} < 0 \text{ if } \frac{\gamma}{\beta} < L_x \text{ and } \lambda^*_x > \lambda^*_x\text{ (1.17)}
\]
\[
\frac{\partial \Delta V(x^*_h)}{\partial \lambda^*_x} \bigg|_{x^*_h = \lambda^*_x} \geq 0 \text{ otherwise, (1.18)}
\]
where $\lambda^*_x \equiv 1 - \sqrt{\frac{(1+L_x)(\beta L_x - \gamma)}{\beta(1+L_x) + \gamma}}$. By (1.17) and (1.18), for λ^*_x such that $\lambda^*_x > \lambda^*_x$, $\Delta V(x^*_h)$ decreases as λ^*_x gets large when λ^*_x is fixed under the condition $\gamma/\beta < L_x$.
(To note that if $\gamma/\beta > L_x$, $\Delta V(x^*_h)$ always increases with λ^*_x, so there is no need to consider this case.) However, from Lemma 1.5.1, $\Delta V(x^*_h) \mid_{(\lambda^*_x, \lambda^*_x) = (1, \lambda^*_x)} > 0$. These two together imply that λ^*_x such that $\partial \Delta V(x^*_h)/\partial \lambda^*_x < 0$ does not exist. Thus, this model does not exhibit stable interior equilibria (see Figure 1.6).\(^{33}\) Define the LHS of this inequality $g_h(\lambda^*_x)$. Note that $g_h(0) > 0$ and the axis of symmetry of $g_h(\lambda^*_x)$ is $\lambda^*_x = 1$. If $\frac{\gamma}{\beta} < L_x$, which is the condition that $g_h(\lambda^*_x)$ has two roots, is satisfied, then the smaller root $\lambda^*_x = \lambda^*_x$ belongs to the interval $(0, 1)$. Thus, $g_h(\lambda^*_x) \geq 0$ for $\lambda^*_x \leq \lambda^*_x$. This implies that, if $\frac{\gamma}{\beta} < L_x$ and $\lambda^*_x > \lambda^*_x$, then $\frac{\partial \Delta V(x^*_h)}{\partial \lambda^*_x} \bigg|_{x^*_h = \lambda^*_x} < 0$.\(^{34}\)

\(^{33}\)In fact, this outcome ($\Delta V(x^*_h) \mid_{x^*_h = (1,0,0)} > 0$) comes from the assumption $\kappa_x = \kappa_x = 1/2$. If this assumption is not given (for instance $\kappa_x < 1/2$), $\Delta V(x^*_h) \mid_{x^*_h = (1,0,0)}$ can take a negative value. This implies that the stable interior equilibrium λ^*_x can emerge at a certain level of τ.

\(^{34}\)Drawing the quadratic function $g_h(\lambda^*_x)$ helps us to check this proof.
Stability of low-skilled minority interior solution:
The proof is almost the same as above, so it is omitted.

Appendix 1.F Discussion on Pareto efficiency

Followings are the illustration of the procedure of how to discuss Pareto efficiency and improvement in comparison with equilibria.

- Step1: First, we focus on the dispersion of λ_{Xh} from the equilibrium λ^*_X in Lτ-mC. Because we substitute equilibrium values, $(\lambda_{Xl}, \lambda_{xh}, \lambda_{xl}) = (\lambda^*_X, \lambda^*_X, \lambda^*_X)$, other than λ^*_X into $V^e_{es}(j \in \{C, S\}, e \in \{X, x\}, s \in \{h, l\})$, so that there are several indirect utility functions expressed as functions of λ^*_X.35

- Step 2: We investigate whether a dispersion from λ^*_X would decrease V^j_{es} or not.

- Step 3: If there is at least one V^j_{es} values such that would decrease when λ_{Xh} is different from λ^*_X, then we assert that λ^* is Pareto efficient, because λ_{Xh} different from λ^*_X cannot achieve Pareto improvement.

- Steps 1-3 are repeatedly applied for λ_{Xh}, λ_{Xl}, λ_{xh}, and λ_{xl}, and if we can find at least one V^j_{es} values such that would be decreased by dispersion from λ^* in all four cases, we conclude that Lτ-mC is Pareto efficient.

Above procedures are conducted for all equilibrium patterns, Lτ-mC, Lτ-mS, Hτ-mD, Hτ-mC, and Hτ-mS, respectively.36

35 In Lτ-mC pattern, for instance, the number of utility functions of λ_{Xh} is five ($V^C_{Xh}, V^S_{Xh}, V^S_{Xl}, V^C_{xh}$, and V^S_{xl}), but not eight, because there are no households Xl living in Center, households xh living in Suburb, or households xl living in Suburb.

36 Showing all results are space consuming and cumbersome. Details are available upon request.
Chapter 2

Which Has Stronger Impacts on Regional Segregation: Industrial Agglomeration or Ethnolinguistic Clustering?¹

2.1 Introduction

Examples of regional segregation can be found around the world, and many such arrangements are a consequence of the regional (or local) administrative division’s choice of official languages made for historical and political reasons. A typical example of regional segregation by daily language preferences is Switzerland. Table 2.1 summarizes the mother tongues of the residents in some selected Swiss Cantons (administrative divisions). Zurich is known as a German dominated area, and its official language is German.² French is

Table 2.1: Language distribution in Switzerland (selected cantons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zurich</td>
<td>German</td>
<td>82.9</td>
<td>82.9</td>
<td>82.5</td>
<td>83.4</td>
</tr>
<tr>
<td></td>
<td>French</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Italian</td>
<td>10.2</td>
<td>8.0</td>
<td>5.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Geneva</td>
<td>German</td>
<td>10.9</td>
<td>9.5</td>
<td>5.5</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>French</td>
<td>65.4</td>
<td>64.7</td>
<td>70.4</td>
<td>75.8</td>
</tr>
<tr>
<td></td>
<td>Italian</td>
<td>10.9</td>
<td>9.4</td>
<td>5.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Ticino</td>
<td>German</td>
<td>10.5</td>
<td>11.1</td>
<td>9.8</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>French</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Italian</td>
<td>85.7</td>
<td>83.9</td>
<td>82.8</td>
<td>83.1</td>
</tr>
</tbody>
</table>

¹I would like to thank Takatoshi Tabuchi for his thoughtful comments and suggestions. I am also grateful to Tomoya Mori and Se-il Mun and seminar participants at Kyoto University. All remaining errors are on the author’s responsibility. This research is partially supported by the Grants-in-Aid for Scientific Research (Research project number: 13J10130) for the Japan Society for the Promotion of Science (JSPS) Fellows by the Ministry of Education, Science and Culture in Japan.

²For data sources of Tables 2.1-2.5, see Appendix 2.B.
Geneva’s official language, and Ticino has predominantly Italian-speaking residents. It is obvious from Table 2.1 that German is the preferred language in the Canton dominated by residents whose mother tongue is German. The same holds true for French and Italian Cantons respectively. This implies that regional segregation by ethnolinguistic characteristics occurs in Switzerland, possibly because ethnolinguistic clustering is beneficial when communicating with other residents.

Another example of regional segregation is found in Quebec, a province in Canada in which French residents (Francophones) are clustered. Table 2.2 compares the percentage of Quebec residents whose mother tongue is French with the residents of Canada as a whole. These figures illustrate the persistence of Quebec’s cluster of French residents.

Table 2.2: Share of residents whose mother tongue is French in Quebec and in Canada (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Quebec</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1931</td>
<td>79.7</td>
<td>25.6</td>
</tr>
<tr>
<td>1941</td>
<td>81.6</td>
<td>24.3</td>
</tr>
<tr>
<td>1951</td>
<td>82.5</td>
<td>22.8</td>
</tr>
<tr>
<td>1961</td>
<td>81.2</td>
<td>22.0</td>
</tr>
<tr>
<td>1971</td>
<td>82.4</td>
<td>22.0</td>
</tr>
<tr>
<td>1981</td>
<td>81.3</td>
<td>22.0</td>
</tr>
<tr>
<td>1991</td>
<td>79.4</td>
<td>21.6</td>
</tr>
</tbody>
</table>

The reasons for this persistence include Quebec’s historical and political characteristics. Bill 101, adopted in 1978, made French Quebec’s only official language (Laponce, 1984; St-Hilaire, 1997). In contrast, English has been chosen as the only official language in most other areas of Canada, thereby causing residents who speak only French to have difficulties when living in areas other than Quebec (and causing Quebec residents whose only mother tongue is English the same difficulty). In order to avoid struggling in daily communication and facing other language barriers, French-speaking residents have been more likely to establish themselves in Quebec, yielding the necessity of ethnolinguistic clustering. However, what would the ethnolinguistic composition of Quebec residents be if the Quebec government had not decided that the only official language in that province would be French? Put differently, what if both English and French were official languages in Quebec? History does not allow us to imagine “what if” scenarios, but similar cases to this “what if” story can be found in Catalonia in Spain, and South Tyrol in Italy.

In Catalonia, the Franco regime banned the use of Catalan in government-run institutions and during public events. However, after Franco’s death in 1975, a democratic Spanish constitution was adopted in 1978, choosing both Catalan and Spanish as official languages in Catalonia (Strubell, 1996). In South Tyrol, on the other hand, where German, Italian, and Ladin were selected as local official languages, the history of triple official language adoption was quite different from that in Catalonia. South Tyrol once belonged to Austria (where the majority of the residents spoke German), but the cessation treaty after WWI granted it to Italy. During the period of Fascism under Mussolini, Ital-
ian residents were encouraged to migrate to South Tyrol, which led to the ethnolinguistic mixing of German and Italian residents in this area (Alcock, 1970). Although Catalonia and South Tyrol followed different paths to becoming multilingual areas, language barriers here are not serious impediments when residents communicate with one another, unlike Quebec. Table 2.3 shows how different the level of ethnolinguistic mixing is in the cases of Catalonia and South Tyrol, compared to Quebec. This shows that quite a large portion of Catalan residents can understand both Catalan and Spanish, and that most German-speaking residents in South Tyrol can use Italian. In contrast, the number of Quebec residents who can use both English and French fluently is small, making communication between different linguistic groups much harder.

Another striking example of regional distribution is that of Russian residents in former Soviet Union countries. Tables 2.4 and 2.5 show ratios of the Russian population divided by the populations of residents with the dominant ethnic characteristics of a given country. Table 2.4, for example, depicts the ratios of Russian residents by region in Belarus.

<table>
<thead>
<tr>
<th>Language policy</th>
<th>Region</th>
<th>Language</th>
<th>Percentage of residents using as his/her mother tongue (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilingual</td>
<td>Catalonia (year: 2008)</td>
<td>Catalan</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spanish</td>
<td>46.5</td>
</tr>
<tr>
<td></td>
<td>South Tyrol (year: 2013)</td>
<td>German</td>
<td>69.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Italian</td>
<td>26.1</td>
</tr>
<tr>
<td>Monolingual</td>
<td>Quebec (year: 2011)</td>
<td>French</td>
<td>78.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English</td>
<td>7.9</td>
</tr>
</tbody>
</table>

2.5 illustrates how uneven Russian resident ratios are by country. By studying Table 2.5,
Table 2.5: Russian population proportions in former Soviet Union countries (Summary statistics)

<table>
<thead>
<tr>
<th>Country</th>
<th>Official language</th>
<th>max</th>
<th>min</th>
<th>average</th>
<th>st.dev</th>
<th>Number of administrative divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belarus</td>
<td>Belarusian and Russian</td>
<td>0.20</td>
<td>0.10</td>
<td>0.14</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Estonia</td>
<td>Estonian</td>
<td>3.48</td>
<td>0.01</td>
<td>0.33</td>
<td>0.88</td>
<td>15</td>
</tr>
<tr>
<td>Latvia</td>
<td>Latvian</td>
<td>3.46</td>
<td>0.04</td>
<td>0.45</td>
<td>0.63</td>
<td>33</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Ukrainian</td>
<td>3.20</td>
<td>0.01</td>
<td>0.35</td>
<td>0.74</td>
<td>27</td>
</tr>
</tbody>
</table>

we notice that in Belarus, Russian residents are quite evenly distributed, relative to this distribution in other former Soviet Union countries, because of President Lukashenko’s policies. Lukashenko made pro-Russian policies, and adopted Russian as well as Belarusian as one of the official languages of the country (Hattori, 2000). On the other hand, other former Soviet Union countries listed in Table 2.5 did not adopt pro-Russian policies. Those countries did not choose Russian as their official language, even though they realized the importance of their economic and political relationships with Russia. Due to the linguistic policy differences between former Soviet Union countries, Russian residents in Belarus may find it is easier to live in Belarus, and do not feel a strong need to cluster with other residents who share their Russian ethnicity. This example of the former Soviet Union captures how important the language differences are, with respect to the benefits of ethnicity clustering.

By these examples, we predict that different levels of intensity of ethnicity clustering preference bring about different regional population distribution by ethnicity. Further, regional segregation by ethnolinguistic characteristics is revealed to be persistent. In the present model, skilled workers (named “workers”) are perfectly mobile and work in the manufacturing sector, while unskilled workers (named “farmers”) are immobile between regions and engaged in the agricultural sector. There are two types of ethnolinguistic characteristics in the economy, so that in addition to skill levels, each individual is endowed with an ethnolinguistic characteristic. The economy consists of two regions, and immobile farmers are assumed to distribute separately by ethnicity in each region. Individuals obtain utility from proximity to the residents with the same ethnicity. This type of analysis considering proximity to various ethnic groups is done in Kanemoto (1980). Manufacturing good is differentiated, under increasing returns to scale, but agricultural

your mother tongue?” in a survey, Belarusian people tend to give answers regarding their ethnicity, rather than their mother tongue. As for other former Soviet Union countries, we could not find any evidence of this tendency to confuse the identity of the language with ethnicity, but when comparing the distribution of Russian residents among former Soviet Union countries, the utilization of figures calculated by the mother tongue ratio, instead of the ethnicity ratio, is inappropriate due to the confusing tendency of Belarusians. Actually, “ethnic group” is a slippery concept as is pointed out in Fearon (2003), so that dealing with the arbitrariness of group definitions in terms of ethnolinguistic characteristics itself is an important issue in empirical works (Baldwin and Huber, 2010; Desmet et al., 2012).
good is not, whose production is characterized by constant returns to scale. Under these settings, if complete regional segregation in terms of ethnicity arises, then this implies that industrial dispersion occurs, because both regions accommodate workers.

Our results show that even under low trade costs, the ethnicity segregation/industrial dispersion pattern is in equilibrium. This is consistent with the findings in Fujita et al. (1999, Chapter 7), Helpman (1998), Tabuchi and Thisse (2002), Ottaviano et al. (2002), Puga (1999), and Picard and Zeng (2005), all of which exhibit industrial dispersion patterns in equilibrium at low trade costs. In Fujita et al. (1999, Chapter 7), agriculture transport cost bears industrial dispersed equilibrium even under low trade costs, and taste heterogeneity (Tabuchi and Thisse, 2002) and urban cost (Ottaviano et al., 2002, Section 7) induce dispersion force. The industrial dispersion equilibrium is caused by dispersion force stemming from non-traded goods in Helpman (1998), from immobility of workers in Puga (1999), and from agricultural sector in Picard and Zeng (2005). The essence of the emergence of the industrial dispersion under low trade costs is the immobile elements in the economy. In our model, immobile farmers attached to their home region correspond to the immobile factors to bear industrial dispersion force. Indeed, our results are consistent with this—even when the trade cost is low, industrial dispersion accompanied by ethnic segregation consists of a stable equilibrium. Moreover, our model presents complete segregation equilibria for any levels of the trade costs, so that this is coherent with the examples in the real world shown above. In order to capture ethnolinguistic clustering preferences, we add the ethnolinguistic clustering term to a model in Ottaviano et al. (2002).

Intra- or inter-group social interaction is one of the important determinants of spatial segregation/integration. Segregated urban structure arises in equilibrium when agents interact more with the residents of the same group than those of the other group (Mossay and Picard, 2013). Another sorting mechanism comes from local public goods provision. Boustan (2007) points out that a racial division may reflect different preferences for public goods consumption by income level. In selecting residential locations, individuals choose their preferable bundle of public services, yielding more homogeneous composition of residents in their neighbors.\(^4\) Ethnic segregation is also associated with individual income/education levels. Cutler et al. (2008) finds that first-generation immigrants in the United States exhibit negative selection into ethnic enclaves. Bayer et al. (2014) argues that an increase in educational attainment of black residents in American cities gives a boost to segregation, creating a sufficiently large population of the highly educated black. In addition, partly due to the ability to finance transportation costs, better educated blacks migrate to the North during the Great Migration in the United States (Vigdor, 2002).

\(^4\)Bucovetsky and Glazer (2014) analyze a mechanism in which people sort themselves based on the preferences over the income levels of their neighbors when the cost of local public output is financed by a proportional income tax, using an adverse selection model.
The remainder of the chapter is organized as follows. The following section presents a model description, including an instantaneous equilibrium. Section 2.3 analyzes the effects of long-run regional segregation by ethnolinguistic characteristics. Section 2.4 considers which economic benefits are great enough to break the persistent ethnolinguistic clustering equilibrium. Section 2.5 deals with social welfare analysis, and proposes some linguistic policies to realize the social optimum. Section 2.6 concludes this chapter.

2.2 Model

This economy consists of two geographic regions, labeled 1 and 2, and two types of factors/sectors, named A and L. Factor L is mobile between the two regions, but factor A is not. Sector A represents “agriculture,” and sector L represents “manufacturing.” The immobile factor, A, is the “farmers,” and the mobile factor, L, is the “workers.” There are two types of ethnicity, X and x.\(^5\) Combining the classifications in terms of factors and ethnicities, there are four types of individuals: farmers with ethnicity X, farmers with ethnicity x, workers with ethnicity X, and workers with ethnicity x, resulting in total population sizes for the whole economy A_X, A_x, L_X and L_x (including both regions 1 and 2). We assume that the innate natural abilities do not differ across ethnicities, so the farmer-worker ratio is the same for each ethnicity. We further assume that the population size does not differ by ethnicity, and that $A_X = A_x = A$ and $L_X = L_x = L$.\(^6\) For purposes of simplicity, we normalize L to 1, i.e., $L_X = L_x = 1$. Because workers are mobile between regions, $\lambda_X \in [0, 1]$ denotes the share of workers with ethnicity X in region 1, and $\lambda_x \in [0, 1]$ denotes the share of workers with ethnicity x in region 2. In contrast, farmers are immobile between regions. As mentioned in Section 2.1, for historical, political, and/or geographical reasons, immobile agents are left in cluster in one part of a country.\(^7\) Thus, farmers are assumed to distribute separately by ethnicity: all the farmers with ethnicity X (x, respectively) are stuck to region 1 (2, respectively). The (instantaneous) population

\(^5\)As we saw in Section 2.1, linguistic differences in addition to (rather than) ethnic differences may play key roles for ethnolinguistic clustering preference. However, just for notational simplicity, we call ethnicities X and x, instead of ethnolinguistic characteristics X and x, when considering the model.

\(^6\)Cases with different population sizes by ethnicity are considered in Section 2.4.

\(^7\)German speaking populations left in the Tyrolean part of northern Italy after WWI, due to the 1919 Treaty of Versailles, are one example. Also, wrong national borders artificially drawn, which split ethnic groups into neighboring countries, was found to have occurred in many African countries, and resulted in the immobile residents’ clustering near the national borders (Alesina et al., 2011). Moreover, French settlements in Canada along Saint Lawrence River gave rise to a high proportion of French residents in Quebec, some of whom are thought to be immobile.

38
distributions of the total population of region \(r \), \(N_r (r \in \{1, 2\}) \) are

\[
N_1 = \sum_{e \in \{X, x\}} N_{e1} = A_X + \lambda_X L_X + (1 - \lambda_x)L_x = A + 1 + \lambda_X - \lambda_x
\]

\[
N_2 = \sum_{e \in \{X, x\}} N_{e2} = A_x + \lambda_x L_X + (1 - \lambda_X)L_X = A + 1 + \lambda_x - \lambda_X,
\]

where \(N_{er} \) is the population size of residents with ethnicity \(e \ (e \in \{X, x\}) \) residing in region \(r \).

The utility function of any particular individual consists of two parts: (i) the subutility stemming from consumption of the differentiated and homogeneous goods supplied in the market, and (ii) the ethnicity clustering preference which represents non-economic variables influencing the individual choice of location:

\[
U_e(q_0; q(i), i \in [0, n]; N_e) = u(q_0; q(i), i \in [0, n]) + u^E(N_e),
\]

where

\[
u(q_0; q(i), i \in [0, n]) = \alpha \int_0^n q(i) \, di - \frac{\beta}{2} \int_0^n [q(i)]^2 \, di - \frac{\gamma}{2} \left[\int_0^n q(i) \, di \right]^2 + q_0
\]

and

\[
u^E(N_e) = \frac{\delta}{2} N_e.
\]

First, we consider the subutility related to ethnicity preference (2.3). It is a linear addition to the subutility of goods consumption, whose formula is borrowed from Kanemoto (1980), and Bayer et al. (2014), among others.\(^8\) \(N_e \) is the population size of ethnicity characteristic \(e \), and the ethnicity parameter \(\delta \) measures how important it is for individuals to reside with others sharing their ethnic characteristics.\(^9\)\(^10\) Needless to say, the larger \(\delta \) is, the

\(^8\)In Kanemoto (1980) and Bayer et al. (2014), ethnic clustering utility stems from the share of population of the same ethnic group residents in the area, rather than the population size itself. It is not obvious whether residents obtain utilities from the population size or share of the same group. For analytical tractability, we employ the population size. We also ran numerical simulations with the share type subutility and obtained the similar equilibrium results. Furthermore, adding a quadratic term to the ethnic utility part (\(u^E(N_e) = (\delta_1/2)N_e - (\delta_2/2)N_e^2 \), where \(\delta_1 > 0 \) and \(\delta_2 > 0 \)) yields quantitatively the same results. These are provided for readers upon request.

\(^9\)It is natural that residents of the larger population group as well as those of the smaller one obtain ethnic clustering utilities when living in the same region. For example, not only candidates of minority groups but also those of majority may have advantages in elections.

\(^10\)Related to the interpretation of \(\delta \) in the model and the data shown in Section 2.1, one comment should be noted. In the present model, \(\delta \) is captured as the intensity for within ethnic group preference (\(\delta_{\text{within}} \)), i.e., how the same ethnic group connection is important. However, in reality, there must be another ethnic preference, namely, between ethnic group preference (\(\delta_{\text{between}} \)). The extent to which different ethnic groups have well-established connection may be expressed by \(\delta_{\text{between}} \). Although, in the exhibited data in Section 2.1, it might be that the exhibited data captures \(\delta_{\text{between}} \) rather than \(\delta_{\text{within}} \), these two \(\delta \)s may be interrelated each other and cannot be separated. In the model, we employ \(\delta \) based on a closer concept of \(\delta_{\text{within}} \) for the analytical tractability.
more important ethnicity clustering is to that population. Ethnicity subutilities for individuals X and x, when located in region 1, are described in the following equation:

$$u^E(N_e) = \frac{\delta}{2} N_e = \begin{cases} \frac{\delta}{2} (A + \lambda X) & \text{if } e = X \\ \frac{\delta}{2} (1 - \lambda x) & \text{if } e = x. \end{cases}$$ \hfill (2.4)$$

Similar equations describe the comparable situation in region 2.

Next, we look at the subutility stemming from consumption of the horizontally differentiated good, $q(i)$, and the homogeneous good, q_0, which is chosen as the numeraire in (2.2), following Ottaviano et al. (2002) (we refer Ottaviano et al. (2002) as OTT for convenience hereafter). Preferences for the differentiated good and for the numeraire are identical across individuals. Non-ethnic subutility (2.2) generates a system of linear demands given by a quasi-linear utility with a quadratic subutilities symmetric in all varieties $i \in [0, n]$. $q(i)$ is the quantity of variety i, and q_0 is the quantity of the numeraire. As the function of (2.2) is linear in the numeraire q_0, income effects are absent from individual consumption. As for the parameters, we assume $\alpha > 0$, $\beta > 0$, and $\gamma > 0$. α captures the intensity of preference for the product. β means that consumers have a preference for diversity. Substitutability between varieties is expressed as γ.

Each worker is endowed with one unit of labor and supplies it inelastically. In addition to her labor, she is endowed with $q_0 > 0$ units of the numeraire. Her budget constraint is then written as

$$\int_0^n p(i)q(i)di + q_0 = w + q_0, \hfill (2.5)$$

where w is her wage and $p(i)$ is the price of variety i. We assume that the initial endowment q_0 is sufficiently large for the equilibrium consumption of the numeraire to be positive.

As in previous literature, the demand function of variety i is obtained from

$$q(i) = a - (b + cn)p(i) + cP, \hfill (2.6)$$

where

$$a \equiv \frac{\alpha}{\beta + \gamma n}, \quad b \equiv \frac{1}{\beta + \gamma n}, \quad c \equiv \frac{\gamma}{\beta(\beta + \gamma n)}.$$
along with the price index

\[P = \int_0^n p(i)di. \]

The indirect (sub)utility corresponding to the demand system (2.6) is given by

\[v(w; p(i), i \in [0, n]) = \frac{a^2}{2b} - a \int_0^n p(i)di + \frac{b + cn}{2} \int_0^n [p(i)]^2di - \frac{c}{2} \left[\int_0^n p(i)di \right]^2 + w + \bar{q}_0. \] (2.7)

As for production, the agricultural sector is characterized by constant returns to scale and perfect competition, where the homogeneous good is produced using factor \(A \) as the sole input. The production of one unit of the homogeneous good requires one unit input of \(A \). Since the homogeneous good is chosen as the numeraire, and can be freely traded between regions, \(w_1^A = w_2^A = 1 \). In the manufacturing sector, by contrast, the differentiated good is supplied under increasing returns to scale and monopolistic competition. To produce any amount of output of the differentiated good, \(\phi \) units of \(L \) are required. For simplicity, we assume \(\phi = 1 \), so that the fixed labor requirement is 1 (and the marginal one is 0). By this, the labor market clearing condition implies \(n_r = \lambda_r \), where

\[\lambda_r = \begin{cases} 1 + \lambda_X - \lambda_x & \text{if } r = 1 \\ 1 + \lambda_x - \lambda_X & \text{if } r = 2. \end{cases} \]

Also, we assume that markets are segmented by firms, i.e., each firm has the ability to set a price specific to the market where the product is sold. Then, the profit of a firm in region \(r \) is given by

\[\Pi_r = p_{rr}q_{rr}(p_{rr})D_r + (p_{rs} - \tau)q_{rs}(p_{rs})D_s - w_r \quad (r \neq s), \] (2.8)

where \(D_r = A + \lambda_r \). \(p_{rr} \) (\(q_{rr} \), respectively) is the price (quantity, respectively) of products produced in region \(r \) and sold in region \(s \). \(\tau \) is the trade cost (in order for each variety of the differentiated good to be traded, a positive cost of \(\tau \) units of the numeraire must be incurred for each unit of the differentiated good transported from one region to the other). By profit maximization with respect to prices for the market in each region, and by the symmetry of firms in the same region, the equilibrium prices are obtained as follows:

\[p_{rr}^* = \frac{2a + \tau cn_s}{2(2b + cn)} \quad (s \neq r) \]

\[= \begin{cases} \frac{2a + \tau c(1 + \lambda_x - \lambda_X)}{4(b + c)} & \text{if } r = 1 \\ \frac{2a + \tau c(1 + \lambda_X - \lambda_x)}{4(b + c)} & \text{if } r = 2, \end{cases} \]

\[p_{rs}^* = p_{ss}^* + \frac{\tau}{2} \quad (s \neq r). \]
Since \(p_{12}^* - p_{11}^* = \tau c(\lambda_X + \lambda_x)/[2(b + c)] + \tau/2 < \tau \) and \(p_{21}^* - p_{22}^* = -\tau c(\lambda_X + \lambda_x)/[2(b + c)] + \tau/2 < \tau \), no entry of transportation companies occurs. It is necessary that firms’ prices net of trade costs are positive, regardless of the workers’ distribution in order for these prices to be meaningful. Thus, we assume

\[
\tau < \tau_{\text{trade}} \equiv \frac{a}{b + c},
\]

which comes from the condition \(p_{rs}^* - \tau > 0 \) for all \(\lambda_e \in [0, 1], e \in \{X, x\} \).

Instantaneous equilibrium wage \(w_r^* \) is determined by zero-profit condition:

\[
w_r^* = p_{rr}^* q_{rr}^* D_r + (p_{rs}^* - \tau) q_{rs}^* D_s.
\] (2.9)

Summing up the indirect subutility other than for the ethnic utility, we have

\[
v_r(\lambda_X, \lambda_x) = S_r(\lambda_X, \lambda_x) + w_r^*(\lambda_X, \lambda_x) + \bar{q}_0,
\]

where \(S_r(\lambda_X, \lambda_x) \) is the consumer’s surplus of individuals in region \(r \) (both for ethnicities \(X \) and \(x \)), which is given by

\[
S_r(\lambda_X, \lambda_x) = \frac{a^2}{b} - a (\lambda_r p_{rr} + \lambda_s p_{sr}) + \frac{b + 2c}{2} \left[\lambda_r (p_{rr})^2 + \lambda_s (p_{sr})^2 \right] - \frac{c}{2} (\lambda_r p_{rr} + \lambda_s p_{sr})^2 \quad (s \neq r).
\] (2.10)

From these, the total indirect utility of the individual with ethnicity characteristic \(e \), when located in region \(r \), is written as

\[
V_r(\lambda_X, \lambda_x; e) = v_r(\lambda_X, \lambda_x) + u_E^r(\lambda_e).
\] (2.11)

Using this total indirect utility \(V_r(\lambda_X, \lambda_x; e) \), we define the indirect utility differential as follows:

\[
\Delta V(\lambda_X, \lambda_x; e) \equiv I(e) [V_1(\lambda_X, \lambda_x; e) - V_2(\lambda_X, \lambda_x; e)]
\]

\[
= I(e) [\Delta v(\lambda_X, \lambda_x) + \Delta u^E(\lambda_e)]
\]

\[
= I(e) [\Delta S(\lambda_X, \lambda_x) + \Delta w^r(\lambda_X, \lambda_x) + \Delta u^E(\lambda_e)],
\] (2.12)

where

\[
I(e) = \begin{cases}
1 & \text{if } e = X \\
-1 & \text{if } e = x,
\end{cases}
\]

\[
\Delta v(\lambda_X, \lambda_x) \equiv v_1(\lambda_X, \lambda_x) - v_2(\lambda_X, \lambda_x).
\]
Similar definitions are applied to $\Delta S(\lambda_X, \lambda_x)$, $\Delta w^*(\lambda_X, \lambda_x)$, and $\Delta u^E(\lambda_e)$.\(^{14}\) Calculating this with (2.4), (2.9), and (2.10), we obtain

$$\Delta V^e(\lambda_X, \lambda_x) = \left[C^* \tau (\tau^* - \tau) + \delta \lambda_e - C^* \tau (\tau^* - \tau) \lambda_{-e} + \frac{\delta}{2} (A - 1), \right]$$

where

$$C^* = \frac{b + 2c}{4(b + c)^2} \left[3b^2 + 2bc(3 + A) + 2c^2(1 + A) \right],$$

$$\tau^* = \frac{2a(3b + 4c)}{3b^2 + 2bc(3 + A) + 2c^2(1 + A)},$$

and λ_{-e} is the ethnicity other than e ($e \neq -e$). τ^* is the critical value of τ at which a stable agglomeration equilibrium emerges instead of a dispersed one in the absence of ethnic clustering preference.

2.3 Industrial agglomeration or ethnic mix

Long-run equilibrium is obtained by allowing workers to move between regions without cost (λ_e’s are no longer treated as fixed). For expositional convenience, we define λ is region 1’s share of the total number of firms in the economy:

$$\lambda = \frac{n_1}{\sum_{r \in \{1,2\}} n_r} = \frac{1 + \lambda_X - \lambda_x}{2}.$$

This necessarily implies the two scenarios described below:\(^{15}\)

- **(SD)** Segregation in terms of ethnicity/dispersion in terms of industry:
 Here, $(\lambda^*_X, \lambda^*_x) = (1, 1)$, so that $\lambda^* = 1/2$. Region 1 is populated by residents with ethnicity X, and region 2 is occupied by residents with ethnicity x. In terms of the industrial distribution, both regions accommodate workers.

- **(MA)** Mixing in terms of ethnicity/agglomeration in terms of industry:
 Here, (a) $(\lambda^*_X, \lambda^*_x) = (1, 0)$, so that $\lambda^* = 1$, or (b) $(\lambda^*_X, \lambda^*_x) = (0, 1)$, so that $\lambda^* = 0$. In (a), region 1 accommodates both X and x residents, while region 2 accommodates only x residents. All workers in the economy are in region 1, and region 2 does not attract any of them. Consequently, all firms are agglomerated in region 1, so that it is the core region. As for (b), the same explanation holds.

\(^{14}\)Put differently, the total indirect utility differential for ethnicity X is defined as $V_1 - V_2$, and that for ethnicity x is as $V_2 - V_1$. In short, the total indirect utility differential for each ethnicity is defined as “the total indirect utility when located in the region where her ethnicity is dominant in terms of population size,” minus “the total indirect utility when located in the region in which the other ethnicity is dominant.”

\(^{15}\)This model implies the third scenario: complete ethnic mixing/industrial dispersion ($(\lambda^*_X, \lambda^*_x, \lambda) = (0, 0, 1/2)$). This scenario can be realized when $A < 1$. However, under assumption (2.14), this scenario should be separately considered. Discussion of this third scenario is provided for readers upon request.
Following the procedures in OTT, we calculate the value of A where $\tau^* < \tau_{\text{trade}}$:

$$\tau^* < \tau_{\text{trade}} \iff A > \frac{3b^2 + 8bc + 6c^2}{2c(b+c)} > 3 \quad (> 1).$$ \tag{2.14}

By assuming (2.14), there are two candidates for long-run equilibria: SD and MA. Because (case 1) $C^*\tau(\tau^* - \tau)$ is positive when $\tau < \tau^*$, (case 2) equal to 0 when $\tau = \tau^*$, and (case 3) negative when $\tau > \tau^*$, we consider the equilibrium configurations by investigating cases 1-3, one by one following the arguments in Combes et al. (2008, Chapter 7) and Fujita et al. (1999, Chapter 14).

Case 1: $\tau < \tau^*$

Since $C^*\tau(\tau^* - \tau) > 0$,

$$\Delta V_e(r_X, \lambda_e) \geq 0 \iff \lambda - e \geq \left[1 + \frac{\delta}{C^*\tau(\tau^* - \tau)}\right] \lambda_e + \frac{\delta(A - 1)}{2C^*\tau(\tau^* - \tau)}.$$ \tag{2.15}

Notice that the slope is greater than 1 (i.e., $1 + \delta /[C^*\tau(\tau^* - \tau)] > 1$) and the intercept is positive (i.e., $\delta(A - 1)/[2C^*\tau(\tau^* - \tau)] > 0$). Drawing the lines which satisfy $\Delta V_e(\lambda_X, \lambda_e) = 0$ for $e \in \{X, x\}$ is helpful in capturing which of the various possible long-run equilibria are more likely to emerge. Figures 2.1 and 2.2 help us consider the equilibria when $\tau < \tau^*$ in the long run. The horizontal axis (vertical axis, respectively) represents the fraction of workers with ethnic characteristic X located in region 1, i.e., λ_X (that fraction of workers with ethnic characteristic x located in region 2, i.e., λ_x, respectively). Each point in the positive quadrant corresponds to an instantaneous equilibrium. The line named $\Delta V_X = 0$ ($\Delta V_x = 0$, respectively) depicts all combinations (λ_X, λ_x) which make the instantaneous total indirect utility differential for individuals with ethnicity X (with x, respectively) equal to 0.

First, we investigate the case with $\delta \leq 2C^*\tau(\tau^* - \tau)/(A - 1) \equiv \delta^*(\tau)$. In this case, both
of the two lines satisfying $\Delta V_X(\lambda_X, \lambda_x) = 0$ and $\Delta V_x(\lambda_X, \lambda_x) = 0$ appear in the positive quadrant in λ_X-λ_x plane. In the right area of line $\Delta V_X = 0$, the total indirect utility differential is such that $\Delta V_X(\lambda_X, \lambda_x) > 0$, which implies that when the fraction of workers with ethnicity X in region 1 (λ_X) is larger than line $\Delta V_X = 0$ given a certain value of λ_x (i.e., given a population distribution of workers with ethnicity x), the total indirect utility when located in region 1 is larger than that in region 2 for individuals X. This implies that more and more workers with ethnicity X relocate to region 1. Thus, the equilibrium λ_X moves away from line $\Delta V_X = 0$ in the long run. On the other hand, when λ_X is smaller than line $\Delta V_X = 0$ given a certain value of λ_x, the indirect utility in region 2 is larger than that in region 1 for individuals X, so they tend to migrate to region 2. Similar discussions can be had in the case of line $\Delta V_X = 0$. These flows of workers are depicted by a horizontal (vertical, respectively) arrow for individual X (x, respectively). In Figure 2.1, two lines $\Delta V_X = 0$ and $\Delta V_x = 0$ never have intersections, so that there is no interior long-run equilibrium. Figure 2.1 exhibits three long-run equilibria: $\lambda^*_X, \lambda^*_x = (1,1), (1,0)$, and $(0,1)$. Hence, when $\tau < \tau^*$ and $\delta \leq \delta^*(\tau)$, two types of equilibria emerge: (i) segregation/dispersion and (ii) mixing/agglomeration. The interpretation of this emergence will be mentioned after investigating the case with $\delta > \delta^*(\tau)$. For the analysis of the long-run equilibrium case with $\delta > \delta^*(\tau)$, Figure 2.2 is utilized. When $\delta > \delta^*(\tau)$, lines $\Delta V_X = 0$ and $\Delta V_x = 0$ disappear from the positive quadrant in λ_X-λ_x plane, which means that for all $\lambda_X \in [0,1]$ and $\lambda_x \in [0,1]$, $\Delta V_X(\lambda_X, \lambda_x) > 0$ and $\Delta V_x(\lambda_X, \lambda_x) > 0$. Then, the only long-run equilibrium is $(\lambda^*_X, \lambda^*_x) = (1,1)$, so that when $\tau < \tau^*$ and $\delta > \delta^*(\tau)$, the equilibrium configuration is solely the pattern of segregation/dispersion.

Case 2: $\tau = \tau^*$

In this case, $C^*\tau(\tau^* - \tau) = 0$, so that by (2.13), we obtain

$$\Delta V_e(\lambda_X, \lambda_x) \gtrless 0 \iff \lambda_e \gtrless -\frac{A-1}{2}.$$

Since $-(A-1)/2$ is negative, lines $\Delta V_X = 0$ and $\Delta V_x = 0$ never run through the positive quadrant as in Figure 2.3. Also, $\Delta V_X(\lambda_X, \lambda_x) > 0$ and $\Delta V_x(\lambda_X, \lambda_x) > 0$ always hold, in the quadrant where λ_X and λ_x are defined, so that we assert the only stable spatial equilibrium is $(\lambda^*_X, \lambda^*_x) = (1,1)$ (i.e., SD).

Case 3: $\tau > \tau^*$

Since $C^*\tau(\tau^* - \tau) < 0$, we obtain by (2.13)

$$\Delta V_e(\lambda_X, \lambda_x) \gtrless 0 \iff \lambda_{-e} \gtrless \left[1 + \frac{\delta}{C^*\tau(\tau^* - \tau)} \right] \lambda_e + \frac{\delta(A-1)}{2C^*\tau(\tau^* - \tau)}.$$
By investigating Figure 2.4, it is obvious that the only spatial stable equilibrium is \((\lambda^*_X, \lambda^*_x) = (1, 1)\). Combining cases 2 and 3, it is asserted that when \(\tau \geq \tau^*\), only \((\lambda^*_X, \lambda^*_x) = (1, 1)\) can emerge, i.e., the SD pattern is the only stable spatial equilibrium under high trade costs.

Combining cases 1-3, we have the following proposition.

Proposition 2.3.1. Assume \(\tau < \tau_{\text{trade}}\). Regardless of the level of trade costs, SD pattern (segregation in terms of ethnicity/dispersion in terms of industry) is a stable spatial equilibrium. In addition to SD equilibrium, when the trade cost and the ethnicity preference parameter are low \((\tau < \tau^*\) and \(\delta \leq \delta^*(\tau)\)), MA pattern (mixing in terms of ethnicity/agglomeration in terms of industry) can be stable spatial equilibria.

Proposition 2.3.1 is interpreted as follows. When the trade cost is high, it is beneficial for firms to disperse the manufacturing sector into two regions because shipping their output is expensive, and they could not enjoy the benefits associated with industrial agglomeration even if they agglomerate in a single region. Industrial dispersion is in equilibrium regardless of the level of \(\delta\) when \(\tau \geq \tau^*\), because export losses caused by high trade costs have strong negative impacts. When \(\tau < \tau^*\), the equilibrium configuration depends on the ethnicity parameter \(\delta\). If individuals have relatively strong preferences on ethnicity clustering compared with the level of \(\tau\) \((\delta > \delta^*(\tau))\), gains from ethnicity clustering are larger than those from industrial agglomeration, so that ethnic segregation along with industrial dispersion should be in equilibrium. On the contrary, if \(\delta\) is relatively low \((\delta \leq \delta^*(\tau))\), enjoying industrial agglomeration benefits without incurring high trade costs.

\(^{16}\)When \(\delta\) is sufficiently large, the area such that \(\Delta V_X(\lambda_X, \lambda_x) > 0\) and \(\Delta V_x(\lambda_X, \lambda_x) < 0\) and the one such that \(\Delta V_X(\lambda_X, \lambda_x) < 0\) and \(\Delta V_x(\lambda_X, \lambda_x) > 0\) disappear from the quadrant where \(\lambda_X\) and \(\lambda_x\) are defined. However, this does not affect the stable spatial equilibrium in the case in which \(\tau > \tau^*\). Of course, unstable equilibria disappear when \(\delta\) is sufficiently large. Since we are focusing on stable spatial equilibria, we omit the detailed analyses on the cases with high \(\delta\).
costs is more important than gaining ethnicity utilities. Hence, ethnic mixing configuration with industrial agglomeration must be a stable equilibrium.

With Proposition 2.3.1, we obtain a diagram depicting a set of the long-run stable spatial equilibria in \(\tau - \delta \) plane under no-black-hole condition (2.14) (Figure 2.5). The parabola dividing the plane into two parts is \(\delta^*(\tau) \). The area with \(\delta > \delta^*(\tau) \) can realize spatial stable equilibrium SD, while in the area with \(\delta \leq \delta^*(\tau) \), SD or MA can be realized. For \(\delta \) in the range of \([0, \delta_{\text{max}}^*] \), where \(\delta_{\text{max}}^* = \max \delta^*(\tau) = \delta^*(\tau)|_{\tau=\tau^*/2} \), there are two values of \(\tau \), named \(\tau \) (\(\tau^* \), respectively) for a bigger (smaller, respectively) one, such that \(\delta^*(\tau) = \delta \). Given a certain value of \(\delta \leq \delta_{\text{max}}^* \) (i.e., \(\delta \) is sufficiently small), if \(\tau \in [\tau, \tau^*] \) (i.e., \(\tau \) is intermediate), two types of equilibrium patterns can emerge (SD or MA). If \(\tau \notin [\tau, \tau^*] \) (i.e., \(\tau \) is sufficiently high or low), only SD is in equilibrium. For a large value of \(\delta \) (\(\delta > \delta_{\text{max}}^* \)), SD is the sole equilibrium configuration for any level of \(\tau \). This is depicted in \(\tau - \lambda \) plane in Figure 2.6, which asserts the following proposition.

Proposition 2.3.2. Assume \(\tau < \tau_{\text{trade}} \), so that \(A > 3 \).
When ethnicity clustering is sufficiently important (\(\delta > \delta_{\text{max}}^* \)), ethnic segregation/industrial dispersion (SD) pattern is the only stable equilibrium configuration.
When ethnicity clustering is less important (\(\delta \leq \delta_{\text{max}}^* \)), the stable equilibrium configuration takes on three phases, depending on a value of \(\tau \):
- **Phase I** (\(\tau > \bar{\tau} \)): When the trade cost is high, SD pattern (segregation in terms of ethnicity/dispersion in terms of industry) is the only stable equilibrium.
- **Phase II** (\(\bar{\tau} \leq \tau \leq \bar{\tau} \)): When the trade cost is intermediate, SD or MA patterns (mixing in terms of ethnicity/agglomeration in terms of industry) can be stable equilibria.
- **Phase III** (\(\bar{\tau} < \tau \)): When the trade cost is low, SD pattern is again the only stable equilibrium.
Now we briefly interpret Proposition 2.3.2 since it contains some repeated messages. In phase I, due to high trade costs, industrial agglomeration does not weigh much compared with ethnicity clustering utilities. Then, ethnic segregation/industrial dispersion is the only stable equilibrium. In phase II (under intermediate trade costs), MA as well as SD pattern is in equilibrium. This appearance of MA pattern as a stable equilibrium is because firms want to cluster in order to exploit cost and demand linkages. On the other hand, the persistence of the path along which industry is dispersed between regions is due to the existence of the ethnicity clustering preference. When trade costs are at the intermediate level, individuals have two options: (i) enjoying the benefits caused by industrial agglomeration without being anxious about a sharp decrease in exports, and (ii) enjoying the gains of ethnicity clustering and giving up industrial agglomeration benefits. This persistence of the SD path implies that both of the above options are appealing to the mobile individuals in the economy. In phase III, where the trade cost is sufficiently low, the MA path disappears, and only the SD path remains. The disappearance of the MA path under low trade costs will have a “re-dispersion flavor” as in Puga (1999), and Picard and Zeng (2005). When immobile factors are in consideration (workers’ immobility in Puga (1999), and agricultural sector in Picard and Zeng (2005)), the economic activity is likely to switch from agglomeration to dispersion if trade costs become sufficiently small. Immobile factors bring about dispersion force, so that disappearance of the industrial agglomeration equilibrium is likely to occur when trade barriers and trade costs vanish.

In the present model, similar statements can be made—(immobile) farmers sharing the same ethnicity play a role of dispersion force, MA pattern cannot be a stable equilibrium when trade costs are sufficiently low. Notice, however, that what characterizes the present model is the persistence of SD equilibrium under the no-black-hole condition (i.e., $A > 3$). Because of this persistence, we say our model has a “re-dispersion flavor” under low trade costs, in that the stable dispersed equilibrium does not vanish. Why the SD path is persistent for any τ such that $\tau < \tau_{\text{trade}}$ comes from the assumption that $A > 3$, which is equivalent to $\tau < \tau_{\text{trade}}$ itself. Since $A > 3$ means that the number of farmers, who are the immobile factor in this economy, is much larger than that of workers, who are mobile between regions, dispersion force stemming from immobile elements is sufficiently strong. Because mobile individuals are strongly attracted to the region where immobile individuals who share the ethnic attributes reside. Dispersion force made by the large immobile population is so strong that at any level of $\tau < \tau_{\text{trade}}$, ethnic segregation (together with industrial dispersion) is always a stable equilibrium.

Now we link this outcome with reality. As we saw in Section 2.1, in Quebec, the ethnicity clustering preference may be stronger than that in Catalonia because of political and historical reasons. In addition, Quebec is almost dominated by French residents. On the contrary, Catalonia is not dominated by Catalans. Rather, population composition in Catalonia exhibits mixture of Spanish and Catalan residents. Given a certain level of τ
with \(\tau < \tau_{\text{trade}} \), when \(\delta \) is large, a spatial equilibrium pattern may exhibit segregation by ethnicity as has occurred in Quebec. On the other hand, when \(\delta \) is small, the spatial equilibrium pattern may show mixing as in Catalonia. Similar arguments and interpretations can be made for South Tyrol. Quebec and Catalonia are captured as examples of different spatial equilibrium patterns, with different levels of intensity to cluster by ethnicity.

2.4 When does the segregation/dispersion equilibrium break?

In the previous section, we saw that at any level of the trade cost, stable spatial equilibrium SD (segregation by ethnicity/dispersion industrially) is persistent. That is, the SD pattern does not break at any level of \(\tau \). However, as in much new economic geography literature, a symmetry break is one of the main interests. Does a symmetry break ever occur with our framework? Put differently, with some modification, is it possible for equilibrium pattern SD to break? Actually, our model proposed in Section 2.3 can be thought of as a benchmark, in that the total population for each ethnicity is equal (i.e., the total population of residents with ethnicity \(\lambda_X \) = the total population of residents with ethnicity \(\lambda_x \) = 1 + \(A \)). This assumption regarding the exogenous population composition should be relaxed to make the model closer to the reality.

To this end, we consider the different population sizes by ethnicity, but the worker-farmer ratio is the same across ethnicities (innate natural ability is the same across ethnicities). In this section, then, we assume the exogenous population composition is as follows:

\[
\sum_{r \in \{1,2\}} N_{Xr} = k(1 + A) \quad \text{and} \quad \sum_{r \in \{1,2\}} N_{xr} = (1 + A),
\]

where \(k \geq 1 \), so that the population size of residents with ethnicity characteristic \(X \) in the economy is greater than that of residents with characteristic \(x \). Also, we define the manufactured worker share \(\mu = n / \sum_{r \in \{1,2\}} D_r = 1/(1 + A) \). Then, \(A = (1 - \mu) / \mu \). As the exogenous change needed to deal with the symmetry break (SD equilibrium pattern to disappear), we consider an increment of \(\mu \) instead of a decrease in \(\tau \). An increase in the manufactured worker share \(\mu \) captures the gradual change of time from the past to the future.\(^\text{17}\)

Because it is difficult to gain some intuitions analytically from this modification, due to the complicated forms of \(\Delta V_X(\lambda_X, \lambda_x) \) and \(\Delta V_x(\lambda_X, \lambda_x) \), we rely on numerical analyses in this section. Now, we consider when the SD equilibrium pattern breaks as \(\mu \) changes, or equivalently, we analyze at which value of \(\mu \), a pair of the total indirect utility differentials change from \((\Delta V_X(\lambda_X, \lambda_x), \Delta V_x(\lambda_X, \lambda_x)) = (+, +) \) to \((\Delta V_X(\lambda_X, \lambda_x), \Delta V_x(\lambda_X, \lambda_x)) = (+, -) \) given \((\lambda_X, \lambda_x) = (1,1) \), where we mean that \((\Delta V_X(\lambda_X, \lambda_x), \Delta V_x(\lambda_X, \lambda_x)) = (+, +) \) indicates \(\Delta V_X(\lambda_X, \lambda_x) > 0 \) and \(\Delta V_x(\lambda_X, \lambda_x) > 0 \), and so on. In this simulation, we set \(a = 3, b = 1, c = 1, k = 1.5, \tau = 0.5, \) and \(\delta = 1 \). With this set of values, when \(\mu = 0.06 < 135/2156 \approx 0.063 \), \((\Delta V_X(\lambda_X, \lambda_x), \Delta V_x(\lambda_X, \lambda_x)) \)

\(^\text{17}\)Detailed calculations necessary to get the total indirect utility differentials for ethnicities \(X \) and \(x \), \(\Delta V_X(\lambda_X, \lambda_x) \) and \(\Delta V_x(\lambda_X, \lambda_x) \) are provided for readers upon request.
\[(\lambda_X, \lambda_x) = (1,1) \approx (20.815, 0.018) = (+, +), \text{ so that the equilibrium } (\lambda^*_X, \lambda^*_x) = (1, 1) \text{ is still stable. When } \mu = 0.07 > 135/2156 \approx 0.063, \text{ } (\Delta V_X (\lambda_X, \lambda_x), \Delta V_x (\lambda_X, \lambda_x)) \bigg|_{(\lambda_X, \lambda_x) = (1,1)} \approx (17.961, -0.044) = (+, -), \text{ so that } (\lambda_X, \lambda_x) = (1,1) \text{ is no longer a stable equilibrium, and instead, } (\lambda^*_X, \lambda^*_x) = (1, 0) \text{ becomes a new stable equilibrium. From this simulation, we may assert what follows in terms of the relationship between the stability of dispersed equilibrium and industrialization. At first, the industrially dispersed equilibrium (along with ethnically segregated equilibrium) is stable. However, with the advance of industrialization (i.e., as } \mu \text{ increases), the industrial dispersed equilibrium disappears. Instead, industrial agglomeration (accompanied with an ethnicity mixing equilibrium) emerges. This transition from dispersion to agglomeration matches the reality. In this sense, our model does not deny what the new economic geography has built.}

As one of the examples in the real world, our numerical result may be consistent with the case of Brussels. In order to enjoy economic benefits, French-speaking residents in the southern area of Belgium migrate to the northern area, where the Dutch language is dominant. The northern part of Belgium used to be poorer than the southern part of that country where French-speaking residents are dominant, but it has economically grown to be a richer area. In Brussels, the language census of 1842 showed that almost two thirds of the population of Brussels spoke Dutch, and one third French. Note that in Brussels, although both French and Dutch are the official languages, Brussels itself belongs to the northern part of Belgium, where Dutch is the only official language. By the 1970s, only about 20% of Brussels’ population was Dutch speaking, and the remaining 80% spoke French (Pons-Ridler and Ridler, 1989).

2.5 Social optimum and equilibrium

To deal analytically with the social optimum, we return to the base model we proposed in Section 2.3. Because our settings assume transferable utility, it is further assumed that the social planner will choose \((\lambda_X, \lambda_x)\) to maximize the sum of individual indirect utilities over the two regions.\(^{18}\) Thus, the social welfare function to be maximized is given by

\[
W(\lambda_X, \lambda_x) = A[S_1(\lambda_X, \lambda_x) + 1 + u^F_1(\lambda_X)] + \lambda_X[S_1(\lambda_X, \lambda_x) + w_1(\lambda_X, \lambda_x) + u^F_1(\lambda_X)] \\
+ (1 - \lambda_x)[S_1(\lambda_X, \lambda_x) + w_1(\lambda_X, \lambda_x) + u^F_1(\lambda_X)] \\
+ A[S_2(\lambda_X, \lambda_x) + 1 + u^F_2(\lambda_x)] + \lambda_x[S_2(\lambda_X, \lambda_x) + w_2(\lambda_X, \lambda_x) + u^F_2(\lambda_x)] \\
+ (1 - \lambda_X)[S_2(\lambda_X, \lambda_x) + w_2(\lambda_X, \lambda_x) + u^F_2(\lambda_x)].
\]

\(^{18}\)As mentioned in Polinsky and Shavell (2007, Chapter 1), if the utility function is quasi-linear as in the present context, the allocation is Pareto efficient if and only if it maximizes social welfare (total surplus). Put differently, our social welfare analysis is also based on Pareto efficiency.
Because all prices are set equal to marginal cost

\[p^0_{rs} = 0, \quad p^0_{rs} = \tau, \quad \text{and} \quad w^0_r = 0 \quad (r \neq s), \]

(2.16) becomes

\[
W(\lambda_X, \lambda_x) = [C^0(\tau^o - \tau) + \delta(\lambda^o_X + \lambda^2_x) - 2C^0(\tau^o - \tau)\lambda_X\lambda_x
\]

\[+ \delta(A - 1)(\lambda_X + \lambda_x) + \text{const}, \]

where

\[C^0 \equiv b + c(1 + A) \quad \text{and} \quad \tau^o \equiv \frac{2a}{b + c(1 + A)}. \]

By solving the optimality conditions (for details, see Appendix 2.A), we obtain the following proposition on social optimum.

Proposition 2.5.1. When ethnicity clustering is sufficiently important \((\delta > \delta^o(\tau) \equiv C^o(\tau^o - \tau)/A)\), SD pattern is the social optimum: \((\lambda^o_X, \lambda^o_x) = (1, 1)/\lambda^o = 1/2\). If ethnicity clustering does not weigh much \((\delta < \delta^o(\tau))\), MA pattern is the social optimum: \((\lambda^o_X, \lambda^o_x) = (1, 0)/\lambda^o = 1, (\lambda^o_X, \lambda^o_x) = (0, 1)/\lambda^o = 0\).

![Figure 2.7: Comparison of equilibrium and social optimum](image)

Figure 2.7 is helpful for capturing Proposition 2.5.1 intuitively. When the trade cost is high, it is socially desirable to disperse the manufacturing sector into two regions, because firms could not enjoy the benefits associated with industrial agglomeration even if they agglomerate in a single region, due to export transportation losses. It is socially optimal to disperse into two regions regardless of the level of \(\delta\), or, in other words, when \(\tau > \tau^o\), export losses due to high trade costs have strong negative impacts. When \(\tau < \tau^o\), the social optimal configuration depends on the ethnicity parameter \(\delta\). If individuals have relatively strong preferences on ethnicity clustering compared with the level of \(\tau\) \((\delta > \delta^o(\tau))\), gains from ethnicity clustering are larger than those from industrial agglomeration, so that
complete segregation by ethnicity, along with industrial dispersion, should be the social optimum. On the contrary, if \(\delta \) is relatively low (\(\delta < \delta^o(\tau) \)), enjoying agglomeration benefits without incurring high trade costs is more important than gaining ethnicity utilities. Hence, partial mixed configuration with industrial agglomeration must be optimum. In addition, when the trade cost \(\tau \) is low enough to be ignored given a certain value of \(\delta \), it is more likely that the SD configuration is the social optimum rather than MA. Because export losses stemming from incurring trade costs are relatively negligible and minute, when compared to ethnicity clustering, complete segregation may be optimum. Ethnic towns such as China-towns found in big cities around the world are thought to be examples of this situation, because within a city, goods’ transportation costs are smaller than those between regions far apart from each other.

Finally, we investigate when the equilibrium configuration coincides and with the social optimum and when it does not. Figure 2.5 exhibits the relationship between the set of \(\tau \) and \(\delta \), which bears the social optimum and equilibrium.\(^{19}\) In area (I), social optimum and equilibrium configurations coincide, unlike in areas (II) and (III), where they do not necessarily. We investigate the reasons for these coincidence and non-coincidence for each area. For expositional convenience, we denote, for example, \((\lambda^o_X, \lambda^o_z) = \{ \text{SD} \} \) when the social optimal configuration is a pattern of SD, \((\lambda_X^*, \lambda_z^*) = \{ \text{SD, MA} \} \) when the equilibrium configuration is a pattern of SD or MA, and so on.

Area (I) \((\lambda_X^o, \lambda_z^o) = \{ \text{SD} \} = (\lambda_X^*, \lambda_z^*) \):

In area (I), both \(\delta \) and \(\tau \) tend to be large compared to other areas (II) and (III). This is so because large \(\delta \) brings about complete segregation, and large \(\tau \) makes the firm’s distribution more likely to disperse into two regions. Both parameters force the configuration to be completely segregated by ethnicity and dispersed as for industry. Thus, other configurations such as MA have no chance to be either an equilibrium or social optimum. Hence, configurations for equilibrium and social optimum become the same.

Area (II) \((\lambda_X^o, \lambda_z^o) = \{ \text{SD} \} \neq \{ \text{SD, MA} \} = (\lambda_X^*, \lambda_z^*) \):

In area (II), both \(\delta \) and \(\tau \) have intermediate values compared with those in area (I). In particular, a fall in \(\tau \) affects this discrepancy of \((\lambda_X^o, \lambda_z^o) \) and \((\lambda_X^*, \lambda_z^*) \). As in OTT, the individual demand elasticity is much lower at the optimum (marginal cost pricing) than at the equilibrium (Nash equilibrium pricing), so that regional price indices are less sensitive to a decrease in \(\tau \). As a result, the social optimal configuration does not react to the decline of \(\tau \) (i.e., \((\lambda_X^o, \lambda_z^o) = \{ \text{SD} \} \) in area (I) and \((\lambda_X^*, \lambda_z^*) = \{ \text{SD, MA} \} \) in area (II)). Thus,

\(^{19}\)The relationship between \(\delta^o(\tau) \) and \(\delta^o(\tau) \) depicted in Figure 2.5 can be roughly proved as follows. Simple calculations show that \(\tau^o > \tau^o \). Also, it is shown that \(d\delta^o(\tau)/d\tau|\tau=0 > d\delta^o(\tau)/d\tau|\tau=0 > 0 \). Combining these with that \(\delta^o(\tau) \) and \(\delta^o(\tau) \) run through the origin \((\tau, \delta) = (0, 0) \), \(\delta^o(\tau) \) runs always above \(\delta^o(\tau) \) in the area where \(\tau \) and \(\delta \) are defined.

52
in accordance with this possible reaction, only an equilibrium configuration can show the industrial agglomeration.

Area (III) \((\lambda^*_X, \lambda^*_x) = \{\text{MA}\} \neq \{\text{SD, MA}\} = (\lambda^*_X, \lambda^*_x)\):

In area (III), both \(\delta\) and \(\tau\) have lower values than those in area (II). In this area, a decline in \(\delta\) affects the non-coincidence of \((\lambda^*_X, \lambda^*_x)\) and \((\lambda^*_X, \lambda^*_x)\), unlike in (II), where \(\tau\) has an impact on the discrepancy. Consider the farmers left in a periphery region. If \(\delta\) were high, those farmers would have lost a large amount of ethnicity clustering utility. However, now \(\delta\) is low, which implies the ethnicity utility losses of immobile farmers in a periphery is so small that it may be ignored, when compared to the industrial agglomeration benefits in a core region. Social optimal configuration captures these two effects and can be more sensitive to a decrease in \(\delta\) than equilibrium. As a consequence, equilibrium configuration does not react on the decline in \(\delta\) (i.e., \((\lambda^*_X, \lambda^*_x) = \{\text{SD, MA}\}\) in areas (II) and (III)), while social optimal configuration reacts on a decrease in \(\delta\) (and also in \(\tau\)) (i.e., \((\lambda^*_X, \lambda^*_x) = \{\text{SD}\}\) in area (II) and \((\lambda^*_X, \lambda^*_x) = \{\text{MA}\}\) in area (III)).

Since we have analyzed the social optimum, we now consider its influence on policy. As Alesina and Zhuravskaya (2011) pointed out, when several residents with different ethnicity live in the same country, it is difficult for the government to reach consensus between different ethnicities, partly because they may hate each other (Glaeser, 2005). However, there is still a little room for making policy, by choosing the value of \(\delta\) as a policy variable. Bilingualism may possibly be one of the means of controlling \(\delta\). As in Laponce (1984) and St-Hilaire (1997), there are two types of bilingualism: (i) the personality principle chosen in Finland and (ii) the territorial principle chosen in Switzerland and Belgium. With personality principle, the same common official languages are adopted in all areas of a country, which implies that some (or all) of the residents have to learn the two or more languages that are used in the whole country. This makes communication between different ethnolinguistic residents in that country easier, and \(\delta\) gets smaller. Then, residential mixing may be promoted. However, the cost of learning another language is not negligible. Though becoming fluent in another language may be a form of human capital investment, if residents have to pay the cost of learning a language, attaining a more competitive language such as English is more effective. Indeed, in Switzerland, choosing English as a second language is more popular than choosing German or French (Pap, 1990). In the case of the territorial principle, there are several unilingual areas (only one official language for each area). With this principle, \(\delta\) should be higher so that segregation is promoted. Besides, the cost of learning another language is smaller in this case, so that this principle is cost saving. Both principles have pros and cons, but for purposes of controlling regional segregation, they are useful if chosen appropriately.
2.6 Conclusions

By adding the ethnic externality into the OTT model, we investigated how regional segregation patterns are affected by industrial agglomeration and ethnic clustering. By setting some assumptions on exogenous population compositions, we showed that segregation by ethnicity is persistent, while ethnically mixed distributions appear only when trade costs are intermediate. Because we can find examples of the persistence of regional ethnicity segregation in places such as Quebec and Geneva, our results can explain the mechanisms that lead to regional segregation. We showed that ethnicity mixing can occur when the preference for ethnicity clustering is less intense, as it did in Catalonia.

With this model, a symmetry break (i.e., transition of industrial distribution from dispersion to agglomeration) does not occur, which sits a little uncomfortable with reality. However, by relaxing the composition of the exogenous population, and we found the possibility of transition from an industrial dispersed equilibrium to an industrial agglomeration equilibrium. Finally, we explained why the social optimum and equilibrium differ in light of trade costs: the social optimum is less sensitive to a change in trade costs than the equilibrium yielded by individuals’ utility maximizations.

It is worth addressing the impacts of the feedback given by ethnic segregation/integration in societies. Cutler et al. (2008) argue that segregation has positive mean effects on group average human capital after corrected negative selection biases. Further, ethnic mixing may have positive or negative effect on productivity, and a net positive impact of cultural diversity has been found in the United States (Ottaviano and Peri, 2006). In addition, adopting endogenous δ would let us get closer to the reality than the exogenous δ employed in this chapter, because being surrounded by the residents of the same ethnic group may strengthen the impact of δ. Moreover, constructing a model exhibiting heterogeneity in δ among individuals should be another extension. Tackling these impacts given by inter-related dynamics of segregation and human capital accumulation/productivity improvement as well as segregation/integration or ethnic diversity presents an important issue for the future work.
Appendix 2.A

Social optimal configurations

Given the welfare function (2.17), the social planner’s problem is

$$\max_{\lambda_X, \lambda_x} W(\lambda_X, \lambda_x) \quad \text{s.t.} \quad 0 \leq \lambda_X \leq 1, 0 \leq \lambda_x \leq 1.$$

By KKT optimality, following candidates for the social optimal configuration satisfying the first order conditions arise under condition (2.14):

$$ (\lambda_X, \lambda_x) = \begin{cases} (1,1), (1, \lambda_{Xo}^o), (\lambda_{Xo}^o, 1), (1,0), (0,1) & \text{if } \delta \leq \delta^o(\tau) \\ (1, 1) & \text{otherwise}, \end{cases} \quad (2.18) $$

where $\delta^o(\tau) \equiv 2C^o\tau(\tau^o - \tau)/(A - 1), \lambda_X^o = \lambda_x^o \equiv [2C^o\tau(\tau^o - \tau) - \delta(A - 1)]/[2C^o\tau(\tau^o - \tau) + \delta]$. Next, we investigate which set of (λ_X, λ_x) exhibits the largest social welfare value among $(1,1)$, $(1, \lambda_{Xo}^o)$, $(\lambda_{Xo}^o, 1)$, $(1,0)$, and $(0,1)$ in the case of $\delta \leq \delta^o(\tau)$.

Comparison between $(\lambda_X, \lambda_x) = (1, 1)$ and $(\lambda_X, \lambda_x) = (1, \lambda_{Xo}^o)$:

$$ W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,1)} - W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,\lambda_{Xo}^o)} = (1 - \lambda_{Xo}^o) \frac{\delta(A + 1)}{2} \geq 0. $$

Notice that the equality holds only when $\lambda_{Xo}^o = 1$ (i.e., $(\lambda_X, \lambda_x) = (1, \lambda_{Xo}^o) = (1,1)$), and when $\lambda_{Xo}^o < 1$,

$$ W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,1)} > W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,\lambda_{Xo}^o)}. $$

Thus, $(\lambda_X, \lambda_x) = (1, 1)$ is a candidate of the survivor of social optimum.

Comparison between $(\lambda_X, \lambda_x) = (1, 1)$ and $(\lambda_X, \lambda_x) = (\lambda_{Xo}^o, 1)$:

The similar discussion above holds, so that $(\lambda_X, \lambda_x) = (1, 1)$ is a candidate of the survivor of social optimum.

Now we know that $(\lambda_X, \lambda_x) = (1, 1)$ is the survivor in the comparison of $(1,1)$ and $(\lambda_{Xo}^o, 1)/(1, \lambda_{Xo}^o)$, what is left to be investigated is the comparison between the social welfare values borne by $(\lambda_X, \lambda_x) = (1, 1)$ and $(\lambda_X, \lambda_x) = (1,0)/(0,1)$.

Comparison between $(\lambda_X, \lambda_x) = (1, 1)$ and $(\lambda_X, \lambda_x) = (1, 0)$:

$$ W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,1)} - W(\lambda_X, \lambda_x)\big|_{(\lambda_X, \lambda_x)= (1,0)} = C^o\tau(\tau^o - \tau) + \delta A. $$

Notice that $\delta^o(\tau) \equiv \frac{C^o\tau(\tau^o - \tau)}{A}$ is always below $\delta^o(\tau)$ when $\delta > 0$ (or equivalently in this case, $0 < \tau < \tau^o$). Since the case with $\delta \leq \delta^o(\tau)$ is on the present consideration, we need to determine which pair of (λ_X, λ_x) bears the largest social wel-
fare value in accordance with the value of \(\delta \) and \(\delta^{oo}(\tau) \). If \(\delta > \delta^o(\tau) \), \((\lambda_X, \lambda_x) = (1, 1)\) is the social optimal population distribution (i.e., \(W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 1) > W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 0) \)). If \(\delta < \delta^o(\tau) \), \((\lambda_X, \lambda_x) = (1, 0)\) is the social optimal population distribution (i.e., \(W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 1) < W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 0) \)). If \(\delta = \delta^o(\tau) \), \((\lambda_X, \lambda_x) = (1, 1)\) and \((\lambda_X, \lambda_x) = (1, 0)\) are the social optimal population distribution (i.e., \(W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 1) = W(\lambda_X, \lambda_x) \mid (\lambda_X, \lambda_x) = (1, 0) \)).

Comparison between \((\lambda_X, \lambda_x) = (1, 1)\) **and** \((\lambda_X, \lambda_x) = (0, 1)\):

The similar discussion above holds, so that \((\lambda_X, \lambda_x) = (1, 1)\) is a candidate of the survivor of social optimum.

In the end,

\[
(\lambda_X^o, \lambda_x^o) = \begin{cases}
(1, 1) & \text{if } \delta > \delta^o(\tau) \\
(1, 1), (1, 0), (0, 1) & \text{if } \delta = \delta^o(\tau) \\
(1, 0), (0, 1) & \text{if } \delta < \delta^o(\tau),
\end{cases}
\]

where \(\delta^o(\tau) \equiv C^o(\tau^o - \tau)/A \), which yields Proposition 2.5.1.

Appendix 2.B Data sources

<table>
<thead>
<tr>
<th>Table</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Swiss Federal Statistical Office (STAT-TAB service)</td>
</tr>
<tr>
<td>2.3</td>
<td>Catalonia: IDESCAT (Statistical Institute of Catalonia); South Tyrol: ASTAT (Autonomous Province of South Tyrol Provincial Statistics Institute), South Tyrol in Figures 2013; Quebec: Census Canada 2011. We used the category “identify language” in Catalan data. In South Tyrol data we used “Total number of valid declarations,” which equals “the number of declarations of which language group belonged to” plus “the number of declarations of which language group affiliated to.” As for Quebec data, we used the category “mother tongue.”</td>
</tr>
<tr>
<td>2.4 & 2.5</td>
<td>Open data set of Alesina and Zhuravskaya (2011). The year in which the data was obtained in the original data set of Alesina and Zhuravskaya (2011) for each country was 2001 for Belarus, 1994 for Estonia, 1996 for Latvia, and 1998 for Ukraine.</td>
</tr>
</tbody>
</table>

56
Chapter 3

Linguistic Distance and Economic Development: Costs of Accessing Domestic and International Centers

(omitted)

\footnote{I would like to thank Takatoshi Tabuchi for his thoughtful comments and suggestions. I also thank Ryo Ito and Marcus Berliant for their comments which have improved this chapter. I am grateful to the seminar participants at the Urban Economics Workshop at the University of Tokyo and the ARSC annual meeting at Ryukyu University for their valuable comments. All remaining errors are the author’s responsibility. This study is supported by the Grants-in-Aid for Scientific Research (Research project number: 13J10130) for the Japan Society for the Promotion of Science (JSPS) Fellows by the Ministry of Education, Science and Culture in Japan.}
General Conclusion

The overall concept running through this dissertation has been ethnicity. The aim of this dissertation has been that ethnicity/language and their related topics had been investigated from economic aspects. Chapter 1 analyzed residential segregation according to ethnic characteristics in cities. In the model, the majority faces a trade-off between commuting costs and residential congestion. The minority group, on the other hand, faces a trade-off between commuting costs, ethnic clustering, and residential congestion. The findings in Chapter 1 showed that, due to ethnicity preferences of the minority group, minority residents are more likely to migrate to one area within a city. In addition, minority households always cluster when the commuting cost is low, widening the population gap between the areas, while majority households migrate to the less populated area to avoid the residential congestion caused by minority residential clustering, thus reducing the population gap between areas.

Similarly, in Chapter 2, we have investigated how regional segregation patterns are affected by industrial agglomeration and ethnolinguistic clustering preference. In the model used in Chapter 2, we showed that segregation by ethnicity is persistent, while ethnically mixed distributions appear only when the trade cost is intermediate. This theoretical results are consistent with the real-world examples of regional segregation by language use. Both chapters have considered the impacts of benefits borne by residential clustering of the same ethnic groups, which has been expressed by ethnic externality terms.

On the other hand, in Chapter 3, (omitted)

In a society which consists of several ethnolinguistic communities, investigating internal interactions in an ethnolinguistic group as well as external relationships among different groups is important. Generally, if there are several groups, possibility of looking inside and outside each of them necessarily emerges. In Chapters 1 and 2, our focus was on the benefits within ethno-linguistic communities, while Chapter 3 shed light on the costs between them. This dissertation has dealt with the twofold characteristics associated with ethnolinguistically heterogeneous economy—intra- and inter-group interactions.
Bibliography

