特許 - 特許間の引用情報に関する研究 日米における審査官前方引用件数の有用性について

<table>
<thead>
<tr>
<th>著者</th>
<th>安川 聡</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与年月日</td>
<td>2016年6月</td>
</tr>
<tr>
<td>URL</td>
<td>http://doi.org/10.15083/00074985</td>
</tr>
</tbody>
</table>
特許－特許間の引用情報に関する研究
－日米における審査官前方引用件数の有用性について－

2015年11月

安川 聡
目次

第1章 序論 ... 1
 1.1 特許引用情報 ... 1
 1.2 前方引用件数 ... 6
 1.3 本研究の目的と構成 ... 26

第2章 日本における審査官前方引用件数の有用性の検証 27
 2.1 背景及び目的 ... 27
 2.1.1 審査官前方引用件数の価値指標としての有用性に関する論争 27
 2.1.2 分析対象としての「特許が成立した出願」と「特許出願」 31
 2.1.3 出願人の自己選択結果と価値指標との関連性に関する研究 32
 2.2 前提 ... 41
 2.2.1 特許出願段階の出願人の自己選択項目 41
 2.2.2 特許出願の潜在的価値 ... 42
 2.3 構成 ... 44
 2.4 方法 ... 48
 2.4.1 特許情報のソースとデータセットの構築 48
 2.4.2 審査官前方引用件数の基準化方法 49
 2.4.3 自己選択項目の判断方法 ... 50
 2.4.4 検定方法 ... 53
 2.5 結果 ... 53
 2.5.1 年度別の平均審査官前方引用件数 53
 2.5.2 分析2-1～分析2-5：H1に関する分析結果 54
 2.5.3 分析2-6、分析2-7：H2及びH3に関する検証結果 62
 2.6 考察 ... 63
 2.7 小括 ... 65

第3章 日米における審査官の引用傾向の比較分析 67
 3.1 背景及び目的 ... 67
 3.2 構成 ... 80
 3.3 方法（分析3-1～3-6に共通） ... 81
 3.3.1 特許情報のソース ... 81
 3.3.2 パテントファミリーデータベースの選択 82
付属資料Ⅰ 日本特許出願情報取得（NRI サイヤーパテントデスク 2） 143
付属資料Ⅱ 審査官前方引用件数の算出（IIP パテントデータベース） 148
付属資料Ⅲ 前方引用件数の平均値及び標準偏差の導出 150
付属資料Ⅳ 日米特許出願情報取得（NRI サイヤーパテントデスク 2） 151
付属資料Ⅴ 審査官前方引用件数の算出（NRI サイヤーパテントデスク 2） 152
付属資料Ⅵ 分析データ 156

第7章 論文 184

第8章 参考文献 185
第1章 序論
1.1 特許引用情報

（特許の価値の指標）

Trajtenberg（1990）は、特許の引用情報が技術的、経済的価値の指標となり得ることを述べるとともに、単純な特許の出願件数よりもむしろ、後の特許によってどれだけ引用されたかを、イノベーションの指標にすることが好ましいことを指摘している。

Most patents cited are referenced in patents issued within the same narrowly defined field of innovation as the cited patents ("within citation"). The very existence of those later patents attests to the fact that the cited patents opened the way to a technologically successful line of innovation. Moreover, it presumably attests also to economic success (at least in expected value terms), since those subsequent patents are the result of costly innovational efforts undertaken mostly by profit-seeking agents. Given that citations to a patent are counted for a period of a few years following its issuance, there should be enough time for the uncertainty regarding the economic value of the innovation to resolve itself. Thus, if citations keep coming, it must be that the innovation originating in the cited patent had indeed proven to be valuable.

（訳：引用されたほとんどの特許は、その特許と同じ狭く定義されるイノベーションの分野において成立した特許によって参照されている（「内部引用」）。そのような後続の特許の存在そのものが、イノベーションを技術的成功へと導く道を、引用された特許が開いているという事実を証明している。さらに、それはおそらく、経済的な成功への道をも開いていることを証明している。なぜならば、そのような後続の特許は、主として利益を求めるエージェントによって行われた高額な技術開発の努力の成果であるからである。特許の引用件数は、その特許公報の発行の数年後に出されるとから、イノベーションの経済的価値に関する不確実な部分について、それ自体を解決するのに十分な時間があったはずである。したがって、引用が行われたのであれば、その引用された特許に由来するイノベーションの価値が高いことが実際に証明されたことになるに違いない。）
a patent would be regarded as important if it opened the way to a successful line of further innovations; the patents coming in its wake would naturally cite it, and hence, those citations could be taken as first-hand evidence of the path-breaking nature of the original patent.

(訳：ある特許が、さらなるイノベーションを成功へと導く道を開いたとしたならば、その特許は重要であると見なされるだろう。その特許の影響を受けた特許であれば、自然とその特許を引用するだろうから、そのような引用は、元の特許が革新的であることの直接の証拠として捉えることができるだろう。)

また、Hall et al. (2005) も、特許の引用情報が、技術的価値のみならず経済的価値の指標にもなり得る旨を記載している。

There are reasons to believe that citations convey not just technological but also economically significant information: Patented innovations are for the most part the result of costly R&D conducted by profit-seeking organizations; if firms invest in further developing an innovation disclosed in a previous patent, then the resulting (citing) patents presumably signify that the cited innovation is economically valuable.

Moreover, citations typically keep coming over the long run, giving plenty of time to dissipate the original uncertainty regarding both the technological viability and the commercial worth of the cited innovation. Thus, if we still observe citations years after the grant of the cited patent, it must be that the latter had indeed proven to be valuable.

(訳：引用が技術的のみならず、経済的にも重要な情報を伝えると考えるのには理由がある。特許を取得したイノベーションのほとんどは、利益を追求する組織によって行われた、コストの大きな研究開発の結果であり、もし企業が過去の特許において公開されている技術革新をさらに発展させるために投資するのであれば、その結果として生じる特許（引用する特許）は、引用されたイノベーションが経済的に価値があるということを示していると推定される。

さらに、引用は長期にわたって続く。これは、長い時間の経過が、引用されるイノベーションの技術的な生存可能性及び商業的な価値の両方にに関する根拠的な不確実性を解消するからである。したがって、成立した特許が、その成立の数年後にもいまだに引用されていることを我々が観察した場合には、引用
された特許が真に価値があることを証明していることになるに違いない。

（ノレッジフローの指標）

Jaffe et al.（1993）は、知識のスピルオーバーは、必ずしも特許の引用を伴うものではなく、また、特許の引用があったとしても、常に知識のスピルオーバーを伴うとは限らないとの留保を付けつつも、以下のように記載して、特許の引用情報をノレッジフローの分析の指標として用い得ることを指摘している。

Knowledge flows do sometimes leave a paper trail, in the form of citations in patents. Because patents contain detailed geographic information about their inventors, we can examine where these trails actually lead.

（訳：ノレッジフローは時に、特許の引用情報という形で、文書上に足跡を残す。なぜなら、特許はその発明者についての詳細な地理的情報を含むからである。我々はそのような足跡が実際に導くものを調査することができる。）

In principle, a citation of Patent X by Patent Y means that X represents a piece of previously existing knowledge upon which Y builds.

（訳：原則として、特許Yによって特許Xが引用されるということは、Xが、Yを作り上げるに当たっての過去に存在していた既存の知識の一部であるということを意味する。）

Alcácer et al.（2006）も、上記のJaffe et al.（1993）の論文を引用しつつ、ノレッジフローを測定する手段として、特許の引用情報が広く利用されていることを述べている。

In their seminal paper on knowledge spillovers, Jaffe, Trajtenberg, and Henderson (1993, p. 578) write that …（略）。

Since that pioneering work, patent citations have been utilized extensively to measure the diffusion of knowledge across a variety of dimensions: geographic space, time, technological fields, organizational boundaries, alliance partnerships, and social networks.

（訳：Jaffé, Trajtenberg 及び Henderson は、知識のスピルオーバーに関する彼らの独創的な論文において、以下の内容を記載している。…（略）。この先駆的な研究以来、特許の引用は、地理空間、時間、技術分野、組織の境
Patents are a direct output category of industrial R&D and other inventive activity and mirror the cumulative process of technological change: on the one hand patent data enable longitudinal research and on the other hand they contain citation information that link different patents at different stages of technological development. They cover almost every field of technology that is useful for analyzing the diffusion and the development of key technologies.

single-stage citation entries regularly lack references to basic inventions in a technology field, and are therefore not appropriate for the study of whole networks and lineages of technological inventions. Accordingly, to map actual developments in a certain technical field and to draw on technological trajectories or avenues, citation analysis should rely on everything, bibliographical coupling, co-citations, direct and indirect citations.
特許引用情報がこのように多彩に用いられている一因としては、特許引用情報が、多面的な情報を有していることが挙げられる。

特に、特許－特許間の引用情報は、少なくとも２つの視点から分析することが可能である（図 1-1 参照）。一つ目は、時間軸の視点である。ある特許出願を分析対象とした場合において、分析対象の特許出願が過去（時間軸で後方）に公開済みの特許文献を引用する場合、そのような引用を「後方引用」と呼ぶ、一方、分析対象の特許出願に由来する特許文献がそれよりも後（時間軸で前方）の特許出願によって引用される場合、そのような引用を「前方引用」と呼ぶ。この視点は相対的なものであり、一つの特許－特許間の引用情報が存在した場合、引用元の特許から見ると、その引用は後方引用であるが、引用先の特許から見ると、その引用は前方引用となる。

もう一つの視点は、引用行動の主体である。実際に特許－特許間の引用情報が形成されるのは、出願人が自分自身の特許出願に関連する技術として、特許明細書や情報開示陳述書 1（Information Disclosure Statement；IDS）に特許文献を記載する場合や、審査官が特許出願の審査の際に、拒絶理由を構築するために特許文献を用いる場合などである。前

図 1-1 特許引用情報の種類
（出典：安川 聡）

1 米国においては、出願に関係する者（発明者、弁護士・弁理士等）は、特許性を判断するのに重要と思われるあらゆる情報（先行技術情報等）を、米国特許庁に提供する義務を有する。
者における引用行動の主体は出願人であることから「出願人引用」と呼ばれ、後者における引用行動の主体は審査官であることから「審査官引用」と呼ばれる。

これらの視点を適宜組み合わせることで、特許－特許間の引用情報は様々な角度から分析することが可能である。例えば、ある対象特許出願の引用件数を算出するにあたっても、「後方引用件数」（その特許出願がどれだけの特許文献を引用しているか）と、「前方引用件数」（その特許出願がどれだけの特許によって引用されているか）の２つの数値を算出することができ、そして、必要に応じて、両者を「審査官引用」と「出願人引用」とさらに細分化することが可能である。

1.2 前方引用件数

上述のとおり、特許－特許間の引用情報の分析においては、様々な種類の数値を用いることが可能であるが、それらのうち、最も多くの研究が行われているのは「前方引用件数」である。「前方引用件数」は、その特許がどれだけの後続特許によって引用されているかを示す値であり、この値が大きい特許、すなわち、より多くの後続特許によって引用された特許ほど、影響力の強い重要な特許であり、特許の価値や質が高いと考えられている。

このような考えに基づいた研究は30年以上前から数多く行われており、実際に、前方引用件数が特許の価値と相関していることを実証している研究は多数知られている（Carpenter et al. 1981; Albert et al. 1991; Harhoff et al. 1999）。

Carpenter et al.（1981）は、ランダムに選択された特許よりも、重要な技術進歩に関連する特許の方が、平均の前方引用件数が大きくなることを調査するため、米国における特許のうち、100件の重要特許と、102件のランダムに選択されたコントロール特許の前方引用件数を比較している。ここで、彼らが重要特許（100件）を選定する基準は、以下のようなものである。

The set of important patents was obtained by attempting to determine the key patent underlying a product which received the IR 100 award established by the journal Industrial Research and Development. This award honors the 100 most significant new technical products – and the innovators responsible for them – developed during the year. From thousands of entries, the distinguished Editorial Advisory Board of Industrial Research selects the 100 products that are most important, unique, and useful. Extensive local and national press and television coverage of the winning
entries and awards presentations has made the IR 100 award the most coveted achievement in the applied research and development field.”

For each product we chose a set of several candidate patents which were important for the product and then selected a single patent which was most closely associated with the innovation of the product. This choice was based on the title of the patent and (in some cases) on brief descriptions of the patents in the Official Gazette of the U.S. Patent Office. Thus we obtained a set of 100 patents issued in the years 1968 to 1974 (...) underlying 100 products of certified industrial or commercial importance.

彼らは、上記のように選定した重要特許を特許が成立した年ごとに区分し、それらの前方引用件数をコントロール特許における前方引用件数と比較している。そして分析の結果、いずれの年においても、また、全ての年を統合した場合においても、重要特許の平均前方引用件数が、コントロール特許の前方引用件数よりも有意に大きい値を有していたことを報告している（下表も参照）。
Statistical summary of citation counts by issue year and patent set
（出典：Carpenter et al. (1981) Table2）

<table>
<thead>
<tr>
<th>Issue Year</th>
<th>Product</th>
<th>Patent Set</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>1.671</td>
<td>0.661</td>
<td>1.166</td>
</tr>
<tr>
<td></td>
<td>6.286</td>
<td>1.714</td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>1969</td>
<td>1.114</td>
<td>0.495</td>
<td>0.805</td>
</tr>
<tr>
<td></td>
<td>3.905</td>
<td>1.905</td>
<td>2.905</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>1970</td>
<td>1.725</td>
<td>0.928</td>
<td>1.309</td>
</tr>
<tr>
<td></td>
<td>6.818</td>
<td>3.500</td>
<td>5.087</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td>1971</td>
<td>0.972</td>
<td>0.631</td>
<td>0.802</td>
</tr>
<tr>
<td></td>
<td>3.962</td>
<td>2.077</td>
<td>3.019</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>27</td>
<td>53</td>
</tr>
<tr>
<td>1972</td>
<td>1.601</td>
<td>0.235</td>
<td>0.905</td>
</tr>
<tr>
<td></td>
<td>6.077</td>
<td>1.444</td>
<td>3.717</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1973</td>
<td>0.978</td>
<td>0.474</td>
<td>0.726</td>
</tr>
<tr>
<td></td>
<td>3.375</td>
<td>2.500</td>
<td>2.938</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1974</td>
<td>1.705</td>
<td>0.405</td>
<td>1.055</td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td>1.000</td>
<td>3.000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>102</td>
<td>202</td>
</tr>
<tr>
<td>Total</td>
<td>1.305</td>
<td>0.521</td>
<td>0.909</td>
</tr>
<tr>
<td></td>
<td>4.940</td>
<td>2.039</td>
<td>3.475</td>
</tr>
</tbody>
</table>

Values in the table are:
Number of patents
Average log [number of citations + 1/2]
Average number of citations per patent.

また、Albert et al. (1991) は、以下のように、前方引用件数が技術的価値の指標となり得ると考えられることを述べた上で、そのことを検証するための分析結果を報告している。
The basic idea behind patent citation analysis is very simple: if a previously issued U.S. patent is cited by the patent examiners in many subsequently issued U.S. patents, then the earlier, highly cited patent has been "prior art" to many later patents, and is likely to contain a significant advance that has preceded these subsequent inventions.

(訳:特許引用分析の基本的な考え方は非常に単純である。もし、過去に特許になった米国特許が多くの後続の米国特許において、特許審査官によって引用されているのであれば、それは、過去の、多く引用されている特許は、多くの後続の特許にとって「先行技術」であり、それらの後続の発明に先んじた重要な進歩を含んでいる可能性が高い。)

彼らは、Eastman Kodak Research Laboratories 社が所有する特許のうち、1982年及び1983年に特許が成立した銀塩技術に関する特許129件を、それらの特許が1988年までに受けた前方引用件数に応じて8つのグループに区分し、専門家の評価との関係を確認している。専門家としては、以下のとおり、当該技術分野において十分な知識を有する者を選定し、技術的価値に関する評価を行っている。

The respondents were selected for their knowledge of photographic science, specifically photographic chemistry. They comprised a mix of senior research scientists, research laboratory management, and one patent lawyer. All the respondents had 15 years or more of experience in Eastman Kodak silver halide photography. This was done to provide a high level of scientific expertise as well as a broad view of the science and technology involved.

(訳:回答者は、写真科学、特に写真化学の知識を指標として選択した。彼らは、シニアの研究科学者、研究室の管理者、そして一人の特許弁護士から構成される。全ての回答者は、Eastman Kodak の銀塩写真において、15年以上の経験を有している。これにより、ハイレベルな科学的専門知識のみならず、関連する科学技術についての幅広い視野を提供することができる。)

It is important to note that the respondents were told to rate patents for their relative technological importance, the extent to which the patent has impacted or changed the state-of-the-art in the field of the invention. Also, the point was made to the respondents that technologically important patents are not always...
of commercial importance and vice versa, and that commercial considerations should not be included in the evaluation.

(訳：回答者が、特許を、それらの相対的な技術的重要性、すなわち、その特許が、その発明の分野における技術水準に影響を与え、技術水準を変化した程度を指標として評価するように指示されていたことは、重要な留意点である。また、技術的に重要な特許が常に商業的に重要であるとは限らないため、逆に、商業的な考慮は評価に含めるべきではないことを、回答者に指示していたこともポイントである。)

そして、分析の結果、前方引用件数が大きい特許グループほど、専門家による評価が高かったことを示している（下図参照）。

Average rating versus average citations received for eight patent groups.

(出典：Albert et al. (1991) Fig.2)
Harhoff et al. (1999) は、以下のように記載し、相対的に経済的価値が高い特許の方が、価値の低い特許よりも前方引用件数が大きくなるとの仮説を立て、分析を行った結果を報告している。

it is reasonable to suppose that the prior inventions cited in new patents tend to be the relatively important precursors that best define the state of the art. The broader the shoulders, the more likely they are to be cited. From this follows the hypothesis to be tested here—that patents of relatively high economic value are cited more frequently than are low-value patents.

（訳：新しい特許において引用された過去の発明が、最先端技術を最も良く定義する、相対的に重要な先駆けである傾向があると考えることは合理的である。その肩幅が広ければ広いほど、それらはより多く引用されることが期待される。このことから、確認すべき仮説-「相対的に高い経済的価値を有する特許は、低い経済的価値を有する特許よりも頻繁に引用される」-が導かれる。）

we focus on the private value of our survey patents and their underlying inventions to patent holders, not on their social value (including positive externals)

（訳：我々は、特許及びそれに関する発明について特許権者に対して行った今回調査において、それらの社会的価値（有益な外部性を含む）ではなく、個人的価値に着目した。）

分析は、1997年に出願されたドイツ特許であって、特許権が成立し、特許権満了までの全期間（18年間：1995年まで）にわたって特許権が維持された特許（4,349件）のうち、以下のような特許を対象として行われた。

(A) 出願人が米国在住である特許であって、対応する米国特許が存在しているもの（485件）
(B) 出願人がドイツ在住である特許（1,431件）

なお、彼らは、特許権の維持期間（特許権が成立した後、その権利を維持した期間、すなわち、特許権の維持費用又は更新費用を支払い続けた期間）と、特許の価値の関係について、以下のように記載し、特許権の維持期間が長い特許ほど、価値の高い特許であることを前提として分析を行っている。

11
many nations require patent holders to pay periodic renewal or maintenance fees to keep their patents in force. The longer fees are paid, the higher a patent's implied value is.

(訳:多くの国において、特許権者は、自身の所有する特許を有効なものとしておくためには、定期的に更新又は維持費用を支払うことが求められる。費用を支払う期間が長ければ長いほど、その特許が有する価値が高いことが示唆される。)

そして、上記(A)及び(B)に該当する特許についての経済的価値を、以下のようなインタビューに基づいて推定している。

Each surveyed patent owner was contacted by telephone and facsimile during 1996 (the year following patent expiration) and asked to answer a single counterfactual question, which, in the U.S. survey version, was phrased as follows:

If in 1980 you knew what you now know about the profit history of the invention abstracted here, what is the smallest amount for which you would have been willing to sell this patent to an independent third party, assuming that you had a bona fide offer to purchase and that the buyer would subsequently exercise its full patent rights?

(訳:調査対象となった各特許の所有者に対して、1996年（特許権満了の翌年）に、電話又はファクシミリによって連絡し、米国特許に関する調査においては、以下のような表現による、事実とは異なる一つの質問に対する回答を依頼した。

仮にあなたが、1980年に、ここに要約した発明の利益の歴史を知っていたとして、独立した第三者からその特許の購入についての正規の要請を受け、その購入者がその後に全期間について特許権を行使するとの前提を置いた場合に、あなたがこの特許を売却することを快く了解したであろうと予測される最小限の金額はいくらでしょうか。)

上記「(A)出願人が米国在住である特許であって、対応する米国特許が存在しているものの」については、192件について有効な回答が得られ、分析の結果に基づき、以下の①及び②の結論が示されている（下図も参照）。

12
① 分析対象とした192件の米国特許は、「ドイツにおいて特許権満了までの全期間にわたって特許権が維持された特許の、米国における対応特許」であり、これら（平均前方引用件数：15.91）は、そのような限定のない通常の米国特許（平均前方引用件数：6.83）よりも、米国における平均前方引用件数が有意に大きい。

② 推定される価値の高い特許（$20 million以上）と、低い特許（$20 million未満）の平均前方引用件数を比較すると、前者（平均前方引用件数：29.6）は後者（平均前方引用件数：13.1）よりも有意に大きい。

U.S. Patent Citation Frequencies by Value Group
（出典：Harhoff et al. (1999) Figure 1.）

同様に、上記「(B) 出願人がドイツ在住である特許」についても、772件について効果的な回答が得られ、以下の①及び②の結論が示されている（下図も参照）。

① 分析対象とした772件のドイツ特許は、「特許権満了までの全期間にわたって特許権が維持された特許」であり、これら（平均前方引用件数：0.703）は、そのような限定のない通常のドイツ特許（平均前方引用件数：0.470）よりも、ドイツにおける平均前方引用件数が有意に大きい。

② 推定される価値が最も高い特許2件が、飛び抜けて大きい前方引用件数を有している。
上述したような研究に基づき、現在、前方引用件数は「特許の価値」の指標として広く用いられている（Lanjouw and Schankerman et al. 2004; OECD 2009; Nagaoka et al. 2010）。

しかしながら、上述の先行研究のほとんどにおいては、出願人引用と審査官引用とが全く区別されていなかった。この背景には、米国において、2001年まで、米国の特許公報のトップページの"References Cited"欄に記載された引用文献が、出願人による引用であるか、審査官による引用であるかを区別することができなかったという事情が存在する。すなわち、最も多くの研究において分析対象とされていた米国において、「前方引用件数」を「出願人前方引用件数」と「審査官前方引用件数」に細分化することができなかったのである。

2001年の制度変更によって、米国において、出願人引用と審査官引用とを区別できるようになったことから、近年になってようやく、「前方引用件数」を「出願人前方引用件数」と「審査官前方引用件数」に細分化して分析を行う研究が報告され始めている（Hegde
Hegde and Sampat (2009) は、以下のように記載して、前方引用件数を「出願人前方引用件数」と「審査官前方引用件数」に分割して、特許の個人的価値との関係について検証したことを報告している。

The impact of examiner citing on citation-based measures of the private value of patents has not been investigated. Moreover, it is not clear a priori whether they would represent signals or noise in citation-based measures of private value.

This paper assesses how examiner and applicant citations to a patent relate to a commonly used measure of private value – whether a patent is renewed or, instead, allowed to expire – by linking data on renewals and citations for all patents issued in 1992, 1996, and 2000.

（訳：引用情報に基づく特許の個人的価値の測定における審査官引用の影響については、これまで調査されていない。さらに、審査官引用が特許の個人的価値の測定において信号であるのかノイズであるかについても、本来的に明確であるとはいえない。

本研究では、一般的に用いられている個人的価値の基準 – 特許を更新するか、それとも、失効するのか許容するか – に対して、審査官引用と出願人引用がどのように関与しているかについて評価を行う。これは、1992年、1996年、及び2000年に成立した全ての特許に関する更新情報と引用情報を結びつけることによって行う。）

具体的には、彼らは、1992年に成立した特許97,444件、1996年に成立した特許109,645件、及び2000年に成立した特許157,594件について特許引用情報及び特許更新情報を取得し、引用情報が更新情報に与える影響を線形確率モデルによって検証している。情報の取得方法、及び用いられた説明変数については、以下のとおりである。

（特許引用情報）

For each of these patents, we create four measures of importance:

1. The total number of times the patent was cited in patents issued before December 31, 2000.
2. The total number of times the patent was cited in patents issued between
January 1, 2001 and December 31, 2005.

3. The total number of times the patent was cited by examiners in patents issued between January 1, 2001 and December 31, 2005.

4. The total number of times the patent was cited by applicants in patents issued between January 1, 2001 and December 31, 2005.

Patent renewal fees (also called “maintenance fees”) are due at the end of the 4th, 8th, and 12th year after patent issue. If a patent owner decides not to pay the fee at one of these renewal periods, the patent lapses, and cannot be reinstated.

We collected information on whether each of the patents in our sample was renewed by the end of 2004. For the 1992 cohort, we have information on whether the patent was renewed at 4 years, at 8 years, and at 12 years from issue. For the 1996 cohort, we have information on 4-year and 8-year renewals, and for the 2000 cohort, information on 4-year renewals.
We pool the 1992, 1996, and 2000 cohorts, and include the following explanatory variables: dummies for each three-digit patent class; cohort dummies (1992 is the left-out category); a count of citations the patent received until December 2000; a count of examiner citations to the patent received between 2001 and 2005, interacted with the cohort dummies; and a count of applicant citations to the patent received between 2001 and 2005, interacted with the cohort dummies.

Linear probability models of the effect of citations on renewal
（出典：Hegde and Sampat (2009) Table3）

<table>
<thead>
<tr>
<th></th>
<th>Renewed at 4?</th>
<th>Renewed at 8? (if renewed at 4)</th>
<th>Renewed at 12? (if renewed at 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1992X</td>
<td>0.003**</td>
<td>0.003**</td>
<td>0.003**</td>
</tr>
<tr>
<td>citations to 2000</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Y1992X examiner</td>
<td>0.004**</td>
<td>0.006**</td>
<td>0.006**</td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.001]</td>
<td>[0.001]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Y1992X applicant</td>
<td>0.000</td>
<td>0.001**</td>
<td>0.001**</td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Y1996X</td>
<td>0.002**</td>
<td>0.003**</td>
<td>0.003**</td>
</tr>
<tr>
<td>citations to 2000</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td></td>
</tr>
<tr>
<td>Y1996X examiner</td>
<td>0.002**</td>
<td>0.004**</td>
<td></td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.000]</td>
<td>[0.001]</td>
<td></td>
</tr>
<tr>
<td>Y1996X applicant</td>
<td>0.001**</td>
<td>0.003**</td>
<td></td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td></td>
</tr>
<tr>
<td>Y2000X examiner</td>
<td>0.005**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2000X applicant</td>
<td>0.003**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>citations 2001-05</td>
<td>[0.000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1996</td>
<td>0.005**</td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.002]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2000</td>
<td>0.044**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.002]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.788**</td>
<td>0.724</td>
<td>0.674**</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.002]</td>
<td>[0.002]</td>
</tr>
<tr>
<td>Observations</td>
<td>364,682</td>
<td>172,844</td>
<td>59,446</td>
</tr>
</tbody>
</table>

Notes: each of the three models includes patent class fixed effects. Robust standard errors are reported in parentheses. Asterisks indicate statistical significance, with * indicating significance at the 5% level, and ** indicating at the 1% level.

また、Cotropia et al. (2013) は、2001年以降に米国で発行された特許公報のフロントページにおいて、引用文献が審査官のサーチに由来するか、出願人のIDSに由来するかが区別して表示されるようになっていることを受け、2007年に成立した特許のうち、ランダムに選択した1564件（1%）を対象として、実際に引用された文献のうち、審査官によって拒絶理由通知において新規性又は進歩性を否定する根拠として用いられた文献が、審査官の
サーチ及び出願人のIDSのどちらに由来していたかを検証している。
その結果、以下の表に示すとおり、全引用文献数（32,181件）のうち73.5%（23,664/32,181）が出願人のIDSに由来していること、及び出願人の提示した文献のうち審査官が新規性又は進歩性を否定する根拠として用いているのはわずか2%（455/23,664）であったことを記載している。

Applicant and examiner references, and whether they are used in 102 or 103 rejections
(based on citations in patents with at least one rejection).
（出典：Cotropia et al. (2013) Table3）

<table>
<thead>
<tr>
<th>Source of reference</th>
<th>Not used in a rejection</th>
<th>Used in at least one rejection</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant</td>
<td>23,209</td>
<td>455</td>
<td>23,664</td>
</tr>
<tr>
<td>Examiner</td>
<td>5414</td>
<td>3103</td>
<td>8517</td>
</tr>
<tr>
<td>Total</td>
<td>28,623</td>
<td>3558</td>
<td>32,181</td>
</tr>
</tbody>
</table>

Notes: Table provides data on all 32,181 prior art references in the 1192 patents in our sample that had at least one prior art-based (i.e. Section 102 and/or 103) rejection during prosecution. “Source of reference” indicates whether the prior art reference (a U.S. patent, foreign patent, or reference to non-patent literature) was cited by examiner or by applicant. Data on whether a reference was used in a rejection based on parsing the text of examiner Office Actions. Patent data obtained from the USPTO Cassis database. Rejection data were obtained from examiner; Office Actions obtained from the Image File Wrappers of issued patents. Citation data obtained from USPTO bulk data files.

そして、特許の前方引用件数を特許の価値の指標として用いることについて、以下のとおり、過去の研究においては、全ての引用が審査官によって使用されていることを前提としているが、実際には、過去の研究で想定されているよりも多くのノイズが、引用件数に含まれているのではないかとの意見を示している。

Another early contribution to patent bibliometrics (Campbell and Nieves, 1979) asserts that citations in patents are more reliable measures of quality than those in scientific publications, since they represent “evidence that the particular piece of prior art was examined as a possible reason for rejecting the patent applications in the first place and yet the patent application was accepted”
（訳：初期に特許ビブリオメトリクスに貢献した他の論文においては、特許の引用情報は、「最初の段階で、先行技術の特定の部分が、特許出願を拒絶し得る理由として審査されたという証拠」であり、それでも特許出願が成立しているのであるから、特許の引用情報は、科学出版物における引用よりも信頼性が高い質の指標である、と主張されている（Campbell and Nieves, 1979）。）

Our results suggest that much of what is cited by applicants is not actually used in evaluating or limiting patent scope. The results also suggest there is much more noise in citations than the pioneers of citation analysis assumed.

（訳：我々の結果は、出願人によって引用された文献の多くは、実際には特許の範囲を評価したり限定したりするのに用いられていないことを示している。また、この結果は、引用分析の開拓者達が想定していたよりも多くのノイズが、引用情報に含まれていることをも示している。）

前方引用件数に関する先行研究の多くは米国特許を対象としたものであるが、日本特許を対象とする研究も、数は多くないものの報告がある（後藤ら 2006; Nagaoka and Walsh 2009）。

後藤ら（2006）は、重要特許の判別指標について分析を行い、被引用数が、重要特許の判別指標となり得ることを報告している。

この報告では、以下のとおり、重要特許は、特許庁が実施している「技術動向調査」に基づいて抽出されており、また、被引用数のデータは、特許データから抽出されている。なお、ここでいう特許データとは、特許公報のデータである。特許公報の全文データから引用文献情報を取り扱っていることから、ここでの「被引用数」は、「出願人前方引用件数」を意味する。

（重要特許）

前述のように特許の質を測る指標を検証するためには、その前提として、質の高い重要な特許が抽出されていなければならない。もちろん、その選定基準は、特許の質を測る指標と全く関係性の無いものである必要があり、信頼のある調査機関が専門家の意見を踏まえて抽出されたものであることが望ましい。この観点から本研究では、特許庁が毎年実施している「技術動向調査」においてリスト化されている「重要特許」を用いることとした。
特許庁が収録した CD-ROM から特許データを抽出し、1991 年から 1999 年まで の間に出願された特許を対象として独自のデータベースを構築した。このデータベ ースに収録されている全ての特許を対象に、玉田が開発した自動抽出プログラムを 用いて、「発明者数」、「引用特許数」、「引用非特許文献数」（ほとんどが学術論文あ るいは学会発表などのため、以下、「引用論文数」とする）を抽出した（・・・）。も っとも重要な被引用特許数は、まず、全ての引用特許を抽出し、本データベースに 収録された特許と同定し、引用された特許のデータベース（被引用特許データベー ス）を構築した。そして、この被引用データベースから被引用数を抽出した。

このように取得された情報に基づき、重要な特許である（1）か、否（0）かの二値を被 説明変数とし、被引用数（出願人前方引用件数）等を説明変数として、ロジットモデル分 析が行われている。その結果、被引用数が大きい特許は重要である可能性が高いとの結果 が示されている（下表（特に 5 行目）参照）。（なお、プラズマディスプレイ分野において は、有意差は確認されていないが、10％有意であり、重要特許を判別する指標になる可能 性が高いとの解釈が示されている。）

ロジットモデル分析の結果
（出典：後藤ら（2006）表 4）

<table>
<thead>
<tr>
<th>説明変数</th>
<th>ライフサイエンス分野</th>
<th>プラズマディスプレイ分野</th>
<th>全体</th>
</tr>
</thead>
<tbody>
<tr>
<td>発明者数</td>
<td>1.47 (2.17) *</td>
<td>0.56 (2.20) *</td>
<td>0.604 (2.47) *</td>
</tr>
<tr>
<td>引用特許数</td>
<td>-0.29 (-0.64)</td>
<td>0.158 (2.45) *</td>
<td>0.137 (2.2) *</td>
</tr>
<tr>
<td>引用論文数</td>
<td>-0.94 (-1.67)</td>
<td>-0.032 (-0.36)</td>
<td>0.0717 (0.995)</td>
</tr>
<tr>
<td>被引用数</td>
<td>0.564 (2.96) **</td>
<td>0.052 (1.90)</td>
<td>0.769 (2.60) **</td>
</tr>
<tr>
<td>定数項</td>
<td>-4.14 (-4.27) **</td>
<td>-3.41 (-7.77) **</td>
<td>-3.38 (-9.04) **</td>
</tr>
<tr>
<td>サンプル数</td>
<td>110</td>
<td>286</td>
<td>396</td>
</tr>
<tr>
<td>χ² 適合度</td>
<td>106.39</td>
<td>348.9</td>
<td>1977.7</td>
</tr>
<tr>
<td>P</td>
<td>0.44</td>
<td>0.004</td>
<td>0</td>
</tr>
</tbody>
</table>

***1 %有意、**5 %有意
また、Nagaoka and Walsh（2009）は、発明者サーベイの結果から導かれた発明の経済的価値を指標として、経済的価値の高い発明に関する出願の方が、前方引用件数が多いことを報告している。ここで、発明の経済的価値は、以下のとおり、発明者に4段階で評価するように依頼しており、また、前方引用件数については、「他の発明の明細書において」引用された回数、すなわち、「出願人前方引用件数」を採用している。

（発明の経済的価値）

Our surveys asked the inventors to evaluate the relative economic value of his invention in the respective technology field by four ranks (top 10%, top 25%, top half and the bottom half).

（訳：我々のサーベイは、発明者に対して、それぞれの技術分野における彼らの発明の相対的な経済的価値を、4段階（上位10%、上位25%、上位50%、下位50%）で評価するよう依頼した。）

（前方引用件数）

This variable for Japan is the number of citations to the invention made by other inventors in their description of their inventions.

（訳：日本におけるこの変数は、他の発明の明細書において、その発明が引用された回数である。）

そして、分析の結果、上位10%の経済的価値を有する製品に関する特許は、下位50%の経済的価値を有する特許に比べて、約2倍の前方引用件数（出願人前方引用件数：Forward citation）を有することが述べられている（下表（特に1列目）参照）。
日本特許に関する上記の報告はいずれも、特許明細書から抽出した引用件数、すなわち、出願人前方引用件数のみを分析対象とするものであるが、審査官前方引用件数と出願人前方引用件数を比較した報告も存在する（和田2010）。

和田（2010）は、審査官前方引用件数と出願人前方引用件数の2つを区分しつつ、以下の仮説を構築し、検証を行っている。

H 1 A）先行引用特許のうちどれが発明にとって重要であったか、発明者が指摘する要因として、引用している特許の審査官による被引用特許数が正の説明力を持つ。

H 1 B）先行引用特許のうちどれが発明にとって重要であったか、発明者が指摘する要因として、引用している特許の発明者による被引用特許数が正の説明力を持つ。

上記仮説について検証を行うに当たっては、以下のとおり、発明者サーベイの結果に基づいて分析対象となる特許が重要であったか否かを決定し、引用情報としては、日本特許に関する審査官引用と発明者引用の2種類の引用データを用いている。
（特許の重要性）

本研究に用いたのは、特許の審査官引用および発明者引用（・・・）によって提示した引用特許に関する発明者の回答である。この追加サーベイでは、一次サーベイの対象となった特許が引用している特許を提示した。その引用特許リストのうち「当該発明にとって相当程度に基礎となった先行特許があれば、その選択肢番号をお答え下さい。なお相当程度に基礎となった先行特許がない場合、それに最も近いものを選んでください。」という質問に対する回答を用いた。

分析手法としては、特定の特許が、発明者にとって重要であったか否かを被説明変数とする Logit 質的検定モデルが用いられている。すなわち、上記の発明者サーベイにおいて、先行特許として重要であった、と発明者が回答した場合に、被説明変数は「1」となり、そうでない場合に「0」となる。

分析結果は下表に示すとおりであり、審査官前方引用件数（e_siblings : 4 行目）が、ほとんどどのモデルにおいて、有意に正の値を示すことが確認された（なお、有意差が検出されていないモデル 6 では、サンプル数が大幅に少ないことが指摘されている）。他方、発明者前方引用件数（i_siblings : 5 行目）については、いずれのモデルにおいても、有意な係数を示していない。

この結果より、和田は、上記 H1A は支持されるが、H1B については不明、との結論を示すと共に、この結論は、上述の Hegde and Sampat（2009）の報告内容と一貫性を持つものであると述べている。
サーベイ対象特許が引用している後方引用特許群のうち
発明者が先行特許として重要と回答する選択要因（Logit）
（出典：和田（2010）表1）

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>within_firm_dummy</td>
<td>1.063***</td>
<td>0.179****</td>
<td>1.063****</td>
<td>1.213****</td>
<td>0.748****</td>
<td>1.006****</td>
<td>0.10947</td>
<td></td>
</tr>
<tr>
<td>(0.137)</td>
<td>(0.127)</td>
<td>(0.134)</td>
<td>(0.216)</td>
<td>(0.279)</td>
<td>(0.109)</td>
<td>(0.10947)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inventor_idea_dummy</td>
<td>0.245**</td>
<td>0.254**</td>
<td>0.296**</td>
<td>0.084</td>
<td>0.279**</td>
<td>0.281**</td>
<td>0.109</td>
<td></td>
</tr>
<tr>
<td>(0.105)</td>
<td>(0.097)</td>
<td>(0.115)</td>
<td>(0.264)</td>
<td>(0.135)</td>
<td>(0.139)</td>
<td>(0.139)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_sibling</td>
<td>0.0286****</td>
<td>0.0066****</td>
<td>0.0214****</td>
<td>0.0442****</td>
<td>0.0229</td>
<td>0.0375****</td>
<td>0.0342****</td>
<td></td>
</tr>
<tr>
<td>(0.0097)</td>
<td>(0.0048)</td>
<td>(0.0137)</td>
<td>(0.0033)</td>
<td>(0.0120)</td>
<td>(0.0124)</td>
<td>(0.0124)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iSibling</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0017</td>
<td>-0.0011</td>
<td>-0.00127</td>
<td>-0.000523</td>
<td>-0.00153</td>
<td></td>
</tr>
<tr>
<td>(0.0008)</td>
<td>(0.0008)</td>
<td>(0.0028)</td>
<td>(0.0009)</td>
<td>(0.00123)</td>
<td>(0.00123)</td>
<td>(0.00123)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recently_edited_ratio</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0212</td>
<td>0.2444</td>
<td>0.1518</td>
<td>0.24605</td>
<td></td>
</tr>
<tr>
<td>(0.0109)</td>
<td>(0.0109)</td>
<td>(0.0109)</td>
<td>(0.0203)</td>
<td>(0.3147)</td>
<td>(0.264)</td>
<td>(0.2657)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>within_firm_e_sibling_ratio</td>
<td>-0.0095</td>
<td>-0.125</td>
<td>-0.2545</td>
<td>0.315</td>
<td>-0.0459</td>
<td>0.0251</td>
<td>-0.1173</td>
<td></td>
</tr>
<tr>
<td>(0.1062)</td>
<td>(0.2089)</td>
<td>(0.2436)</td>
<td>(0.4039)</td>
<td>(0.3602)</td>
<td>(0.2791)</td>
<td>(0.2479)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>top_of_list</td>
<td>0.80057****</td>
<td>0.85854****</td>
<td>1.0057****</td>
<td>0.5731****</td>
<td>1.1364****</td>
<td>0.9464****</td>
<td>1.0311****</td>
<td></td>
</tr>
<tr>
<td>(0.1161)</td>
<td>(0.1132)</td>
<td>(0.1387)</td>
<td>(0.1751)</td>
<td>(0.1938)</td>
<td>(0.3059)</td>
<td>(0.156)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_zite豳</td>
<td>-0.0467****</td>
<td>-0.0417****</td>
<td>-0.0503****</td>
<td>-0.0462****</td>
<td>-0.0438****</td>
<td>-0.0302</td>
<td>-0.0512****</td>
<td></td>
</tr>
<tr>
<td>(0.00091)</td>
<td>(0.0098)</td>
<td>(0.0154)</td>
<td>(0.013)</td>
<td>(0.0224)</td>
<td>(0.0118)</td>
<td>(0.01998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user1</td>
<td>-0.1102</td>
<td>-0.3305****</td>
<td>-0.3933**</td>
<td>0.2097</td>
<td>-0.2092</td>
<td>-0.3406</td>
<td>-0.271</td>
<td></td>
</tr>
<tr>
<td>(0.2321)</td>
<td>(0.1468)</td>
<td>(0.1716)</td>
<td>(0.2368)</td>
<td>(0.3108)</td>
<td>(0.3695)</td>
<td>(0.2398)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user2</td>
<td>0.7356</td>
<td>-0.3222****</td>
<td>-0.2725</td>
<td>0.1906</td>
<td>0.0682</td>
<td>0.2465</td>
<td>-0.244</td>
<td></td>
</tr>
<tr>
<td>(0.2367)</td>
<td>(0.1804)</td>
<td>(0.1285)</td>
<td>(0.2317)</td>
<td>(0.3426)</td>
<td>(0.4612)</td>
<td>(0.3003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user3</td>
<td>0.0326</td>
<td>-0.1845</td>
<td>-0.2261</td>
<td>-0.5485</td>
<td>0.2804</td>
<td>-0.4056</td>
<td>0.20172</td>
<td></td>
</tr>
<tr>
<td>(0.2356)</td>
<td>(0.2076)</td>
<td>(0.2076)</td>
<td>(0.3005)</td>
<td>(0.3091)</td>
<td>(0.555)</td>
<td>(0.32422)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user4</td>
<td>-0.2019</td>
<td>-0.4345****</td>
<td>-0.3838**</td>
<td>0.3234</td>
<td>-0.0029</td>
<td>0.1421</td>
<td>0.4034****</td>
<td></td>
</tr>
<tr>
<td>(0.2412)</td>
<td>(0.1307)</td>
<td>(0.1389)</td>
<td>(0.2387)</td>
<td>(0.3004)</td>
<td>(0.3728)</td>
<td>(0.2328)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user5</td>
<td>-0.0871</td>
<td>-0.2932****</td>
<td>-0.3793****</td>
<td>-0.0456</td>
<td>0.118</td>
<td>-0.345</td>
<td>-0.2712</td>
<td></td>
</tr>
<tr>
<td>(0.2381)</td>
<td>(0.1577)</td>
<td>(0.1647)</td>
<td>(0.2494)</td>
<td>(0.3209)</td>
<td>(0.3964)</td>
<td>(0.3086)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user6</td>
<td>-1.0357****</td>
<td>-0.6433****</td>
<td>-0.8186****</td>
<td>-1.2147****</td>
<td>-1.0631****</td>
<td>-0.8746****</td>
<td>-0.1173</td>
<td></td>
</tr>
<tr>
<td>(0.2301)</td>
<td>(0.1367)</td>
<td>(0.1622)</td>
<td>(0.2297)</td>
<td>(0.3172)</td>
<td>(0.3424)</td>
<td>(0.2894)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2365</td>
<td>2490</td>
<td>1755</td>
<td>1065</td>
<td>942</td>
<td>347</td>
<td>1418</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-153.5</td>
<td>-145.2</td>
<td>-1017.3</td>
<td>-407.8</td>
<td>-537.6</td>
<td>-227.3</td>
<td>-775.3</td>
<td>-664.68</td>
</tr>
</tbody>
</table>

* significance level 0.1
** significance level 0.05
*** significance level 0.01
**** significance level 0.005

Standard errors are in the parentheses.
このように、米国においては、出願人前方引用件数よりも審査官前方引用件数の方が特許の更新に対して強い影響力を有していること（Hegde and Sampat 2009）、及び出願人前方引用件数がノイズとなっている可能性があることが報告されており（Cotropia et al. 2013）、また、日本においても、出願人前方引用件数よりも審査官前方引用件数の方が、特許の重要性に対して正の説明力を持つことが報告されている（和田 2010）。

これらの先行研究を踏まえると、日米いずれの国においても、「審査官前方引用件数」は、「出願人前方引用件数」よりもより適切に「特許の価値」を反映している指標であることが予想される。また、このため、「審査官前方引用件数」に着目した分析は、今後も非常に重要になると考えられる。

しかしながら、上述のとおり、米国においては、2001年まで、引用文献が、出願人による引用であるか、審査官による引用であるかを区別することができなかったという事情が存在するため、「審査官前方引用件数」に特に着目した研究は非常に少ない。また、前方引用件数に関する先行研究の多くは米国特許を対象としたものであったため、日本における「審査官前方引用件数」に関する十分な知見が得られているとは言い難く、特に、日米における「審査官前方引用件数」の相違について比較分析した報告は見受けられない（2.1、3.1も参照）。

このように、近年の報告からは「審査官前方引用件数」が重要であることが示唆されるところ、現段階では、日米いずれの国においても、「審査官前方引用件数」に関する知見が十分に得られていない。そこで、本研究においては、特に「審査官前方引用件数」に着目することとした。

1.3 本研究の目的と構成

本研究では、「審査官前方引用件数」に着目して、以下の3つの観点について検証することを目的とした。

・ 日本における審査官前方引用件数の有用性の検証
・ 日米における審査官の引用傾向の比較分析
・ 米国における審査官前方引用件数の有用性の検証

以下、第2章から第4章において、それぞれの観点に関して分析の背景、分析方法、分析結果等を示すと共に、種々の考察を行う。そして、第5章において、各分析から得られた知見を総括すると共に、本研究の限界についても述べる。
第2章 日本における審査官前方引用件数の有用性の検証

2.1 背景及び目的

2.1.1 審査官前方引用件数の価値指標としての有用性に関する論争

第1章で述べたとおり、現在、前方引用件数は「特許の価値」の指標として広く用いられており、特に「審査官前方引用件数」が「特許の価値」を反映しているとの報告がなされている（Hegde and Sampat 2009; 和田 2010）。

しかしながら一方で、「審査官前方引用件数」の有用性に疑問を呈している報告も少なからず知られている（Cockburn et al. 2002; Meyer 2000; 三原 2012）。

Cockburn et al. (2002) は、米国の特許審査官の不均一性を確認するため、米国の特許審査官196名を対象として、各審査官が審査した特許（合計298,441件）の引用件数（CITATION MADE：後方引用件数）及び被引用件数（CITATION RECEIVED：前方引用件数）などについて分散分析を行い、その結果、引用件数（CITATION MADE）及び被引用件数（CITATION RECEIVED）の両方において、審査官による有意な影響が観察されたことを報告している（下表（特に1行目及び2行目参照））。

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fraction of variance explained by examiner effects</th>
<th>F-statistic for no examiner effect</th>
<th>F-statistic for no examiner effect, controlling for detailed technology class and cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITATIONS MADE</td>
<td>0.077</td>
<td>121.71</td>
<td>52.64</td>
</tr>
<tr>
<td>CITATIONS RECEIVED</td>
<td>0.117</td>
<td>193.40</td>
<td>51.07</td>
</tr>
<tr>
<td>APPROVAL TIME</td>
<td>0.083</td>
<td>131.77</td>
<td>78.92</td>
</tr>
<tr>
<td>CLAIMS</td>
<td>0.030</td>
<td>44.83</td>
<td>16.06</td>
</tr>
<tr>
<td>GENERALITY</td>
<td>0.079</td>
<td>105.56</td>
<td>38.97</td>
</tr>
<tr>
<td>ORIGINALITY</td>
<td>0.069</td>
<td>104.23</td>
<td>61.30</td>
</tr>
</tbody>
</table>

出典：Cockburn et al. (2002) Table3A
特に、彼らは、各審査官が審査した特許の被引用件数（CITATION RECEIVED：前方引用件数）の平均値の分布が、非常にゆがんでいることを示している（下図参照）。

Citations Received by Examiners
（出典：Cockburn et al. (2002) FIGURE 4）

そして、これらの結果を踏まえ、以下のとおり、前方引用件数は特許の価値の指標として用いられているが、どれだけ前方引用件数を受けるかは、実際にはかなりの部分において、審査官の性質（すなわち、どの審査官が審査するか）に由来するのではないか、との見解を述べ、前方引用件数の有用性に疑義を示している。

Many factors may affect how many citations a patent receives. Citations received are frequently thought to reflect the technological significance of the claimed invention. Pioneering inventions with broad claims and no closely related prior art will tend to be frequently cited as follow-on inventors improve on the original invention. Citations may also reflect the quality or scope
of the disclosure accompanying the claims. We cannot directly measure either of these factors here, and our analysis assumes that they are randomly distributed across the patents in our sample. Nonetheless these results do indicate that a significant fraction of the variation in citations received by any particular patent is driven by a single aspect of examiner heterogeneity, the average propensity of “their” patents to attract citations.

Meyer (2000) has, in the following manner, stated that citations received by a patent reflect various aspects of the patent. They are not always indicative of the state of the art. So, we can find two different types of citations: (1) documents of particular relevance, and (2) references concerning the general background. Documents of particular relevance restrict the claims of inventors. In European search reports individual documents that, if taken alone, may question the novelty or inventive step of a patent claim are marked with the letter ‘X’. Documents considered to question the inventive step of a patent claim, if taken in combination with another document, are marked with the letter ‘Y’. These letters reflect the opinion of the search examiner, but are not binding in the substantive examination. The second type of references is marked ‘A’. These citations document the technical background of the invention.

The different types of cited references have different degrees of linkage to the
examined patents. While 'X' references have a high degree of linkage, it may vary for 'Y' references since they are important only with other references. 'A' references usually have a low proximity. As frequently cited references are not necessarily technically or economically important, but may be cited for didactic and illustrative reasons in the description of prior art, further investigations about the extent to which 'X', 'Y', and 'A' reference occur are necessary.

(訳：引用は、2つの異なる種類に分けることが可能である。(1) 特に関連する文献及び、(2) 一般的な技術背景に関する参照、である。特に関連する文献は、発明者の請求の範囲を制限する。欧州のサーチレポートにおいては、単独で用いられた場合に、特許の請求の範囲の新規性又は進歩性に疑義を提示すると考えられる個々の文献は、「X」という文字で示される。他の文献と組み合わせて用いられた場合に、特許の請求の範囲の進歩性に疑義を提示すると考えられる文献は、「Y」という文字によって示される。これらの文献は、調査を担当する審査官の意見を反映したものであるが、実体の審査を担当する審査官を拘束するものではない。二つ目の参照の種類は、「A」と表示される。このような引用は、発明の技術背景を説明するものである。

このような異なる種類の引用文献は、審査されている特許に対して、異なる関連の程度を有している。「X」文献は高い関連性を有しているものの、「Y」文献は、他の文献と共に用いられて初めて重要であるため、関連性は異なっている。「A」文献は、通常、低い近接度しか有していない。頻繁に引用される文献は、必ずしも技術的又は経済的に重要であるとは限らず、むしろ、先行技術を記載する上で、説明に役立つために用いられていると考えられる。「X」、「Y」及び「A」文献が用いられる程度に関するさらなる調査が求められる。)

さらに、日本の元審査官である三原 (2012) も、審査官は周知技術として文献を提示するケースが少なくないうことを述べ、審査官による前方引用件数を特許の価値の指標とするとの危険性を指摘している。

審査官が実際に引用した数を元にするという審査官引用の考え方があるが、ここにも引用の重みの問題が存在する。ある引用文献を新規性または進歩性を否定するために用いたのであれば、当該文献については引用に関してかなりの重みがあるといえる。しかしながら、進歩性の認定における相違点を判断する際に、周知技術として複数の文献（特許・非特許文献）を引用した場合はどうだろうか。あるいは、特許法第 36 条に規定する明細書の記載要件違反を論じる際の技術常識を示すため
に複数の文献（特許・非特許文献）が挙げられていた場合はどうだろうか。

筆者も元審査官なのでいくつか思い当たる節がある。例えば、ヒト化抗体、ヒト型化抗体、キメラ抗体等の作製方法を周知技術であるということに特定の文献（レビューや総説に相当するもの）を挙げることがある。このように技術に関する周知性を論じるために特定の文献を頭の引き出しにもっている審査官は技術分野に限らず少なくないものである。また、その文献が審査官により異なることは十分に考えられることである。審査官が周知技術を文献で示すケースは少なくないことから、総じて引用の多さを特許の価値を測る尺度とすることは非常に危険である。

（中略）

特許の引用で技術的な重要度を測ることができたとか、価値を測定できたとか、そういう考え方は若干発想の論理が飛躍しているのではないか。引用以外の他の要素を組み合わせて複合的に検討し、価値を測定するという考え方を否定するものではないが、計量分析に関する論文等を見ると、特に統計解析を用いた手法において、仮説を単純化することで被引用数が一定以上だから価値ありといった検証の仕方で半ば盲信的に評価することがあまりにも多く見受けられる。研究者の主観を排除できてかつ簡便に評価できるのかもしれないが、そのリスクは研究者もその論文の読者も十分に認識すべきではないだろうか。

このように、「審査官前方引用件数」を特許の価値の指標として用いることについて、否定的な見解を示す報告も知られている。しかしながら、いずれの文献も、疑義を示すに止まっており、具体的なデータを示して、「審査官前方引用件数」を「特許の価値」の指標として用いることを否定するには至っていない。

このような背景を踏まえ、本章では、これまでと異なるアプローチにより、「審査官前方引用件数」が、真に有用な価値の指標であるか否かについて検証することとした。

2. 1. 2 分析対象としての「特許が成立した出願」と「特許出願」

第1章において言及した先行研究を含め、これまでに行われた前方引用件数に関する分析の多くは、特許が成立した出願のみを対象とするものであった。この最大の理由は、2000年11月29日に出願公開制度が導入されるまで、米国においては特許が成立した出願以外は公開されなかったため、特許が成立していない出願を分析対象に加えることは不可能であったことが挙げられる。また、前方引用件数は、多くの場合「特許の価値」の指標として用いられているため、そもそも特許が成立していない出願を分析対象に加える必
要性が薄いことも、重要な理由として挙げられる。実際、かつて出願公開制度が存在していなかった米国のみならず、出願公開制度が古くから存在している日本（後藤ら 2006）や欧州（Harhoff et al. 2003; Gambardella et al. 2008）においても、特許が成立した出願のみを分析対象とする傾向が少なくなく見受けられる。

しかしながら、特許が成立した出願のみを分析対象とする場合、引用件数と対比すべき評価指標は限定されてしまう。これまでに述べた先行研究からも明らかなように、特許の価値と引用件数との関係を分析するにあたっては、何を引用件数と対比する指標とするかが重要となるが、特許が成立した出願のみを分析対象とした場合、特許権の維持期間（Hegde and Sampat 2009; Harhoff and Wanger 2009）や、発明者自身による重要度評価（和田 2010; Nagaoka and Walsh 2009）など、使用できる指標はそれほど多くはない。

一方、特許が成立していない出願を含めて分析すれば、「特許出願段階」における特許情報の用いることで、これまでよりも広い観点の評価指標を使用することが可能となる。

そこで本研究においては、特許が成立していない出願も含めた、全ての「特許出願」を分析対象とすることとし、「特許出願段階」における特許情報から導かれる評価指標を用いて分析を実施することとした。

2. 1. 3 出願人の自己選択結果と価値指標との関連性に関する研究

特許出願の価値を評価するに当たり、出願人自身による自己選択結果は非常に重要な情報源である。例えば、上述の特許権の維持期間は、特許の価値の指標として古くから知られているが（Griliches et al. 1986; Lanjouw et al. 1998）、これは、特許成立後の自己選択結果として捉えることができる。例えば Pitkethly (1999) は、ほとんどの特許制度においては、出願人や特許権者は、下記 I) ～ IV) の 4 つの決断に直面することになることを記載し、特許成立後だけでなく、特許出願段階のプロセスにおいても、出願人自身の価値評価に基づいて選択を行っていることを指摘している（下図も参照）。

I) 特許を出願するか否か（Whether to file a patent application.）

II) それを継続するか否か（特許出願手続における数々の決断）（Whether to continue with it (at a number of decision points in the application procedure).）

III) 成立した特許件を維持するか失効させるか（Whether to keep any patent granted in force or let it lapse.）

IV) 成立した特許をどのように活用するか（直接的な商業化、ライセンス、その組合せ、完全な販売）（How to exploit the patent once granted (direct commercialisation, licensing, a combination or outright sale).）
Patent Valuation Decisions
（出典：Pitkethly (1999) Fig.1）
実際、特許出願段階の出願人自身による自己選択プロセスである出願国数（family-size）は、特許の価値の指標として広く普及しており（Lanjouw and Schankerman et al. 2004; OECD 2009; Nagaoka et al. 2010）、これらのことからも、特許成立後のみならず、特許出願段階の出願人自身による自己選択結果が、特許出願の評価指標として有用であることが支持される。

これまでも、欧州を中心として、特許が成立した出願のみならず、特許が成立していない出願を分析対象に含めた研究は行われているが、「特許出願段階における出願人の自己選択結果」を指標として、審査官前方引用件数の有用性を検証した研究は見受けられない。

例えば、Schneider（2011）は、企業の発明者による特許と、個人の発明者による特許の価値を比較するに当たり、全ての出願を対象とした場合と、特許が成立した出願を対象とした場合の両方について分析を行っている。彼は、審査官前方引用件数を被説明変数として、一般化した負の二項回帰モデル（generalized Negative Binomial regression）（King 1989）を用いて分析を行った結果、個人の発明者（independent inventor）の出願の方が平均的には価値が低いが、特許が成立した出願に限定した場合（Granted patents）には、その傾向が多少弱まるとの結論を述べている（下図（特に1行目）参照）。
Estimations results – importance
(出典：Schneider (2011) Table 2.)

<table>
<thead>
<tr>
<th>Variables</th>
<th>All applications</th>
<th>Grant patents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Variance parameter</td>
</tr>
<tr>
<td></td>
<td>Coefficient SE</td>
<td>Coefficient SE</td>
</tr>
<tr>
<td>Independent inventor</td>
<td>-0.186*** 0.045</td>
<td>0.360*** 0.085</td>
</tr>
<tr>
<td>Technology areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(base: 'others')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity-electronics</td>
<td>0.339*** 0.077</td>
<td>0.130 0.160</td>
</tr>
<tr>
<td>Instruments</td>
<td>0.654*** 0.061</td>
<td>0.051 0.131</td>
</tr>
<tr>
<td>Chemicals and pharmaceuticals</td>
<td>0.837*** 0.057</td>
<td>0.102 0.123</td>
</tr>
<tr>
<td>Process engineering</td>
<td>0.430*** 0.062</td>
<td>0.010 0.136</td>
</tr>
<tr>
<td>Mechanical engineering</td>
<td>-0.018 0.057</td>
<td>-0.137 0.140</td>
</tr>
<tr>
<td>Application years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(base: 1978-1979)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980-1984</td>
<td>0.081 0.135</td>
<td>0.221 0.338</td>
</tr>
<tr>
<td>1985-1989</td>
<td>0.245*** 0.134</td>
<td>0.446 0.331</td>
</tr>
<tr>
<td>1990-1994</td>
<td>0.148 0.132</td>
<td>0.427 0.327</td>
</tr>
<tr>
<td>1995-1999</td>
<td>-0.343*** 0.132</td>
<td>0.401 0.328</td>
</tr>
<tr>
<td>Number of claims</td>
<td>0.016*** 0.001</td>
<td></td>
</tr>
<tr>
<td>Number of backward citations</td>
<td>0.018*** 0.006</td>
<td>0.013* 0.008</td>
</tr>
<tr>
<td>Constant</td>
<td>0.122 0.140</td>
<td>-0.525 0.344</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5,566</td>
<td>3,477</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-10960.494</td>
<td>-7193.669</td>
</tr>
</tbody>
</table>

Note: ***, ** and * denote significance at 1, 5 and 10% levels, respectively.
しかしながら、この報告では、審査官前方引用件数が多い特許出願ほど価値が高いという前提の下、審査官前方引用件数を特許出願の価値の指標として用いているに過ぎず、審査官前方引用件数の有用性を検証するものではない。また、特許出願段階の出願人の自己選択結果との関係についての言及もない。

Harhoff and Wanger (2009) は、特許出願の価値と、特許出願の審査期間（特許査定、拒絶査定、又は取下げまでの期間）との関係を分析するに当たり、以下のとおり、ヨーロッパ特許庁（EPO）に対する出願のうち、特許された出願のみならず、拒絶された出願や取り下げられた出願も含めて分析を行っている。

In our analysis of the duration of patent examination, we empirically analyze a large random sample of 215,265 EPO applications. Whereas earlier contributions had access to data on granted patents only, we also have data on refused and withdrawn applications, allowing us to convincingly address selection issues that have been neglected in earlier work.

彼らは、特許が成立した出願 143,038 件を対象として、特許維持期間が 10 年を越えるか否かを被説明変数とするプロビット回帰を行うことにより、特許が成立していない出願にも適用し得る、特許出願の価値の推測値を求めるための回帰式を作成している。

このプロビット回帰においては、一般的に特許の価値の指標になり得るとされている審査官前方引用件数に加え、特許出願段階の出願人の自己選択結果である「早期審査請求を行ったか否か」や「パテントファミリーのサイズ」などが説明変数として用いられている（下表参照）。
Prediction of Patent Value: Results from a Probit Estimation Relating a Patent’s Value Indicators to the Likelihood That It Is Upheld More Than 10 Years

（出典：Harhoff and Wanger (2009) Appendix）

<table>
<thead>
<tr>
<th></th>
<th>Probability that a patent is upheld more than 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request for accelerated examination</td>
<td>0.060**</td>
</tr>
<tr>
<td>PCT application</td>
<td>-0.019*</td>
</tr>
<tr>
<td>Citations received within 3 years</td>
<td>0.072**</td>
</tr>
<tr>
<td>Share of type X citations</td>
<td>0.063**</td>
</tr>
<tr>
<td>Share of type Y citations</td>
<td>0.074**</td>
</tr>
<tr>
<td>Share of type D citations</td>
<td>0.082**</td>
</tr>
<tr>
<td>Number of EP equivalents</td>
<td>0.101**</td>
</tr>
<tr>
<td>Total number of equivalents</td>
<td>0.019**</td>
</tr>
<tr>
<td>Generality of application</td>
<td>0.380**</td>
</tr>
<tr>
<td>Constant</td>
<td>0.215**</td>
</tr>
<tr>
<td>Observations</td>
<td>143,038</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-86,195</td>
</tr>
<tr>
<td>Likelihood ratio $\chi^2(9)$</td>
<td>2,523</td>
</tr>
</tbody>
</table>

Note: Standard errors are in square brackets.
*5% significant; **1% significant.

そして、この回帰式より算出された特許出願の価値の推測値を用いることにより、特許が成立している出願のみならず、特許が成立していない出願も含めて、特許出願の審査期間（特許査定、拒絶査定、又は取下げまでの期間）との関係について分析を行い、その結果として、価値の推測値（Predicted value:下表2行目参照）が高い特許出願ほど、特許が成立するまでの期間が有意に短く（下表(3)、(4)参照）、他方、そのような出願ほど、取下げや拒絶までに要する期間が有意に長くなっている（下表(5)～(8)参照）ことを報告している。
彼らは、特許が成立していない出願も含めて分析を行っており、また、審査官前方引用件数に加え、特許出願段階の出願人の自己選択結果である「早期審査請求を行ったか否か」や「パテントファミリーのサイズ」などのデータも利用しているものの、審査官前方引用件数と、そのような特許出願段階の出願人の自己選択結果との直接的な関係についての分析は行っていない。

審査官前方引用件数と、特許出願段階の出願人の自己選択結果との直接的な関係について
て分析を行っている報告の一例としては、Acosta et al.（2009）が挙げられる。

彼らは、環境分野の欧州特許において、特許出願段階の出願人の自己選択結果である「パテントファミリーのサイズ」と審査官前方引用件数が正の相関性を有することを報告している。具体的には、下表に示すとおり、審査官前方引用件数を被説明変数とする負の二項回帰モデルにおいて、出願人が個人であるかどうか（INV）、優先権主張の基礎出願が米国又は日本由来であるかどうか（US、JP）などと共に、パテントファミリーのサイズ（FPAT）を説明変数に加えて分析を行い、その結果として、パテントファミリーのサイズが大きいほど価値の高い特許であるとの結論を述べている（下表、特に4行目参照）。

Base model (negative binomials)
（出典：Acosta et al. (2009) Table 12）

<table>
<thead>
<tr>
<th>Dependent Variable: CP</th>
<th>Coeff</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-4.114</td>
<td>0.196 *</td>
</tr>
<tr>
<td>INV</td>
<td>-0.370</td>
<td>0.061 *</td>
</tr>
<tr>
<td>INS</td>
<td>-0.012</td>
<td>0.031</td>
</tr>
<tr>
<td>FPAT</td>
<td>0.052</td>
<td>0.004 *</td>
</tr>
<tr>
<td>US</td>
<td>0.710</td>
<td>0.033 *</td>
</tr>
<tr>
<td>JP</td>
<td>0.416</td>
<td>0.037 *</td>
</tr>
<tr>
<td>PATIOCIPI</td>
<td>-0.162</td>
<td>0.041 *</td>
</tr>
<tr>
<td>HERFIN</td>
<td>0.100</td>
<td>0.094</td>
</tr>
<tr>
<td>STOCKPAT</td>
<td>0.000</td>
<td>0.000 *</td>
</tr>
<tr>
<td>PRI98</td>
<td>4.309</td>
<td>0.151 *</td>
</tr>
<tr>
<td>PRI99</td>
<td>3.938</td>
<td>0.143 *</td>
</tr>
<tr>
<td>PRI100</td>
<td>3.452</td>
<td>0.137 *</td>
</tr>
<tr>
<td>PRI101</td>
<td>2.792</td>
<td>0.135 *</td>
</tr>
<tr>
<td>PRI02</td>
<td>1.912</td>
<td>0.137 *</td>
</tr>
<tr>
<td>SPA62D</td>
<td>-0.584</td>
<td>0.122 *</td>
</tr>
<tr>
<td>SPB01D</td>
<td>0.038</td>
<td>0.037</td>
</tr>
<tr>
<td>SPB09</td>
<td>-0.524</td>
<td>0.110 *</td>
</tr>
<tr>
<td>SPC02</td>
<td>-0.290</td>
<td>0.053 *</td>
</tr>
<tr>
<td>SPF01N</td>
<td>0.649</td>
<td>0.046 *</td>
</tr>
<tr>
<td>SPF23G</td>
<td>-0.632</td>
<td>0.149 *</td>
</tr>
<tr>
<td>SPF23J</td>
<td>-0.526</td>
<td>0.216 *</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-15537.090</td>
<td></td>
</tr>
<tr>
<td>N* obs.</td>
<td>12,516</td>
<td></td>
</tr>
</tbody>
</table>

* Sign. 5%
しかしながら、この報告においても、上述の Schneider (2011) の場合と同様、審査官前方引用件数は特許の価値の代理変数として用いられているに過ぎず、審査官前方引用件数の特許の価値の指標としての有用性が検証されているわけではない。

上述した先行研究を整理すると、以下のようにまとめることができる。

<table>
<thead>
<tr>
<th>研究の内容</th>
<th>先行研究</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>「特許出願段階の出願人の自己選択結果」と「特許出願の価値」との関連性に関する研究</td>
<td>• Pitkethly (1999) • Lanjouw and Schankerman et al. (2004) • OECD (2009) • Nagaoka et al. (2010) など多数 (2.2.1参照)</td>
<td>「特許出願段階の出願人の自己選択結果」を、価値の指標として使用し得るとは広く知られている。</td>
</tr>
<tr>
<td>特許が成立していない出願も含めた、全ての「特許出願」を分析対象とした研究</td>
<td>• Schneider (2011) • Harhoff and Wanger (2009) など</td>
<td>「審査官前方引用件数」と、「特許出願段階の出願人の自己選択結果」との直接的な関係についての分析は行っていない。</td>
</tr>
<tr>
<td>「審査官前方引用件数」と、「特許出願段階の出願人の自己選択結果」との直接的な関係について分析した研究</td>
<td>• Acosta et al. (2009) など</td>
<td>審査官前方引用件数を「特許の価値」の代理変数として用いているに過ぎず、「審査官前方引用件数」の価値指標としての有用性を検証するものではない。</td>
</tr>
<tr>
<td>「特許出願段階における出願人の自己選択結果」を指標として、「審査官前方引用件数」の有用性を検証した研究</td>
<td>なし</td>
<td>これまで、「審査官前方引用件数」の有用性を検証するために、「特許出願段階における出願人の自己選択結果」に特に着目した研究はなく、特に、両者の直接的な関係を、多面的な観点から分析した研究は存在しない。</td>
</tr>
</tbody>
</table>

このように、これまで、審査官前方引用件数の有用性を確認するために、特許出願段階の出願人の自己選択結果に特に着目して、審査官前方引用件数との関係を検証した研究はなく、特に、審査官前方引用件数と特許出願段階の出願人の自己選択結果との直接的な関係を、多面的な観点から分析した研究は存在しない。

そこで、本章においては、特許が成立していない出願をも分析対象に加え、審査官前方引用件数と特許出願段階における出願人の自己選択結果との直接的な関係を、多面的な観点から検証するというアプローチを採用し、日本における審査官前方引用件数の価値指標としての有用性を検証することを目的として、分析を行うこととした。
2.2 前提

2.2.1 特許出願段階の出願人の自己選択項目

上記の目的を達成するため、本分析においては、以下の6つの自己選択項目における選択結果に着目し、審査官前方引用件数との直接的な関係を分析することとした。

- **A)** 海外出願の有無 (Yes/No)
- **B)** 審査請求の有無 (Yes/No)
- **C)** 早期審査請求の有無 (Yes/No)
- **D)** 拒絶理由通知に対する応答の有無 (Yes/No)
- **E)** 審判請求の有無 (Yes/No)
- **F)** 登録料納付の有無 (Yes/No)

図2-1に示すとおり、A)は出願段階の自己選択項目であり、B)及びC)は審査請求段階の自己選択項目である。また、D)は実体審査段階、E)及びF)は査定（特許査定又は拒絶査定）後の自己選択項目に該当する。

上記の自己選択項目のうち、「A) 海外出願の有無」、「E) 審判請求の有無」については、特許の価値の指標として広く知られているものであり（OECD 2009; Nagaoka et al. 2010）、また、「C) 早期審査請求の有無」も特許の価値の指標として用いられている（Harhoff and Wanger 2009; 鈴木 2011）。さらに、「B) 審査請求の有無」についても、特許の価値と関連があることが既に報告されている（de la Potterie 2011; 山内ら 2011）。

しかしながら、これらの自己選択結果に審査官前方引用件数や出願人前方引用件数などを加えて、複合的な特許価値の指標として用いている報告は多く見られるものの（Harhoff and Wanger 2009; 鈴木 2011; 石井ら 2014）、上述のとおり（2.1参照）、これまで、審査官前方引用件数と特許出願段階の出願人の自己選択結果との直接的な関係を、多面的な観点から分析した研究は存在しない。

そこで、本分析においては、上記のように特許の価値との関連が知られていた自己選択項目である「A) 海外出願の有無」、「B) 審査請求の有無」、「C) 早期審査請求の有無」、「E) 審判請求の有無」に加え、これまで着目されることのなかった自己選択項目である「D) 拒絶理由通知に対する応答の有無」及び「F) 登録料納付の有無」を含めて、特許出願段階における出願人による一連の自己選択結果と、審査官前方引用件数との関係を、多面的な観点から検証することとした。

なお、各自己選択項目における詳細な判断方法については2.4.3を参照。
図2-1 特許出願段階における出願人の自己選択項目
（出典：安川 聡）

2.2.2 特許出願の潜在的価値

特許成立後の自己選択結果である特許権の維持期間については、多くのケースで特許の価値の代理変数として用いられているが（Hegde and Sampat 2009; Harhoff and Wanger 2009）、特許出願段階の自己選択結果については、特許が成立しない出願も含まれていることから、「特許の価値」の指標として捉えることは適切でない。

特許出願段階のように、不十分な情報しか取得できない段階では、特許が成立したらもたらされるであろう「特許の価値」を出願人が適切に評価することは困難であるから、出願人は、「特許の価値」というよりはむしろ、「特許出願の潜在的価値」の評価に基づき、自己選択を行っていると捉えるのが妥当であると考えられる。

この点に関し、上述した Pitkethly (1999) (2.1参照) は、特許成立後だけでなく、
特許出願段階のプロセスにおいても、出願人自身の価値評価に基づいて選択を行っていることを指摘すると共に、出願人による自己選択について以下のように記載し、実際には、「潜在的な未来のベネフィット（利益）」が、「次のステージに進むために必要なコスト（費用）」に見合うか否かに基づいて、特許出願段階における自己選択が行われている旨を述べている。

一方、この考えに基づくと、各出願における自己選択にあたっては、本来的には、各特許出願において、「潜在的な未来のベネフィット（利益）」と「次のステージに進むために必要なコスト（費用）」を対比する必要があるが、特許が成立するか否かすら未確定な段階では、そのような絶対的な評価は困難である。したがって、実際には、複数の特許出願の潜在的価値を相対的に比較することにより、自己選択が行われるというのが妥当である。

例えば、上述(2.2.1参照)の「B) 審査請求の有無」の自己選択を行うに当たり、自己選択の対象となる特許出願が複数ある場合には、それらのうち、相対的に潜在的価値の高い特許出願が優先して審査請求されると考えられる。したがって、Yesが選択された特許出願、すなわち審査請求された特許出願の方が、相対的に潜在的価値が高い特許出願であり、逆に、Noが選択された特許出願、すなわち審査請求されなかった特許出願の方が、相対的に潜在的価値が低い特許出願であると考えられる。実際、Palangkaraya et al.（2008）は、出願人が審査請求する理由について、"since these applications may have higher potential economic value"と述べている。

以上の検討を踏まえ、本研究においては、「特許出願の潜在的価値」を、「将来的に得られると期待される利益を数値化した仮想的な指標」と定義すると共に、「出願人の自己選択において、権利取得に積極的であった特許出願ほど、相対的に高い潜在的価値を有する特許出願である」との前提で分析を行うこととした。

「将来的に得られると期待される利益」を実際に測定することは不可能であり、各特許出願の「特許出願の潜在的価値」を具体的に数値化することはできないから、この指標は
あくまで仮想的なものである。しかしながら、上記のような前提を置くことにより、直接的には評価できない「特許出願の潜在的価値」を、間接的に評価することが可能となる。

例えば、上記のとおり、「B) 審査請求の有無」の自己選択においてYesが選択された特許出願（審査請求された特許出願）は、Noが選択された特許出願（審査請求されなかった特許出願）よりも、権利取得に積極的であったと解されるため、相対的に高い潜在的価値を有すると判断できる。すなわち、Yesが選択された出願グループの方が、Noが選択された出願グループよりも平均的に高い潜在的価値を有すると判断することが可能である。

同様の考え方に基づいて他の自己選択結果についても検討すると、「D) 拒絶理由通知に対する応答の有無」、「E) 審判請求の有無」及び「F) 登録料納付の有無」は、上記の「B) 審査請求の有無」と同様に、Yesが選択された出願グループの方が、Noが選択された出願グループよりも相対的に潜在的価値が高いと判断できる。なぜなら、出願人がNoを選択した場合には特許権が成立せず、出願人は権利化をあきらめる必要がある、すなわち、Yesが選択された出願グループの方が権利取得に積極的であったと解されるためである。

同様に、「A) 海外出願の有無」においてYesが選択された出願グループは、Noが選択された出願グループよりも相対的に潜在的価値が高いと判断できる。これについても、Yesが選択された出願の方が、海外での権利取得に積極的であったと解されるためである。

「C) 早期審査請求の有無」においても、Yesが選択された出願グループは、Noが選択された出願グループよりも相対的に高い潜在的価値を有すると判断できる。早期審査請求された出願は、早期の権利化によって、より長期間において権利行使の実現を図っていた点で、権利取得に積極的であったと解することができる。また、Yesが選択された出願は、早期の権利化によって特許権の維持費が高くなる可能性があったとしても、より長い期間の権利行使の実現によって、それ以上の利益が得られると期待された出願であり、この点からも、Yesが選択された出願グループの方が高い潜在的価値を有していることを理解することができる。上述したHarhoff and Wanger (2009)（2.1参照）においても、"applicants who expect their patent to have high potential value will intend to accelerate the examination of their application"との仮説を立てた上で、早期審査請求の有無が、特許権の維持期間に対して、有意な正の影響を有していたことを実証している。

以上のことから、A)～F)のいずれの自己選択結果においても、Yesが選択された出願グループの方が、相対的に高い潜在的価値を有するとの前提を置くことができる。

2.3 構成

以上の前提を踏まえ、本章においては、リサーチクエスチョン（RQ）として、「日本における審査官前方引用件数は、特許出願の潜在的価値の指標として有用であるか？」との問いを設定した。
そして、この問いを解決するために、以下に示すH1～H3の仮説を構築し、これらを検証するための分析を行うこととした。

H1：特許出願の潜在的価値が高い出願グループ（権利取得に積極的であった出願グループ）の方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

H2：特許が成立した出願グループの方が、成立しなかった出願グループよりも、日本における平均の審査官引用前方件数が大きい。

H3：特許の価値が高い出願グループの方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

〈H1に関する分析について〉

H1は、RQを解決するための直接的な仮説である。この仮説を検証するに当たりは、メインの分析（分析2-1）として、上記A)～F)の自己選択項目（2.2.1参照）における選択結果と、平均の審査官引用前方件数との直接的な関係を分析した。上述（2.2.2参照）のとおり、上記A)～F)の自己選択項目においては、いずれもYesが選択された出願グループの方が、Noが選択された出願グループよりも平均的に高い潜在的価値を有すると判断することが可能であるから、H1が正しいとすると、いずれの自己選択項目においても、Yesが選択された出願グループの方が、平均の審査官引用前方件数が大きくなるはずである。

また、H1を検証するための補完的な分析として、以下の分析2－2～分析2－5も行った。

分析2－2：分析対象を技術分野別に区分した分析

分析対象の母集団を技術分野別に区分し（Chemistry、Electrical engineering、Instruments、Mechanical engineering）2、分析2－1と同様に、A)～F)の自己選択項目における選択結果と、平均の審査官引用前方件数との関係を分析した。

2 区分の詳細については付属資料I（4）を参照。なお、Other fieldsに区分された出願については、本分析の対象から除外した。Other fieldsには種々の技術内容の特許出願が混在しているため、技術分野別の分析対象としては適切ではないと考えられるためである。
分析2-3：分析対象を請求項数で区分した分析

分析対象の母集団を請求項の数に基づいて区分し（請求項数3以下、請求項数4以上）、分析2-1と同様に、A）〜F）の自己選択項目における選択結果と、平均の審査官引用前方件数との関係を分析した。

なお、請求項数は、出願に含まれるコンテンツ量の指標として捉えることができる。

分析2-4：全出願人が日本人である特許出願に限定した「A）海外出願の有無」の分析

本章においては、日本における審査官前方引用件数の有用性を検証することを目的しているため、本章における分析対象は日本への特許出願であるが（2.4.1参照）、日本への特許出願は、大きく2つに分けることが可能である。一方は、出願人のみによる出願であり、もう一方は外国の出願人を含む出願である。前者については、日本にのみ出願するケース、すなわち、「A）海外出願の有無」において、Noが選択されるケースは少なくないが、後者はそのようなケースは極めてまれである。これは、後者においては、どこか1か国だけに出願するとしたら、ほとんどの場合にはそれは日本ではなく、日本以外の国であると考えられるためである。日本に出願されなかったものは本分析の母集団から外れるため（A）海外出願の有無」の分析においては、選択バイアスが生じる可能性を否定できない。したがって、このようなバイアスを解消するため、全出願人が日本人である特許出願に限定した場合についても、「A）海外出願の有無」の分析を行った。

分析2-5：パテントファミリー中の出願国数を指標とした分析

通常、出願国数が多ければ多いほど出願コストは大きくなることから、出願国数の多い出願グループは、それに見合うだけの利益が期待される出願、すなわち、それだけ高い潜在的価値を有する出願グループである。したがって、上記H1が正しいとすると、出願国数が多い出願グループほど、平均の審査官引用前方件数が大きくなるはずである。

このことを検証するため、パテントファミリー中の出願国数と、平均の審査官引用前方件数との関係を分析した。なお、この分析においても、分析2-4で述べたようなバイアスが生じる可能性があるため、全出願人が日本人である特許出願に限定した。

3 実際、本章における分析対象のうち、「日本人の出願人のみによる出願」では、「A）海外出願の有無」においてNoが選択された割合は88.1％であるのに対し、「外国の出願人を含む出願」でNoが選択された割合は4.1％に過ぎない。
H2 と H3 については、RQ を解決するための直接的な仮説ではないが、これらを検証することは、間接的に RQ の解決に寄与し得る。まず H2 に関し、上述（2. 2. 2 参照）のとおり、出願人の自己選択は、複数の特許出願の潜在的価値の相対的評価によって決定されると考えられることから、相対的に潜在的価値の低い特許出願は審査過程で淘汰されやすいため、潜在的価値の高い特許出願の方が、特許が成立する可能性がより高くなると考えられる。換言すると、最終審査結果として特許が成立した出願の方が、特許が成立しなかった出願よりも、相対的に高い潜在的価値を有する出願であると考えられる。したがって、H2 が正しいことが検証されれば、審査官前方引用件数の、特許出願の潜在的価値の指標としての有用性が、間接的に支持される。

次に H3 に関し、潜在的価値の高い特許出願の方が、特許が成立した後に、より価値の高い特許となる傾向を有すると予想される。これは、ファミリーサイズが、「特許の価値」の指標として広く普及している（Lanjouw and Schankerman et al. 2004; OECD 2009; Nagaoka et al. 2010）ことからも妥当な推論であると考えられる。ファミリーサイズは、特許出願段階の出願人の自己選択結果であり、本来、上述（2. 2. 2 参照）のとおり、「特許の価値」というよりはむしろ、「特許出願の潜在的価値」の評価に基づいていると考えられる。そうであるにもかかわらず、この価値が「特許の価値」の指標として広く普及していることは、「特許の価値」と「特許出願の潜在的価値」が密接に関連していることを裏付ける。したがって、H2 の場合と同様に、H3 を検証することにより、審査官前方引用件数の、特許出願の潜在的価値の指標としての有用性が、間接的に支持される。

H2 及び H3 を検証するために、以下の分析 2-6 及び分析 2-7 を実施した。

分析 2-6：日本における最終審査結果を指標とした分析

分析対象を、日本において最終的に特許が成立した出願グループと、そうでないグループとに区分し、それらの平均の審査官引用前方件数を対比した。H2 が正しいすると、最終的に特許が成立した出願グループの方が、平均の審査官引用前方件数が大きくなるはずである。

分析 2-7：特許権の維持期間を指標とした分析

H3 を検証するに当たっては、特許の価値の指標として特許権の維持期間を用いて分析を行うこととした。上述（2. 1 参照）のとおり、特許権の維持期間は、特許の価値の指標として最もよく用いられるものの一つである（Hegde and Sampat 2009;
Harhoff and Wanger 2009）分析の母集団を、特許権を維持し得る期間が満了した出願（出願から20年以上が経過した出願）に限定し、それらを、全期間において特許権を維持した出願グループと、そうでない出願グループに区分して分析を行った。H3が正しいとすると、全期間において特許権を維持した出願グループの方が、平均の審査官引用前方件数が大きくなるはずである。

2.4 方法
2.4.1 特許情報のソースとデータセットの構築
本章においては、1991-2000年度の日本特許庁への特許出願（約370万件）のうち、約1%にあたる36,776件をランダムに選択し、分析対象とした。ただし、H3の検証（分析2-7）においては、出願から20年以上が経過しており、かつ、最終的な特許権の維持期間を取得できた出願に限定するため、これらのうち、出願年度が1991年の出願のみを分析対象とした。また、分析対象を請求項数で区分した分析（分析2-3）においては、分析対象の36,776件中、公開時の請求項数を確認できた34,370件を対象として分析を行った。

これらの出願についての特許情報は、NRIサイバーパテントデスク2（https://www.nri-cyberpatent.co.jp/)より取得した。このデータベースからは、特許の基礎情報（発明者、出願人、IPC等）のみならず、パテントファミリー情報や、日本特許庁における詳細な審査経過情報を取得することが可能である。本分析では、必要に応じてこれらの情報をさらに解析することにより、各出願における出願人の自己選択結果を含め、分析に必要となる各種情報を取得した（本分析において取得した各種情報の詳細については付属資料Ⅰを参照）。

なお、NRIサイバーパテントデスク2におけるパテントファミリー情報は、DOCDBにおけるパテントファミリーデータベースに由来している。DOCDBはヨーロッパ特許庁のマスターデータベースであり、世界90か国以上の特許情報を網羅している（DOCDBにおけるパテントファミリーデータベースの特徴については、3.3.2を参照）。

また、審査官による引用・被引用情報については、本章ではIIPパテントデータベースより取得した情報を用いた。IIPパテントデータベースは、日本特許庁が提供する特許データベースに作成された、日本特許庁への出願を包括的に収録しているデータベースである（Goto and Motohashi 2007）。IIPパテントデータベースを利用することにより、分

4 具体的には、出願番号の下二桁が"24"である出願のみを抽出した（分析を開始した日が24日であったため、"24"を選択した）。
5 PCT出願では請求項数を確認できなかった。
析対象出願の引用・被引用情報のみならず、1991-2000年度の日本特許庁への全出願（約370万件）の引用・被引用情報を取得することが可能となった。

なお、IIPパテントデータベースより取得した「審査官による引用・被引用情報」には、以下の情報が収録されている。

・拒絶理由通知において「引用文献」として引用された特許文献
・特許査定時の「参考特許文献」として引用された特許文献
・2006年以降の拒絶理由通知において「先行技術文献調査の記録」で引用された特許文献

2.4.2 审査官前方引用件数の基準化方法

前方引用件数に関する分析を行うにあたっては、出願日におけるバイアスについて考慮する必要がある。これは、特許出願が公開されてからの期間が長ければ長いほど、その出願が引用される機会は増えるが、公開されてからの期間が短いと、その出願が引用される機会が少ないと生じるバイアスであり、「切断バイアス（truncation bias）」と呼ばれている。この「切断バイアス」への対応としては、特許の出願年を固定する方法（Hahoff et al. 2003; Hegde and Sampat 2009）や、公報が発行されてからの一定期間の前方引用件数のみをカウントする方法（Gambardella et al. 2008; Lanjouw and Schankerman 2004）などが知られているが、これらの方法では、技術分野ごとの引用傾向の違いを反映することができない。これに対し、Hall et al. (2001)や岡田ら（2006）は、技術分野によって引用・被引用の傾向が異なることを示した上で、出願年及び技術分野ごとに、引用情報の補正する方法を提案している。

これらの先行研究を踏まえ、本章においては、以下の方法によって基準化審査官前方引用件数（NEFC: Normalized examiner forward citation）を導出し、これを用いて分析を行うこととした。

IIPパテントデータベースより、1991-2000年度の出願（約370万件）について審査官前方引用件数を算出し、出願年度iにおける技術区分jの審査官前方引用件数の平均値μij及び標準偏差σijを導出した。（データの詳細は附属資料VI①を参照。また、審査官前方引用件数の算出方法の詳細、及び標準偏差の導出方法の詳細については、それぞれ附属資料II、及び附属資料IIIを参照）。そして、各特許出願の出願年度i、技術区分j、前方引用件数xより、以下の式に基づき、NEFCを算出した。

$$NEFC(i,j,x) = \frac{x - \mu_{ij}}{\sigma_{ij}}$$
例えば、1991年度の区分1（Electrical machinery, apparatus, energy）の出願の場合、審査官前方引用件数の平均値 \(\mu_{ij} \) は 1.79 であり、標準偏差 \(\sigma_{ij} \) は 2.72 である（附属資料VI ①を参照）。したがって、審査官前方引用件数が0件の出願の場合、NEFCは-0.66となり、1件の出願であれば-0.29、2件の出願であれば0.08、3件の出願であれば0.44となる。

このような手法を用いることにより、Hall et al. (2001)や岡田ら(2006)と同様、出願年齢度、及び、技術区分の違いによるバイアスをキャンセルすることが可能となった（基準化前後のデータの比較については附属資料VI ②を参照）。

2.4.3 自己選択項目の判断方法

2.2.1において示したとおり、本分析においては、以下のA)〜F)を自己選択項目として選択した。

A) 海外出願の有無 (Yes/No)
B) 審査請求の有無(Yes/No)
C) 早期審査請求の有無 (Yes/No)
D) 拒絶理由通知に対する応答の有無(Yes/No)
E) 審判請求の有無 (Yes/No)
F) 登録料納付の有無(Yes/No)

以下に、それぞれの項目における判断方法を示す。

＜出願段階＞
A) 海外出願の有無 (Yes/No)

海外への出願の有無は、パテントファミリー情報に基づき判断した。パテントファミリーとして、日本以外の国において公報が発行されていればYes、そうでなければNoとした。

（分析対象）
全出願を分析対象とした。

＜審査請求段階＞
B) 審査請求の有無(Yes/No)
日本特許庁では、審査官による実体審査に進むためには、特許出願後、一定期間 6 内に審査請求を行う必要がある。審査請求が行われなかった場合、みなし取り下げと扱われ、特許権は取得できない。

本項目では、審査請求された出願は Yes、そうでない出願は No を付与した。

（分析対象）
全出願を分析対象とした。

C）早期審査請求の有無 (Yes/No)

審査請求の際に早期審査請求を選択すると、通常の審査請求に比べて、審査結果を非常に早く得ることができる 7。早期審査の申請は無料だが、一定の要件を満たす出願（実施関連出願等）である必要がある。

本項目では、早期審査請求された出願は Yes、そうでない出願は No を付与した。

（分析対象）
審査請求されていない出願はすべて No となるため、審査請求された出願のみを分析対象とした。

＜審査段階＞
D） 拒絶理由通知に対する応答の有無(Yes/No)

審査官による実体審査において、拒絶の理由が存在しない場合には特許査定が通知される。一方、拒絶の理由が存在する場合であっても、直ちには拒絶査定は通知されず、一旦、拒絶理由通知が通知される。拒絶理由通知に対しては、出願人は、意見書を提出して審査官に反論することや、補正書を提出して拒絶理由の回避を図ることが可能である。指定期間内 8 に意見書も補正書も提出されなかった場合や、提出されたが拒絶理由が解消しなかった場合に、拒絶査定が発送される。なお、拒絶理由通知は 2 回以上通知される場合がある。

本項目では、審査請求後に最初に受けた拒絶理由に対して、出願人より意見書か補正書が提出された場合には Yes、いずれも提出されなかった場合には No を付与した。

6 日本では、2001 年 10 月 1 日に、審査請求期間が 7 年から 3 年に短縮されたが、本分析の対象案件の審査請求期間は 7 年である。
7 例えば、2010 年における審査待ち期間は、通常の案件が 28.7 月であるのに対し、早期審査請求をした案件では 1.7 月となっている。（日本特許庁 2011）
8 特許法には明記されていないが、国内出願人は通常 6 0 日、外国出願人は 3 ヶ月で運用されている。（日本特許庁 2015 B）
（分析対象）
審査請求されていない出願、及び、審査請求はされたが拒絶理由通知を一度も受け取っていない出願はすべて No となるため、審査請求され、拒絶理由通知を受け取った出願のみを分析対象とした。

＜査定後＞
E) 審判請求の有無 (Yes/No)

審査段階において拒絶査定を受けた場合でも、審査官の判断に不満がある場合には、拒絶査定不服審判を請求することができる。審査段階では、審査官がした拒絶査定が妥当であったか否かが審理され、妥当ではなかったと判断された場合には、特許査定を受けることができる。一方、拒絶査定を受けた後、一定期間 9 内に審判請求しなければ、拒絶査定が確定する。

本項目では、拒絶査定不服審判が請求された出願は Yes、そうでない出願は No を付与した。

（分析対象）
拒絶査定不服審判の請求は、拒絶査定を受けた場合のみ実施可能であるので、拒絶査定を受けた出願のみを分析対象とした。

F) 登録料納付の有無 (Yes/No)

審査段階において特許査定を受けたとしても、権利を発生させるためには、特許査定の送達があたった日から 30 日以内に登録料を納付する必要がある。登録料を納付しなければ特許権は発生せず、出願は却下される。

本項目では、登録料が納付された出願は Yes、そうでない出願は No を付与した。

（分析対象）
登録料は特許査定を受けた案件のみ納付可能であるので、特許査定を受けた出願のみを分析対象とした。

9 1991-2000年度の時点では 30 日間。現在は 3か月。
10 「無効審判」は出願人の自己選択によるものではないため、本分析の対象とはしていない。
11 日本の特許法第 108 条第 1 項、第 18 条第 1 項の規定に基づく。
2.4.4 検定方法

2群間では Mann-Whitney U test、3群以上の間では Steel-Dwass multiple comparison test による有意差の検定を実施した。統計解析には R2.8.1 を用い、棄却域は5%未満とした。

2.5 結果
2.5.1 年度別の平均審査官前方引用件数

IIP パテントデータベースより取得した各年度の出願の平均審査官前方引用件数を図2-2に示した（データの詳細は附属資料VI③を参照）。

図2-2 各年度の特許出願件数及び平均審査官前方引用件数
（出典：Yasukawa and Kano（2014））
最近の出願ほど審査官前方引用件数が顕著に少ないことが確認されたが、これは、切断バイアス（2.4.2参照）の影響によるものであると考えられる。しかしながら、本研究において分析対象とした1991-2000年度の出願は、前方引用件数が定常状態に近くなっており、さらに、年度及び技術区分の組み合わせごとに基準化した審査官前方引用件数であるNEFCを用いて分析を行ったため、本分析においては、この切断バイアスは分析結果に影響を与えるものではないと考えられる。

2.5.2 分析2-1～分析2-5：H1に関する分析結果

まず、以下に示す仮説（H1）を検証するために、分析2-1として、以下のA)〜F)の自己選択項目における選択結果と、NEFCとの関係を分析した。

H1：「特許出願の潜在的価値」が高い出願グループ（権利取得に積極的であった出願グループ）の方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

A) 海外出願の有無（Yes/No）
B) 審査請求の有無（Yes/No）
C) 早期審査請求の有無（Yes/No）
D) 拒絶理由通知に対する応答の有無（Yes/No）
E) 審判請求の有無（Yes/No）
F) 登録料納付の有無（Yes/No）

その結果を表2-1に示す（データの詳細は附属資料VI④を参照）。

分析の結果、A)からF)の全ての選択項目において、Yesが選択された出願グループ、すなわち、潜在的価値の高い出願グループのほうが、そうでないグループに対してNEFCの平均値が大きいことが確認された。いずれの項目においても、p値は1%未満であり、Yesが選択された出願グループとNoが選択された出願グループとの間には顕著な有意差が確認された。
表2-1 各自己選択項目における出願人の自己選択結果に対するNEFCの平均値
（出典：Yasukawa and Kano (2014)）

<table>
<thead>
<tr>
<th>出願人の自己選択項目</th>
<th>分析対象</th>
<th>分析対象出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A) 海外出願の有無 (Yes/No)</td>
<td>全出願</td>
<td>36,776</td>
<td>0.15</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=7,994)</td>
<td>(N=28,782)</td>
</tr>
<tr>
<td>B) 審査請求の有無 (Yes/No)</td>
<td>全出願</td>
<td>36,776</td>
<td>0.14</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=21,153)</td>
<td>(N=15,623)</td>
</tr>
<tr>
<td>C) 早期審査請求の有無 (Yes/No)</td>
<td>審査請求された出願のみ</td>
<td>21,153</td>
<td>1.11</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=138)</td>
<td>(N=21,015)</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無 (Yes/No)</td>
<td>拒絶理由通知を受け取った出願のみ</td>
<td>17,693</td>
<td>0.23</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=12,595)</td>
<td>(N=5,098)</td>
</tr>
<tr>
<td>E) 審判請求の有無 (Yes/No)</td>
<td>拒絶査定を受けた出願のみ</td>
<td>9,419</td>
<td>0.43</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=1,937)</td>
<td>(N=7,482)</td>
</tr>
<tr>
<td>F) 登録料納付の有無 (Yes/No)</td>
<td>特許査定を受けた出願のみ</td>
<td>10,075</td>
<td>0.18</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(N=10,932)</td>
<td>(N=143)</td>
</tr>
</tbody>
</table>
次に、上記 H1 を検証するために補完的に行った分析である、分析 2－2～2－5 の結果について以下に述べる。

分析 2－2 : 分析対象を技術分野別に区分した分析
分析 2－3 : 分析対象を請求項数で区分した分析
分析 2－4 : 全出願人が日本人である特許出願に限定した「A) 海外出願の有無」の分析
分析 2－5 : パテントファミリー中の出願国数を指標とした分析

分析 2－2 : 分析対象を技術分野別に区分した分析

分析結果を表 2－2 に示す（データの詳細は附属資料 VI ⑦を参照）。
全ての技術分野（Chemistry、Electrial engineering、Instruments、及び Mechanical engineering）において、A)から F)の全ての自己選択項目について、Yes が選択された出願グループが、そうでないグループよりも大きい NEFC の平均値を有していることが観察された。
特に Chemistry の技術分野では、A)から F)の全ての自己選択項目において、Yes が選択された出願グループと No が選択された出願グループの間に有意差（p < 0.01）が確認された。Electrial engineering、Instruments、及び Mechanical engineering の技術分野では、一部の項目（Electrial engineering の F)、Instruments の F)、Mechanical engineering の C)及び F) ）において両群の間に有意差が確認できなかったが、その理由は、Yes 又は No の出願グループの件数が少なかったためであると推察される。例えば、Electrial engineering の F) では、Yes の出願グループの件数が 3,038 件であるのに対し、No のグループの件数は 18 件と、非常に少なかった。

分析 2－3 : 分析対象を請求項数で区分した分析

分析結果を表 2－3 に示す（データの詳細は附属資料 VI ⑥を参照）。
請求項数が少ない場合（請求項数 3 以下）、及び請求項数が多い場合（請求項数 4 以上）のいずれの区分においても、A)から F)の全ての自己選択項目について、Yes が選択された出願グループの方が、No が選択された出願グループよりも大きい NEFC の平均値を有していることが観察された。
なお、請求項数 3 以下の F)において両群の間に有意差が観察されなかったが、これに関しても、Yes のグループの件数が 4,693 件であるのに対し、No のグループの件数が 53 件と少ないことが原因であると考えられる。
表2-2 各項目における出願人の自己選択結果に対するNEFCの平均値（技術分野別）（出典：Yasukawa and Kano（2014））

<table>
<thead>
<tr>
<th>出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td><Chemistry></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A)</td>
<td>6,416</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(N=2,026)</td>
<td>(N=4,390)</td>
</tr>
<tr>
<td>B)</td>
<td>6,416</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(N=3,847)</td>
<td>(N=2,569)</td>
</tr>
<tr>
<td>C)</td>
<td>3,847</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>(N=36)</td>
<td>(N=3,811)</td>
</tr>
<tr>
<td>D)</td>
<td>3,192</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>(N=2,238)</td>
<td>(N=954)</td>
</tr>
<tr>
<td>E)</td>
<td>1,639</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(N=365)</td>
<td>(N=1,274)</td>
</tr>
<tr>
<td>F)</td>
<td>2,078</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(N=2,028)</td>
<td>(N=50)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td><Electrical engineering></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A)</td>
<td>11,384</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(N=2,530)</td>
<td>(N=8,854)</td>
</tr>
<tr>
<td>B)</td>
<td>11,384</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(N=6,401)</td>
<td>(N=4,983)</td>
</tr>
<tr>
<td>C)</td>
<td>6,401</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>(N=46)</td>
<td>(N=6,355)</td>
</tr>
<tr>
<td>D)</td>
<td>5,532</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(N=3,937)</td>
<td>(N=1,595)</td>
</tr>
<tr>
<td>E)</td>
<td>3,108</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(N=668)</td>
<td>(N=2,440)</td>
</tr>
<tr>
<td>F)</td>
<td>3,056</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(N=3,038)</td>
<td>(N=18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td><Mechanical engineering></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A)</td>
<td>5,873</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(N=1,366)</td>
<td>(N=4,507)</td>
</tr>
<tr>
<td>B)</td>
<td>5,873</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(N=3,190)</td>
<td>(N=2,683)</td>
</tr>
<tr>
<td>C)</td>
<td>3,190</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>(N=15)</td>
<td>(N=3,175)</td>
</tr>
<tr>
<td>D)</td>
<td>2,670</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(N=1,925)</td>
<td>(N=745)</td>
</tr>
<tr>
<td>E)</td>
<td>1,422</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>(N=298)</td>
<td>(N=1,124)</td>
</tr>
<tr>
<td>F)</td>
<td>1,661</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(N=1,639)</td>
<td>(N=22)</td>
</tr>
</tbody>
</table>

** p < .01 in the Mann-Whitney U test

A) 海外出願の有無（Yes/No）
B) 審査請求の有無（Yes/No）
C) 早期審査請求の有無（Yes/No）
D) 拒絶理由通知に対する応答の有無（Yes/No）
E) 審判請求の有無（Yes/No）
F) 登録料納付の有無（Yes/No）
表 2-3 各項目における出願人の自己選択結果に対する NEFC の平均値（請求項数別）（出典：Yasukawa and Kano（2014））

<table>
<thead>
<tr>
<th></th>
<th>出願件数</th>
<th>NEFCの平均値</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(該当出願件数)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 户外出願の有無（Yes/No）</td>
<td>16,984</td>
<td>0.09</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(N=1,512)</td>
<td>-0.14</td>
<td>(p < 2.20×10^{-16})</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>16,984</td>
<td>0.00</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(N=8,978)</td>
<td>-0.25</td>
<td>(p < 2.20×10^{-16})</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>8,978</td>
<td>0.40</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(N=36)</td>
<td>0.00</td>
<td>(p = 0.0358)</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>7,134</td>
<td>0.09</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(N=4,803)</td>
<td>-0.13</td>
<td>(p < 2.20×10^{-16})</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>4,017</td>
<td>0.27</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(N=637)</td>
<td>-0.10</td>
<td>(p = 3.82×10^{-13})</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>4,746</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>(N=4,693)</td>
<td>-0.17</td>
<td>(p = 0.144)</td>
</tr>
</tbody>
</table>

* p < .05, ** p < .01 in the Mann-Whitney U test

A) 海外出願の有無（Yes/No）
B) 審査請求の有無（Yes/No）
C) 早期審査請求の有無（Yes/No）
D) 拒絶理由通知に対する応答の有無（Yes/No）
E) 審判請求の有無（Yes/No）
F) 登録料納付の有無（Yes/No）
分析2-4：全出願人が日本人である特許出願に限定した「A）海外出願の有無」の分析

分析結果を表2-4に示す（データの詳細は附属資料VI⑦を参照）。
全出願を対象として分析を行った場合（外国の出願人を含めて分析を行った場合）と同様に、全出願人が日本人である特許出願に限定した場合にも、Yesの出願グループとNoの出願グループの間には顕著な有意差（p < 2.20×10⁻¹⁶）が観察された。
特に、全出願を分析対象とした場合には、Yesの出願グループのNEFCの平均値（0.15）と、Noの出願グループの平均値の差（0.04）は、0.19であったが、全出願人が日本人である特許出願に限定した場合には、その差は0.44と、より大きい値を示した。

分析2-5：パテントファミリー中の出願国数を指標とした分析

分析結果を図2-3に示す（データの詳細は附属資料VI⑧を参照）。
出願国数が多いグループほど、NEFCの平均値がより大きい値を示すことが確認された。
出願国数が1、すなわち、日本にのみ出願されたグループのNEFCの値は-0.04であったが、それに対し、出願国数が2のグループでは0.27、3のグループでは0.34、4のグループでは0.48、5以上のグループでは0.59であり、出願国数が増えるほど、NEFCの平均値が増加する傾向が観察された。
表2-4 全出願人が日本人である特許出願に限定した場合の「A) 海外出願の有無」におけるNEFCの平均値
（出典：Yasukawa and Kano（2014））

<table>
<thead>
<tr>
<th>出願人の自己選択項目</th>
<th>分析対象出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A) 海外出願の有無 (Yes/No)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全出願</td>
<td>36,776</td>
<td>0.15</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(N=7,994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=28,782)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本人の出願人ののみによる出願</td>
<td>32,464</td>
<td>0.40</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(N=3,859)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=28,605)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**p < .01 in the Mann-Whitney U test
図2-3 パテントファミリー中の出願国数に対するNEFCの平均値
（出典：Yasukawa and Kano（2014））
2.5.3 分析2-6，分析2-7：H2 及び H3 に関する検証結果

次いで、以下に示す仮説（H2 及び H3）を検証するために，日本における最終審査結果を指標とした分析（分析2-6：日本において特許権が成立した出願グループと，そうでない出願グループに区分），及び，特許の維持期間を指標とした分析（分析2-7：全期間において特許権を維持した出願グループと，そうでない出願グループに区分）を行った。

H2：特許が成立した出願グループの方が，成立しなかった出願グループよりも，日本における平均の審査官引用前方件数が大きい。

H3：「特許の価値」が高い出願グループの方が，低い出願グループよりも，日本における平均の審査官引用前方件数が大きい。

分析結果を表2-5に示す（データの詳細は附属資料VI⑨を参照）。

日本における最終審査結果を指標とした分析（分析2-6）においては，特許が成立した出願グループ（0.20）の方が，そうでない出願グループ（-0.11）よりも大きい NEFCの平均値を示すことが確認された。また，特許の維持期間を指標とした分析（分析2-7）においても，全期間において特許権を維持した出願グループ（0.35）が，そうでない出願グループ（0.17）よりも大きい NEFCの平均値を有することが示された。
いずれの分析においても，両群間には有意差が確認された。

表2-5 日本における最終審査結果，及び特許権の維持期間に対する NEFC の平均値
（出典：Yasukawa and Kano（2014））

<table>
<thead>
<tr>
<th>評価指標</th>
<th>分析対象出願件数</th>
<th>NEFCの平均値（該当出願件数）</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本において特許権が成立 (Yes/No)</td>
<td>36,776</td>
<td>Yes 0.20（N=12,279）</td>
<td>**（p < 2.20×10^{-16}）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No -0.11（N=24,497）</td>
<td></td>
</tr>
<tr>
<td>全期間にわたって特許権を維持 (Yes/No)</td>
<td>1,232</td>
<td>Yes 0.35（N=229）</td>
<td>**（p = 2.28×10^{3}）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 0.17（N=1,003）</td>
<td></td>
</tr>
</tbody>
</table>

** p < .01 in the Mann-Whitney U test
2．6 考察

本分析においては、以下の A)～F)のいずれの自己選択項目においても、Yes が選択された出願グループの方が、相対的に高い潜在的価値を有するとの前提で、以下の H1 を検証するための分析を行った。

H1：「特許出願の潜在的価値」が高い出願グループ（権利取得に積極的であった出願グループ）の方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

A）海外出願の有無 (Yes/No)
B）審査請求の有無 (Yes/No)
C）早期審査請求の有無 (Yes/No)
D）拒絶理由通知に対する応答の有無 (Yes/No)
E）審判請求の有無 (Yes/No)
F）登録料納付の有無 (Yes/No)

分析 2－1 の結果、上記 A)～F)の全ての自己選択項目において、Yes のグループの方が、No のグループよりも大きい NEFC の平均値を示すことが確認された（表 2－1）。この結果は、2.3 における以下の記載からも示されるように、H1 が正しいことを支持するものである。

分析 2－1 の結果、上記 A)～F)の全ての自己選択項目において、Yes のグループの方が、No のグループよりも大きい NEFC の平均値を示すことが確認された（表 2－1）。この結果は、2.3 における以下の記載からも示されるように、H1 が正しいことを支持するものである。

上述（2．2．2参照）のとおり、上記 A)～F)の自己選択項目においては、いずれも Yes が選択された出願グループの方が、No が選択された出願グループよりも平均的に高い潜在的価値を有すると判断することが可能であるから、H1 が正しいとするとき、いずれの自己選択項目においても、Yes が選択された出願グループの方が、平均の審査官引用前方件数が大きくなるはずである。

そして、補完的に行った分析である、分析 2－2（分析対象を技術分野別に区分した分析）、及び、分析 2－3（分析対象を請求項数で区分した分析）においても、分析 2－1 と同様に、全ての自己選択項目において、Yes のグループが、No のグループよりも大きい NEFC の平均値を示すことが確認された（表 2－2 及び表 2－3 参照）。これらの結果は、出願の潜在的価値の高い出願グループの方が大きい NEFC の平均値を有するとの傾向が、技術分野や出願に含まれるコンテンツの量に依存するものではないことを意味している。
また、分析2－4（全出願人が日本人である特許出願に限定した「A）海外出願の有無」の分析）、及び分析2－5（パテントファミリー中の出願国数を指標とした分析）、においても、潜在的価値が高い出願グループほど、NEFCの平均値が大きいことが確認されており（表2－4及び図2－3参照）、特に、分析2－5においては、出願国数が大きいほどNEFCの平均値が大きくなることが明確に示された。これらの結果もまた、上記H1が正しいことを強く裏付けるものである。

以上のとおり、H1を検証するために行った上記分析2－1～分析2－5の全ての結果は、H1が正しいこと強く支持している。したがって、上記分析の結果から、H1は正しい、すなわち、出願グループの潜在的価値とNEFCとは、正の相関関係を有しているとの結論を導くことができる。

また、分析2－6（日本における最終審査結果を指標とした分析）、及び分析2－7（特許の維持期間を指標とした分析）の結果から、以下のH2及びH3も正しいことが確認された（表2－5参照）。

H2：特許が成立した出願グループの方が、成立しなかった出願グループよりも、日本における平均の審査官引用前方件数が多い。
H3：「特許の価値」が高い出願グループの方が、低い出願グループよりも、日本における平均の審査官引用前方件数が多い。

このことは、上記（2．3参照）のとおり、審査官前方引用件数の、特許出願の潜在的価値の指標としての有用性を間接的に支持するものである。

以上のとおり、本分析の結果、上記H1～H3はいずれも正しいことが検証された。したがって、当初設定したRQである「日本における審査官前方引用件数は、特許出願の潜在的価値の指標として有効であるか？」に対しては、「有用である」と結論付けることができる。

1.2に記載したとおり、従来、特許が成立した出願を対象とした分析の結果、米国においては、審査官前方引用件数が特許の価値（特許の更新）に対して強い影響力を有していることが報告されており（Hegde and Sampat 2009）、また、日本においても、審査官前方引用件数が特許の重要性に対して正の説明力を持つことが報告されている（和田2010）、本分析の結果は、これらの先行研究と整合するものである。なぜなら、2.2.2に記載のとおり、特許出願段階の出願人の自己選択結果は、「特許の価値」というよりはむしろ、「特許出願の潜在的価値」の評価に基づいていると考えられるため、「特許の価値」と「特許出願の潜在的価値」は区別されるべきものであるが、一方で、2.3（特に
（H2及びH3に関する分析について）参照に記載したとおり、「特許の価値」と「特許出願の潜在的価値」は密接に関連しており、潜在的価値の高い特許出願の方が、特許が成立した後に、より価値の高い特許となる傾向を有すると予想されるためである。

これに対し、従来、審査官による前方引用の特許価値評価における有用性に疑問を呈している報告も知られてきたが（Cockburn et al. 2002; Meyer 2000; 三原 2012）（2.1参照）、本分析の結果に基づくと、審査官前方引用件数は有用な指標であると結論付けられる。審査官前方引用件数は、特許が成立した出願だけでなく、特許が成立していない特許出願も含めた出願グループ間の比較分析において、特許出願の潜在的価値の指標として使用可能である。

潜在的価値が高い特許出願ほど審査官によって引用されやすい理由としては、「潜在的価値の高い特許出願ほど、技術的価値が高く、後の出願の新規性や進歩性を否定する上で有効であるため」であると考えられる。これは、技術的な価値が低く、新規性や進歩性が認められる可能性が低い出願は、当然、特許出願の潜在的価値の評価が低くなることから、特許出願の潜在的価値の評価においては、技術的な観点からの評価が大きなウェイトを占めると考えられるためである。この点に関し、Meyer (2000)や三原 (2012)は、審査官による引用文献には、技術的背景を説明するための文献が少なからず含まれているため、よく引用される文献が必ずしも技術的に重要であるとは限らない旨指摘しているが（2.1参照）、本分析の結果からは、彼らが懸念するような点の影響は大きくないと解釈すべきである。現実に、審査官が引用する文献に、技術的に重要でない文献が含まれているとしても、出願グループ間の潜在的価値を比較するにあたっては、そのような文献による影響は相殺され、分析結果に大きな影響を与えるものではないと考えられる。

なお、本分析においては、審査官前方引用件数の値をそのまま用いるのではなく、出願年度及び技術分野に基づいて基準化した値（NEFC）を用いて、審査官前方引用件数の特許出願の潜在的価値の指標としての有用性を検証したが、本分析の結果を踏まえると、このような基準化は必ずしも必要ではないと推測される。比較を行うグループ間の出願年度や技術分野に偏りが大きい場合には、基準化を行う必要性は高いが、そうでない場合には、審査官前方引用件数の値を基準化することなく、そのままの値を「特許出願の潜在的価値」の指標として用いることも可能であると考えられる12。

2.7 小括

本章においては、特許が成立していない出願をも分析対象に加え、特許出願段階の出願

12 実際、このことは、後述の第4章での分析（表4-1及び表4-2）において裏付けられる。
人の自己選択結果に特に着目するという、これまでとは異なるアプローチにより、日本における審査官前方引用件数の価値指標としての有用性を検証するための分析を行った。本章における分析の結果、以下に示すH1～H3の仮説が正しいことが検証された。

H1：「特許出願の潜在的価値」が高い出願グループ（権利取得に積極的であった出願グループ）の方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

H2：特許が成立した出願グループの方が、成立しなかった出願グループよりも、日本における平均の審査官引用前方件数が大きい。

H3：「特許の価値」が高い出願グループの方が、低い出願グループよりも、日本における平均の審査官引用前方件数が大きい。

特に、H1を検証するための分析においては、従前から特許の価値との関連が知られてきた自己選択項目である「A）海外出願の有無」、「B）審査請求の有無」、「C）早期審査請求の有無」、「E）審判請求の有無」のみならず、これまで着目されなかった自己選択項目である「D）拒絶理由通知に対する応答の有無」及び「F）登録料納付の有無」についても分析を行い、いずれの自己選択項目においても、Yesが選択された出願グループにおいて、審査官前方引用件数の値が大きいことを検証し、そのような傾向が、技術分野や出願に含まれるコンテンツの量に依存するものではないことも確認した。

これらの結果より、出願グループの潜在的価値と審査官前方引用件数との相関関係を有しており、日本における審査官前方引用件数は、出願グループ間の比較分析において、「特許出願の潜在的価値」の指標として有用であると結論付けることができる。
第3章 日米における審査官の引用傾向の比較分析

3.1 背景及び目的

第2章での分析により、以下に示すH1～H3の仮説が正しいことが検証され、日本の特許出願の出願グループ間の比較分析において、「審査官前方引用件数」は「特許出願の潜在的価値の指標」として有用であることが確認された。

H1: 特許出願の潜在的価値の高い出願グループ（権利取得に積極的であった出願グループ）ほど、日本における平均の審査官引用前方件数が大きい。

H2: 特許が成立している出願グループほど、日本における平均の審査官引用前方件数が大きい。

H3: 特許の価値が高い出願グループほど、日本における平均の審査官引用前方件数が大きい。

しかしながら、第2章での検証における分析対象は日本特許出願のみであり、他国において、「審査官前方引用件数」が同様に有用であるとは、直ちには結論付けることができない。これは、国によって特許制度や歴史的背景などが異なっているために生じる問題であり、「審査官前方引用件数」を用いた分析に限らず、特許引用情報を用いた国際比較分析においては、このような国ごとの相違について十分留意する必要がある。

実際に、米国と欧州の比較を中心として、各国特許庁における特許引用傾向の相違を論じた報告はこれまでに多数知られている（Narin and Olivastro 1998; Mogee 2007; Michel and Bettels 2001; Meyer 2000）。

特に、米国においては、「米国特許（US Pats）」の引用件数の平均値が約10程度であり、欧州における各区分の引用件数や、米国の他の種別の引用件数（いずれも0～2程度）と比較して、突出して大きな値を有していることが示されている。
この報告においては、欧州については、サーチレポートから抽出された引用情報を用いていることから、審査官後方引用件数をカウントしていることになるが、米国については、1.2に記載のとおり、2001年までは、出願人による引用であるか審査官による引用であるかを区別することができなかったため、両者が混在した後方引用件数をカウントしてい
ことになる。すなわち、欧州と米国でカウントしている引用件数の種類が異なっている。この点については彼らも認識しており、以下のとおり、米国に出願人引用が含まれていることが、上述したような、両者の引用傾向の相違の大きな理由であると考えられることを述べている。

In the EPO system the initial prior art search is carried out by a searcher at the European Patent Office, and usually included with the published application. In the U.S. system the patent applicant and his attorney are required to present to the patent examiner a complete list of relevant prior art for inclusion on the patent front page. In the course of his search, the patent examiner then can add other references to these, and also remove them from the front page of the patent. In a U.S. patent it is not possible, without examining the patent jacket, to ascertain which references came from the examiner, or which came from the applicant, nor is there any classification of the references themselves, as there is in the European system.

The fact that in the U.S. system the patent applicant and his attorney submit prior art references to the patent examiner, who then usually includes most or all of these in the patent, may account for much of the difference.
この報告は、特定の年代の欧州及び米国の特許を網羅的に調査したものであり、等価な特許を比較したものではない点に注意が必要である。この点について、彼らは、小規模な調査を行ったところ、等価な出願同士でもその引用傾向に大きな差が確認されたことを記載しつつ、以下のように、両国における引用の傾向が相違しているのは、両者における制度の相違に起因しているとの意見を述べている。

実質的に等価な特許出願同士を比較分析した報告としては、Mogee（2007）や Goto and Motohashi（2007）の報告が挙げられる。

Mogee（2007）は、ゴミ処理分野、及び先進バッテリー分野において、欧州特許庁、米国特許庁、及び特許協力条約（Patent Cooperation Treaty：PCT）に基づく国際出願（PCT出願）、の全てを同一のパテントファミリーに含む特許出願の組合せ（ゴミ処理分野 332 件、先進バッテリー分野 324 件）を抽出し、それらの後方引用件数や前方引用件数を比較している。

その結果、ゴミ処理分野においては、米国では、後方引用件数が平均 18.68 件、前方引用件数が平均 7.02 件であったのに対し、欧州では、後方引用件数が平均 5.8 件、前方引用件数が平均 0.33 件、また、先進バッテリー分野においても、米国では、後方引用件数が平均 17.27 件、前方引用件数が平均 9.66 件であったのに対し、欧州では、後方引用件数が平均 5.07 件、前方引用件数が平均 0.56 件であり、両者の引用件数が大きく異なっていることを報告している。

この報告においては、パテントファミリーデータベースとして、INPADOC データベースが用いられている。INPADOC patent family の定義は以下のサイトを参照

http://www.epo.org/searching/essentials/patent-families/inpadoc.html
A major criticism that has been made against U.S. patents as a source for citation analysis is that the duty of candor and other factors in the U.S. patent system encourage applicants to submit large numbers of references, many of which are marginally relevant, at best, to the patent application being considered. Also, there is no categorization of citations in U.S. patents that identify those that are directly relevant to patentability and distinguish them from those that are background. It has been said that large numbers of marginally relevant citations on U.S. patents mask the citations that are directly relevant and thus dilute the effectiveness of citation analysis or distort the results.

(訳：米国特許を引用分析の情報源として用いることに対する主要な批判としては、米国の特許制度における誠実義務やその他の要素が、出願人に多くの参考文献を提出するよう奨励していることが指摘されている。このようにして提出されている参考文献の多くは、審査を受けようとする出願に対してお世辞にも関連しているとは言い難い。さらに、米国特許の引用情報には、特許性に直接関連する文献と、技術背景に該当する文献とを区別するような分類が存在しない。米国特許において、かろうじて関連しているような多くの引用情報が、直接関連するような引用情報を覆いでており、そのために引用分析の有効性が希釈されるか、その結論が変わっていると言われている。)

Goto and Motohashi (2007) is, 日米欧の三極の出願を同一のパテントファミリーに有する組合せを抽出し、抽出されたファミリー単位における引用－被引用の関係について分析した結果、米国における引用件数が日欧に比して多いことを確認している（下表参照）。この報告においても、日欧と異なり、米国では出願人引用が含まれていることが指摘されている。
Comparison of number of citing and cited references in patent families
（出典：Goto and Motohashi (2007) Table A1）

<table>
<thead>
<tr>
<th></th>
<th>Total no. of citations</th>
<th>Total no. of citing patent family</th>
<th>Average no. of citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP</td>
<td>117,700</td>
<td>77,045</td>
<td>1.53</td>
</tr>
<tr>
<td>EP</td>
<td>113,490</td>
<td>80,991</td>
<td>1.40</td>
</tr>
<tr>
<td>US</td>
<td>566,756</td>
<td>205,974</td>
<td>2.75</td>
</tr>
</tbody>
</table>

When viewed in terms of the average number of citations per patent family, the 2.75 average citations in US handily exceeds the values of 1.53 for Japan and 1.40 for Europe. Both Japanese and European citation data are limited to the smallest necessary number of citations deemed significant by patent examiners, whereas US data is supplied by patent applicants, who tend to be very broad in their selection of references cited (...).

同様に、Michel and Bettels (2001) は、下表のとおり、欧州特許庁のみならず、ドイツ特許庁やイギリス特許庁における引用件数（いずれも約 4 件）と比較して、米国特許庁における引用件数（約 13 件）が特に多いとの分析結果を示すと共に、出願人に引用文献の提出義務があることが、その主要な原因であるとの意見を述べている。
There are various reasons for the major discrepancies between Europe and the US, the main one being that the applicant, when filing a patent application in the US, is requested to supply a complete list of the state of the art. In the US, this is a legal requirement and non-compliance by the patent applicant can lead to subsequent revocation of the patent. Therefore, what happens on the part of the applicants is that, rather than running the risk of filing an incomplete list of references, they tend to quote each and every reference even if it is only remotely related to what is to be patented. Since most US examiners apparently do not bother to limit the applicants’ initial citations to those references which are really relevant in respect of patentability, this initial list tends to appear in unmodified form on the front page of most US patents.

（訳：欧州と米国の間での大きな乖離 には様々な理由があるが、主要な理由は、出願人が、米国に特許出願を提出する際に、先行技術の完全なリストを提出することを求められていることである。米国においては、これは法的な要件であり、これを特許出願人が遵守しないと、後から特許が失効し得るのである。したがって、出願人の一部は、参照文献の不完全なリストを提出するというリスクを冒すよりはむしろ、特許を受けようとしている発明に対してほんの少ししか関連していない参照文献であったとしても、それらを全て引用する傾向にある。ほとんどの米国審査官は、明らかに、出願人が当初提出した引用文献を、本当に特許性に関連する文献のみに限定するようなことをわずわざ行わないので、ほとんどの米国特許のフロントページには、出願人が提出した当初のリストがそのまま掲載される。）
これに加え、彼らは、制度の相違による影響を排除するために、各国特許庁が国際調査機関（International Searching Authority（ISA）：PCT出願において国際調査報告を作成する役割を担う機関）として作成した国際調査報告を対象とした分析も行っている。各ISAは共通のルールに基づいて国際調査を行っているため、これにより、各国審査官の引用傾向の相違を、より直接的に検証することが可能である。分析の結果、国内特許を対象とした場合とは異なり、欧州特許庁、日本特許庁、米国特許庁における引用件数はいずれも約4件であり、近似していることが示されている（下表参照）。他方、欧州特許庁においては、日本特許庁の約2倍、米国特許庁の約1.6倍以上の非特許文献が引用されていることも示されている。

<table>
<thead>
<tr>
<th>Office</th>
<th>EPO</th>
<th>JPO</th>
<th>USPTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent</td>
<td>4.12</td>
<td>4.2</td>
<td>3.78</td>
</tr>
<tr>
<td>Non-patent</td>
<td>0.96</td>
<td>0.48</td>
<td>0.59</td>
</tr>
</tbody>
</table>

さらに彼らは、同様に各国特許庁がISAとして作成した国際調査報告を対象とした分析において、各国がどのような言語の特許文献を引用しているかについても調査を行い、日本において引用される特許はほとんどが日本特許であり、米国において引用される特許の

15 ISAは、世界知的所有権機関（World Intellectual Property Organization：WIPO）によって作成された「PCT国際調査及び予備審査ガイドライン」を共通の指針として国際調査業務を行う。しかしながら、このガイドラインは法的拘束力を有するものではなく（ガイドライン1.04参照）、また、各ISAに委ねられている運用も少からず存在するため、各ISAにおける運用が一致するとは限らないのが実情である。なお、日本特許庁においては、そのようなISAに委ねられている部分をも明確化した運用指針として、「PCT国際調査及び予備審査ハンドブック」が作成、公表されている。
ほとんどの米国特許であったことも報告している。[16]（下表参照）。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPO</td>
<td>23.3%</td>
<td>5.2%</td>
<td>30.9%</td>
<td>16.6%</td>
<td>6.2%</td>
<td>13.1%</td>
<td>4.8%</td>
</tr>
<tr>
<td>JPO</td>
<td>0.8%</td>
<td>94.7%</td>
<td>1.3%</td>
<td>2.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>USPTO</td>
<td>1.0%</td>
<td>1.7%</td>
<td>90.2%</td>
<td>1.7%</td>
<td>1.0%</td>
<td>0.7%</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

これらの報告から示されるように、各国審査官の引用傾向は、各国の特許制度の不一致に起因して相違し得ると考えられるが、それに加え、制度を一致させた場合であっても、必ずしも一致するとは限らない。

この点に関し、Meyer（2000）は、欧米の特許の専門家へのインタビューに基づき、特許制度のみならず、審査官の教育なども含めた、特許の「運用（practices）」の相違が、国ごとに審査官の引用傾向が相違する原因であろうとの意見を述べると共に、欧州と米国における審査官の「運用」が、種々の点で相違していることを示している（下表参照）。

Different citation frequencies between countries in the same field have been observed. （中略）A number of interviews with patent experts suggest that nationally different patenting practices might affect citation frequencies as they are measured.

（訳：同じ技術分野においても、国によって異なる引用傾向が観察されている。）

（中略） 多くの特許の専門家に対するインタビューから、国ごとに異なる特許の運用

なお、「PCT 国際調査及び予備審査ガイドライン」には、同じパテントファミリーのメンバーが複数存在する場合には、国際出願の言語による文献を引用することが好ましい旨が記載されている（15.64 参照）。各 ISA が管轄する国際出願の言語は異なっているため、各 ISA が引用する特許文献の言語は、本来的に、ある程度相違するものである点に注意が必要である。（例えば、日本が管轄する国際出願の多くは日本語によるため、必然的に日本語文献を引用する確率が高くなる。）
用が、彼らが観察しているような引用傾向の相違に影響しているであろうことが示される。)

Differences between the European and the US examination practices

(出典: Meyer (2000) Table 4)

<table>
<thead>
<tr>
<th>Issue</th>
<th>EPO</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Someone skilled in the art", the "average specialist".</td>
<td>Specialist is well educated, so for him, a less detailed description is sufficient.</td>
<td>Specialist is less educated, so he needs a very detailed description and many references to other documents.</td>
</tr>
<tr>
<td>Searches, search reports</td>
<td>It is said, that, in many cases, the EPO report is better due to a broader access to relevant material.</td>
<td>The quality of US researches is limited by their focus on English-language documents. US examiners are under time pressure.</td>
</tr>
<tr>
<td>Education requirements of patent examiners</td>
<td>Generally higher than those of their US counterparts.</td>
<td>Generally lower than those of their European counterparts.</td>
</tr>
<tr>
<td>Claims</td>
<td>Focus on umbrella claims</td>
<td>Many claims</td>
</tr>
<tr>
<td>References</td>
<td>No duty of disclosure; Focus on relevant citations</td>
<td>Duty of disclosure: All relative documents have to be indicated by the applicant party.</td>
</tr>
</tbody>
</table>

Source: Based on expert interviews in Europe and the US

これらの先行研究を踏まえると、上述のとおり、第2章において確認された、日本における「審査官前方引用件数」の「特許出願の潜在的価値の指標」としての有用性が、米国においても同様に成立するとは、直ちには結論付けることができないことは明らかである。

特に、日本と米国における出願公開制度の導入時期の相違（2.1参照）は、審査官の「運用」に多大な影響を及ぼしている可能性がある。現在、日米両国において、審査官が引用可能な特許文献としては、特許出願後、特許成立前に公開される公開公報（patent
application publication）と、特許成立後公開される特許公報（granted patent publication）の2種類が存在するが、米国においては、2000年11月29日に出願公開制度が導入されるまでは、特許が成立しないと出願が公開されなかったため、審査官が引用可能な特許文献は特許公報のみであった（図3-1参照）。出願公開制度の導入後には、米国でも公開公報を引用することが可能となったが、このような歴史的背景の相違は、審査官の「運用」に大きく影響している可能性が高い。Meyer（2000）も言及しているように、審査官の「運用」の相違は、審査官の引用傾向に大きな影響を与えと考えられるため、日米におけるこのような歴史的背景の相違には特に着目する必要がある。

図3-1 米国における出願公開制度導入による変化
（出典：安川 聡）

17米国特許法第102条、103条、及び日本特許法第29条の規定に基づき、米国と日本いずれの国においても、審査官は、公開済みの文献であれば、特許審査の際に新規性や進歩性を否定するための引用文献として使用できる。
これまで、日米における「前方引用件数」の相違について分析した報告は非常に少なく、特に、「審査官前方引用件数」の相違について比較分析した報告は見受けられない。

上述の Meyer（2000）は、国際出願における日米の「審査官後方引用件数」を比較しているものの、「審査官前方引用件数」を比較したものではなく、また、分析対象は国際出願に限定されている。さらに、通常の国内出願における引用件数については、日本のデータが取得できなかったとして、日米比較は行われていない。

1.2において言及したとおり、Nagaoka and Walsh（2009）は、経済的価値の高い発明に関する出願の方が、前方引用件数が多いことを報告しているが、彼らはこの報告の中で、日米いずれの国においても、発明者サーベイの結果から導かれた特許の経済的価値が高い特許ほど、前方引用件数が多いことを示している（下表参照：上が日本、下が米国）。しかしながら、ここで用いられた日本における前方引用件数は、「出願人前方引用」であり、「審査官前方引用件数」をカウントしたものではない。

Bibliographic and other indicators by economic value of patent
（出典：Nagaoka and Walsh (2009) Table 1A）

<table>
<thead>
<tr>
<th>Bottom half</th>
<th>Forward citation</th>
<th>claims</th>
<th>scope in IPC</th>
<th>JP grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom half</td>
<td>1.4</td>
<td>7.9</td>
<td>2.5</td>
<td>0.35</td>
</tr>
<tr>
<td>Top half, but not top 25%</td>
<td>1.5</td>
<td>8.1</td>
<td>2.6</td>
<td>0.34</td>
</tr>
<tr>
<td>Top 25%, but not top 10%</td>
<td>1.9</td>
<td>9.5</td>
<td>2.8</td>
<td>0.36</td>
</tr>
<tr>
<td>Top 10%</td>
<td>2.9</td>
<td>9.3</td>
<td>2.7</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Bibliographic indicators by domestic economic value of patent (US)
（出典：Nagaoka and Walsh (2009) Table 1B）

<table>
<thead>
<tr>
<th>Bottom half</th>
<th>Forward Citations</th>
<th>Number of claims</th>
<th>Number of IPC codes (scope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom half</td>
<td>2.8</td>
<td>22.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Top half, but not top 25%</td>
<td>3.1</td>
<td>23.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Top 25%, but not top 10%</td>
<td>3.6</td>
<td>23.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Top 10%</td>
<td>3.7</td>
<td>24.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
上述した Goto and Motohashi（2007）は、米国と日本の前方引用件数を比較し、それらの相関係数を算出しているが（下表参照）、既に述べたとおり、日本については審査官前方引用件数を用いているのに対し、米国については、審査官引用と出願人引用が混在した前方引用件数を用いている。また、分析対象も、日米欧の三極の出願を同一のパテントファミリーに有する組合せ同士の引用－被引用情報に限定されている。

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>US</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>US</td>
<td>0.42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JP</td>
<td>0.42</td>
<td>0.36</td>
<td>-</td>
</tr>
</tbody>
</table>

Correlation of forward citation frequencies
（出典：Goto and Motohashi (2007) Table A3）

さらに、審査官が引用する特許文献の種類に着目した日米比較の研究も知られていない。Goto and Motohashi（2007）は、以下のとおり、日本における審査官前方引用については公開公報の引用が大部分であることを指摘しているが、具体的な数値は示していない。また、出願公開制度導入後が浅いため、特許公報の引用しか利用可能でなかったと述べているなど、米国と日本とを同じ土俵で比較するに至っていない。

Under the Japanese and European systems, all patent applications are published, and a large portion of citations refer to these published application. In contrast, under the US system, patent applications have not been published until recently, and cited patents are thus available only for granted patents.

（訳：日本及び欧州の制度においては、全ての特許出願は公開され、引用の多くの割合が、これらの公開された出願を参照している。これに対し、米国の制度においては、特許出願は近年まで公開されていなかったため、引用される特許は成立した特許のみが利用可能であった。）
このように、これまで、日米における「審査官前方引用件数」の相違について着目した研究は行われておらず、さらに、審査官が引用する特許引用文献の種類に着目した日米比較の研究も知られていない。

そこで、本章では、審査官前方引用件数における特許引用文献の種類にも留意しつつ、日米における審査官の引用傾向の相違を確認すると共に、その原因を明らかにすることを目的として分析を行うこととした。

3. 2 構成

上記の目的を達成するため、本章においては、以下の分析を行った。

分析3-1：日米における審査官の引用傾向の比較分析
分析3-2～分析3-4：米国における審査官の引用傾向の詳細分析
分析3-5～分析3-6：米国における審査官別の引用傾向の分析

審査官前方引用件数の日米比較を行うにあたっては、日米において実質的に等価な特許出願同士を比較することが最も妥当であると考えられる（Mogee 2007; Goto and Motohashi 2007）。

したがって、本章の分析においては、日米において、明細書に記載されている内容、及び、請求項の内容が一致している可能性が高いと考えられる特許出願の組合せを抽出し、審査官前方引用件数の日米比較を行うこととした。

また、上述（3.1参照）のとおり、審査官が特許出願を審査するにあたって公開済みの特許文献を引用する際には、特許成立前に公開される公開公報を引用する場合と、特許成立後に公開される特許公報を引用する場合があり得る。本章においては、審査官によって引用される特許文献の種類にも着目して分析を行うため、日米各国における審査官引用件数を、それぞれ以下の3種類のサイテーションタイプで集計することとした（図3-2参照）。

・ 分析対象の特許出願の公開公報又は特許公報の少なくとも一方を引用している後の出願の件数をカウント（サイテーションタイプ：XX[公開+特許]）
・ 分析対象の特許出願の公開公報を引用している後の出願の件数をカウント（サイテーションタイプ：XX[公開]）
・ 分析対象の特許出願の特許公報を引用している後の出願の件数をカウント（サイ
テーションタイプ：XX [特許]

なお、“XX”は「米国」又は「日本」を意味する。

図3-2 各サイテーションタイプにおける審査官前方引用件数のカウント方法
（出典：Yasukawa and Kano （2015））

3.3 方法（分析3-1〜3-6に共通）
3.3.1 特許情報のソース

本章の分析における特許情報は、第2章と同様、日米ともに、NRI サイバーパテントデスク2（https://www.nri-cyberpatent.co.jp/）より取得した。このデータベースからは、日米いずれの特許に関しても、特許の基礎情報（発明者、出願人、公開番号、請求項数、等）を取得できる。また、DOCDB に由来するパテントファミリー情報（3.3.2 参照）や、日本特許庁における詳細な審査経過情報（出願、特許公報）を取得可能である。本分析では、必要に応じてこれらの情報をさらに解析することにより、各出願に関する情報を取得した。
（本分析において取得した日米における各種情報の詳細については、付属資料Ⅳを参照）。また、本章では、日米における各特許出願の審査官による引用・被引用情報についても、このデータベースより取得した情報を用いた。

NRI サイバーパテントデスク 2 より取得した「日本の審査官による引用・被引用情報」には、以下の情報が収録されている。

- 拒絶理由通知において「引用文献」として引用された特許文献
- 特許査定時の「参考特許文献」として引用された特許文献

また、「米国の審査官による引用・被引用情報」には、以下の情報が収録されている。

- 米国の特許公報のトップページの"References Cited"欄において「*（アスタリスク）」が付与された文献

米国については、2012 年末までに公開された特許公報に記載された引用情報、日本については 2012 年末までに審査段階における処分（登録査定、拒絶査定、取下げ等）が確定した出願より取得した引用情報に基づいて分析を行った。

なお、分析 3-5 及び分析 3-6 においては、審査官別の分析を行ったが、これらの分析に用いた審査官名は、NRI サイバーパテントデスク 2 からは取得できなかったため、無料のオンライン特許情報データベースである「Free Patents Online」から取得した（http://www.freepatentsonline.com/）。取得した審査官名は、必要に応じて名寄せを行った（例：「○○, Will J」と「○○, William J」など）。

また、各審査官名が担当した特許案件の検索も、「Free Patents Online」において行った。

3.3.2 パテントファミリーデータベースの選択

上述（3.2 参照）のとおり、本章においては、日米において実質的に等価な特許出願同士を比較することとしたが、実際に 2 部国以上の間で特許情報を比較する際に、実質的な

18 審査・審判段階で、審査官によって追加的に引用された文献に対して「*（アスタリスク）」が付与される。なお、情報開示陳述書（Information Disclosure Statement：IDS）において出願人によって既に提出されていた文献に対しては「*（アスタリスク）」は付与されない（米国特許審査便覧(MPEP) 1302.12 参照）。
に等価、あるいは近似している出願の組み合わせを抽出するために、同一のパテントファミリーに属する出願の組み合わせを抽出することは一般的に行われている手法である (Mogee 2007; Goto and Motohashi 2007)。しかしながら、この際、用いるパテントファミリーの定義には特に注意が必要である。Martinez (2011) は、パテントファミリーの定義によって、ファミリー内の構成が異なることを検証しており、目的に応じて、適切なパテントファミリーを選択することが重要であることを指摘している。

本章の分析においては、審査官前方引用件数を比較することを目的としているため、単に同じ基礎技術に由来する出願というだけでは不十分であり、少なくとも両者の明細書に記載されている技術が実質的に同じであることが求められる。なぜなら、明細書に記載されている技術が異なれば、それらを引用する文献も必然的に異なってしまうためである。したがって、例えば、INPADOC extended families19のように、少なくとも一つの優先権基礎出願が共通するだけで同一のパテントファミリーに属するようなケースでは、同一のパテントファミリーに属する特許であっても、明細書に記載される技術に差がある可能性が高いため、上記の目的には達さない。そこで本章の分析においては、パテントファミリーデータベースとして、DOCBDBを選択した。Martinez (2011)によると、このデータベースは”Expert-validated families based on novel technical content”（新規な技術の内容に基づく専門家の評価によるファミリー）というタイプに分類され、以下のように定義される。

Applications adding new technical content to the state of the art are considered as the root of new families. Subsequent filings with matching content are added to the family

（訳：先行技術に対して新たな技術的内容を追加する出願は、新たなファミリーのルーツとなる。同様の内容の後続出願は、そのファミリーに追加される。）

すなわち、この定義に沿って設定されたパテントファミリー情報を用いれば、同一ファミリー内の特許明細書に記載されている技術は、実質的に同じ内容であると解することができる。

19 INPADOC patent family の定義は以下のサイトを参照
http://www.epo.org/searching/essentials/patent-families/inpadoc.html
3.3.3 日米において等価な特許出願を抽出するための方法

本章においては、日米両国において実質的に等価である特許出願の組み合わせを抽出するために、以下の手順を用いた。

まず、2001-2005年度の日本への特許出願（約200万件）のうち、約1%にあたる19,985件をランダムに選択した。次いで、それらのうち、米国のA1公報（公開公報）をファミリー内に含む出願を特定することにより、DOCDBにおいて同一のパテントファミリーに含まれる米国と日本の特許出願の組み合わせを抽出した（6,754件）。

上述のDOCDBの定義（3.3.2参照）を考慮すると、上記の手順により抽出された日米特許出願の組み合わせにおいては、両者の明細書に記載されている技術は実質的に同じであると考えられる。しかしながら、そうであったとしても、請求項の内容が異なれば、特許が請求されている技術内容が異なることになるため、実質的に等価な分析対象には該当しない。本分析においては、米国と日本の両出願の同一性が極めて重要な前提となっていることから、明細書に記載されている内容のみならず、請求項の内容までが一致している可能性が高いと考えられる特許出願の組み合わせのみに限定することがより望ましい。

そこで、本章においては、そのような組み合わせに限定するため、上記で抽出した日米特許出願の組み合わせのうち、以下のA.またはB.の要件に該当する組み合わせのみを抽出した。以下の条件に合致する日米特許出願の組み合わせは2,145件であった。

A. PCT出願

同一のPCT出願に由来する日米の特許出願は、通常、明細書及び請求項の内容が一致する。したがって、米国出願の国際出願番号と、日本出願の国際出願番号が一致する出願を抽出した（1,003件）。

B. 非PCT出願

A.以外の出願から、以下に示す1-3の全ての要件を満たす特許出願の組み合わせを抽出した（1,142件）。

1. 両出願の公開公報における請求項数が一致
2. 両出願の公開公報における発明者数が一致
3. 両出願の出願日の差が12月以内

20具体的には、出願番号の下二桁が“27”である出願のみを抽出した。分析を開始した日が27日であったため、“27”を選択した。

21本研究では、出願公開制度導入後の米国特許出願のみを分析対象とした。そのため、米国においてA1公報（公開公報）が発行されている出願に限定している。
請求項の内容が一致するためには当然、請求項数が一致する必要があるので、1.の要件を設定した。また、発明者数が異なれば、請求項数が一致していたとしても、その内容が異なる可能性が高いため、2.の要件を課した。さらに、両出願の出願日の差が大きい場合、分割出願等である可能性も高く、請求項数が一致していたとしても、その内容が異なる可能性が高くなるため、3.の要件を課した。なお、12月という期間は、「工業所有権の保護に関するパリ条約」（以下単に「パリ条約」という）に基づく優先権主張が可能な期間が、第一国への最初の出願の日から12月である（パリ条約第4条A(1)）を考慮したものである。優先権を主張すれば、新規性や進歩性の判断の基準日が第一国への最初の出願の日（優先日）となる（パリ条約第4条B）ため、明細書及び請求項が同一である特許出願を2か国以上に出願する場合、通常、PCT制度が利用されるか、パリ条約に基づく優先権制度が利用される。

上記の手順によって抽出された特許出願の組み合わせは、実質的に等価である可能性が非常に高いと考えられる。そのため、本章においては、上記によって抽出された特許出願の組み合わせを、等価な特許出願であるとみなして分析を行った22。

なお、本章においては、第2章とは異なり、出願年度や技術区分の相違を考慮した基準化（2.4.2参照）は行わず、審査官前方引用件数をそのままカウントした数値を用いた。しかしながら、日米において実質的に等価な特許出願の審査官前方引用件数を比較していることから、日米比較においては技術分野ごとの出願傾向の違いを考える必要は無く、また、上記のとおり、出願日の差も最大で12月であるため、切欠バイアスによる影響も最小限に止まると考えられる。

3.4 分析3-1:日米における審査官の引用傾向の比較分析
3.4.1 結果

分析3-1として、審査官の引用傾向の相違を確認するために、日米における等価な特許出願の各組合せにおいて、日米それぞれの国における以下の3種類のサイテーションタイプ（3.2図3-2参照）の審査官前方引用件数を集計した。（なお、「XX」は、「米国」又は「日本」を意味する。）

・分析対象の特許出願の公開公報を引用している後の出願の件数をカウント（XX[公開]）
・分析対象の特許出願の特許公報を引用している後の出願の件数をカウント（XX[特許]）
・分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント（XX[公開+特許]）

22「本研究の限界」(5.2)も参照。
集計結果を表3-1に示す。
この結果、日米において、審査官の引用傾向に差があることが示された。
最も注目すべき点は、日本[特許]（日本において、分析対象特許出願の特許公報を引用している後の出願の件数）の平均値（0.01）が限りなく0に近い点である。このため、日本[公開+特許]（日本において、分析対象の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数）と、日本[公開]（日本において、分析対象特許出願の公開公報を引用している後の出願の件数）の平均値は同じ値（1.07）となっている。すなわち、日本では実質的に公開公報のみが引用されており、特許公報はほとんど引用されていない。
一方、米国では、米国[公開]の方が平均値（1.01）の方が大きいものの、米国[特許]の平均値も0.70であり、日本とは異なり、特許公報が少なからず引用されていることが明らかとなった。

表3-1 日米における審査官前方引用件数の集計結果
（出典：Yasukawa and Kano（2015））

<table>
<thead>
<tr>
<th>国</th>
<th>サイテーションタイプ</th>
<th>出願件数</th>
<th>平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>米国</td>
<td>米国[公開+特許]</td>
<td></td>
<td>1.66</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>米国[公開]</td>
<td>2,145</td>
<td>1.01</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>米国[特許]</td>
<td></td>
<td>0.70</td>
<td>1.78</td>
</tr>
<tr>
<td>日本</td>
<td>日本[公開+特許]</td>
<td></td>
<td>1.07</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>日本[公開]</td>
<td>2,145</td>
<td>1.07</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>日本[特許]</td>
<td></td>
<td>0.01</td>
<td>0.10</td>
</tr>
</tbody>
</table>

3.4.2 考察

表3-1に示したとおり、日本の審査官と米国の審査官の引用傾向には相違があることが明らかとなった。
特に、日本の審査官は、実質的に公開公報しか引用していないことは注目に値する。こ

注目すべき点は、日本[特許]（日本において、分析対象特許出願の特許公報を引用している後の出願の件数）の平均値（0.01）が限りなく0に近い点である。このため、日本[公開+特許]（日本において、分析対象の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数）と、日本[公開]（日本において、分析対象特許出願の公開公報を引用している後の出願の件数）の平均値は同じ値（1.07）となっている。すなわち、日本では実質的に公開公報のみが引用されており、特許公報はほとんど引用されていない。
一方、米国では、米国[公開]の方が平均値（1.01）の方が大きいものの、米国[特許]の平均値も0.70であり、日本とは異なり、特許公報が少なからず引用されていることが明らかとなった。

表3-1 日米における審査官前方引用件数の集計結果
（出典：Yasukawa and Kano（2015））

<table>
<thead>
<tr>
<th>国</th>
<th>サイテーションタイプ</th>
<th>出願件数</th>
<th>平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>米国</td>
<td>米国[公開+特許]</td>
<td></td>
<td>1.66</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>米国[公開]</td>
<td>2,145</td>
<td>1.01</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>米国[特許]</td>
<td></td>
<td>0.70</td>
<td>1.78</td>
</tr>
<tr>
<td>日本</td>
<td>日本[公開+特許]</td>
<td></td>
<td>1.07</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>日本[公開]</td>
<td>2,145</td>
<td>1.07</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>日本[特許]</td>
<td></td>
<td>0.01</td>
<td>0.10</td>
</tr>
</tbody>
</table>

3.4.2 考察

表3-1に示したとおり、日本の審査官と米国の審査官の引用傾向には相違があることが明らかとなった。
特に、日本の審査官は、実質的に公開公報しか引用していないことは注目に値する。こ

注目すべき点は、日本[特許]（日本において、分析対象特許出願の特許公報を引用している後の出願の件数）の平均値（0.01）が限りなく0に近い点である。このため、日本[公開+特許]（日本において、分析対象の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数）と、日本[公開]（日本において、分析対象特許出願の公開公報を引用している後の出願の件数）の平均値は同じ値（1.07）となっている。すなわち、日本では実質的に公開公報のみが引用されており、特許公報はほとんど引用されていない。
一方、米国では、米国[公開]の方が平均値（1.01）の方が大きいものの、米国[特許]の平均値も0.70であり、日本とは異なり、特許公報が少なからず引用されていることが明らかとなった。

3.4.2 考察

表3-1に示したとおり、日本の審査官と米国の審査官の引用傾向には相違があることが明らかとなった。
特に、日本の審査官は、実質的に公開公報しか引用していないことは注目に値する。こ
の理由については、後述の「日本における審査官の引用傾向について」において考察を行う。

また、米国において、公開公報の方が特許公報よりも多く引用されているという結果も非常に興味深い。一般に、米国の特許公報のトップページの"References Cited"欄を確認すると、公開公報よりも特許公報の方が、米国の審査官によって多く引用されているような印象を受けるが、これは、米国の審査官が、出願公開制度導入前の特許出願を未だに多く引用していることに起因していると考えられる。出願公開制度導入前の出願については、公開公報が発行されていないことから、審査官が引用できるのは特許公報のみである。米国においては、未だにそのような引用が多いため、一見、公開公報よりも特許公報の方が多く引用されているような印象を受けると考えられる。

〈日本における審査官の引用傾向について〉

日本において、審査官が実質的に公開公報しか引用していない理由としては、大きく３つの要因が想定される。

1つめの要因は、公開公報と特許公報では、公開公報の方が早く公開されることである。新規性や進歩性を否定する根拠として審査官が引用できるのは、審査対象の特許出願の出願前に公知になっている文献のみであるため24、早く公開される文献の方が審査官に引用されやすい。

2つめの要因は、特許出願後に、補正によって新規事項を追加することが禁止されているためである25。一般に、公開公報と特許公報に記載されている内容は多くの場合において、完全には一致しない。これは、公開公報が発行された後、特許公報が発行されるまでに、審査過程において明細書や請求項に補正が加わることが多いためである。しかしながら、この補正において、記載内容を削除することは認められ得るが、新規事項を追加することは認められない。したがって、必然的に、特許公報に記載される内容は、公開公報に記載されている内容を超えることはない。換言すると、公開公報の方が、特許公報よりも記載される内容が豊富である。

さらに、3つめの要因として、公開公報はほぼ全ての特許出願について発行されるが、特許公報は特許が成立した出願でしか発行されないことが挙げられる。すなわち、公開公報の方が特許公報よりもカバレージが包括的である。

これらの3つの要因を考慮すると、公開公報の方が特許公報よりも、先に、かつ豊富な内容で公開され、加えて、そのカバレージも包括的であることが理解できる。そのため、通常は、審査官は公開公報を優先して検索・引用すれば十分であり、このことが、日本に

24 日本特許法第29条の規定に基づく。
25 日本特許法第17条の127項の規定に基づく。なお、米国においても、同様の規定が存在する（米国特許法第112条、第132条）。
おいて、審査官が実質的に公開公報しか引用していない理由であると考えられる。

上記の3つの要因は、米国においてもほぼ同様であることから、米国においても、公開公報の方が特許公報よりも引用文献として用いられやすい環境が整っている。それにもかかわらず、米国においては、上述のとおり、特許公報が少なからず引用されている。

〈日米における特許制度の相違による影響について〉

公開公報の方が特許公報よりも引用文献として利用しやすいにもかかわらず、米国の審査官が特許公報を少なからず引用する理由について考察するにあたっては、日米における特許制度の相違について着目する必要がある。なぜなら、3.1で述べたとおり、審査官のこのような引用傾向の相違は、両国の特許制度の相違に由来している可能性が非常に高いと考えられるためである（Narin and Olivastro 1998; Meyer 2000）。

一方で、日米における特許制度の相違の全てが審査官の引用傾向の相違に影響しているとは限らないことも事実である。日米の特許制度は様々な点で相違しており、例えば、米国には仮出願制度や一部継続出願制度が存在しているのに対し、日本にはそれらに明確に対応する制度は存在しない。また、米国では先発明主義（本研究の分析対象の出願の出願日時点26）であるのに対し、日本が先願主義である点などでも両国の特許制度は相違している。しかしながら、これらの相違が、米国において特許公報が少なからず引用されている点に対して大きな影響を及ぼしているとは考え難い。なぜなら、仮出願制度や一部継続出願制度については、これらの制度を利用した出願であっても、公開公報の方が特許公報より先に、豊富な内容で、より包括的に公開される点においては通常の出願と同じだからである。また、先願主義の下でも先発明主義の下でも、先行技術として利用できるようになるのが公開公報の方が先である点では一致している。したがって、上述の制度の相違については、米国審査官が公開公報よりも特許公報を優先的に引用する直接的な理由とはならないと考えられる。

一方で、審査官の引用傾向に影響を及ぼし得ると考えられる制度の相違も存在する。このような相違として、本考察においては、出願公開制度の導入時期の相違、及び審査請求制度の有無の2点に着目した。

a. 出願公開制度の導入時期の相違

出願公開制度とは、出願後一定の期間を経過した時に、審査の段階の如何にかかわらず特許出願の内容を公衆に知らせるというものである。現在、米国と日本はいずれ

26 米国では、2013年3月16日に先願主義に移行したが、本分析の分析対象出願の出願時点では先発明主義が採用されていた。
も、出願後18月で特許出願の内容を公開している点で共通している。しかしながら、日本では古くから（1971年以降）出願公開制度が導入されていたのに対し、米国では2000年によく出願公開制度が導入された点で相違している（3.1図3-1参照）。また、米国では、一定の要件を備えた出願（例えば、米国のみに対する出願）については、出願人が非公開の請求をすることによって、出願公開の対象外とすることもできる点でも日本と相違している。

この相違が審査官の引用傾向に及ぼす影響について考察する。図3-1（3.1参照）に示すとおり、米国において、出願公開制度導入前の特許出願（出願日が2000年11月28日以前の特許出願）については、公開公報は発行されていなかったため、出願公開制度が導入されるまでは、審査官は、特許公報のみを検索・引用していた。一方、出願公開制度の導入後は、審査官は、特許公報のみならず、公開公報を引用することも可能となった。上述のとおり、公開公報の方が特許公報よりも先に、かつ豊富な内容で公開されており、さらに、公開公報を検索すれば、特許公報が発行されていない出願も含めて網羅的な検索が可能となることから、審査官は本来、公開公報のみを検索・引用すれば十分であると考えられる。そのような状況であるにもかかわらず、本分析の分析対象の特許出願において、特許公報が引用されるケースが少なからず存在している理由について考察すると、一つの仮説として、「出願公開制度の導入後も、優先的に特許公報を引用し、必要な場合のみ公開公報を引用する審査官が存在している」という可能性が考えられる。出願公開制度が導入された後であっても、審査官が新規性、進歩性の判断をするためには、出願公開制度導入前の出願の特許文献、すなわち特許公報を検索・引用することが必要である。なぜなら、審査官は、公開済みの文献であれば、特許審査の際に新規性や進歩性を否定するための先行技術として使用できることから、出願公開制度導入前の出願の特許公報も、当然、先行技術として引用可能であるからである。特に、出願公開制度の導入から日が浅い場合には、公開公報はそれほど多く蓄積されていないことから、先行技術の大部分は、出願公開制度導入前の出願の特許公報となる。したがって、優先的に特許公報を検索・引用し、必要な場合のみ公開公報を検索・引用する米国審査官が存在する可能性は十分にあると考えられる。さらに、特に出願公開制度の導入から日が浅い場合には、特許公報を特に優先して引用し、公開公報をほとんど引用しない審査官が存在する可能性も否定できない。上述のとおり、米国審査官は、出願公開制度導入前は特許公報のみを検索・引用していたのであり、そのような習慣が、出願公開導入後にも維持されていた可能性は十分に考えられる。

米国特許規則1.213
b. 審査請求制度の有無

審査請求制度とは、出願から一定期間以内に審査請求されたものだけを特許庁が審査するという制度である。日本では現在、出願後３年以内 に審査請求された出願のみが審査対象となるが、米国ではこの制度は存在せず、出願されたもの全部が審査対象となる。

この相違については、直接的には審査官の引用傾向への影響はないかもしれないが、間接的に影響し得ると考えられる。これは、日本では審査請求制度が採用されているために、審査が開始されるのが米国よりも遅く、結果的に、公開公報が発行されてから特許公報が発行されるまでのタイムラグが長くなっているためである。実際、本分析の分析対象のうち、特許公報が発行された出願において、公開公報発行から特許公報発行までのタイムラグの平均値を算出すると、米国では約19月であったのに対し、日本では約45月であった。このタイムラグが長ければ長いほど、審査官にとっては、後に出された特許公報は引用できないが、先に出された公開公報であれば引用できるというケースが増える。すなわち、公開公報を優先的に検索・引用する必要性が高くなる。上述のとおり日本よりも米国の方がこのタイムラグが短いため、米国において公開公報を検索・引用する重要度は相対的に低くなり、結果として、a.で考察したような、特許公報を優先的に検索・引用するという米国審査官の行動が助長されていった可能性が考えられる。

３．5 分析3－２～分析3－４：米国における審査官の引用傾向の詳細分析

3.5.1 目的

分析3－１の結果、米国においては、日本とは異なり、公開公報のみならず特許公報が少なからず引用されていることが確認された。そして、上記考察（3.4.2参照）を踏まえると、そのような引用傾向の相違は、米国において、特許公報を優先して引用する審査官が存在していることに起因している可能性が考えられる。

そこで、この推論を踏まえ、上記引用傾向の相違の原因についての知見を得るために、以下の３種類の分析を行うこととした。

分析3－２：特許公報の発行前後における米国審査官の引用傾向に関する分析

特許公報の発行前後で、米国の審査官の引用傾向にどのような変化があるかについて分析した。

仮に、米国において特許公報を優先して引用する審査官が存在しているのであれば、米
国において特許公報が発行された特許出願は、特許公報の発行に伴い、審査官によって引用される頻度が増加すると予想される。

分析3-3：米国審査官の引用傾向の経時変化に関する分析

出願公開制度の導入からの時間の経過による影響を観察するため、特許公報及び公開公報を公開年ごとにグループ化し、それぞれの審査官前方引用件数の推移を分析した。

仮に、米国において特許公報が少なからず引用されている理由が、特許公報を優先して引用する審査官が存在していることに起因しているのであれば、出願公開制度の導入からの時間が経過するに従って、その影響は減少し、特許公報が引用される頻度は低下しその一方、公開公報が引用される頻度が高くなると予想される。なぜなら、時間の経過と共に公開公報の蓄積件数が増加するため、公開公報を検索する必要性・重要性は高くなり、それに伴い、審査官の習慣は見直されると考えられるためである。

分析3-4：「後の出願」において引用されている特許文献に関する分析

分析3-1~分析3-3における分析対象出願を引用している「後の出願」は、①「分析対象出願の特許公報を引用している出願」、②「分析対象出願の公開公報を引用している出願」、及び③「その両方を引用している出願」、の3種類に区分できる。それぞれの区分の「後の出願」において、実際にどのような種類の特許文献が引用されているかについて分析を行った。

仮に、米国において特許公報を優先して引用する審査官が存在しているのであれば、①「分析対象出願の特許公報を引用している出願」においては、分析対象出願以外についても、公開公報よりも特許公報が優先して引用されていると予想される。

3.5.2 方法

分析3-2：特許公報の発行前後における米国審査官の引用傾向に関する分析

特許公報の発行前後で、審査官の引用傾向にどのような変化があるかについて分析するため、米国における以下の3種類のサイテーションタイプ（3.2図3-2参照）の審査官前方引用件数が、特許公報の発行前後にどのように変化したかについて、年ごとのデータを取得し、その平均値の推移を確認した。

・分析対象の特許出願の公開公報を引用している後の出願の件数をカウント（米国[公開]）
・分析対象の特許出願の特許公報を引用している後の出願の件数をカウント（米国[特許]）
分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント（米国[公開+特許]）

また、分析対象を技術分野別に区分（Chemistry、Electrical engineering、Instruments、Mechanical engineering）した場合についても、同様の分析を行った。

本分析における分析対象は、分析3-1と同様の手法（3.3.3参照）を用いて抽出した母集団2,145件（2001-2005年度の日本への特許出願に対して実質的に同等な米国特許出願）のうち、米国において特許が成立し、特許公報が発行された出願（1,249件）としました。また、比較対象として、特許公報が発行されなかった出願（896件）についても分析を行った。

まず、分析対象となる出願について、以下の(a)から(f)の点に留意しつつ、年ごとの米国[公開]、米国[特許]及び米国[公開+特許]を算出した。次いで、それぞれの年において、分析対象となる全ての出願を対象として、米国[公開]、米国[特許]及び米国[公開+特許]の平均値を算出した。なお、分析対象となる出願においても、同様に分析を行った。

(a) 各分析対象の年ごとの米国[公開]、米国[特許]及び米国[公開+特許]は、それぞれの年に、その出願の公開公報、特許公報又はそのいずれかが、その出願よりも後の出願によって何回引用されたかを算出することによって求めた。
(b) 引用された年は、それぞれ、後の出願の特許公報の発行年とした。
(c) 「特許公報発行からの経過年数」は分析対象の出願の特許公報発行年を基準として算出した。例えば、特許公報発行年が2006年の場合、その出願にとっての“0”の年は2006年であり、”2”の年は2008年となる。（出願によって“0”の年は異なる）（図3-3 出願A参照）
(d) 上記の例において、仮に公開公報の発行年が2004年の場合、2003年（“-3”の年）以前の米国[公開]のデータは存在しないので、この出願は、“-3”の年以前の米国[公開]及び米国[公開+特許]の平均値を算出する際の分析対象には含まれない。（図3-3 出願A参照）
(e) さらに、公開公報発行年の米国[公開]は、1年間全体のデータではないため、この出願は、公開公報発行年（上の例の場合“1”の年）の米国[公開]及び米国[公開+特許]の平均値を算出する際の分析対象に含まれない。（同様の理由により、特許公報発行年（“0”の年）の米国[特許]に基づく平均値は算出していない。）
(f) 本分析は、2012年末まで発行された特許公報に記載された引用情報に基づいている。したがって、例えば特許公報の発行年が2010年の出願の場合、2013年（“3”の年）以

区分の詳細については附属資料I（4）を参照。

米国の引用情報は、特許公報のフロントページに記載されるため。
降のデータは存在しないので、この出願は、“3”の年以降の米国[公開]、米国[特許]及び米国[公開+特許]の平均値を算出する際の分析対象に含まれない。（図3-3 出願B参照）

図3-3 「特許公報発行からの経過年数」のサンプル
（出典: 安川聡）

分析3-3：米国審査官の引用傾向の経時変化に関する分析

時間が経過による影響を観察するためには、最も単純には、分析対象を公開年ごとにグループ化し、それらの前方引用件数を取得すればよいと考えられる。しかしながら、それだけでは、切断バイアス（2.4.2参照）の影響により、公開年が新しいグループほど前方引用件数が少なくなるため、正確に比較することができない（Hall et al. 2001）。このような切断バイアスの影響を回避する方法として、一定期間の前方引用件数のみをカウ
公報発行後の審査官前方引用件数のカウント方法
（出典：安川 聡）

引用件数のカウントは、分析対象とした出願を、特許公報又は公開公報の発行年ごとにグループ化して行った。具体的には、図3-4に示すとおり、特許公報の発行の翌年から
3年間に受けた審査官前方引用件数（米国【特許】（公開後3年間））又は公開公報の発行の翌年から3年間に受けた審査官前方引用件数（米国【公開】（公開後3年間））をカウントし、各グループにおいてその平均値を求めた。

分析3-4：「後の出願」において引用されている特許文献に関する分析

分析3-1～分析3-3における分析対象出願2,145件（3.3.3参照）のうち、米国において特許が成立し、特許公報が発行された出願（1,249件）を引用している、米国における「後の出願」2,792件（Utility Patentに限る31）を抽出し、以下の3種類に区分した。

① 分析対象出願の公開公報を引用している「後の出願」
② 分析対象出願の特許公報を引用している「後の出願」
③ 分析対象出願の公開公報と特許公報の両方を引用している「後の出願」

そして、①～③のそれぞれの区分ごとに、「後の出願」において、どのような種類の特許文献が引用されているかについて分析を行った。

引用された特許文献の種類としては、以下の3種類を分けてカウントした。

・特許公報（公開公報なし）
 2000年以前（出願公開制度導入前）に発行された特許公報（A公報）及び2001年以降に出願公開を経ず発行された特許公報（B1公報）をカウント

・特許公報（公開公報あり）
 2001年以降に出願公開を経て発行された特許公報（B2公報）をカウント

・公開公報
 2001年以降に出願公開された公開公報（A1公報）をカウント

31 Design Patent は出願公開制度の対象外（米国特許法第122条）であるため、本分析からは除外した。「後の出願」がDesign Patentの場合には、当該「後の出願」に引用される文献もDesign Patentであることが多く、必然的に公開公報よりも特許公報が引用される割合が高くなるためである。
3.5.3 結果

まず分析3-2（特許公報の発行前後における米国審査官の引用傾向に関する分析）について、分析結果を図3-5に示す（データの詳細は附属資料VI⑩Aを参照）。

米国[公開]の値は、特許公報発行の前年は0.098、発行年は0.157、発行の翌年は0.189と、特許公報発行の前後において、若干の上昇傾向を示した。その後は、0.180（発行の2年後）、0.205（発行の3年後）と、それまでに観察されていた上昇傾向は見られなくなり、比較的安定した値を示した。一方、米国[特許]の値は、特許公報発行年までは当然0であったが、特許公報発行の翌年は0.202であり、いきなり当該年の米国[公開]（0.189）よりも大きな値を示した。特許公報発行の2年後には、米国[公開]（0.180）の約1.6倍の値（0.295）を示すことが確認された。

また、米国[公開+特許]の推移に関する分析結果を図3-6Aに示す（データの詳細は附属資料VI⑩Aを参照）。米国[公開+特許]の値は、特許公報発行の前年（0.098）に対し、特許公報発行の翌年には約3.8倍の数値（0.376）、2年後には約4.6倍の数値（0.451）を示しており、特許公報の発行の前後で特に顕著に増加していることが確認された。比較対象として分析した、特許公報が発行されなかった出願（896件）についての分析結果（図3-6B参照：データの詳細は附属資料VI⑩Bを参照）においては、時間の経過に伴って増加傾向は見られるものの、図3-6Aで見られるような顕著な増加は観察されなかった。

これらの結果は、米国においては、特許公報が発行されると、審査官によって引用される頻度が顕著に増加する傾向があることを示している。

さらに、技術区分ごとに同様の分析を行った結果を図3-7及び図3-8に示す（データの詳細は附属資料VI⑪を参照）。

結果としては、程度の差は多少見られたが、いずれの技術分野においても類似の傾向が観察された。この結果は、特許公報の発行を境に、審査官によって引用される頻度が顕著に増加する傾向は、技術分野に依存しない一般的な傾向であることを意味している。
図3-5 特許公報発行前後における年ごとの米国[公開]及び米国[特許]の平均値の推移
（出典：Yasukawa and Kano（2015））
A. 「特許公報が発行された出願」における米国[公開+特許]の推移

B. 「特許公報が発行されなかった出願」における米国[公開]の推移（比較対象）
図3-7 特許公報発行前後における年ごとの米国[公開]及び米国[特許]の平均値の推移（技術区別）

（出典：Yasukawa and Kano（2015））
図3-8 特許公報発行前後における年ごとの米国[公開+特許]の平均値の推移（技術区分別）
（出典：安川 聡）
次に、分析3-3（米国審査官の引用傾向の経時変化に関する分析）の結果を図3-9に示す（データの詳細は附属資料VI⑫を参照）。

分析の結果、米国[特許]（公開後3年間）（特許公報発行後3年間の特許公報の審査官前方引用件数の平均値）は、2004年に特許公報が発行されたグループにおいて最も大きい値（1.133）を示したが、その後、年を経るにつれて、0.967（2005年）、0.861（2006年）、0.648（2007年）と減少しており、時間の経過にしたがって減少している傾向が観察された。

一方、米国[公開]（公開後3年間）（公開公報発行後3年間の特許公報の審査官前方引用件数の平均値）に関しては、2003年（0.040）、2004年（0.087）、2005年（0.267）と増加しており、特許公報ほどは顕著な傾向ではないが、全体として増加傾向が観察された。

この結果は、出願公開制度の導入からの時間が経過するに従って、特許公報が引用される頻度は低下する一方、公開公報が引用される頻度が高くなっていることを示している。
さらに、分析3-4（「後の出願」において引用されている特許文献に関する分析）の結果を表3-2に示す（データの詳細は附属資料VI⑬を参照）。

この分析では、3.5.2に記載のとおり、2,792件の「後の出願」を3種類（①「分析対象出願の公開公報を引用している「後の出願」」、②「分析対象出願の特許公報を引用している「後の出願」」、及び③「分析対象出願の公開公報と特許公報の両方を引用している「後の出願」」）に区分し、それぞれの区分において引用されている特許文献を、「特許公報（公開公報なし）」、「特許公報（公開公報あり）」、「公開公報」の3種類に分けてカウントしたが、これらのうち、特に着目すべき情報は、それぞれの区分における「特許公報（公開公報あり）」と「公開公報」の平均の審査官引用件数である。「特許公報（公開公報なし）」は、主に出願公開制度の導入前の特許出願の特許公報をカウントしたものであり、これらの出願においては公開公報が発行されていなかったため、特許公報しか引用できない。これに対し、「特許公報（公開公報あり）」及び「公開公報」は、いずれも出願公開制度導入後の出願の公報をカウントしたものであり、これらのいずれも優先的に引用しているかによって、審査官の引用傾向を把握することができる。

分析の結果、①「分析対象出願の公開公報を引用している出願」においては、「特許公報（公開公報なし）」の平均審査官引用件数が2.05であったのに対し、「公開公報」の平均

<table>
<thead>
<tr>
<th>区分</th>
<th>案件数</th>
<th>平均審査官引用件数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>合計</td>
</tr>
<tr>
<td>①分析対象出願の公開公報を引用している出願</td>
<td>1,245</td>
<td>11.82</td>
</tr>
<tr>
<td>②分析対象出願の特許公報を引用している出願</td>
<td>1,414</td>
<td>12.73</td>
</tr>
<tr>
<td>③両方を引用している出願</td>
<td>133</td>
<td>22.02</td>
</tr>
<tr>
<td>合計</td>
<td>2,792</td>
<td>12.77</td>
</tr>
</tbody>
</table>

表3-2「後の出願」において引用されている特許文献に関する分析結果（出典：安川 聡）
審査官引用件数が5.98と、「公開公報」が、「特許公報（公開公報あり）」よりも約2.9倍の頻度で審査官によって引用されていることが確認された。
他方、②「分析対象出願の特許公報を引用している出願」においては、逆に、特許公報（公開公報あり）の平均審査官引用件数が4.56と、「公開公報」（2.64）よりも約1.7倍の値を示した。
さらに、③「分析対象出願の公開公報と特許公報の両方を引用している出願」も数は多くないものの存在することが確認された。
この結果より、①のように分析対象出願の「公開公報」を引用している「後の出願」では、公開公報が積極的に引用されており、逆に、②のように分析対象出願の「特許公報」を引用している「後の出願」では、特許公報が積極的に引用されている傾向が存在することが確認された。

3.5.4 考察

上記分析3-2〜文献3-4の結果、以下のが確認された。

・米国においては、特許公報が発行されると、審査官によって引用される頻度が顕著に増加する傾向がある（分析3-2）
・出願公開制度の導入からの時間が経過するに従って、特許公報が引用される頻度は低下する一方、公開公報が引用される頻度が高くなっている（分析3-3）
・分析対象出願の「公開公報」を引用している「後の出願」では、公開公報が積極的に引用されており、逆に、分析対象出願の「特許公報」を引用している「後の出願」では、特許公報が積極的に引用されている傾向が存在する（分析3-4）

これらの結果はいずれも、米国においては、特許公報を優先して引用する審査官が存在しており、そのことが、米国において公開公報のみならず特許公報が少なかったことによる原因であるという、分析3-1の考察（3.4.2）における推論を支持するものである。
さらに、特に分析3-2の結果を踏まえると、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（以下、「特許優先引用審査官」という。）が少なかったということ可能性が考えられる。
なぜなら、そのような審査官が少なかった存在すると考えれば、特許公報が発行された直後に、米国【公開】を超える値の米国【特許】が発生すること（図3-5参照）、及び米国【公開+特許】の値が顕著な増加を示すこと（図3-6A参照）の理由を最も明確に説明することが可能であるからである。分析3-1の考察（3.4.2）においても述べたとおり、
米国審査官は、出願公開制度導入前は特許公報のみを検索・引用していたのであり、そのような習慣が、出願公開導入後にも維持されている審査官（すなわち、「特許優先引用審査官」）が少ながらず存在する可能性は十分に考えられる。

他方、特許公報の発行前であっても公開公報は引用されており、その頻度は、特許公報発行の前後においてすら上昇傾向を示している（図3-5参照）。これに加え、特許公報発行から年数が経過しても公開公報は引用され続けていること（図3-5参照）も考慮すると、「公開公報を優先的に引用する審査官」（以下、「公開優先引用審査官」という。）も、存在するものと考えられる。

しかしながら、図3-6B（特許公報が発行されなかった出願における米国公開の推移）の結果からも示されるように、通常、米国公開の値は時間の経過に伴い増加傾向を示すところ、図3-5（特許公報が発行された出願）においては、特許公報発行後には、特許公報発行までに見られた米国公開の増加傾向が見られなくなることから、「公開優先引用審査官」の一部において、特許公報の発行後には、公開公報に代えて特許公報を引用する審査官が存在する可能性は否定できない。

以上の考察をまとめると、米国において公開公報のみならず特許公報が少ながらず引用されている原因として、以下の2つの仮説を提示することができる。

H1 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する

H2 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、公開公報に代えて特許公報を引用することがある

上記仮説については、次節（3.6）において検証する。

また、上述のとおり、本分析3-3においては米国審査官の引用傾向が変化しつつあるという結果が得られたが、この結果は極めて重要な示唆を含んでいる。それは、今後、米国における引用傾向にさらなる変化が生じていく可能性である。米国においても、日本と同様、制度的に公開公報の方が特許公報よりも引用文献として用いられやすい環境が整っていることから、出願公開制度導入後の公報に限れば、特許公報を検索するメリットはほとんどなく、公開公報のみを検索すれば十分であると考えられる。一方で、既に公開されている出願公開制度導入前の特許公報は今後も永遠に先行技術として存在し続けることから、特許公報を検索・引用する必要性が消滅することはない。しかしながら、時間が経過すればするほど、公開公報が次々と蓄積されていき、それに伴い、特許公報のみを検索・引用する審査官はほとんど存在しなくなると予想される。最終的には、日本と同様に、ほとんどどの引用文献が公開公報となる可能性は十分にあり得ると考えられる。
3.6 分析3-5〜分析3-6：米国における審査官別の引用傾向の分析

3.6.1 目的

分析3-2〜分析3-4の考察（3.5.4参照）において、米国において公開公報のみならず特許公報が少なからず引用されている原因として、以下の仮説を提示した。

H1 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する

H2 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、公開公報に代えて特許公報を引用することがある

上記の仮説は、あくまでも非常に限られた米国特許（2,145件）における引用傾向の分析から導かれたものであり、この仮説を検証するためには、上記のような引用傾向を有している審査官が実際に存在していることを確認する必要がある。

そこで、上記の仮説を検証するため、以下の分析を行うこととした。

分析3-5：「特許優先引用審査官」及び「公開優先引用審査官」の候補の選定
分析3-6：選定した審査官の引用傾向の分析

3.6.2 方法

分析3-5：「特許優先引用審査官」及び「公開優先引用審査官」の候補の選定

分析3-4（「後の出願」において引用されている特許文献に関する分析）において取得した情報を利用して、「特許優先引用審査官」及び「公開優先引用審査官」の候補を選定した。

まず、分析3-4における「後の出願」（2,792件）の審査官名を取得した。
次いで、それらの審査官の中から、分析3-4において取得した情報（「特許公報（公開公報あり）」及び「公開公報」の件数）を指標として、「特許優先引用審査官」及び「公開優先引用審査官」の候補を選定した。

「特許優先引用審査官」の候補を選定するに当たっては、「特許公報（公開公報あり）」を引用しているが、「公開公報」を1件も引用していない」という条件を設定した。

同様に、「公開優先引用審査官」の候補を選定するに当たっては、「公開公報」を引用しているが、「特許公報（公開公報あり）」を1件も引用していない」という条件を設定した。
分析3－6：選定した審査官の引用傾向の分析

分析3－5において選定した各審査官について、2003年から2012年の間の10年間にそれぞれの審査官が単独のPrimary Examinerとして担当し、特許公報が発行された特許出願の全件を抽出した32。そして、抽出した各特許出願において審査官が実際に引用している特許文献を、以下の2通りの方法で分析した。

＜概要分析＞
各特許出願において審査官が引用している特許文献を以下の3通りに区分した。

・特許公報（公開公報なし）
 2000年以前（出願公開制度導入前）に発行された特許公報（A公報）及び2001年以降に出願公開を経ず発行された特許公報（B1公報）をカウント

・特許公報（公開公報あり）
 2001年以降に出願公開を経て発行された特許公報（B2公報）をカウント

・公開公報
 2001年以降に出願公開された公開公報（A1公報）をカウント

＜詳細分析＞
特許出願を審査するに当たっては、当該出願の優先権主張が無効である場合を除き、審査官は、新規性又は進歩性を否定する根拠として、審査対象出願の「優先日」（最先の優先権主張日）より前に公開された文献しか引用することができない。すなわち、審査対象出願の「優先日」において、特許公報しか公開されていない場合には、通常は、審査官は特許公報のみを引用可能であり、逆に、公開公報しか公開されていない場合には、公開公報のみを引用可能である。そして、いずれも公開されている場合には、両方を引用することが可能である。
そこで、このような前提に基づき、実際に引用された文献を以下のとおり区分した。

32 Assistant Examinerが関与している特許は分析対象から除外した。
<table>
<thead>
<tr>
<th>状況</th>
<th>引用文献の種類</th>
<th>カウントの条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>特許のみ引用可能</td>
<td>特許公報</td>
<td>引用された特許公報のうち、「審査対象出願の優先日において、公開公報が発行されていなかったもの」をカウント</td>
</tr>
<tr>
<td>両方引用可能</td>
<td>特許公報</td>
<td>引用された特許公報のうち、「審査対象出願の優先日において、公開公報が発行されていたもの」をカウント</td>
</tr>
<tr>
<td></td>
<td>公開公報</td>
<td>引用された公開公報のうち、「審査対象出願の優先日において、特許公報が発行されていたもの」をカウント</td>
</tr>
<tr>
<td>公開のみ引用可能</td>
<td>公開公報</td>
<td>引用された公開公報のうち、「審査対象出願の優先日において、特許公報が発行されていなかったもの」をカウント</td>
</tr>
<tr>
<td>その他</td>
<td>公開公報又は特許公報</td>
<td>引用された特許文献（公開公報又は特許公報）のうち、「審査対象出願の優先日において、未公開であったものの」をカウント</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※新規性又は進歩性を否定するための根拠としてではなく、単なる参考文献として引用する場合には、優先日において未公開の文献も引用可能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※優先権の主張を認めない場合にも、優先日において未公開の文献を引用可能。</td>
</tr>
</tbody>
</table>

このような区分を行うことで、公開公報と特許公報の両方を引用可能な場合に、どちらが優先して引用されているかを把握でき、また、公開公報しか発行されていない段階で、どの程度の件数を審査官が引用しているかを確認できる。

3.6.3 結果

分析3－5においては、2,792件の特許（分析3－4における「後の出願」）のうち、単独のPrimary Examinerのみが担当していた特許1,575件より、882名の米国審査官名を取得した。

この882名の内訳を表3－3に示す（データの詳細は附属資料VI⑭を参照）。この882名から、分析3－4において取得した情報（「特許公報（公開公報あり）」及び「公開公報」の件数）を利用して、「特許優先引用審査官」及び「公開優先引用審査官」の候補を以下のとおり選定した。
表3-3 「後の出願」を担当した米国審査官の内訳
（出典：安川 聡）

<table>
<thead>
<tr>
<th>審査案件数</th>
<th>審査官数</th>
<th>「公開公報」引用なし※1</th>
<th>「特許公報（公開公報あり）」引用なし※2</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計</td>
<td>882</td>
<td>175</td>
<td>103</td>
</tr>
<tr>
<td>1件</td>
<td>553</td>
<td>148</td>
<td>95</td>
</tr>
<tr>
<td>2件</td>
<td>169</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>3件</td>
<td>83</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4件以上</td>
<td>77</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

※1「公開公報」引用なし：
「特許公報（公開公報あり）」を引用しているが、「公開公報」を1件も引用していない審査官

※2「特許公報（公開公報あり）」引用なし：
「公開公報」を引用しているが、「特許公報（公開公報あり）」を1件も引用していない審査官

「特許優先引用審査官」の候補（9名）：
表3-3において「公開公報」引用なしの審査官（「特許公報（公開公報あり）」を引用しているが、「公開公報」を1件も引用していない審査官）175名のうち、審査案件数が3件以上であった9名（上記の表において赤字の審査官）を選定した。

「公開優先引用審査官」の候補（8名）：
表3-3において「特許公報（公開公報あり）」引用なしの審査官（「公開公報」を引用しているが、「特許公報（公開公報あり）」を1件も引用していない審査官）103名のうち、審査案件数が2件以上であった8名（上記の表において青字の審査官）を選定した。

次に、このようにして選定した審査官計17名の引用傾向（2003年～2012年の10年間）を分析した。まず、概要分析の結果を表3-4に示す（データの詳細は附属資料Ⅵ⑮を参照）。
表3-4 選定した米国審査官の引用傾向 －概要分析－
（出典：安川 聡）

この結果、「特許優先引用審査官」の候補については、「公開公報」の平均審査官引用件数
数が0.34と低い値であったのに対し、「特許公報（公開公報あり）」の平均審査官引用件数
は1.48であり、「特許公報（公開公報あり）」を「公開公報」よりも4倍以上の頻度で引用
していることが確認された。

反対に、「公開優先引用審査官」の候補については、「公開公報」の平均審査官引用件数
が1.98であり、「特許公報（公開公報あり）」の0.62に対して、3倍以上の値を示した。

この結果は、出願公開制度の導入後の特許文献に関して、「特許優先引用審査官」の候
補は、実際の引用傾向として、特許公報を優先して引用する傾向を有しており、また、
「公開優先引用審査官」の候補は、公開公報を優先して引用する傾向を有していることを
示している。

さらに、詳細分析の結果を表3-5に示す（データの詳細は附属資料VI⑯を参照）。
表3−5 選定した米国審査官の引用傾向 ー詳細分析ー
（出典：安川 聡）

<table>
<thead>
<tr>
<th>区分</th>
<th>案件数</th>
<th>平均審査官引用件数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>合計</td>
<td>特許のみ引用可能</td>
</tr>
<tr>
<td>特許優先引用審査官（候補）</td>
<td>6,519</td>
<td>4.61</td>
</tr>
<tr>
<td>公開優先引用審査官（候補）</td>
<td>3,811</td>
<td>5.07</td>
</tr>
<tr>
<td>合計</td>
<td>10,330</td>
<td>4.78</td>
</tr>
</tbody>
</table>

この結果、「特許優先引用審査官」の候補は、公開公報と特許公報の両方を引用可能な場合であっても、90%以上の割合（91.7%）で特許公報を引用していることが確認された。また、特許公報が発行される前の段階（公開のみ引用可能）では、平均0.1件しか公開公報を引用しておらず、「公開優先審査官」の平均0.65件に比しても、非常に低い頻度でしか公開公報を引用していないことが明らかとなった。特許公報が発行され、両方を引用可能となった場合には、平均0.56件の特許公報を引用していることから、「特許優先引用審査官」の候補は、実際に、公開公報をほとんど引用せず、特許公報を優先して引用していることが理解できる。

他方、「公開優先引用審査官」の候補については、特許公報が発行される前であっても、公開公報を平均0.65件引用しており、「特許優先引用審査官」の候補（0.10）の約6.5倍の頻度で公開公報を引用し、また、両方引用可能な場合には、半数以上の割合（50.9%）で公開公報を引用していることが示された。

さらに、表3−6に、分析を行った17名の審査官の個別の詳細分析結果を示す（データの詳細は附属資料VI⑦を参照）。表3−6では、審査官を、「両方引用可能」な場合における公開公報を引用する比率の順番に並べたが、この比率の低い方から9名が「特許優先引用審査官」の候補であった。これらの審査官は、「公開のみ引用可能」における公開公報の平均審査官引用件数の値も低く、特に、「特許優先引用審査官①」及び「特許優先引用審査官②」は、優先日前に公開された公開公報を約0.01件（100件審査して約1件）しか引用しておらず、実際に公開公報をほとんど引用していないことが確認された。
また、「公開優先引用審査官」の候補は総じて公開公報を積極的に引用する傾向を有していたが、特許公報が発行された後（両方引用可能）において公開公報を最も引用する審査官であっても、公開公報を引用する割合は78.7%であった。

このことは、「公開優先引用審査官」であっても、特許公報の発行後は、ある程度の頻度で特許公報を引用していることを示している。

111
3.6.4 考察

上記の結果、分析3-5において選定した「特許優先引用審査官」の候補は、実際に公開公報を低い頻度でしか引用しておらず、特許公報を優先して引用していることが確認された。

また、分析3-5において選定した「公開優先引用審査官」の候補については、積極的に公開公報を引用する傾向を有するが、特許公報の発行後には、ある程度の頻度で特許公報を引用していることが確認された。多くの「公開優先引用審査官」の候補は、「両方引用可能」な場合（特許公報の発行後における両方引用（対応する特許公報と公開公報の両方を引用）の値がほぼ0であったことから、特許公報の発行後には、ある程度の頻度で、それまで引用していた公開公報に代えて、特許公報を引用していると考えられる。

これらのことから、以下の仮説はいずれも正しいものであったと結論付けることができる。

H1 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する

H2 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、公開公報に代えて特許公報を引用することがある

これまでの分析結果及び考察を踏まえると、上記のような審査官の存在が、米国において、公開公報のみならず特許公報が少なからず引用されている主要な原因であると考えられる。

これらに加え、米国において公開公報のみならず特許公報が少なからず引用されているもう一つの原因として、以下の審査官の存在を挙げることができる。

・ 米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用する審査官」が存在する

例えば、上記表3-6の「公開優先引用審査官①」は、「両方引用可能」な場合に引用した特許公報（0.48）の约54%（0.26）について、対応する公開公報も同時に引用している、すなわち、公開公報に加えて、特許公報も引用していることが確認された。

このような審査官の存在も、米国において公開公報のみならず特許公報が少なからず引用されている一因となっていると考えられる。なお、この結果は、分析3-4（「後の出願」において引用されている特許文献に関する分析）における結果とも整合している。分析3-4においては、分析対象とした2,792件中133件において、特許公報と公開公報の両方が引用されていたことが示されている（3．5．3表3-2参照）。ただし、この
ような案件の割合は低い（約4.8％）ことから、上記のような審査官の数はそれほど多くないものと予想される。

以上をまとめてみると、米国において公開公報のみならず特許公報が少ながらず引用されている原因として、以下の3つを提示することができる。

A. 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する
B. 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、ある程度の頻度で、公開公報に代えて特許公報を引用する
C. 米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用する審査官」が存在する

これらA～Cはいずれも、分析3－2で確認された、「特許公報が発行された直後に、米国[公開]を超える値の米国[特許]が発生する」（図3－5参照）という現象の原因となっていると考えられる。

一方、同様に分析3－2で確認された「特許公報の発行に伴って、米国[公開+特許]の値が顕著に増加する」（3.5.3図3－6A参照）という現象については、B及びCはこの原因とはならないと考えられる。なぜなら、米国[公開+特許]の値は、「分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント」（3.2参照）したものであり、特定の「後の出願」が公開公報のみを引用している場合も、特許公報のみを引用している場合も、公開公報と特許公報の両方を引用している場合も、同様に1件としてカウントされるためである（3.4.1脚注23も参照）。審査官がそれまでに公開公報を引用しており、Bにおいては公開公報に代えて特許公報を引用するようになり、Cにおいては公開公報に加えて特許公報を引用するようになったとしても、米国[公開+特許]をカウントするに当たっては、いずれも1件とカウントされるため、米国[公開+特許]の増加に直接的には関与しない。

以上のとおり、米国審査官は、公開公報のみならず特許公報を少ながらず引用しており、上記A～Cがその原因となっていることが検証された。

3.4.2において考察したとおり、米国審査官がこのような引用傾向を有している背景として、米国において出願公開制度が導入されたのが比較的最近であるという事情に着目する必要がある。米国審査官は、出願公開制度導入前は特許公報のみを引用していたのであり、出願公開制度の導入後も、そのような過去の習慣を完全には払拭できず、その結果、特許公報を優先的に引用するという引用傾向が生じているものと推察される。
3.7 小括

本章においては、日米における等価な特許出願の組み合わせを分析することによって、
日米における審査官の引用傾向の相違点を明らかにするとともに、その原因について、詳
細な検討を行った。

まず、日米における審査官の引用傾向に関して、以下のような相違点が存在することが
確認された。

・ 日本においては、実質的に公開公報しか引用されておらず、公開公報の審査官前
方引用件数（日本[公開]）と公開公報+特許公報の審査官前方引用件数（日本[公開
+特許]）はほぼ同じ値となる。
・ 米国においては、公開公報のみならず、特許公報も少なからず引用されており、
公開公報の審査官前方引用件数（米国[公開]）よりも、公開公報+特許公報の審査
官前方引用件数（米国[公開+特許]）の値の方が大きくなる。

そして、米国審査官の引用傾向をさらに分析したところ、米国においては、以下のような現象が生じていることが明らかとなった。

・ 特許公報が発行された直後に、米国[公開]を超える値の米国[特許]が発生する
・ 特許公報の発行に伴って、米国[公開+特許]の値が顕著に増加する

上記のような現象が生じた原因について分析及び考察を行った結果、以下の A～C に示すような審査官の存在が、その原因となっていることが検証された。

A. 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査
官」（特許優先引用審査官）が存在する
B. 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在す
るが、特許公報の発行後には、ある程度の頻度で、公開公報に代えて特許公報を引
用する
C. 米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用
する審査官」が存在する

このような日米審査官の引用傾向の相違は、両国の特許制度の相違に由来している可能
性が非常に高いが、特に大きな影響を及ぼしているのは、「日米における出願公開制度の
導入時期の相違」であると考えられる。
第4章 米国における審査官前方引用件数の有用性の検証

4.1 背景及び目的

第3章での分析の結果、日米における審査官の引用傾向が、以下のとおり相違していることが明らかとなった。

・ 日本においては、実質的に公開公報しか引用されておらず、公開公報の審査官前方引用件数（日本[公開]）と公開公報+特許公報の審査官前方引用件数（日本[公開＋特許]）はほぼ同じ値となる。
・ 米国においては、公開公報のみならず、特許公報も少なからず引用されており、公開公報の審査官前方引用件数（米国[公開]）よりも、公開公報+特許公報の審査官前方引用件数（米国[公開＋特許]）の値の方が大きくなる。

また、この原因についての考察及び分析を行った結果、以下のA～Cに示すような審査官の存在が、その原因となっていることが検証された。そして、このような日米審査官の引用傾向の相違に特に大きな影響を及ぼしているのは、「日米における出願公開制度の導入時期の相違」であると考えられる。

A. 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する
B. 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、ある程度の頻度で、公開公報に代えて特許公報を引用する
C. 米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用する審査官」が存在する

これらの結果は、日米における審査官前方引用件数の研究に対して大きな影響を及ぼす可能性がある。

具体的には、これまでの先行研究からは、日米いずれの国においても、審査官前方引用件数の値が大きい特許ほど価値の高い特許であると結論付けられるところ（1.2参照）、上記の第3章における分析結果及び考察を踏まえると、米国においては、出願公開制度導入後、審査官前方引用件数の位置づけが変化している可能性が十分に考えられる。
本研究では、第2章において、以下に示すH1～H3の仮説が正しいことを検証し、日本の特許出願の出願グループ間の比較分析において、「審査官前方引用件数」が「特許出願の潜在的価値の指標」として使用可能であることを確認した。

H1: 特許出願の潜在的価値の高い出願グループ（権利取得に積極的であった出願グループ）ほど、日本における平均の審査官引用前方件数が大きい。

H2: 特許が成立している出願グループほど、日本における平均の審査官引用前方件数が大きい。

H3: 特許の価値が高い出願グループほど、日本における平均の審査官引用前方件数が大きい。

しかしながら、上述したような米国における出願公開制度の導入による影響を考慮すると、米国において「審査官前方引用件数」が同様の指標として使用可能であるとは、直ちには結論付けることができない。

先行研究を確認すると、既述（1.2参照）のとおり、そもそも、米国において、「前方引用件数」を「出願人前方引用件数」と「審査官前方引用件数」に細分化して分析を行ったものは非常に限られている。

そして、上述したHegde and Sampat（2009）（1.2参照）は、審査官前方引用件数が、特許の価値の代理変数として用いられた特許の更新情報に対して、有意な正の相関を有していたことを報告しているものの、特許公報の審査官前方引用件数のみをカウントしており、公開公報の審査官前方引用件数をカウントしていない。

出願公開制度導入後の米国において、前方引用件数を、特許公報と公開公報を区別して分析を行っている研究はほとんど確認できないが、Kuan and Cheng（2014）が、この点について報告を行っている。

彼らは、以下のとおり、過去の研究において、公開公報への引用が着目されていなかったことを指摘しつつ、公開公報への引用を考慮しないことに対する影響について分析を行っている。

Patent analysts often consider only the citations to the issued patents and overlook the citations to their PGPubs. The reasons behind this omission are not clear and, to our best knowledge, no related discussion can be found in the literature.
However, issued patents and their PGPubs are both public documents and they can be cited by applicants or examiners of subsequent patent applications individually and concurrently.

(訳：しかしながら、成立した特許及びそれらの公開公報はいずれも公式な文書であり、それらは後続の特許出願によって個別に、又は同時に、出願にも審査官にも引用され得る。)
In this study we have compared the citation counts to 137,964 U.S. utility patents with those to their PGPubs. For these patents, we find that, if the citations to their PGPubs are ignored, about 70% of the patents would be underestimated to various extents, about 36% of the patents would be significantly underestimated, and about 12% of the patents would be completely underestimated.

Ignoring PGPub citations therefore would be a risky choice by an analyst. The safest approach would be to consider a patent and its PGPub as a single entity and to combine their citations altogether.
価されることとなり、そして、12%の特許は、完全に低く評価されることとなることを思い出した。
したがって、公開公報を無視することは分析者にとって危険な選択肢である。最も安全なアプローチは、特許公報と公開公報を一つと見なし、彼らへの引用を完全に合計することであろう。)

しかしながら、彼らは、引用を審査官引用と出願人引用に区分することなく、それらが混在した前方引用件数としてカウントしている。また、公開公報への引用を無視することの危険性を指摘しているものの、公開公報への引用を考慮した場合と考慮しなかった場合の引用件数が、それぞれどのような意味を有するかについての検証は行っていない。

このように、これまで米国においては、引用される特許文献の種類（公開公報及び特許公報）にも着目して、審査官前方引用件数を分析した報告は存在せず、さらに、その有用性についての検証も行われていない。

また、3．1において述べたとおり、これまで、各国における引用傾向の相違について論じた報告は多数知られているが（Narin and Olivastro 1998; Mogee 2007; Michel and Bettels 2001; Meyer 2000）、そのような各国における引用傾向の相違が、審査官前方引用件数の有用性にどのような影響を与えるかについて検証を行っている報告は見受けられない。

そこで、本章においては、引用される特許文献の種類にも着目しつつ、以下の2点について検証することを目的として、分析を行うこととした。

① 日米における審査官の引用傾向の相違が、「審査官前方引用件数」と「特許出願の潜在的価値」との関係に、どのような影響を及ぼすか。
② 米国においても審査官前方引用件数を「特許出願の潜在的価値」の指標として使用し得るか。

4．2 前提

上記の目的を達成するため、本章においては、第3章と同様、日米における等価な特許出願の組み合わせを対象として、日米それぞれの国における審査官前方引用件数を取得し、分析を行うこととした。日米で等価な特許出願の組み合わせを分析対象とすることにより、出願内容の相違に起因する影響を排除できる。すなわち、日米における引用傾向の相違に
起因する影響を、より直接的に分析することが可能となる。
また、審査官前方引用件数と対比すべき評価指標（特許出願の潜在的価値の代理変数）
としては、各国における最終審査結果を用いることとした。2.3に記載のとおり、相対的
に潜在的価値の低い特許出願は審査過程で淘汰されやすいため、最終的に特許が出願し
た出願の方が、特許が出願しなかった出願よりも高い潜在的価値を有すると考えられる。

ここで、「特許出願の潜在的価値」に着目するにあたっては、本来、日本に対する出願
は日本における潜在的価値のみ、また、米国に対する出願は米国における潜在的価値のみ
を有すると解される点に留意が必要である。これは、「特許出願の潜在的価値」は、「将来
的に得られると期待される利益を数値化した仮想的な指標」と定義されるところ（2.2.
2参照）、特許権は属地主義であるため、各特許出願が成立した場合に利益がもたらされ
るのは、基本的にはその特許が成立した国においてのみであるためである。したがって、
米国における「特許出願の潜在的価値」の相対的な比較は、米国特許出願同士でのみ行う
ことが可能であり、また、日本における「特許出願の潜在的価値」の相対的な比較は、日
本特許出願同士でのみ行うことが可能である。

本分析においては、上述のとおり、「日米における等価な特許出願の組み合わせ」を分
析対象とすることとしたため、日米それぞれの出願同士を比較することにより、米国にお
ける「特許出願の潜在的価値」の相対的な比較と、日本における「特許出願の潜在的価値」
の相対的な比較の、両方を行うことが可能であるが、実際には、いずれの比較結果も同じ
になると考えられる。なぜなら、それぞれの組み合わせにおける日米の出願は等価である
ことから、図4-1に示すとおり、日本において潜在的価値の高い日本の特許出願と等価
な米国の特許出願は、同様に米国においても潜在的価値が高く、一方、日本において潜在
的価値の低い日本の特許出願と等価な米国の特許出願は、同様に米国においても潜在的価
値が低いとみなせるためである。

したがって、本章においては、各分析対象（日米における等価な特許出願の組み合わせ）
の潜在的価値の相対的な関係は、日米で一致するとの前提で分析を行った33。このような
前提を置くことで、例えば、分析対象となる出願を日本又は米国における最終審査結果に
よってグループ化した場合には、日本において特許が成立した出願グループは、日本にお
いて特許が成立していない出願グループよりも、日米いずれの国においても高い潜在的価
値を有しているとみなすことができ、また、米国において特許が成立した出願グループは、
米国において特許が成立していない出願グループよりも、日米いずれの国においても高い
潜在的価値を有しているとみなすことができる。

33「本研究の限界」（5.2）も参照。
本分析では、このようにして導かれた日米共通の潜在的価値と、日米それぞれの国における審査官前方引用件数との関係について検証することとした。検証の一例を図４－２に示す。以下の例においては、「日本で特許成立グループ」と「日本で特許非成立グループ」を比較している。上述のとおり、前者の方が、米国いずれの国においても高い潜在的価値を有しているとみなすことができることから、仮に、日米それぞれの国における審査官前方引用件数が「特許出願の潜在的価値」の指標として使用し得るのであれば、いずれの国においても、「日本で特許成立グループ」の方が、「日本で特許非成立グループ」よりも、審査官前方引用件数が多くなるはずである。

図４－１ 等価な特許出願の組み合わせにおける潜在的価値のモデル図
（出典：安川 聡）
4.3 基構

上記の前提（4.2参照）を踏まえ、本章においては、以下の2種類の分析を行った。

分析4-1： 日米それぞれにおける最終審査結果を指標とした分析
分析4-2： 日米における最終審査結果の組み合わせを指標とした分析

分析4-1： 日米それぞれにおける最終審査結果を指標とした分析

分析4-1においては、日米それぞれの最終審査結果に基づく2通りのグループ分けによって分析を行った。すなわち、分析対象となる等価な特許出願の組み合わせを、米国における審査結果（「米国特許成立」及び「米国特許非成立」）、あるいは、日本における審査結果（「日本特許成立」及び「日本特許非成立」）に基づいてグループ分けし、それぞれの出願グループについて、以下に示す日米それぞれ3種類のサイテーションタイプ、計6種類のサイテーションタイプ（3.2 図3-2参照）における審査官前方引用件数の平均値を算出し、それらを比較した。
米国【公開+特許】
米国において、分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント

米国【公開】
米国において、分析対象の特許出願の公開公報を引用している後の出願の件数をカウント

米国【特許】
米国において、分析対象の特許出願の特許公報を引用している後の出願の件数をカウント

日本【公開+特許】
日本において、分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント

日本【公開】
日本において、分析対象の特許出願の公開公報を引用している後の出願の件数をカウント

日本【特許】
日本において、分析対象の特許出願の特許公報を引用している後の出願の件数をカウント

相対的に潜在的価値の低い特許出願が審査過程で淘汰されやすいのは、日米いずれの国においても同様であるので、日米いずれの審査結果に基づくグループ分けにおいても、「特許成立」の出願グループの方が、「特許非成立」の出願グループよりも高い潜在的価値を有するはずである（4.2も参照）。

したがって、いずれかのサイテーションタイプの審査官前方引用件数が、出願グループの潜在的価値の指標として使用し得るというためには、いずれの国の審査結果に基づくグループ分けにおいても、「特許成立」の前方引用件数の方が、「特許非成立」よりも大きくなる必要がある。

なお、上記のとおり、本分析においては、日米それぞれの審査官前方引用件数を3種類のサイテーションタイプについて分析を行うこととしたが、実際にはこれらのうち、特許公報の前方引用件数（米国【特許】、日本【特許】）が出願グループの潜在的価値の指標となることはあり得ない。なぜなら、特許公報の前方引用件数は、それぞれの国で特許が成立しない場合には必然的に0となり、特許が成立した場合のみ0以外の数字を取り得るためである。結果的に特許が成立しなかったからといって、それらの出願グループの潜在的価値（将来的に得られると期待された利益）が0であった、と結論付けることは明らかに不適切であり、したがって、実際に出願グループの潜在的価値の指標となり得るのは、公開公報+特許公報の前方引用件数（米国【公開+特許】、日本【公開+特許】）又は、公開公報の前方引用件数（米国【公開】、日本【公開】）だけである。

分析4-2: 日米における最終審査結果の組み合わせを指標とした分析

分析4-2においては、日米における審査結果を組み合わせた4通りのグループ分けによって分析を行った。すなわち、分析対象となる等価な特許出願の組み合わせを、以下の4つのグループに区分した。
・日米両方で特許が成立した出願グループ（G1[米○日○]）
・米国のみで特許が成立した出願グループ（G2[米○日×]）
・日本のみで特許が成立した出願グループ（G3[米×日○]）
・日米両方で特許が成立していない出願グループ（G4[米×日×]）

上述のとおり、日米いずれの国においても、最終的に特許が成立した出願グループの方が、特許が成立しなかった出願グループよりも高い潜在的価値を有すると考えられることを考慮すると、4つの出願グループのうち、日米両方で特許が成立した出願グループ（G1[米○日○]）の潜在的価値が最も高く、日米両方で特許が成立していない出願グループ（G4[米×日×]）の潜在的価値が最も低くなるはずである。そして、米国のみで特許が成立した出願グループ（G2[米○日×]）と、日本のみで特許が成立した出願グループ（G3[米×日○]）については、直ちに明確な結論は出せないが、いずれも一方の国のみで特許が成立しているため、両者の潜在的価値に大きな差はないと考えられる。仮に差が生じるとすれば、日本における特許成立率が約48%であるのに対し、米国においては約58%であり34、米国の方が日本よりも特許が成立しやすい、すなわち、潜在的価値が低くても淘汰されにくいのであるから、G3[米×日○]の方が、G2[米○日×]よりも潜在的価値が高くなると考えられる。

したがって、4つの出願グループの潜在的価値を比較すると、以下A.又はB.のいずれかの相対的な関係を満たすはずである（図4－3も参照）。

このことから、実際に米国及び日本におけるいずれかのサイテーションタイプの審査官前方引用件数を、各国における出願グループの潜在的価値の指標として使用し得るというためには、上記G1からG4までの出願グループの審査官前方引用件数の値についても、上記A.又はB.のいずれかの関係を満たす必要がある。

そこで、分析4－2においては、米国及び日本において、各サイテーションタイプの審査官前方引用件数について、上記A.又はB.の関係を満たすかどうかを確認するための分析を行った。

34 後掲の表4－1に示すとおり、本分析において分析対象とした2,145件中、最終的に特許が成立しているのは、日本では1,021件（約48%）であるが、米国においては1,250件（約58%）である。
4.4 方法

本章における分析では、第3章と同様の手法を用いて、日米における等価な特許出願の組み合わせを抽出した。すなわち、3.3.1に記載のとおり、日米ともに、NRIサイバーパテントデスク2（https://www.nri-cyberpatent.co.jp/）より特許情報を取得した。そして、3.3.2に記載のとおり、パテントファミリーデータベースとしてDOCDBを選択し、3.3.3に記載の方法により、2001-2005年度の日本への特許出願19,985件を起点として、最終的に、2,145組の等価な日米特許出願の組み合わせを抽出した。35

また、分析におけるサイテーションタイプについても、第3章と同様である。すなわち、

35「本研究の限界」（5.2）も参照。
日米各国における審査官前方引用件数を、以下の3種類のサイテーションタイプで集計した（"XX"は、「米国」又は「日本」を意味する）（3.2図3-2参照）。

・分析対象の特許出願の公開公報を引用している後の出願の件数をカウント（XX[公開]）
・分析対象の特許出願の特許公報を引用している後の出願の件数をカウント（XX[特許]）
・分析対象の特許出願の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数をカウント（XX[公開+特許]）

また、群間の有意差の検定方法については、第2章と同様の手法を用いた（2.4.4参照）。

4.5結果
4.5.1分析4-1：日米それぞれにおける最終審査結果を指標とした分析

分析4-1（日米それぞれにおける最終審査結果を指標とした分析）の結果を、表4-1に示す（データの詳細は附属資料VI⑱を参照）。

米国の審査結果に基づくグループ分けでは、分析対象とした2,145件（日米で等価な特許出願の組み合わせ）の内訳は、「特許成立グループ」が1,250件（約58%）、「特許非成立グループ」が895件（約42%）であった。日米それぞれ3種類のサイテーションタイプ、計6種類のサイテーションタイプのうち、実質的に0である日本[特許]を除く5種類において、「特許成立」グループの方が「特許非成立」グループよりも大きい審査官前方引用件数の値を有することが観察された。特に米国[公開+特許]において、「特許成立グループ」の審査官前方引用件数の平均値が2.20であったのに対し、「特許非成立グループ」の平均値は0.91であり、最も顕著な差が観察された。

他方、日本の審査結果に基づくグループ分けでは、「特許成立グループ」が1,021件（約48%）、「特許非成立グループ」が1,124件（約52%）であり、6種類全てのサイテーションタイプにおいて、「特許成立」グループの方が「特許非成立」グループよりも大きい審査官前方引用件数の値を有することが観察された。

以上のとおり、日米いずれの審査結果に基づくグループ分けであっても、日本[特許]以外の全てのサイテーションタイプにおいて、「特許成立」グループの方が「特許非成立」グループよりも審査官前方引用件数が大きいことが確認され、いずれの場合にも、「特許成立」グループと「特許非成立」グループの間に有意差が観察された。
表4-1 日米それぞれにおける最終審査結果を指標とした分析結果
（出典：安川聡）

〈米国の審査結果に基づくグループ分け〉

<table>
<thead>
<tr>
<th>サイテーションタイプ</th>
<th>審査官前方引用件数の平均値</th>
<th>有意味差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>米国特許成立</td>
<td>米国特許非成立</td>
</tr>
<tr>
<td>米国[公開+特許]</td>
<td>2.07</td>
<td>1.30</td>
</tr>
<tr>
<td>米国[公開]</td>
<td>2.145</td>
<td>0.82</td>
</tr>
<tr>
<td>米国[特許]</td>
<td>0.91</td>
<td>0.51</td>
</tr>
<tr>
<td>日本[公開+特許]</td>
<td>1.43</td>
<td>0.75</td>
</tr>
<tr>
<td>日本[公開]</td>
<td>2.145</td>
<td>0.75</td>
</tr>
<tr>
<td>日本[特許]</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

** p < .01 in the Mann-Whitney U test
4. 5. 2 分析4-2：日米における最終審査結果の組み合わせを指標とした分析

分析4-2（日米における最終審査結果の組み合わせを指標とした分析）の結果を表4-2に示す（データの詳細は附属資料VI⑮を参照）。
審査官前方引用件数の値は、米国[公開+特許]においては、G1[米○日〇]（2.34）、G2[米〇日×]（1.98）、G3[米×日〇]（1.24）、G4[米×日×]（0.78）に順番で高い値を示した。すなわち、米国[公開+特許]は、4.3において示した、4つの出願グループの相対的価値の関係（以下に示すA.又はB.の関係）を有しておらず、G2とG3の間には有意差（p = 2.76 × 10^-5）が存在することも確認された。
米国[公開]についても、以下のA.又はB.の関係を満たす結果は得られなかった。審査官前方引用件数の値は、G3[米×日〇]（1.24）が最も大きい値を示し、次いで、G1[米〇日〇]（1.22）、G2[米〇日×]（0.88）、G4[米×日×]（0.78）の順番であった。
これに対し、日本においては、日本[公開+特許]及び日本[公開]の両者が、A.の関係を満たすことが確認された。審査官前方引用件数の値は、G1[米〇日〇]（1.49、1.48）、G3[米×日〇]（1.22、1.20）、G2[米〇日×]（共に0.85）、G4[米×日×]（共に0.67）の順番であった。
図4-4に、4つの出願グループの相対的な潜在的価値と、今回得られた各サイテーションタイプにおける審査官前方引用件数との関係を図示した。

表4-2 日米における最終審査結果の組み合わせによる分析結果
（出典：安川 聡）

<table>
<thead>
<tr>
<th>サイテーションタイプ</th>
<th>審査官前方引用件数の平均値</th>
<th>審査官前方引用件数の平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>米国特許成立</td>
<td>日本特許成立</td>
</tr>
<tr>
<td></td>
<td>(N = 767)</td>
<td>(N = 483)</td>
</tr>
<tr>
<td>米国[公開+特許]</td>
<td>2.34</td>
<td>1.98</td>
</tr>
<tr>
<td>米国[公開]</td>
<td>2,145</td>
<td>1.22</td>
</tr>
<tr>
<td>米国[特許]</td>
<td>1.22</td>
<td>1.20</td>
</tr>
<tr>
<td>日本[公開+特許]</td>
<td>1.49</td>
<td>0.85</td>
</tr>
<tr>
<td>日本[公開]</td>
<td>2,145</td>
<td>1.48</td>
</tr>
<tr>
<td>日本[特許]</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>サイテーションタイプ</th>
<th>G1</th>
<th>G1</th>
<th>G1</th>
<th>G2</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
<td>G3</td>
<td>G4</td>
<td>G4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 0.433)</td>
<td>(p = 0.143)</td>
<td>(p = 0.970)</td>
<td>(p < 2.20x10^{-16})</td>
<td>(p = 9.11x10^{-6})</td>
<td>(p = 0.0790)</td>
</tr>
<tr>
<td>(p = 1.00)</td>
<td>(p = 0.323)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 1.013)</td>
<td>(p = 0.0113)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.604)</td>
<td>(p = 0.0110)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.0503)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.503)</td>
<td>(p = 0.0110)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 4.51x10^{-13})</td>
<td>(p = 0.110)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.323)</td>
<td>(p = 0.0503)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.604)</td>
<td>(p = 0.086)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.604)</td>
<td>(p = 0.0110)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.032)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.110)</td>
<td>(p = 0.0110)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.032)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.0113)</td>
<td>(p = 0.0953)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.032)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.0503)</td>
<td>(p = 0.0953)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.032)</td>
<td></td>
</tr>
<tr>
<td>(p = 0.032)</td>
<td>(p = 0.0953)</td>
<td>(p = 2.20x10^{-6})</td>
<td>(p = 0.0953)</td>
<td>(p = 0.032)</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05, ** p < 0.01 in the Steel-Dwass multiple comparison test
図 4-4 4つの出願グループの相対的価値果と審査官前方引用件数との関係
（出典：安川 聡）
第4章 考察

4.6 日本における審査官前方引用件数の有用性について

まず、日本についての分析結果に着目すると、分析4-1、分析4-2のいずれにおいても、潜在的価値が高いと考えられる出願グループほど、審査官前方引用件数が大きいという結果が得られた。この結果は、2章における分析結果と整合しており、第2章において示された、「日本における審査官前方引用件数が、出願グループ間の比較分析において、「特許出願の潜在的価値」の指標として有用である」との結論を裏付けるものである。

また、本分析においては、審査官前方引用件数を基準化することなく分析を行ったが、潜在的価値が高いと考えられる出願グループほど、審査官前方引用件数が大きいという結果が得られた。この結果は、2.6において示した「比較を行うグループ間の出願年度や技術分野に偏りが大きい場合には、基準化を行う必要性は高いが、そうでない場合には、審査官前方引用件数の値を基準化することなく、そのままの値を「特許出願の潜在的価値」の指標として用いることが可能であると考えられる」との考察を裏付けるものである。本分析の分析対象はランダム抽出されたものであるため、技術分野に大きな偏りはないと考えられ、かつ、分析対象の出願の出願年度も2001-2005年度と比較的狭い範囲である。このような場合には、審査官前方引用件数を特許出願の潜在的価値の指標として使用するに当たり、基準化する必要は必ずしもないものと考察される。

次に、米国についての分析結果に着目すると、特に分析4-2において、特許出願の潜在的価値の関係と、米国における審査官前方引用件数の値が、相関していないことが確認された。

本分析においては、日米で等価な特許出願の組み合わせを分析対象としていることから、日米の審査官前方引用件数においてこのような差が確認されたのは、3章において確認したような日米における引用傾向の相違に直接的に起因していると考えられる。そこで、分析4-2に示すような結果が得られた理由について、審査官の引用傾向の相違に着目して考察を行う。

第2章において有用性が検証されたNEFCは、日本[公開+特許]を基準化した値に相当する。なお、第2章の分析に用いられたIIPパテントデータベースにおいては、公開公報が引用されたか、特許公報が引用されたかを区別することはできない。付属資料Ⅱの脚注42も参照)
4.6.2 加算バイアス及び置換バイアス

日米における引用傾向の相違に関しては、第3章において、日本においては実質的に公開公報のみが引用されているのに対し、米国においては特許公報が少なからず引用されていることを明らかにするとともに、以下のA～Cに示すような審査官の存在が、その原因となっていることを検証した。

A. 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する
B. 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、ある程度の頻度で、公開公報に代えて特許公報を引用する
C. 米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用する審査官」が存在する

以下、分析4-2において、図4-4に示したような相違が日米間に生じていることに対しても、このような引用傾向の相違がどのように影響しているかについて考察する。

まず、米国の公開公報と特許公報の両方を審査官前方引用件数としてカウントしているサイテーションタイプである米国[公開+特許]（図4-4参照）において、本来潜在的価値が同等であるか、または高いはずでG3[米×日○]よりも、G2[米○日×]の方が有意に大きい値を示した理由について検討する。

されたのだと理解できる（以下、このような「加算」に起因するバイアスを、「加算バイアス」という）。このように、日米における引用傾向の相違に起因して、米国においては「加算バイアス」が生じていると考えられる（図4－5参照）。

このような「加算バイアス」の存在は、分析3－2（特許公報の発行前後における米国審査官の引用傾向に関する分析）における図3－6（3.5.3参照）からも確認できる。「特許公報が発行された出願」（図3－6A）では、特許公報の発行に伴って、米国[公開+特許]の値が顕著に増加することが確認されるのに対し、「特許公報が発行されなかった出願」（図3－6B）では、米国[公開]の値（特許公報が発行されないため、この値は米国[公開+特許]と等しくなる）について、そのような増加は見られない。すなわち、「特許公報が発行された出願」においてのみ、特許公報の発行に伴って、米国[公開+特許]の値が「加算」されていることが理解できる。

図4－5 加算バイアスのモデル図
（出典：安川聡）

次に、米国の公開公報の審査官前方引用件数のみをカウントしているサイテーションタイプである米国[公開]（図4－4②参照）において、本来最も潜在的価値が高いはずであるG1[米○日○]が、G3[米×日○]よりも小さい値を示した理由について検討する。
米国で特許が成立しなかった出願グループ（G3{米×日○}、G4{米×日×}）では、特許公報が発行されていないため、米国の審査官は公開公報のみを引用し得るのに対して、米国で特許が成立した出願グループ（G1{米○日○}、G2{米○日×}）では、特許公報と公開公報の両方を引用することが可能である。ここで、米国においては、「特許公報の発行後に、公開公報に代えて特許公報を引用する審査官」（上記B参照）が存在していることを考慮すると、米国[公開]において、G1{米○日○}よりもG3{米×日○}の方が大きい値を示した理由を理解することができる。すなわち、米国[公開]のように、公開公報の審査官前方引用件数のみをカウントするサイテーションタイプにおいては、「特許公報の発行後に、公開公報に代えて特許公報を引用する審査官」の存在に起因して、米国で特許が成立した出願グループ（＝特許公報が発行された出願グループ（G1{米○日○}、G2{米○日×}））において、公開公報の代わりに特許公報が引用され、その結果、審査官前方引用件数が減少したのだと理解することができる（以下、引用される文献のこのような「置換」に起因するバイアスを、「置換バイアス」という）。このように、日米における引用傾向の相違に起因して、米国においては「置換バイアス」が生じていると考えられる（図4-6も参照）。このような「置換バイアス」の存在も、分析3-2（特許公報の発行前後における米国審査官の引用傾向に関する分析）の結果において確認できる。「特許公報が発行されなかった出願」（3.5.3図3-6B）においては、米国[公開]の値は時間の経過に伴い増加傾向を示すのに対し、「特許公報が発行された出願」（図3-5）においては、特許公報発行後には、特許公報発行までに見られた米国[公開]の増加傾向が見られなくなるが、これは、上記「置換バイアス」の影響によるものであると考えられる。
4.6.3 加算バイアス及び置換バイアスのモデル図

上記2種類のバイアスを組み合わせたモデル図を図4-7に示す。いずれのバイアスについても、影響を受けるのは、米国で特許公報が発行された出願グループ（G1[米×日○]、G2[米○日×]）のみである。これらの出願グループは、米国[公開+特許]においては、公開公報と特許公報の両方をカウントしていることから、置換バイアスの影響は受けないが、特許公報をカウントしているため、加算バイアスの影響を受ける。一方、米国[公開]においては、特許公報をカウントしないため、加算バイアスの影響は受けないが、置換バイアスの影響を受けることになる。

図4-7からも明らかのように、両バイアスの影響は均一ではなく、置換バイアスによる影響よりも、加算バイアスによる影響の方がより大きいと考えられる。例えば、本来、潜在的価値がほぼ同程度であると考えられるG2[米○日×]とG3[米×日○]を比較すると、図4-7に示す通り、置換バイアスが発生するサイテーションタイプである米国[公開]
（米国の公開公報の審査官前方引用件数のみをカウント）では、両者の間に有意差が検出されていない（p = 0.323）のに対し、加算バイアスが発生するサイテーションタイプであ
る米国[公開+特許]（特許公報及び公開公報の前方引用件数をカウント）においては、有意差が生じている（p = 2.76×10^{-5})。

図4-7 加算バイアス及び置換バイアスのモデル図
（出典：安川 聡)

4.6.4 米国における審査官前方引用件数の有用性

これまでの分析結果及び考察を踏まえて、米国における審査官前方引用件数である米国[公開+特許]又は米国[公開]を、「特許出願の潜在的価値」の指標として使用し得るか否かについて検討すると、分析4-1（日米それぞれにおける最終審査結果を指標とした分析）で示したとおり、日米いずれの審査結果に基づくグループ分けであっても、米国[公開]、米国[公開+特許]はいずれも「特許成立」グループにおいて、「特許非成立」グループよ
りも大きい値を示していることから（4.5.1参照）、これらの値は、ある程度の妥当性で「特許出願の潜在的価値」の指標として使用することが可能であると考えられる。

しかしながら、出願公開制度の導入に伴い、上述のような「加算バイアス」や「置換バイアス」が生じており、その結果、そのような妥当性は低下していると考えられる。したがって、米国における審査官前方引用件数（米国[公開+特許及び米国[公開]）を「特許出願の潜在的価値」の指標として使用するに当たっては、十分に注意が必要である。

また、上述（1.2参照）のとおり、審査官前方引用件数は「特許の価値」の指標として広く用いられているが、本研究の結果を踏まえると、出願公開制度の導入後に、審査官前方引用件数を「特許の価値」の指標として用いるに当たっても注意が必要である。特許が成立した出願のみを分析対象とする場合には、上述した「加算バイアス」や「置換バイアス」による影響を考慮する必要はないが、米国においては「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在していることから、審査官前方引用件数をカウントするに当たっては、「特許公報」のみならず、「公開公報」の前方引用件数もカウントすることが必要である。そして、「公開公報」の前方引用件数もカウントすると、公開公報」と「特許公報」の両方の切断バイアス（2.4.2参照）を考慮する必要がある。これは、「特許公報」が発行された年が同じであっても、「公開公報」が発行された年が大きく異なれば、その前方引用件数にバイアスが生じる恐れがあるし、逆に、「公開公報」が発行された年が同じであっても、「特許公報」が発行された年が大きく異なれば、同様のバイアスが生じる恐れがあるためである。

このような問題への対策としては、例えば、「特許公報」の発行から一定の期間に限定して、「特許公報」及び「公開公報」両方の審査官前方引用件数をカウントして比較する、という手法が考えられる。

4.7 小括

本章においては、以下の2点について検証することを目的として分析を行った。

① 日米における審査官の引用傾向の相違が、審査官前方引用件数と「特許出願の潜在的価値」との関係に、どのような影響を及ぼすか。
② 米国においても審査官前方引用件数を「特許出願の潜在的価値」との指標として使用し得るか。

分析の結果、①に関し、日米における審査官の引用傾向の相違に起因して、米国においては、以下のような2種類のバイアスが生じていることが示された。
特許が出願された出願グループの方が、公開公報+特許公報の審査官前方引用件数（米国【公開+特許】）の値が増加する（加算バイアス）

特許が出願された出願グループの方が、公開公報の審査官前方引用件数（米国【公開】）が減少する（置換バイアス）

また、②に関しては、米国における審査官前方引用件数（米国【公開+特許】及び米国【公開】）は、ある程度の妥当性で、「特許出願の潜在的価値」の指標として使用することが可能であると考えられるが、上記のバイアスの影響により、その妥当性が低下していると考えられる点に注意が必要であるとの結論が得られた。
第5章 総括

5.1 本研究の成果

本研究では、特に「審査官前方引用件数」に着目して種々の分析・考察を行い、多くの新たな知見を得た。

まず、2章では、日本において、「審査官前方引用件数」を特許出願の潜在的価値の指標として使用可能であることを明らかにした点は大きな成果である。従来、「前方引用件数」が有用であることを検証した報告が多数存在しており、多くの研究において、「前方引用件数」が「特許の価値」の指標として使用されているにも関わらず、依然として、「前方引用件数」の有用性について疑問を呈する報告が少なからず存在していた。これは、これまでに検証が行われたそれぞれの報告においては、特許権の維持期間や、発明者自身による重要度評価など、特定の指標のみが前方引用件数との比較対象として用いられており、多面的な検証が行われていなかったため、必ずしも十分な説得力を持っていなかったことが一因であると考えられる。これに対して本研究では、これまでとは異なるアプローチ、すなわち、特許が成否しない出願をも分析対象に加え、特許出願段階における出願人の自己選択結果を指標とするアプローチを採用し、これまで着目されてきた自己選択項目（拒絶理由通知に対する応答の有無、登録料納付の有無）をも含めた複数の観点から分析を行うことにより、十分に説得力のある結論を示すことに成功した。

これまで、特許出願段階の出願人の自己選択結果を指標として、審査官前方引用件数の有用性を検証した研究はなく、特に、審査官前方引用件数と特許出願段階の出願人の自己選択結果との直接的な関係を、多面的な観点から分析した研究は知られていなかった。特許出願段階における出願人の自己選択結果と、審査官前方引用件数との相関を直接的に検証したのは本研究が初めてであり、本研究による大きな成果である。

また、3章では、日本の審査官は実質的に公開公報のみを引用し、特許公報を引用しないのに対し、米国審査官は公開公報のみならず特許公報も少なからず引用するという、日本と米国の審査官の引用傾向の相違を確認すると共に、そのような引用傾向の相違の原因として、以下のA〜Cに示すような審査官が存在していることを明らかにした。

A. 米国には、「公開公報をほとんど引用せず、特許公報を特に優先して引用する審査官」（特許優先引用審査官）が存在する
B. 米国には、「公開公報を優先的に引用する審査官」（公開優先引用審査官）が存在するが、特許公報の発行後には、ある程度の頻度で、公開公報に代えて特許公報を引
用する

C．米国には、「特許公報の発行後には、公開公報に加えて、特許公報を追加して引用する審査官」が存在する

このように、米国において、特許公報と公開公報の引用傾向が審査官によって大きく異なっていることを検証した研究は本研究が初めてであり、本研究における重要な成果である。

さらに、4章では、上述したような引用傾向の相違に起因して、米国において2種類のバイアス（「加算バイアス」及び「置換バイアス」）が生じていることも示した。このようなバイアスに言及した研究はこれまで知られておらず、本研究によって初めて示されたものである。そして、このようなバイアスの存在を示したことは非常に重要な成果であり、今後の特許引用情報に関する多くの研究に対して大きな影響を与え得ると考える。

今後、米国の引用情報を用いて研究を行うにあたっては、特許公報と公開公報の引用傾向が審査官によって大きく異なっていること、及び、上記のようなバイアスが存在していることについて、十分に留意する必要がある。

さらに、本研究においては、出願公開制度の導入に伴い、米国の審査官の引用傾向が変化しつつあることも明らかにしたが、これもまた本研究によって初めて明らかとなったことであり、重要な知見である。本研究における考察を踏まえると、今後、時間の経過に伴って、米国の審査官の引用傾向が日本の審査官の引用傾向に近づいていき、最終的に日本における引用傾向の相違がほぼ解消する可能性も想定される。その場合には、上記のバイアスも消減すると考えられることから、このような時間経過による影響についても、今後の研究においては着目する必要がある。

これらの新たな知見に加え、本研究は、2以上の国において、実質的に等価な出願を抽出する新たな方法を提供している点でも、今後の研究に対して大きく貢献するものである。本研究においては、パテントファミリーの種類や出願経路について考慮した上で、請求項数や発明者数などの間接的な特許情報をも利用して、実質的に等価な出願を抽出する新たな方法を提供した（3.3.3参照）。後述（「5.2 本研究の限界」参照）のとおり、この方法には限界があるものの、効率的かつ合理的に、実質的に等価な出願の組み合わせを抽出することが可能であることから、ラージスケールの分析において、特に有用な手法であると考えられる。

このような、本研究においては多くの重要な成果が得られた。特に日本における審査官前方引用件数に関して多くの新たな知見が示されたことは、これまで、審査官前方引用件数に特に着目した研究が日本いずれの国においてもほとんど行われていなかったことを考
慮すると、非常に大きな成果であり、本研究は、極めて重要な意義を有している。

5. 2 本研究の限界

上述のとおり、本研究は極めて重要な意義を有しているが、一方で、本分析にはいくつかの限界が存在している。

一つ目の限界は、本研究の第3章及び第4章において用いた「日米において等価な特許出願を抽出するための方法」（3. 3. 3参照）によって抽出された組み合わせにおける日米両国に対する特許出願は、必ずしも等価であるとは限らない、という点である。これは、この方法においては、実際に特許請求の範囲の内容を確認・比較しているわけではなく、あくまでも請求項数や発明者数などの間接的な特許情報に基づいて等価な特許出願である可能性が高い特許出願の組み合わせを抽出しているに過ぎないためである。

しかしながら、真に等価な出願の組み合わせを抽出するためには、そのような間接的な特許情報に依存するのではなく、実際に各出願の内容を確認することが必要であるが、本研究のような統計学的処理を前提とするラージスケールの研究においては、そのような方法は現実的ではない。そして、等価でない組み合わせが抽出される可能性は否定できないものの、それはあくまで可能性を述べているだけであって、現実にはそのようなノイズはそれほど多くないと考えられる。特に、本研究において抽出された出願の組み合わせは、少なくともDOCDB上で同一のパテントファミリーに属しており、両国への出願の明細書が同一であることは、専門家の評価に基づいて担保されている。したがって、請求項の内容が完全に同一でない組み合わせが多少混入していたとしても、本研究の結論にはほとんど影響を及ぼさないと考えられる。

二つ目の限界は、本研究の第3章における分析（日米における審査官の引用傾向の比較分析）や、第4章における分析（米国における審査官前方引用件数の有用性の検証）においては、上記の「等価な特許出願の組み合わせを抽出するための方法」によって抽出された、ごく限られた出願（2,145件）のみを対象としているという点である。すなわち、日米の特許出願全体のうち、限られたごく一部の出願に限定して分析を行っていることから、選択バイアスが存在している可能性が否定できない。

特に、各国の特許出願全体をみた場合、内国出願人による出願の割合は、米国では約50%、日本では約80%程度であるところ（日本特許庁2015 A: 第1部第1章参照）、上記2,145件におけるその割合は、米国については12.9%（277件）、日本については46.4%（996件）となっており、通常の割合と大きく異なっている点に注意が必要である。このような出願人国籍の構成の相違は、例えば、特許査定率などに影響を及ぼしている恐れがある。このように考える理由としては、日米において引用される特許のほとんどが、各国における内国特許であること（Michel and Bettels 2001）（3. 1参照）、各国特許庁にお
ける記載要件の判断基準は完全には一致していないところ、内国出願人の方が外国出願人よりも、その国の記載要件への精通度合いが高いと考えられること、外国出願人による出願の多くは翻訳文に基づく出願であるため、明確性要件などの記載要件が問題になりやすいこと、などが挙げられる。したがって、このような選択バイアスを排除した場合にも、本研究と同様の結論が得られることを検証するためには、より大規模かつ網羅的な分析が必要である。

しかしながら、近年は国際的なワークシェアリングの取り組みが活性化しており（日本特許庁2015 A：第2部第1章参照）、特に、各国特許庁における審査結果の相互利用も積極的に行われていることから（日本特許庁2015 A：第2部第5章参照）、上記のような出願人の国籍の相違による影響はそれほど大きくないと予想される。また、このような出願人の国籍の相違以外にも選択バイアスは生じ得るが、一般に、日米両方に等価なパテントファミリーを有する出願は、日本のみあるいは米国のみに対してなされた特許出願よりも重要であると考えられ、本研究において得られた結論は、そのような重要な出願のみに限定した分析によって得られたものであることから、仮に選択バイアスが生じていたとしても、本研究の結論に大きな影響を及ぼすものではないと考えられる。

さらに、もう一つの限界は、第4章において、各分析対象（日米における等価な特許出願の組み合わせ）の潜在的価値の相対的な関係は、日米で一致するとの前提の下で分析・考察を行ったが、実際には、等価な出願同士の比較であっても、必ずしも日米における潜在的価値（将来に得られると期待される利益）の相対的な関係が一致することは限らない、という点である。実際には、日米における産業構造や市場規模等は相違しているため、日米において等価な特許出願であっても、それぞれの国において等価な利益が期待されるとは限らない。しかしながら、第4章ではランダム抽出による技術分野非依存的なマクロ分析を行っている。したがって、そのようなケースが存在していたとしても、全体の結論に大きな影響を与えるものではないと考えられる。
第6章 付属資料
付属資料I 日本特許出願情報取得（NRI サイバーパテントデスク2）

NRI サイバーパテントデスク2（https://www.nri-cyberpatent.co.jp/）より、日本特許出願36,776件に関して、表I-1に示すような情報を取得して、第2章の分析に用いた。
なお、以下の項目については、NRIサイバーパテントデスク2からは直接的に取得することはできなかったため、NRIサイバーパテントデスク2から得られた情報をさらに解析することにより、詳細な情報を取得した。

(1) 拒絶理由通知有無
(2) 1回目拒絶理由通知への応答の有無

いずれも、「審査記録」を解析することにより取得した。「審査記録」には、分析対象となる特許出願について、日本の特許庁における詳細な審査経過情報が格納されている。
「拒絶理由通知有無」については、全審査記録を通じて、1度でも拒絶理由通知が作成されていれば「有」とし、一度も作成されていない場合は「無」とした。
また、拒絶理由通知は複数回作成されるケースがあるが、特に1回目の拒絶理由拒絶理由通知に着目して、「1回目拒絶理由通知への応答の有無」の情報を取得した。具体的には、1回目の拒絶理由通知に対して意見書又は補正書の少なくとも一方が提出されていれば「有」とし、意見書及び補正書がいずれも提出されていない場合には「無」とした。
例えば、以下の例では、「拒絶理由通知有無」は「有」であり、「1回目拒絶理由通知への応答の有無」も「有」となる。

＜「審査記録」の例＞

A63 項書 1994/03/29
A961 職権訂正データ（方式） 1994/05/24
A621 出願審査請求書 2001/03/22
A967 認定・付加情報 2001/03/28
A971007 検索報告書 2004/01/28
A971011 検索外注利用状況票 2004/06/02
A131 拒絶理由通知書 2004/06/08
A53 意見書 2004/08/09
A523 手続補正書 2004/08/09
A131 拒絶理由通知書 2005/03/29
A02 拒絶査定 2005/07/26
表I-1 NRIサイバーパテントデスク2より取得した主な日本特許出願情報

<table>
<thead>
<tr>
<th>発明情報</th>
<th>発明の名称</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>請求項数</td>
</tr>
<tr>
<td></td>
<td>パテントファミリー情報</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>分類情報</th>
<th>筆頭IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全IPC</td>
</tr>
<tr>
<td></td>
<td>筆頭FI</td>
</tr>
<tr>
<td></td>
<td>全FI</td>
</tr>
<tr>
<td></td>
<td>テーマコード</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号情報</th>
<th>出願番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>原出願番号</td>
</tr>
<tr>
<td></td>
<td>分割先出願番号</td>
</tr>
<tr>
<td></td>
<td>公開・公表番号</td>
</tr>
<tr>
<td></td>
<td>登録・特許番号</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日付情報</th>
<th>出願日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>原出願日</td>
</tr>
<tr>
<td></td>
<td>公開・公表日</td>
</tr>
<tr>
<td></td>
<td>登録日</td>
</tr>
<tr>
<td></td>
<td>国際公開日</td>
</tr>
<tr>
<td></td>
<td>審査請求日</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>出願人/発明者情報</th>
<th>出願人名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>出願人住所</td>
</tr>
<tr>
<td></td>
<td>発明者名</td>
</tr>
<tr>
<td></td>
<td>発明者住所</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>審査情報</th>
<th>審査請求有無</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>早期審査請求有無</td>
</tr>
<tr>
<td></td>
<td>査定種別</td>
</tr>
<tr>
<td></td>
<td>最終処分</td>
</tr>
<tr>
<td></td>
<td>異議申し立て有無</td>
</tr>
<tr>
<td></td>
<td>無効審判有無</td>
</tr>
<tr>
<td></td>
<td>不服審判有無</td>
</tr>
<tr>
<td></td>
<td>閲覧請求数</td>
</tr>
<tr>
<td></td>
<td>情報提供数</td>
</tr>
<tr>
<td></td>
<td>審査記録</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>登録情報</th>
<th>最終納付年分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>次期納付期限</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>引用/被引用情報</th>
<th>審査引用番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>被引用文献番号</td>
</tr>
</tbody>
</table>
（3）第一査定種別

NRI サイバーパテントデスク 2 では、「査定種別」という情報を取得可能であるが、この情報には、審査段階での査定種別の情報が格納されているため、一度拒絶査定された場合であっても、前置審査 38 によって特許査定されれば、「登録」との情報が付与されている。このため、この情報は、最初に拒絶査定を受けた出願（自己選択項目である「審判請求の有無」の母集団となるべき出願）を抽出するために使用することができない。そこで、本研究では、「審査記録」を解析することにより、最初に下された査定情報を、「第一査定種別」として取得した。

具体的には、「審査記録」において、「拒絶査定」と「特許/登録査定」のうち、時系列で先に出現する情報を取得した。なお、いずれも出現しない場合はブランクとした。

例えば、以下の例では、「第一査定種別」は「拒絶」となる。

＜「審査記録」の例＞

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A63 願書 1996/05/16</td>
<td>A621 出願審査請求書 1996/05/16</td>
<td>A961 職権訂正データ（方式） 1996/06/21</td>
</tr>
<tr>
<td>A961 職権訂正データ（方式） 1996/07/05</td>
<td>A131 拒絶理由通知書 1998/06/30</td>
<td>A53 意見書 1998/08/19</td>
</tr>
<tr>
<td>A523 手続補正書 1998/08/19</td>
<td>A961 職権訂正データ（方式） 1998/10/06</td>
<td>A961 職権訂正データ（方式） 1998/10/06</td>
</tr>
<tr>
<td>A02 拒絶査定 1999/03/02</td>
<td>A523 手続補正書 1999/04/15</td>
<td>A967 認定・付加情報 1999/05/10</td>
</tr>
<tr>
<td>A911 審査前置移管 1999/05/26</td>
<td>A01 特許／登録査定 1999/06/29</td>
<td></td>
</tr>
</tbody>
</table>

（4）技術区分

各特許出願の公開時の筆頭 IPC を指標として、WIPO の提供する“IPC - Technology Concordance Table” (WIPO 2013) に基づいて、全特許出願に対して、5 の大分類のいずれか、及び、35 の小分類のいずれかを付与した（具体的な技術分野名については表 I - 2 参

38 審判請求時に補正があった場合に行われる、拒絶査定をした審査官による再審査のこと。 （特許法第 162 条）
なお、過去には存在したが現在は存在しない IPC（A61K7/00 等）が筆頭 IPC として付与されている場合、現在の IPC とのコンコーダンスを確認して、大分類及び小分類を付与した。

表 I - 2 "IPC・Technology Concordance Table" における技術区分一覧
（出典：WIPO (2013) Table 2 を一部改変）

<table>
<thead>
<tr>
<th>番号</th>
<th>大分類</th>
<th>小分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrical machinery, apparatus, energy</td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>2</td>
<td>Audio-visual technology</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Digital communication</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Basic communication processes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Computer technology</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>IT methods for management</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Analysis of biological materials</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Medical technology</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Organic fine chemistry</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Food chemistry</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Basic materials chemistry</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Materials, metallurgy</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Surface technology, coating</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Micro-structural and nano-technology</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Chemical engineering</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Environmental technology</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Handling</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Machine tools</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Engines, pumps, turbines</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Textile and paper machines</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Other special machines</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Thermal processes and apparatus</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Mechanical elements</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Furniture, games</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Other consumer goods</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Civil engineering</td>
<td></td>
</tr>
</tbody>
</table>
（5）出願国数

パテントファミリー情報を解析することにより取得した。WOは国際公開を意味するため、本研究では、出願国数としてはカウントしていない。
例えば、以下の例では、出願国数は「5」（CA, CN, JP, KR, US）とカウントされる。

＜パテントファミリー情報の例＞

| CA 2149522 C |
| CN 1043905 C |
| CN 1115183 A |
| JP 2864966 B2 |
| JP 3451679 B2 |
| JP 7102344 A |
| JP 7113123 A |
| KR 0165929 B1 |
| US 5531839 A |
| WO 9509931 A1 |

（6）日本人の出願人数
（7）外国人の出願人数

「出願人住所」を解析することにより取得した。
NRIサイバーパテントデスク２では、複数の出願人が存在する場合、「 」（全角スペース）によって、出願人住所が接続されているため、「出願人住所」を出願人ごとに分解してから解析を行った。出願人住所に日本の都道府県名が含まれている場合には日本の出願人、また、外国の国名（アメリカ、ドイツ、フランス、等）が含まれている場合には外国人の出願人と取り扱った。なお、いずれも含まれていない場合には個別に判断した（個別判断におけるほとんどのケースは、都道府県名が省略された日本の出願人住所であった）。
例えば、以下の例では、「日本人の出願人数」が「1」、及び、「外国人の出願人数」が「1」となる。

＜出願人住所の例＞

アメリカ合衆国ニューヨーク州１００３６－００，ニューヨーク, アベニュー・オブ・ジ・アメリカス ００ 東京都渋谷区恵比寿四丁目00番0号
付属資料Ⅱ 審査官前方引用件数の算出（IIP パテントデータベース）

付属資料Ⅰ（表 I - 1）に記載のとおり、NRI サイバーパテントデスク 2 においても引用・被引用情報を取得することは可能であるが、NRI サイバーパテントデスク 2 では、特定の特許出願に関しての引用・被引用情報を取りることは可能であっても、1991-2000年度の日本特許庁への出願（約 370 万件）の引用・被引用情報を取得することは非常に困難である。

そこで、IIP パテントデータベースから引用・被引用情報を取得することとした。

IIP パテントデータベースには、1964 年以降の日本特許庁に対する特許出願に関する基礎情報（出願番号、出願日、審査請求日、筆頭 IPC 等）が収録された特許出願ファイル（約 1,174 万件）や、1988 年以降の日本特許庁に対する特許出願における特許-特許間の後方引用情報が収録された引用情報ファイル（約 1,480 万件）を含めており、様々な分析を行うことが可能である。

本研究では、特許出願ファイルから抽出した 1991-2000 年度の日本特許庁への出願（約 370 万件）について、引用情報ファイルに収録されている後方引用情報を解析することにより、各出願の審査官前方引用件数を算出した。

＜特許-特許間の後方引用情報の例＞

<table>
<thead>
<tr>
<th>citing</th>
<th>cited</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997268471</td>
<td>1973123259</td>
<td>3</td>
</tr>
<tr>
<td>1997268471</td>
<td>19930453507</td>
<td>2</td>
</tr>
<tr>
<td>1997268471</td>
<td>1993183737</td>
<td>3</td>
</tr>
<tr>
<td>1997268471</td>
<td>1997156931</td>
<td>2</td>
</tr>
<tr>
<td>1997268474</td>
<td>1993173537</td>
<td>1</td>
</tr>
</tbody>
</table>

※type1 は審査官引用、type2 は特許公報に記載された引用、type3 は両方を意味する。

引用情報ファイルのデータは、上記のような形式で収録されている。これらの情報を各出願の前方引用件数に変換するため、1991-2000 年度の日本特許庁への出願（約 370 万件）の...

39 NRI サイバーパテントデスク 2 では、一度にダウンロードできる案件情報は最大 500 件までであり、1 回あたり数分〜数十分の時間を要する。数万件程度のデータ取得であれば、時間をかけず実現可能だが、数百万件単位のデータ取得は現実的ではない。

40 本研究では、2011 年 3 月バージョンの IIP パテントデータベースを用いた。

41 type1 は拒絶理由通知における引用、type2 は特許査定における引用であると解される。いずれも審査官が引用するものであり、本研究における「審査官引用」に該当する。
件）のそれぞれについて、上述の1480万件中、"cited"に出現した回数をカウントした。42これにより、1991-2000年度の日本特許庁への全出願（約370万件）について前方引用件数の算出が可能となった。

カウントに際しては、いずれのtypeも審査官引用であることには違いがないため、typeの違いを考慮しなかった。また、IIPパテントデータベースにおいては、公開公報が引用されたか、特許公報が引用されたかを区別することはできず、両方が含まれている。
付属資料Ⅲ 前方引用件数の平均値及び標準偏差の導出

① 全出願に対する技術区分の付与

IIP パテントデータベースの特許出願ファイルには、各出願の公開時の筆頭 IPC 情報も含まれている。この情報に基づき、付属資料Ⅰの「技術区分」と同様の手順により、1991-2000年度の日本特許庁への全出願（約 370万件）に対して、35の小分類のいずれかを付与した。

② 全出願に対する出願年度の付与

IIP パテントデータベースの特許出願ファイルに収録されている出願日情報に基づき、全出願に出願年度情報を付与した。

③ 前方引用件数の平均値及び標準偏差の導出

①及び②で付与した情報に基づき、全出願を 35区分×10年度＝350の出願グループに分類した。そして、それぞれの出願グループにおいて、審査官前方引用件数の平均値及び標準偏差を算出することにより、出願年度 iにおける技術区分 jの前方引用件数の平均値 μ_{ij} 及び標準偏差 σ_{ij} を導出した（データの詳細は附属資料Ⅵ①を参照）。
付属資料IV　日米特許出願情報取得（NRI サイバーパテントデスク2）

第3章及び第4章における分析に用いるための情報は、NRI サイバーパテントデスク2（https://www.nri-cyberpatent.co.jp/）より取得した。日本特許出願19,985件に関しては、付属資料Ⅰと同様の情報を取得し、また、それらの日本特許出願のパテントファミリーに含まれる米国特許出願については、表IV-1に示すような情報を取得した43。

表IV-1　NRI サイバーパテントデスク2より取得した主な米国特許出願情報

<table>
<thead>
<tr>
<th>発明情報</th>
<th>発明の名称</th>
<th>請求項数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>パテントファミリー情報</td>
<td></td>
</tr>
<tr>
<td>分類情報</td>
<td>筆頭IPC</td>
<td>全IPC</td>
</tr>
<tr>
<td></td>
<td>分類情報</td>
<td></td>
</tr>
<tr>
<td>番号情報</td>
<td>出願番号</td>
<td>公開番号</td>
</tr>
<tr>
<td></td>
<td>登録・特許番号</td>
<td>国際出願番号</td>
</tr>
<tr>
<td></td>
<td>国際公開番号</td>
<td></td>
</tr>
<tr>
<td>日付情報</td>
<td>出願日</td>
<td>公開・公表日</td>
</tr>
<tr>
<td></td>
<td>登録日</td>
<td>国際公開日</td>
</tr>
<tr>
<td>出願人/発明者情報</td>
<td>出願人名</td>
<td>発明者名</td>
</tr>
<tr>
<td>引用/被引用情報</td>
<td>引用特許番号</td>
<td>引用非特許文献</td>
</tr>
<tr>
<td></td>
<td>被引用特許番号</td>
<td></td>
</tr>
</tbody>
</table>

43 NRI サイバーパテントデスク2においては、日本では出願単位でレコードが作製されているが、米国では、公報単位でレコードが作製されている。そのため、本研究では、米国については、出願番号を指標として、公開公報と特許公報の情報を統合して分析に用いた。
付属資料Ⅴ 審査官前方引用件数の算出（NRIサイバーパテントデスク2）

第3章及び第4章における分析においては、引用された文献が公開公報であるか、特許公報であるかも含めて情報を取得する必要があったため、IIPパテントデータベースではなく44、以下のとおり、NRIサイバーパテントデスク2のデータを用いて審査官前方引用件数を算出した45。

日本の審査官前方引用件数

日本に関しては、分析対象のそれぞれの特許出願について、日本[公開]（日本において、分析対象特許出願の公開公報を引用している後の出願の件数）、日本[特許]（日本において、分析対象特許出願の特許公報を引用している後の出願の件数）、及び、日本[公開+特許]（日本において、分析対象の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数）の3タイプについて、審査官前方引用件数を算出した。

日本特許出願については、NRIサイバーパテントデスク2では、特許出願ごとにレコードが作製されており、分析対象の特許出願を引用した文献の情報が「被引用文献番号」に、分析対象の特許出願が引用した文献の情報が「審査引用番号」に蓄積されている。

しかしながら、「被引用文献番号」には、分析対象の特許出願の公開公報、特許公報のいずれかが引用されたかについての情報は含まれていない。本研究では、公開公報、特許公報のいずれかが引用されたかの情報も必要であったため、以下の手順で情報を取得することとした。

① 分析対象特許出願のレコードより、その出願の「公開・公表番号」及び「登録・特許番号」を取得する。
② 取得した「公開・公表番号」又は「登録・特許番号」を、「審査引用番号」に含んでいる特許出願レコードを検索する。
③ 検索の結果、特許出願レコードがヒットした場合、そのレコードの「審査引用番号」を取得する。
④ 各レコードの「審査引用番号」において、分析対象出願の公開公報、特許公報のいずれかが引用されているかを確認する。
⑤ 以下の件数を取得する。
 ・ 公開公報を引用しているレコードの件数 → 日本[公開]
 ・ 特許公報を引用しているレコードの件数 → 日本[特許]

44 IIPパテントデータベースにおいては、公開公報が引用されたか、特許公報が引用されたかを区別することはできない。
45 2013年5月時点でNRIサイバーパテントデスク2に収録されていた引用・被引用情報を利用した。
公開公報又は特許公報の少なくともいずれか一方を引用しているレコードの件数
→ 日本[公開+特許]

例えば、以下の例においては、日本[公開]及び日本[公開+特許]が「1」、日本[特許]が「0」と算出される。

＜審査官前方引用件数の算出例＞
① 「公開・公表番号」及び「登録・特許番号」の取得
分析対象特許出願のレコード:

<table>
<thead>
<tr>
<th>出願番号</th>
<th>公開・公表番号</th>
<th>登録・特許番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>特願2005-37827</td>
<td>特開2006-223357</td>
<td>特許-4832770</td>
</tr>
</tbody>
</table>

② 「審査引用番号」の検索
「審査引用番号」に「特開2006-223357」46又は「特許4832770」47を含む出願を検索
→ 検索結果：1件

③ ヒットしたレコードの「審査引用番号」の取得
④ 「審査引用番号」の確認
検索結果のレコード:

<table>
<thead>
<tr>
<th>出願番号</th>
<th>公開・公表番号</th>
<th>登録・特許番号</th>
<th>審査引用番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>特願2006-247179</td>
<td>特開2008-72236</td>
<td>特許-4305483</td>
<td>特開2003-299010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>特開2006-221583</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>特開2006-223357</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>特開1993-292447</td>
</tr>
</tbody>
</table>

⑤ 審査官前方引用件数の取得

・ 公開公報を引用しているレコードの件数（日本[公開]） → 1
・ 特許公報を引用しているレコードの件数（日本[特許]） → 0
・ 公開公報又は特許公報の少なくともいずれか一方を引用しているレコードの件数（日本[公開+特許]） → 1

米国の審査官前方引用件数

米国に関しても、日本の場合と同様に、分析対象のそれぞれの特許出願について、米国[公開]（米国において、分析対象特許出願の公開公報を引用している後の出願の件数）、米国[特許]（米国において、分析対象特許出願の特許公報を引用している後の出願の件数）、「公開・公表番号」欄や「登録・特許番号」欄では、記載フォーマットが必ずしも一致していないため、記載フォーマットを変換して検索を行った。

46 日本語の PCT 出願に由来する特許出願の場合、公開・公表公報は発行されず、国内公開が再公表される。そのため、そのような場合、国内公開を公開公報とみなして審査官前方引用件数をカウントした。
47 「公開・公表番号」欄や「登録・特許番号」欄では、「審査引用番号」欄では、記載フォーマットが必ずしも一致していないため、記載フォーマットを変換して検索を行った。
及び、米国[公開+特許](米国において、分析対象の公開公報又は特許公報の少なくともいずれか一方を引用している後の出願の件数)の3タイプについて、審査官前方引用件数を算出した。

米国特許出願については、NRIサイバーパテントデスク2では、公報単位でレコードが作製されている。特許公報のレコードにおいては、分析対象の特許出願を引用した特許文献の情報が「被引用特許番号」に、分析対象の特許出願が引用した文献の情報が「引用特許番号」に蓄積されている。一方、公開公報のレコードにおいては、「被引用特許番号」や「引用特許番号」はデータが蓄積されておらず、空欄となっている。したがって、「被引用文献番号」の情報からは、分析対象の特許出願の公開公報、特許公報のいずれが引用されたかを区別することができない。また、特許公報のレコードの「被引用文献番号」に情報が記載されている場合であっても、被引用が審査官によるものか、出願人によるものであるかが記載されておらず、両者を直接的に区別することができない。

本研究では、審査官による引用情報のみを取得する必要があり、また、公開公報、特許公報のいずれが引用されたかの情報も必要であったため、以下的手順で情報を取得することとした。

① 分析対象特許出願の公開公報（又は、存在する場合には特許公報）のレコードを取得し、その出願の「公開番号」及び「特許・登録番号」を取得する。
② 取得した「公開番号」又は「特許・登録番号」を、「引用特許番号」に含まれている特許公報のレコードを検索する。
③ 検索の結果、特許公報のレコードがヒットした場合、そのレコードの「引用特許番号」を取得する。
④ 各レコードの「引用特許番号」において、分析対象出願の公開公報、特許公報のいずれかが引用されているかを確認する。
⑤ 以下の件数を取得する。
 - 公開公報を引用しているレコードの件数 → 米国[公開]
 - 特許公報を引用しているレコードの件数 → 米国[特許]
 - 公開公報又は特許公報の少なくともいずれか一方を引用しているレコードの件数 → 米国[公開+特許]

例えば、以下の例においては、米国[公開]が「2」（通番 3,4）、米国[特許]が「1」（通番 2）、米国[公開+特許]が「3」（通番 2,3,4）と算出される。

48 米国における「被引用文献」には、審査官引用のものと出願人引用のものの両方が含まれている。
49 特許公報のレコードには、「公開番号」及び「特許・登録番号」の両方が記載されている。一方、公開公報のレコードには、後に特許公報が発行されたとしても、「公開番号」しか記載されていない。
＜審査官前方引用件数の算出例＞
① 「公開番号」及び「特許・登録番号」の取得
分析対象特許出願のレコード:

<table>
<thead>
<tr>
<th>出願番号</th>
<th>公開番号</th>
<th>特許・登録番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2001-892035</td>
<td>2002-0004383</td>
<td>7466988</td>
</tr>
</tbody>
</table>

② 「引用特許番号」の検索
「引用特許番号」に「US 2002-0004383」又は「US 7466988」を含む出願を検索
→検索結果：4件

③ ヒットしたレコードの「引用特許番号」の取得

④ 「引用特許番号」の確認
検索結果のレコード:

<table>
<thead>
<tr>
<th>通番</th>
<th>公報番号</th>
<th>出願番号</th>
<th>引用特許番号</th>
</tr>
</thead>
</table>

⑤ 審査官前方引用件数の取得

・ 公開公報を引用しているレコードの件数（米国[公開]） → 2（通番3,4）
・ 特許公報を引用しているレコードの件数（米国[特許]） → 1（通番2）
・ 公開公報又は特許公報の少なくともいずれか一方を引用しているレコードの件数（米国[公開+特許]） → 3（通番2,3,4）
※通番1は、出願人引用であることから、カウントされない。

50 「公開番号」欄や「登録・特許番号」欄と、「引用特許番号」欄では、記載フォーマットが一致していなかったため、記載フォーマットを変換して検索を行った。

155
付属資料Ⅵ 分析データ
（出典: 安川 聡）

① 基準化審査官前方引用件数（NEFC）の算出データ（2.4.2参照）

<table>
<thead>
<tr>
<th>出願年度</th>
<th>技術区分</th>
<th>特許出願件数</th>
<th>審査官前方引用件数の平均値 $\mu_{i,j}$</th>
<th>標準偏差 $\sigma_{i,j}$</th>
<th>大分類</th>
<th>小分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>1</td>
<td>24,973</td>
<td>1.79</td>
<td>2.72</td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
</tr>
<tr>
<td>1991</td>
<td>2</td>
<td>28,715</td>
<td>1.79</td>
<td>3.20</td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
</tr>
<tr>
<td>1991</td>
<td>3</td>
<td>16,840</td>
<td>2.14</td>
<td>3.18</td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
</tr>
<tr>
<td>1991</td>
<td>4</td>
<td>4,525</td>
<td>2.12</td>
<td>3.19</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
</tr>
<tr>
<td>1991</td>
<td>5</td>
<td>5,978</td>
<td>1.71</td>
<td>2.64</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
</tr>
<tr>
<td>1991</td>
<td>6</td>
<td>28,908</td>
<td>1.76</td>
<td>2.87</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
</tr>
<tr>
<td>1991</td>
<td>8</td>
<td>22,800</td>
<td>1.93</td>
<td>2.96</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
</tr>
<tr>
<td>1991</td>
<td>9</td>
<td>27,534</td>
<td>2.23</td>
<td>3.25</td>
<td>Instruments</td>
<td>Optics</td>
</tr>
<tr>
<td>1991</td>
<td>10</td>
<td>18,237</td>
<td>1.86</td>
<td>2.68</td>
<td>Instruments</td>
<td>Measurement</td>
</tr>
<tr>
<td>1991</td>
<td>11</td>
<td>771</td>
<td>1.75</td>
<td>2.22</td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
</tr>
<tr>
<td>1991</td>
<td>12</td>
<td>7,131</td>
<td>2.20</td>
<td>3.33</td>
<td>Instruments</td>
<td>Control</td>
</tr>
<tr>
<td>1991</td>
<td>13</td>
<td>6,250</td>
<td>2.56</td>
<td>3.15</td>
<td>Instruments</td>
<td>Medical technology</td>
</tr>
<tr>
<td>1991</td>
<td>14</td>
<td>8,130</td>
<td>1.66</td>
<td>2.79</td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
</tr>
<tr>
<td>1991</td>
<td>15</td>
<td>3,474</td>
<td>1.22</td>
<td>2.06</td>
<td>Chemistry</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>1991</td>
<td>16</td>
<td>2,248</td>
<td>2.21</td>
<td>2.97</td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
</tr>
<tr>
<td>1991</td>
<td>17</td>
<td>8,371</td>
<td>2.27</td>
<td>2.97</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
</tr>
<tr>
<td>1991</td>
<td>18</td>
<td>2,713</td>
<td>1.94</td>
<td>2.54</td>
<td>Chemistry</td>
<td>Food chemistry</td>
</tr>
<tr>
<td>1991</td>
<td>19</td>
<td>6,360</td>
<td>2.54</td>
<td>3.19</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
</tr>
<tr>
<td>1991</td>
<td>20</td>
<td>11,770</td>
<td>1.72</td>
<td>2.41</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
</tr>
<tr>
<td>1991</td>
<td>21</td>
<td>8,083</td>
<td>1.99</td>
<td>3.05</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
</tr>
<tr>
<td>1991</td>
<td>23</td>
<td>5,993</td>
<td>1.75</td>
<td>2.41</td>
<td>Chemistry</td>
<td>Chemical engineering</td>
</tr>
<tr>
<td>1991</td>
<td>24</td>
<td>4,777</td>
<td>2.41</td>
<td>3.02</td>
<td>Chemistry</td>
<td>Environmental technology</td>
</tr>
<tr>
<td>1991</td>
<td>25</td>
<td>11,832</td>
<td>1.45</td>
<td>1.97</td>
<td>Mechanical engineering</td>
<td>Handling</td>
</tr>
<tr>
<td>1991</td>
<td>26</td>
<td>11,387</td>
<td>1.46</td>
<td>2.05</td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
</tr>
<tr>
<td>1991</td>
<td>27</td>
<td>10,454</td>
<td>1.60</td>
<td>2.29</td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
</tr>
<tr>
<td>1991</td>
<td>28</td>
<td>13,761</td>
<td>1.88</td>
<td>2.84</td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
</tr>
<tr>
<td>1991</td>
<td>29</td>
<td>12,185</td>
<td>1.76</td>
<td>2.51</td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
</tr>
<tr>
<td>1991</td>
<td>30</td>
<td>7,844</td>
<td>1.65</td>
<td>2.24</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
</tr>
<tr>
<td>1991</td>
<td>31</td>
<td>7,829</td>
<td>1.84</td>
<td>2.38</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
</tr>
<tr>
<td>1991</td>
<td>32</td>
<td>11,335</td>
<td>2.05</td>
<td>2.86</td>
<td>Mechanical engineering</td>
<td>Transport</td>
</tr>
<tr>
<td>Year</td>
<td>Code</td>
<td>Value</td>
<td>Growth</td>
<td>Index</td>
<td>Field</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>33</td>
<td>5,309</td>
<td>2.57</td>
<td>5.02</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>34</td>
<td>5,797</td>
<td>1.88</td>
<td>2.65</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>35</td>
<td>11,336</td>
<td>1.54</td>
<td>2.11</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1</td>
<td>24,283</td>
<td>1.92</td>
<td>2.94</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>2</td>
<td>26,262</td>
<td>2.00</td>
<td>3.46</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>3</td>
<td>14,309</td>
<td>2.43</td>
<td>3.61</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>4</td>
<td>3,876</td>
<td>2.46</td>
<td>3.46</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>5</td>
<td>5,157</td>
<td>1.85</td>
<td>2.83</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>6</td>
<td>23,331</td>
<td>2.11</td>
<td>3.39</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>8</td>
<td>19,286</td>
<td>2.25</td>
<td>3.44</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>9</td>
<td>25,553</td>
<td>2.47</td>
<td>3.54</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>10</td>
<td>17,567</td>
<td>1.99</td>
<td>2.78</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>11</td>
<td>707</td>
<td>1.65</td>
<td>2.16</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>12</td>
<td>6,311</td>
<td>2.38</td>
<td>3.43</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>13</td>
<td>6,431</td>
<td>2.66</td>
<td>3.35</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>14</td>
<td>8,293</td>
<td>1.78</td>
<td>3.11</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>15</td>
<td>3,364</td>
<td>1.31</td>
<td>2.07</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>16</td>
<td>2,327</td>
<td>2.20</td>
<td>2.83</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>17</td>
<td>8,443</td>
<td>2.43</td>
<td>3.23</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>2,794</td>
<td>1.93</td>
<td>2.44</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>19</td>
<td>6,498</td>
<td>2.58</td>
<td>3.24</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>20</td>
<td>11,207</td>
<td>1.72</td>
<td>2.37</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>21</td>
<td>8,138</td>
<td>2.00</td>
<td>2.75</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>23</td>
<td>6,055</td>
<td>1.77</td>
<td>2.49</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>24</td>
<td>5,195</td>
<td>2.40</td>
<td>3.08</td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>25</td>
<td>13,584</td>
<td>1.48</td>
<td>2.06</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>26</td>
<td>12,010</td>
<td>1.41</td>
<td>1.98</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>27</td>
<td>9,868</td>
<td>1.64</td>
<td>2.51</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>28</td>
<td>13,433</td>
<td>1.99</td>
<td>2.89</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>29</td>
<td>12,709</td>
<td>1.79</td>
<td>2.60</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>30</td>
<td>7,957</td>
<td>1.76</td>
<td>2.45</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>31</td>
<td>7,768</td>
<td>1.89</td>
<td>2.48</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>32</td>
<td>11,451</td>
<td>2.10</td>
<td>3.02</td>
<td>Mechanical engineering</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>33</td>
<td>5,491</td>
<td>2.86</td>
<td>5.96</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>34</td>
<td>5,698</td>
<td>1.89</td>
<td>2.63</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>35</td>
<td>12,951</td>
<td>1.51</td>
<td>2.07</td>
<td>Other fields</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1</td>
<td>23,318</td>
<td>2.06</td>
<td>3.03</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>2</td>
<td>23,459</td>
<td>2.20</td>
<td>3.88</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>3</td>
<td>13,215</td>
<td>2.61</td>
<td>3.91</td>
<td>Electrical engineering</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Issue</td>
<td>Page</td>
<td>Title</td>
<td>Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>4</td>
<td>3.277</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>5</td>
<td>4.587</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>6</td>
<td>21.048</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>8</td>
<td>16.470</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>9</td>
<td>23.364</td>
<td>Instruments</td>
<td>Optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>10</td>
<td>16.601</td>
<td>Instruments</td>
<td>Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>11</td>
<td>826</td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>12</td>
<td>5.809</td>
<td>Instruments</td>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>13</td>
<td>7.010</td>
<td>Instruments</td>
<td>Medical technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>14</td>
<td>7.991</td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>15</td>
<td>3.203</td>
<td>Chemistry</td>
<td>Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>16</td>
<td>2.468</td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>17</td>
<td>8.405</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>18</td>
<td>2.875</td>
<td>Chemistry</td>
<td>Food chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>19</td>
<td>6.760</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>20</td>
<td>10.344</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>21</td>
<td>7.318</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>23</td>
<td>6.483</td>
<td>Chemistry</td>
<td>Chemical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>24</td>
<td>5.795</td>
<td>Chemistry</td>
<td>Environmental technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>25</td>
<td>13.743</td>
<td>Mechanical engineering</td>
<td>Handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>26</td>
<td>11.972</td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>27</td>
<td>9.492</td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>28</td>
<td>12.955</td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>29</td>
<td>13.452</td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>30</td>
<td>8.035</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>31</td>
<td>8.831</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>32</td>
<td>12.232</td>
<td>Mechanical engineering</td>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>33</td>
<td>6.583</td>
<td>Other fields</td>
<td>Furniture, games</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>34</td>
<td>6.074</td>
<td>Other fields</td>
<td>Other consumer goods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>35</td>
<td>15.004</td>
<td>Other fields</td>
<td>Civil engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1</td>
<td>25.112</td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>22.922</td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>3</td>
<td>13.232</td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>4</td>
<td>3.365</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5</td>
<td>4.033</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>6</td>
<td>19.095</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>8</td>
<td>14.193</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>9</td>
<td>24.803</td>
<td>Instruments</td>
<td>Optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>10</td>
<td>17.056</td>
<td>Instruments</td>
<td>Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>N.</td>
<td>Value</td>
<td>GCR</td>
<td>Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>---------</td>
<td>------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>11</td>
<td>845</td>
<td>1.74</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>12</td>
<td>6,441</td>
<td>2.43</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>13</td>
<td>7,672</td>
<td>2.59</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>14</td>
<td>7,726</td>
<td>1.93</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>15</td>
<td>3,469</td>
<td>1.34</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>16</td>
<td>2,631</td>
<td>2.16</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>17</td>
<td>7,889</td>
<td>2.71</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>18</td>
<td>2,763</td>
<td>1.91</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>19</td>
<td>6,763</td>
<td>2.58</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>20</td>
<td>9,709</td>
<td>1.90</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>21</td>
<td>6,801</td>
<td>2.15</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>22</td>
<td>6,809</td>
<td>1.87</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>23</td>
<td>6,138</td>
<td>2.28</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>24</td>
<td>6,138</td>
<td>2.28</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>25</td>
<td>14,835</td>
<td>1.42</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>26</td>
<td>11,471</td>
<td>1.44</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>27</td>
<td>10,035</td>
<td>1.76</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>28</td>
<td>12,089</td>
<td>2.01</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>29</td>
<td>13,934</td>
<td>1.58</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>30</td>
<td>8,083</td>
<td>1.64</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>31</td>
<td>10,558</td>
<td>1.78</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>32</td>
<td>13,890</td>
<td>1.99</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>33</td>
<td>9,208</td>
<td>2.23</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>34</td>
<td>7,840</td>
<td>1.57</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>35</td>
<td>17,949</td>
<td>1.47</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1</td>
<td>26,182</td>
<td>1.97</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>2</td>
<td>22,861</td>
<td>2.34</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>3</td>
<td>14,354</td>
<td>2.67</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>4</td>
<td>3,415</td>
<td>2.89</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5</td>
<td>4,320</td>
<td>2.03</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>6</td>
<td>19,279</td>
<td>2.60</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>7</td>
<td>15,033</td>
<td>2.59</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>8</td>
<td>25,411</td>
<td>2.35</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>9</td>
<td>16,837</td>
<td>2.07</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>10</td>
<td>2,717</td>
<td>2.09</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>11</td>
<td>833</td>
<td>1.80</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>12</td>
<td>6,186</td>
<td>2.34</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>13</td>
<td>8,024</td>
<td>2.60</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>14</td>
<td>7,853</td>
<td>1.96</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>15</td>
<td>3,450</td>
<td>1.34</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>16</td>
<td>845</td>
<td>1.74</td>
<td>Analysis of biological materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>17</td>
<td>6,441</td>
<td>2.43</td>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>7,672</td>
<td>2.59</td>
<td>Medical technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>19</td>
<td>7,726</td>
<td>1.93</td>
<td>Organic fine chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>20</td>
<td>3,469</td>
<td>1.34</td>
<td>Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>21</td>
<td>2,631</td>
<td>2.16</td>
<td>Pharmaceuticals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>22</td>
<td>7,889</td>
<td>2.71</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>23</td>
<td>2,763</td>
<td>1.91</td>
<td>Food chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>24</td>
<td>6,763</td>
<td>2.58</td>
<td>Basic materials chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>25</td>
<td>9,709</td>
<td>1.90</td>
<td>Materials, metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>26</td>
<td>6,801</td>
<td>2.15</td>
<td>Surface technology, coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>27</td>
<td>6,809</td>
<td>1.87</td>
<td>Chemical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>28</td>
<td>6,138</td>
<td>2.28</td>
<td>Environmental technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>29</td>
<td>13,934</td>
<td>1.58</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>30</td>
<td>8,083</td>
<td>1.64</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>31</td>
<td>10,558</td>
<td>1.78</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>32</td>
<td>13,890</td>
<td>1.99</td>
<td>Mechanical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>33</td>
<td>9,208</td>
<td>2.23</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>34</td>
<td>7,840</td>
<td>1.57</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>35</td>
<td>17,949</td>
<td>1.47</td>
<td>Other fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1</td>
<td>26,182</td>
<td>1.97</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>2</td>
<td>22,861</td>
<td>2.34</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>3</td>
<td>14,354</td>
<td>2.67</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>4</td>
<td>3,415</td>
<td>2.89</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5</td>
<td>4,320</td>
<td>2.03</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>6</td>
<td>19,279</td>
<td>2.60</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>7</td>
<td>15,033</td>
<td>2.59</td>
<td>Electrical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>8</td>
<td>25,411</td>
<td>2.35</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>9</td>
<td>16,837</td>
<td>2.07</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>10</td>
<td>2,717</td>
<td>2.09</td>
<td>Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>11</td>
<td>833</td>
<td>1.80</td>
<td>Analysis of biological materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>12</td>
<td>6,186</td>
<td>2.34</td>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>13</td>
<td>8,024</td>
<td>2.60</td>
<td>Medical technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>14</td>
<td>7,853</td>
<td>1.96</td>
<td>Organic fine chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>15</td>
<td>3,450</td>
<td>1.34</td>
<td>Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>16</td>
<td>845</td>
<td>1.74</td>
<td>Analysis of biological materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Volume</td>
<td>Claims</td>
<td>Patentable</td>
<td>Field of Technology</td>
<td>Sub-Field of Technology</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>17</td>
<td>7,921</td>
<td>2.67</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>2,679</td>
<td>1.91</td>
<td>Chemistry</td>
<td>Food chemistry</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>19</td>
<td>7,221</td>
<td>2.46</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>20</td>
<td>9,392</td>
<td>1.88</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>21</td>
<td>7,364</td>
<td>2.12</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>23</td>
<td>6,558</td>
<td>1.82</td>
<td>Chemistry</td>
<td>Chemical engineering</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>24</td>
<td>6,434</td>
<td>2.20</td>
<td>Chemistry</td>
<td>Environmental technology</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>25</td>
<td>14,263</td>
<td>1.35</td>
<td>Mechanical engineering</td>
<td>Handling</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>26</td>
<td>11,147</td>
<td>1.35</td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>27</td>
<td>10,149</td>
<td>1.71</td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>28</td>
<td>12,306</td>
<td>1.97</td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>29</td>
<td>13,661</td>
<td>1.51</td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>30</td>
<td>8,048</td>
<td>1.50</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>31</td>
<td>10,888</td>
<td>1.74</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>32</td>
<td>13,422</td>
<td>2.00</td>
<td>Mechanical engineering</td>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>33</td>
<td>9,394</td>
<td>2.34</td>
<td>Other fields</td>
<td>Furniture, games</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>34</td>
<td>7,607</td>
<td>1.62</td>
<td>Other fields</td>
<td>Other consumer goods</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>35</td>
<td>18,388</td>
<td>1.48</td>
<td>Other fields</td>
<td>Civil engineering</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1</td>
<td>26,132</td>
<td>1.94</td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>2</td>
<td>23,401</td>
<td>2.31</td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>3</td>
<td>14,653</td>
<td>2.60</td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>4</td>
<td>4,065</td>
<td>2.79</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>5</td>
<td>4,214</td>
<td>1.82</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>6</td>
<td>19,225</td>
<td>2.63</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>8</td>
<td>16,073</td>
<td>2.36</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>9</td>
<td>23,911</td>
<td>2.29</td>
<td>Instruments</td>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>10</td>
<td>17,070</td>
<td>1.97</td>
<td>Instruments</td>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>11</td>
<td>874</td>
<td>1.48</td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>12</td>
<td>6,350</td>
<td>2.23</td>
<td>Instruments</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>13</td>
<td>8,403</td>
<td>2.29</td>
<td>Instruments</td>
<td>Medical technology</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>14</td>
<td>7,890</td>
<td>1.80</td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>15</td>
<td>3,820</td>
<td>1.23</td>
<td>Chemistry</td>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>16</td>
<td>2,846</td>
<td>1.99</td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>17</td>
<td>8,075</td>
<td>2.65</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>18</td>
<td>2,822</td>
<td>1.71</td>
<td>Chemistry</td>
<td>Food chemistry</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>19</td>
<td>7,753</td>
<td>2.25</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>20</td>
<td>9,070</td>
<td>1.90</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>21</td>
<td>7,388</td>
<td>2.09</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Volume</td>
<td>Page</td>
<td>Issue</td>
<td>Impact Factor</td>
<td>Subject Category</td>
<td>Sub-Category</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>2</td>
<td>5.00</td>
<td>5.66</td>
<td>Chemistry</td>
<td>Micro-structural and nano-technology</td>
</tr>
<tr>
<td>1996</td>
<td>23</td>
<td>1.71</td>
<td>2.63</td>
<td></td>
<td>Chemistry</td>
<td>Chemical engineering</td>
</tr>
<tr>
<td>1996</td>
<td>24</td>
<td>2.01</td>
<td>2.74</td>
<td></td>
<td>Chemistry</td>
<td>Environmental technology</td>
</tr>
<tr>
<td>1996</td>
<td>25</td>
<td>1.18</td>
<td>1.79</td>
<td></td>
<td>Mechanical engineering</td>
<td>Handling</td>
</tr>
<tr>
<td>1996</td>
<td>26</td>
<td>1.28</td>
<td>2.17</td>
<td></td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
</tr>
<tr>
<td>1996</td>
<td>27</td>
<td>1.77</td>
<td>2.90</td>
<td></td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
</tr>
<tr>
<td>1996</td>
<td>28</td>
<td>1.77</td>
<td>2.72</td>
<td></td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
</tr>
<tr>
<td>1996</td>
<td>29</td>
<td>1.41</td>
<td>2.17</td>
<td></td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
</tr>
<tr>
<td>1996</td>
<td>30</td>
<td>1.40</td>
<td>2.04</td>
<td></td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
</tr>
<tr>
<td>1996</td>
<td>31</td>
<td>1.60</td>
<td>2.22</td>
<td></td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
</tr>
<tr>
<td>1996</td>
<td>32</td>
<td>1.54</td>
<td>2.39</td>
<td></td>
<td>Mechanical engineering</td>
<td>Transport</td>
</tr>
<tr>
<td>1996</td>
<td>33</td>
<td>2.12</td>
<td>4.51</td>
<td></td>
<td>Other fields</td>
<td>Furniture, games</td>
</tr>
<tr>
<td>1996</td>
<td>34</td>
<td>1.44</td>
<td>2.39</td>
<td></td>
<td>Other fields</td>
<td>Other consumer goods</td>
</tr>
<tr>
<td>1996</td>
<td>35</td>
<td>1.35</td>
<td>1.96</td>
<td></td>
<td>Other fields</td>
<td>Civil engineering</td>
</tr>
<tr>
<td>1997</td>
<td>1</td>
<td>1.90</td>
<td>3.01</td>
<td></td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
</tr>
<tr>
<td>1997</td>
<td>2</td>
<td>2.33</td>
<td>4.67</td>
<td></td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td>2.54</td>
<td>4.01</td>
<td></td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
</tr>
<tr>
<td>1997</td>
<td>4</td>
<td>2.76</td>
<td>3.84</td>
<td></td>
<td>Electrical engineering</td>
<td>Digital communication</td>
</tr>
<tr>
<td>1997</td>
<td>5</td>
<td>1.72</td>
<td>2.53</td>
<td></td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
</tr>
<tr>
<td>1997</td>
<td>6</td>
<td>2.70</td>
<td>4.67</td>
<td></td>
<td>Electrical engineering</td>
<td>Computer technology</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>2.24</td>
<td>3.63</td>
<td></td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
</tr>
<tr>
<td>1997</td>
<td>9</td>
<td>2.20</td>
<td>3.41</td>
<td></td>
<td>Instruments</td>
<td>Optics</td>
</tr>
<tr>
<td>1997</td>
<td>10</td>
<td>1.92</td>
<td>2.88</td>
<td></td>
<td>Instruments</td>
<td>Measurement</td>
</tr>
<tr>
<td>1997</td>
<td>11</td>
<td>1.49</td>
<td>1.92</td>
<td></td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
</tr>
<tr>
<td>1997</td>
<td>12</td>
<td>2.33</td>
<td>4.39</td>
<td></td>
<td>Instruments</td>
<td>Control</td>
</tr>
<tr>
<td>1997</td>
<td>13</td>
<td>2.17</td>
<td>2.98</td>
<td></td>
<td>Instruments</td>
<td>Medical technology</td>
</tr>
<tr>
<td>1997</td>
<td>14</td>
<td>1.73</td>
<td>2.63</td>
<td></td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
</tr>
<tr>
<td>1997</td>
<td>15</td>
<td>1.17</td>
<td>2.02</td>
<td></td>
<td>Chemistry</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>1997</td>
<td>16</td>
<td>1.80</td>
<td>2.60</td>
<td></td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
</tr>
<tr>
<td>1997</td>
<td>17</td>
<td>2.42</td>
<td>3.08</td>
<td></td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
</tr>
<tr>
<td>1997</td>
<td>18</td>
<td>1.80</td>
<td>2.35</td>
<td></td>
<td>Chemistry</td>
<td>Food chemistry</td>
</tr>
<tr>
<td>1997</td>
<td>19</td>
<td>2.21</td>
<td>3.08</td>
<td></td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
</tr>
<tr>
<td>1997</td>
<td>20</td>
<td>1.82</td>
<td>2.79</td>
<td></td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
</tr>
<tr>
<td>1997</td>
<td>21</td>
<td>2.02</td>
<td>2.85</td>
<td></td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
</tr>
<tr>
<td>1997</td>
<td>22</td>
<td>3.73</td>
<td>3.10</td>
<td></td>
<td>Chemistry</td>
<td>Micro-structural and nano-technology</td>
</tr>
<tr>
<td>1997</td>
<td>23</td>
<td>1.62</td>
<td>2.30</td>
<td></td>
<td>Chemistry</td>
<td>Chemical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>24</td>
<td>1.91</td>
<td>2.55</td>
<td></td>
<td>Chemistry</td>
<td>Environmental technology</td>
</tr>
<tr>
<td>1997</td>
<td>25</td>
<td>1.19</td>
<td>1.94</td>
<td></td>
<td>Mechanical engineering</td>
<td>Handling</td>
</tr>
<tr>
<td>Year</td>
<td>Code</td>
<td>Value</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>1997</td>
<td>26</td>
<td>11,812</td>
<td>1.23</td>
<td>2.04</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>27</td>
<td>10,515</td>
<td>1.77</td>
<td>2.72</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>28</td>
<td>12,745</td>
<td>1.73</td>
<td>2.57</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>29</td>
<td>13,706</td>
<td>1.37</td>
<td>2.13</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>30</td>
<td>8,521</td>
<td>1.31</td>
<td>2.09</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>31</td>
<td>11,532</td>
<td>1.52</td>
<td>2.17</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>32</td>
<td>14,170</td>
<td>1.93</td>
<td>3.06</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1997</td>
<td>33</td>
<td>10,434</td>
<td>2.23</td>
<td>4.49</td>
<td></td>
<td>Other fields</td>
</tr>
<tr>
<td>1997</td>
<td>34</td>
<td>8,307</td>
<td>1.40</td>
<td>2.31</td>
<td></td>
<td>Other fields</td>
</tr>
<tr>
<td>1997</td>
<td>35</td>
<td>18,963</td>
<td>1.29</td>
<td>1.84</td>
<td></td>
<td>Other fields</td>
</tr>
<tr>
<td>1998</td>
<td>1</td>
<td>29,563</td>
<td>1.80</td>
<td>2.83</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>2</td>
<td>25,493</td>
<td>2.16</td>
<td>3.79</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>3</td>
<td>15,729</td>
<td>2.39</td>
<td>3.63</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>4</td>
<td>5,260</td>
<td>2.62</td>
<td>4.09</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>5</td>
<td>4,216</td>
<td>1.71</td>
<td>2.60</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>6</td>
<td>23,127</td>
<td>2.50</td>
<td>4.07</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>8</td>
<td>18,033</td>
<td>2.15</td>
<td>3.50</td>
<td></td>
<td>Electrical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>9</td>
<td>25,635</td>
<td>2.12</td>
<td>3.46</td>
<td></td>
<td>Instruments</td>
</tr>
<tr>
<td>1998</td>
<td>10</td>
<td>17,323</td>
<td>1.79</td>
<td>2.68</td>
<td></td>
<td>Instruments</td>
</tr>
<tr>
<td>1998</td>
<td>11</td>
<td>951</td>
<td>1.58</td>
<td>2.29</td>
<td></td>
<td>Instruments</td>
</tr>
<tr>
<td>1998</td>
<td>12</td>
<td>6,945</td>
<td>2.10</td>
<td>3.53</td>
<td></td>
<td>Instruments</td>
</tr>
<tr>
<td>1998</td>
<td>13</td>
<td>9,528</td>
<td>1.98</td>
<td>2.63</td>
<td></td>
<td>Instruments</td>
</tr>
<tr>
<td>1998</td>
<td>14</td>
<td>8,367</td>
<td>1.64</td>
<td>2.72</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>15</td>
<td>4,689</td>
<td>1.10</td>
<td>2.04</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>16</td>
<td>3,273</td>
<td>1.74</td>
<td>2.46</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>17</td>
<td>8,300</td>
<td>2.27</td>
<td>2.99</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>18</td>
<td>2,947</td>
<td>1.65</td>
<td>2.21</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>19</td>
<td>7,952</td>
<td>1.98</td>
<td>2.77</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>20</td>
<td>9,227</td>
<td>1.69</td>
<td>2.53</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>21</td>
<td>7,537</td>
<td>1.89</td>
<td>2.63</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>22</td>
<td>16</td>
<td>2.81</td>
<td>4.18</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>23</td>
<td>6,816</td>
<td>1.52</td>
<td>2.29</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>24</td>
<td>7,255</td>
<td>1.85</td>
<td>2.51</td>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>1998</td>
<td>25</td>
<td>15,345</td>
<td>1.08</td>
<td>1.71</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>26</td>
<td>12,156</td>
<td>1.09</td>
<td>1.74</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>27</td>
<td>10,474</td>
<td>1.65</td>
<td>2.57</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>28</td>
<td>12,821</td>
<td>1.63</td>
<td>2.47</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>1998</td>
<td>29</td>
<td>13,357</td>
<td>1.33</td>
<td>2.22</td>
<td></td>
<td>Mechanical engineering</td>
</tr>
</tbody>
</table>

162
<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>30</td>
<td>7,992</td>
<td>1.23</td>
<td>1.94</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
</tr>
<tr>
<td>1998</td>
<td>31</td>
<td>11,804</td>
<td>1.41</td>
<td>2.03</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
</tr>
<tr>
<td>1998</td>
<td>32</td>
<td>14,180</td>
<td>1.86</td>
<td>2.88</td>
<td>Mechanical engineering</td>
<td>Transport</td>
</tr>
<tr>
<td>1998</td>
<td>33</td>
<td>11,355</td>
<td>2.27</td>
<td>5.03</td>
<td>Other fields</td>
<td>Furniture, games</td>
</tr>
<tr>
<td>1998</td>
<td>34</td>
<td>7,908</td>
<td>1.31</td>
<td>2.15</td>
<td>Other fields</td>
<td>Other consumer goods</td>
</tr>
<tr>
<td>1998</td>
<td>35</td>
<td>18,197</td>
<td>1.19</td>
<td>1.82</td>
<td>Other fields</td>
<td>Civil engineering</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>28,637</td>
<td>1.75</td>
<td>2.82</td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
</tr>
<tr>
<td>1999</td>
<td>2</td>
<td>26,277</td>
<td>2.11</td>
<td>3.53</td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
</tr>
<tr>
<td>1999</td>
<td>3</td>
<td>16,733</td>
<td>2.23</td>
<td>3.28</td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
</tr>
<tr>
<td>1999</td>
<td>4</td>
<td>5,311</td>
<td>2.42</td>
<td>3.61</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
</tr>
<tr>
<td>1999</td>
<td>5</td>
<td>4,156</td>
<td>1.63</td>
<td>2.69</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
<td>24,577</td>
<td>2.27</td>
<td>3.36</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
</tr>
<tr>
<td>1999</td>
<td>8</td>
<td>17,666</td>
<td>2.06</td>
<td>3.10</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
</tr>
<tr>
<td>1999</td>
<td>9</td>
<td>25,653</td>
<td>2.05</td>
<td>3.37</td>
<td>Instruments</td>
<td>Optics</td>
</tr>
<tr>
<td>1999</td>
<td>10</td>
<td>16,912</td>
<td>1.73</td>
<td>2.56</td>
<td>Instruments</td>
<td>Measurement</td>
</tr>
<tr>
<td>1999</td>
<td>11</td>
<td>1,064</td>
<td>1.61</td>
<td>2.36</td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
</tr>
<tr>
<td>1999</td>
<td>12</td>
<td>7,138</td>
<td>1.97</td>
<td>3.13</td>
<td>Instruments</td>
<td>Control</td>
</tr>
<tr>
<td>1999</td>
<td>13</td>
<td>10,440</td>
<td>1.78</td>
<td>2.42</td>
<td>Instruments</td>
<td>Medical technology</td>
</tr>
<tr>
<td>1999</td>
<td>14</td>
<td>8,776</td>
<td>1.56</td>
<td>2.49</td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
</tr>
<tr>
<td>1999</td>
<td>15</td>
<td>4,893</td>
<td>1.09</td>
<td>1.94</td>
<td>Chemistry</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>1999</td>
<td>16</td>
<td>3,809</td>
<td>1.50</td>
<td>2.15</td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
</tr>
<tr>
<td>1999</td>
<td>17</td>
<td>8,735</td>
<td>2.14</td>
<td>2.85</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
</tr>
<tr>
<td>1999</td>
<td>18</td>
<td>2,997</td>
<td>1.56</td>
<td>2.28</td>
<td>Chemistry</td>
<td>Food chemistry</td>
</tr>
<tr>
<td>1999</td>
<td>19</td>
<td>8,403</td>
<td>1.80</td>
<td>2.54</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
</tr>
<tr>
<td>1999</td>
<td>20</td>
<td>8,768</td>
<td>1.61</td>
<td>2.41</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
</tr>
<tr>
<td>1999</td>
<td>21</td>
<td>7,114</td>
<td>1.78</td>
<td>2.65</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
</tr>
<tr>
<td>1999</td>
<td>22</td>
<td>161</td>
<td>3.09</td>
<td>5.03</td>
<td>Chemistry</td>
<td>Micro-structural and nano-technology</td>
</tr>
<tr>
<td>1999</td>
<td>23</td>
<td>6,918</td>
<td>1.40</td>
<td>2.10</td>
<td>Chemistry</td>
<td>Chemical engineering</td>
</tr>
<tr>
<td>1999</td>
<td>24</td>
<td>7,469</td>
<td>1.64</td>
<td>2.29</td>
<td>Chemistry</td>
<td>Environmental technology</td>
</tr>
<tr>
<td>1999</td>
<td>25</td>
<td>15,409</td>
<td>1.02</td>
<td>1.71</td>
<td>Mechanical engineering</td>
<td>Handling</td>
</tr>
<tr>
<td>1999</td>
<td>26</td>
<td>11,450</td>
<td>0.97</td>
<td>1.62</td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
</tr>
<tr>
<td>1999</td>
<td>27</td>
<td>10,028</td>
<td>1.58</td>
<td>2.49</td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
</tr>
<tr>
<td>1999</td>
<td>28</td>
<td>13,172</td>
<td>1.49</td>
<td>2.36</td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
</tr>
<tr>
<td>1999</td>
<td>29</td>
<td>13,628</td>
<td>1.17</td>
<td>1.91</td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
</tr>
<tr>
<td>1999</td>
<td>30</td>
<td>7,671</td>
<td>1.23</td>
<td>2.15</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
</tr>
<tr>
<td>1999</td>
<td>31</td>
<td>11,650</td>
<td>1.33</td>
<td>1.92</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
</tr>
<tr>
<td>1999</td>
<td>32</td>
<td>13,900</td>
<td>1.74</td>
<td>2.73</td>
<td>Mechanical engineering</td>
<td>Transport</td>
</tr>
<tr>
<td>1999</td>
<td>33</td>
<td>13,433</td>
<td>2.11</td>
<td>4.45</td>
<td>Other fields</td>
<td>Furniture, games</td>
</tr>
<tr>
<td>Year</td>
<td>No.</td>
<td>Value</td>
<td>Coefficient</td>
<td>Other Fields</td>
<td>Other consumer goods</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>34</td>
<td>8,039</td>
<td>1.11</td>
<td>Other fields</td>
<td>Other consumer goods</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>35</td>
<td>17,970</td>
<td>1.08</td>
<td>Other fields</td>
<td>Civil engineering</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>29,150</td>
<td>1.63</td>
<td>Electrical engineering</td>
<td>Electrical machinery, apparatus, energy</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>26,386</td>
<td>1.96</td>
<td>Electrical engineering</td>
<td>Audio-visual technology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>3</td>
<td>18,548</td>
<td>2.07</td>
<td>Electrical engineering</td>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>5,779</td>
<td>2.15</td>
<td>Electrical engineering</td>
<td>Digital communication</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>5</td>
<td>3,882</td>
<td>1.44</td>
<td>Electrical engineering</td>
<td>Basic communication processes</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
<td>39,186</td>
<td>1.91</td>
<td>Electrical engineering</td>
<td>Computer technology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>8</td>
<td>18,130</td>
<td>1.92</td>
<td>Electrical engineering</td>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>9</td>
<td>26,444</td>
<td>1.87</td>
<td>Instruments</td>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>16,703</td>
<td>1.57</td>
<td>Instruments</td>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>11</td>
<td>1,218</td>
<td>1.42</td>
<td>Instruments</td>
<td>Analysis of biological materials</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>12</td>
<td>7,734</td>
<td>1.74</td>
<td>Instruments</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>13</td>
<td>10,737</td>
<td>1.58</td>
<td>Instruments</td>
<td>Medical technology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>14</td>
<td>8,817</td>
<td>1.39</td>
<td>Chemistry</td>
<td>Organic fine chemistry</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>15</td>
<td>5,295</td>
<td>0.92</td>
<td>Chemistry</td>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>16</td>
<td>4,160</td>
<td>1.44</td>
<td>Chemistry</td>
<td>Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>17</td>
<td>8,790</td>
<td>1.92</td>
<td>Chemistry</td>
<td>Macromolecular chemistry, polymers</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>18</td>
<td>3,190</td>
<td>1.38</td>
<td>Chemistry</td>
<td>Food chemistry</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>19</td>
<td>8,405</td>
<td>1.73</td>
<td>Chemistry</td>
<td>Basic materials chemistry</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>9,274</td>
<td>1.44</td>
<td>Chemistry</td>
<td>Materials, metallurgy</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>21</td>
<td>7,487</td>
<td>1.65</td>
<td>Chemistry</td>
<td>Surface technology, coating</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>22</td>
<td>162</td>
<td>2.46</td>
<td>Chemistry</td>
<td>Micro-structural and nano-technology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>23</td>
<td>7,021</td>
<td>1.24</td>
<td>Chemistry</td>
<td>Chemical engineering</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>24</td>
<td>7,559</td>
<td>1.45</td>
<td>Chemistry</td>
<td>Environmental technology</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>25</td>
<td>15,473</td>
<td>0.92</td>
<td>Mechanical engineering</td>
<td>Handling</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>26</td>
<td>10,881</td>
<td>0.92</td>
<td>Mechanical engineering</td>
<td>Machine tools</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>27</td>
<td>10,501</td>
<td>1.39</td>
<td>Mechanical engineering</td>
<td>Engines, pumps, turbines</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>28</td>
<td>13,456</td>
<td>1.35</td>
<td>Mechanical engineering</td>
<td>Textile and paper machines</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>29</td>
<td>13,787</td>
<td>1.05</td>
<td>Mechanical engineering</td>
<td>Other special machines</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>7,713</td>
<td>1.17</td>
<td>Mechanical engineering</td>
<td>Thermal processes and apparatus</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>31</td>
<td>11,766</td>
<td>1.20</td>
<td>Mechanical engineering</td>
<td>Mechanical elements</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>32</td>
<td>14,105</td>
<td>1.59</td>
<td>Mechanical engineering</td>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>33</td>
<td>15,172</td>
<td>1.86</td>
<td>Other fields</td>
<td>Furniture, games</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>34</td>
<td>8,483</td>
<td>1.03</td>
<td>Other fields</td>
<td>Other consumer games</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>35</td>
<td>17,324</td>
<td>0.95</td>
<td>Other fields</td>
<td>Civil engineering</td>
<td></td>
</tr>
</tbody>
</table>
② 基準化前後のデータの比較（2.4.2参照）

データの対象：
1991-2000年度の日本特許庁への特許出願（約370万件）のうち、約1%にあたる36,776件（2.4.1参照）

＜基準化前（審査官前方引用件数）の分布＞

<table>
<thead>
<tr>
<th>審査官前方引用件数</th>
<th>件数</th>
<th>累積 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13,708</td>
<td>37.27%</td>
</tr>
<tr>
<td>1</td>
<td>8,872</td>
<td>61.40%</td>
</tr>
<tr>
<td>2</td>
<td>5,105</td>
<td>75.28%</td>
</tr>
<tr>
<td>3</td>
<td>3,067</td>
<td>83.62%</td>
</tr>
<tr>
<td>4</td>
<td>1,908</td>
<td>88.81%</td>
</tr>
<tr>
<td>5</td>
<td>1,195</td>
<td>92.06%</td>
</tr>
<tr>
<td>6</td>
<td>853</td>
<td>94.38%</td>
</tr>
<tr>
<td>7</td>
<td>550</td>
<td>95.87%</td>
</tr>
<tr>
<td>8</td>
<td>344</td>
<td>96.81%</td>
</tr>
<tr>
<td>9</td>
<td>271</td>
<td>97.54%</td>
</tr>
<tr>
<td>10</td>
<td>168</td>
<td>98.00%</td>
</tr>
<tr>
<td>11以上</td>
<td>735</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

平均値=1.90
＜基準化後（NEFC）の分布＞

<table>
<thead>
<tr>
<th>NEFC</th>
<th>件数</th>
<th>累積 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4 以下</td>
<td>14,493</td>
<td>39.41%</td>
</tr>
<tr>
<td>-0.2</td>
<td>6,764</td>
<td>57.80%</td>
</tr>
<tr>
<td>0</td>
<td>3,279</td>
<td>66.72%</td>
</tr>
<tr>
<td>0.2</td>
<td>2,831</td>
<td>74.42%</td>
</tr>
<tr>
<td>0.4</td>
<td>2,074</td>
<td>80.05%</td>
</tr>
<tr>
<td>0.6</td>
<td>1,495</td>
<td>84.12%</td>
</tr>
<tr>
<td>0.8</td>
<td>1,243</td>
<td>87.50%</td>
</tr>
<tr>
<td>1</td>
<td>849</td>
<td>89.81%</td>
</tr>
<tr>
<td>1.2</td>
<td>682</td>
<td>91.66%</td>
</tr>
<tr>
<td>1.4</td>
<td>576</td>
<td>93.23%</td>
</tr>
<tr>
<td>1.6</td>
<td>422</td>
<td>94.38%</td>
</tr>
<tr>
<td>1.6 超</td>
<td>2,068</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
＜平均値の推移の比較＞

<table>
<thead>
<tr>
<th>年度</th>
<th>件数</th>
<th>審査官前方引用件数</th>
<th>NEFC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>1991</td>
<td>3,639</td>
<td>1.84</td>
<td>2.64</td>
</tr>
<tr>
<td>1992</td>
<td>3,467</td>
<td>2.04</td>
<td>3.00</td>
</tr>
<tr>
<td>1993</td>
<td>3,390</td>
<td>2.15</td>
<td>3.57</td>
</tr>
<tr>
<td>1994</td>
<td>3,511</td>
<td>2.03</td>
<td>3.12</td>
</tr>
<tr>
<td>1995</td>
<td>3,525</td>
<td>1.94</td>
<td>2.92</td>
</tr>
<tr>
<td>1996</td>
<td>3,600</td>
<td>1.93</td>
<td>3.16</td>
</tr>
<tr>
<td>1997</td>
<td>3,796</td>
<td>2.01</td>
<td>3.58</td>
</tr>
<tr>
<td>1998</td>
<td>3,848</td>
<td>1.86</td>
<td>3.45</td>
</tr>
<tr>
<td>1999</td>
<td>3,867</td>
<td>1.71</td>
<td>3.22</td>
</tr>
<tr>
<td>2000</td>
<td>4,133</td>
<td>1.56</td>
<td>2.43</td>
</tr>
<tr>
<td>合計</td>
<td>36,776</td>
<td>1.90</td>
<td>3.13</td>
</tr>
</tbody>
</table>
年度別の平均審査官前方引用件数（2.5.1 図2-2参照）

<table>
<thead>
<tr>
<th>出願年度</th>
<th>特許出願件数</th>
<th>平均審査官前方引用件数</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>341,271</td>
<td>1.67</td>
<td>2.57</td>
</tr>
<tr>
<td>1990</td>
<td>350,964</td>
<td>1.70</td>
<td>2.62</td>
</tr>
<tr>
<td>1991</td>
<td>363,650</td>
<td>1.89</td>
<td>2.85</td>
</tr>
<tr>
<td>1992</td>
<td>348,307</td>
<td>2.02</td>
<td>3.06</td>
</tr>
<tr>
<td>1993</td>
<td>338,999</td>
<td>2.09</td>
<td>3.17</td>
</tr>
<tr>
<td>1994</td>
<td>349,359</td>
<td>2.07</td>
<td>3.19</td>
</tr>
<tr>
<td>1995</td>
<td>353,597</td>
<td>2.06</td>
<td>3.27</td>
</tr>
<tr>
<td>1996</td>
<td>359,954</td>
<td>1.96</td>
<td>3.17</td>
</tr>
<tr>
<td>1997</td>
<td>379,171</td>
<td>1.93</td>
<td>3.20</td>
</tr>
<tr>
<td>1998</td>
<td>383,771</td>
<td>1.82</td>
<td>2.99</td>
</tr>
<tr>
<td>1999</td>
<td>388,957</td>
<td>1.72</td>
<td>2.78</td>
</tr>
<tr>
<td>2000</td>
<td>412,718</td>
<td>1.57</td>
<td>2.54</td>
</tr>
<tr>
<td>2001</td>
<td>405,567</td>
<td>1.29</td>
<td>2.19</td>
</tr>
<tr>
<td>2002</td>
<td>391,419</td>
<td>0.91</td>
<td>1.69</td>
</tr>
<tr>
<td>2003</td>
<td>396,168</td>
<td>0.56</td>
<td>1.20</td>
</tr>
<tr>
<td>2004</td>
<td>393,066</td>
<td>0.29</td>
<td>0.78</td>
</tr>
<tr>
<td>2005</td>
<td>393,477</td>
<td>0.13</td>
<td>0.48</td>
</tr>
<tr>
<td>2006</td>
<td>373,464</td>
<td>0.06</td>
<td>0.30</td>
</tr>
<tr>
<td>2007</td>
<td>349,856</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td>2008</td>
<td>314,231</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>2009</td>
<td>117,079</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>2010</td>
<td>16,882</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>合計</td>
<td>7,521,927</td>
<td>1.26</td>
<td>2.37</td>
</tr>
</tbody>
</table>
4. 各自己選択項目における出願人の自己選択結果に対する NEFC の平均値

(2.5.2 表2-1参照)

<table>
<thead>
<tr>
<th>出願人の自己選択項目/結果</th>
<th>分析対象件数</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 海外出願の有無（Yes/No）</td>
<td>36,776</td>
<td>0.00</td>
<td>1.01</td>
</tr>
<tr>
<td>Yes</td>
<td>7,994</td>
<td>0.15</td>
<td>1.19</td>
</tr>
<tr>
<td>No</td>
<td>28,782</td>
<td>-0.04</td>
<td>0.96</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>36,776</td>
<td>0.00</td>
<td>1.01</td>
</tr>
<tr>
<td>Yes</td>
<td>21,153</td>
<td>0.14</td>
<td>1.16</td>
</tr>
<tr>
<td>No</td>
<td>15,623</td>
<td>-0.19</td>
<td>0.73</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>21,153</td>
<td>0.14</td>
<td>1.16</td>
</tr>
<tr>
<td>Yes</td>
<td>138</td>
<td>1.11</td>
<td>2.63</td>
</tr>
<tr>
<td>No</td>
<td>21,015</td>
<td>0.13</td>
<td>1.14</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>17,693</td>
<td>0.16</td>
<td>1.17</td>
</tr>
<tr>
<td>Yes</td>
<td>12,595</td>
<td>0.23</td>
<td>1.26</td>
</tr>
<tr>
<td>No</td>
<td>5,098</td>
<td>-0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>9,419</td>
<td>0.10</td>
<td>1.11</td>
</tr>
<tr>
<td>Yes</td>
<td>1,937</td>
<td>0.43</td>
<td>1.54</td>
</tr>
<tr>
<td>No</td>
<td>7,482</td>
<td>0.02</td>
<td>0.96</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>11,075</td>
<td>0.17</td>
<td>1.20</td>
</tr>
<tr>
<td>Yes</td>
<td>10,932</td>
<td>0.18</td>
<td>1.20</td>
</tr>
<tr>
<td>No</td>
<td>143</td>
<td>-0.12</td>
<td>0.68</td>
</tr>
</tbody>
</table>
各項目における出願人の自己選択結果に対する NEFC の平均値（技術分野別）
（2.5.2 表 2-2 参照）

<Chemistry>

<table>
<thead>
<tr>
<th>分析対象</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願件数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 海外出願の有無（Yes/No）</td>
<td>6,416</td>
<td>0.00</td>
</tr>
<tr>
<td>Yes</td>
<td>2,026</td>
<td>0.08</td>
</tr>
<tr>
<td>No</td>
<td>4,390</td>
<td>-0.04</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>6,416</td>
<td>0.00</td>
</tr>
<tr>
<td>Yes</td>
<td>3,847</td>
<td>0.15</td>
</tr>
<tr>
<td>No</td>
<td>2,569</td>
<td>-0.22</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>3,847</td>
<td>0.15</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>0.97</td>
</tr>
<tr>
<td>No</td>
<td>3,811</td>
<td>0.14</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>3,192</td>
<td>0.18</td>
</tr>
<tr>
<td>Yes</td>
<td>2,238</td>
<td>0.27</td>
</tr>
<tr>
<td>No</td>
<td>954</td>
<td>-0.04</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>1,639</td>
<td>0.08</td>
</tr>
<tr>
<td>Yes</td>
<td>365</td>
<td>0.35</td>
</tr>
<tr>
<td>No</td>
<td>1,274</td>
<td>0.00</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>2,078</td>
<td>0.22</td>
</tr>
<tr>
<td>Yes</td>
<td>2,028</td>
<td>0.23</td>
</tr>
<tr>
<td>No</td>
<td>50</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

<Electrical engineering>

<table>
<thead>
<tr>
<th>分析対象</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願件数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 海外出願の有無（Yes/No）</td>
<td>11,384</td>
<td>0.00</td>
</tr>
<tr>
<td>Yes</td>
<td>2,530</td>
<td>0.18</td>
</tr>
<tr>
<td>No</td>
<td>8,854</td>
<td>-0.05</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>11,384</td>
<td>0.00</td>
</tr>
<tr>
<td>Yes</td>
<td>6,401</td>
<td>0.13</td>
</tr>
<tr>
<td>No</td>
<td>4,983</td>
<td>-0.18</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>6,401</td>
<td>0.13</td>
</tr>
<tr>
<td>Yes</td>
<td>46</td>
<td>1.01</td>
</tr>
<tr>
<td>No</td>
<td>6,355</td>
<td>0.13</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>5,532</td>
<td>0.16</td>
</tr>
<tr>
<td>Yes</td>
<td>3,937</td>
<td>0.23</td>
</tr>
<tr>
<td>No</td>
<td>1,595</td>
<td>-0.02</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>3,108</td>
<td>0.12</td>
</tr>
<tr>
<td>Yes</td>
<td>668</td>
<td>0.47</td>
</tr>
<tr>
<td>No</td>
<td>2,440</td>
<td>0.03</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>3,056</td>
<td>0.15</td>
</tr>
<tr>
<td>Yes</td>
<td>3,038</td>
<td>0.16</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>-0.15</td>
</tr>
<tr>
<td>出願人の自己選択項目／結果</td>
<td>分析対象出願件数</td>
<td>NEFCの平均値</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>出願人の自己選択項目／結果</td>
<td>出願件数</td>
<td>NEFCの平均値</td>
</tr>
<tr>
<td>機械工学</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 海外出願の有無 (Yes/No)</td>
<td>9,650</td>
<td>-0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>1,746</td>
<td>0.14</td>
</tr>
<tr>
<td>No</td>
<td>7,904</td>
<td>-0.04</td>
</tr>
<tr>
<td>B) 審査請求の有無 (Yes/No)</td>
<td>9,650</td>
<td>-0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>5,597</td>
<td>0.12</td>
</tr>
<tr>
<td>No</td>
<td>4,053</td>
<td>-0.19</td>
</tr>
<tr>
<td>C) 早期審査請求の有無 (Yes/No)</td>
<td>5,597</td>
<td>0.12</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>1.05</td>
</tr>
<tr>
<td>No</td>
<td>5,578</td>
<td>0.11</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無 (Yes/No)</td>
<td>4,601</td>
<td>0.13</td>
</tr>
<tr>
<td>Yes</td>
<td>3,342</td>
<td>0.18</td>
</tr>
<tr>
<td>No</td>
<td>1,259</td>
<td>0.00</td>
</tr>
<tr>
<td>E) 審判請求の有無 (Yes/No)</td>
<td>2,307</td>
<td>0.08</td>
</tr>
<tr>
<td>Yes</td>
<td>442</td>
<td>0.37</td>
</tr>
<tr>
<td>No</td>
<td>1,865</td>
<td>0.01</td>
</tr>
<tr>
<td>F) 登録料納付の有無 (Yes/No)</td>
<td>3,159</td>
<td>0.15</td>
</tr>
<tr>
<td>Yes</td>
<td>3,123</td>
<td>0.15</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>-0.14</td>
</tr>
<tr>
<td>機械工学</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 海外出願の有無 (Yes/No)</td>
<td>9,650</td>
<td>-0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>1,746</td>
<td>0.14</td>
</tr>
<tr>
<td>No</td>
<td>7,904</td>
<td>-0.04</td>
</tr>
<tr>
<td>B) 審査請求の有無 (Yes/No)</td>
<td>9,650</td>
<td>-0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>5,597</td>
<td>0.12</td>
</tr>
<tr>
<td>No</td>
<td>4,053</td>
<td>-0.19</td>
</tr>
<tr>
<td>C) 早期審査請求の有無 (Yes/No)</td>
<td>5,597</td>
<td>0.12</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>1.05</td>
</tr>
<tr>
<td>No</td>
<td>5,578</td>
<td>0.11</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無 (Yes/No)</td>
<td>4,601</td>
<td>0.13</td>
</tr>
<tr>
<td>Yes</td>
<td>3,342</td>
<td>0.18</td>
</tr>
<tr>
<td>No</td>
<td>1,259</td>
<td>0.00</td>
</tr>
<tr>
<td>E) 審判請求の有無 (Yes/No)</td>
<td>2,307</td>
<td>0.08</td>
</tr>
<tr>
<td>Yes</td>
<td>442</td>
<td>0.37</td>
</tr>
<tr>
<td>No</td>
<td>1,865</td>
<td>0.01</td>
</tr>
<tr>
<td>F) 登録料納付の有無 (Yes/No)</td>
<td>3,159</td>
<td>0.15</td>
</tr>
<tr>
<td>Yes</td>
<td>3,123</td>
<td>0.15</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>-0.14</td>
</tr>
</tbody>
</table>
各項目における出願人の自己選択結果に対する NEFC の平均値（請求項数別）
（2.5.2 表2-3参照）

<請求項数3以下>

<table>
<thead>
<tr>
<th>出願人の自己選択項目／結果</th>
<th>分析対象出願件数</th>
<th>NEFCの平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 海外出願の有無（Yes/No）</td>
<td>16,984</td>
<td>-0.12</td>
<td>0.82</td>
</tr>
<tr>
<td>Yes</td>
<td>1,512</td>
<td>0.09</td>
<td>1.02</td>
</tr>
<tr>
<td>No</td>
<td>15,472</td>
<td>-0.14</td>
<td>0.80</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>16,984</td>
<td>-0.12</td>
<td>0.82</td>
</tr>
<tr>
<td>Yes</td>
<td>8,978</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>No</td>
<td>8,006</td>
<td>-0.25</td>
<td>0.64</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>8,978</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>0.40</td>
<td>1.29</td>
</tr>
<tr>
<td>No</td>
<td>8,942</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>7,134</td>
<td>0.02</td>
<td>0.95</td>
</tr>
<tr>
<td>Yes</td>
<td>4,803</td>
<td>0.09</td>
<td>1.02</td>
</tr>
<tr>
<td>No</td>
<td>2,331</td>
<td>-0.13</td>
<td>0.78</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>4,017</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>Yes</td>
<td>637</td>
<td>0.27</td>
<td>1.26</td>
</tr>
<tr>
<td>No</td>
<td>3,380</td>
<td>-0.10</td>
<td>0.78</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>4,746</td>
<td>0.03</td>
<td>0.98</td>
</tr>
<tr>
<td>Yes</td>
<td>4,693</td>
<td>0.04</td>
<td>0.98</td>
</tr>
<tr>
<td>No</td>
<td>53</td>
<td>-0.17</td>
<td>0.67</td>
</tr>
</tbody>
</table>

<請求項数4以上>

<table>
<thead>
<tr>
<th>出願人の自己選択項目／結果</th>
<th>分析対象出願件数</th>
<th>NEFCの平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 海外出願の有無（Yes/No）</td>
<td>17,386</td>
<td>0.11</td>
<td>1.14</td>
</tr>
<tr>
<td>Yes</td>
<td>4,225</td>
<td>0.24</td>
<td>1.31</td>
</tr>
<tr>
<td>No</td>
<td>13,161</td>
<td>0.07</td>
<td>1.08</td>
</tr>
<tr>
<td>B) 審査請求の有無（Yes/No）</td>
<td>17,386</td>
<td>0.11</td>
<td>1.14</td>
</tr>
<tr>
<td>Yes</td>
<td>10,551</td>
<td>0.26</td>
<td>1.28</td>
</tr>
<tr>
<td>No</td>
<td>6,835</td>
<td>-0.12</td>
<td>0.83</td>
</tr>
<tr>
<td>C) 早期審査請求の有無（Yes/No）</td>
<td>10,551</td>
<td>0.26</td>
<td>1.28</td>
</tr>
<tr>
<td>Yes</td>
<td>87</td>
<td>1.50</td>
<td>3.12</td>
</tr>
<tr>
<td>No</td>
<td>10,464</td>
<td>0.25</td>
<td>1.25</td>
</tr>
<tr>
<td>D) 拒絶理由通知に対する応答の有無（Yes/No）</td>
<td>9,131</td>
<td>0.27</td>
<td>1.28</td>
</tr>
<tr>
<td>Yes</td>
<td>6,684</td>
<td>0.34</td>
<td>1.36</td>
</tr>
<tr>
<td>No</td>
<td>2,447</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>E) 審判請求の有無（Yes/No）</td>
<td>4,674</td>
<td>0.23</td>
<td>1.22</td>
</tr>
<tr>
<td>Yes</td>
<td>1,032</td>
<td>0.54</td>
<td>1.53</td>
</tr>
<tr>
<td>No</td>
<td>3,642</td>
<td>0.15</td>
<td>1.10</td>
</tr>
<tr>
<td>F) 登録料納付の有無（Yes/No）</td>
<td>5,508</td>
<td>0.30</td>
<td>1.34</td>
</tr>
<tr>
<td>Yes</td>
<td>5,446</td>
<td>0.30</td>
<td>1.35</td>
</tr>
<tr>
<td>No</td>
<td>62</td>
<td>-0.08</td>
<td>0.73</td>
</tr>
</tbody>
</table>
⑦ 全出願人が日本人である特許出願に限定した場合の「A) 海外出願の有無」における NEFC の平均値
（2.5.2 表2-4参照）

<table>
<thead>
<tr>
<th>海外出願の有無 （Yes/No）</th>
<th>分析対象出願件数</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>7,994</td>
<td>0.15</td>
<td>1.19</td>
</tr>
<tr>
<td>No</td>
<td>28,782</td>
<td>-0.04</td>
<td>0.96</td>
</tr>
<tr>
<td>A) 海外出願の有無（Yes/No）（日本人の出願人のみによる出願）</td>
<td>32,464</td>
<td>0.01</td>
<td>1.03</td>
</tr>
<tr>
<td>Yes</td>
<td>3,859</td>
<td>0.40</td>
<td>1.40</td>
</tr>
<tr>
<td>No</td>
<td>28,605</td>
<td>-0.04</td>
<td>0.96</td>
</tr>
</tbody>
</table>

⑧ パテントファミリー中の出願国数に対する NEFC の平均値
（2.5.2 図2-3参照）

<table>
<thead>
<tr>
<th>出願国数</th>
<th>分析対象出願件数</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,605</td>
<td>-0.04</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>1,455</td>
<td>0.27</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>704</td>
<td>0.34</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>797</td>
<td>0.48</td>
<td>1.52</td>
</tr>
<tr>
<td>5以上</td>
<td>903</td>
<td>0.59</td>
<td>1.53</td>
</tr>
</tbody>
</table>

（出願国数5以上の内訳）

<table>
<thead>
<tr>
<th>出願国数</th>
<th>分析対象出願件数</th>
<th>NEFC の平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>417</td>
<td>0.61</td>
<td>1.61</td>
</tr>
<tr>
<td>6</td>
<td>238</td>
<td>0.52</td>
<td>1.33</td>
</tr>
<tr>
<td>7</td>
<td>115</td>
<td>0.67</td>
<td>1.49</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>0.86</td>
<td>2.26</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>0.69</td>
<td>1.50</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>0.55</td>
<td>0.98</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>-0.08</td>
<td>0.60</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>0.43</td>
<td>1.23</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.26</td>
<td>0.64</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0.39</td>
<td>0.65</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>1.11</td>
<td>1.92</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>-0.14</td>
<td>0.68</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.23</td>
<td>-</td>
</tr>
</tbody>
</table>
日本における最終審査結果、及び特許権の維持期間に対するNEFCの平均値（2.5.3 表2-5参照）

<table>
<thead>
<tr>
<th>評価指標</th>
<th>出願件数</th>
<th>NEFCの平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本において特許権が成立（Yes/No）</td>
<td>36,776</td>
<td>0.00</td>
<td>1.01</td>
</tr>
<tr>
<td>Yes</td>
<td>12,279</td>
<td>0.20</td>
<td>1.25</td>
</tr>
<tr>
<td>No</td>
<td>24,497</td>
<td>-0.11</td>
<td>0.85</td>
</tr>
<tr>
<td>全期間にわたって特許権を維持（Yes/No）</td>
<td>1,232</td>
<td>0.20</td>
<td>1.10</td>
</tr>
<tr>
<td>Yes</td>
<td>229</td>
<td>0.35</td>
<td>1.18</td>
</tr>
<tr>
<td>No</td>
<td>1,003</td>
<td>0.17</td>
<td>1.08</td>
</tr>
</tbody>
</table>
米国[公開]、米国[特許]及び米国[公開+特許]の平均値の推移
（3.5.3 図3-5、図3-6参照）

A. 「特許公報が発行された出願」

<table>
<thead>
<tr>
<th>特許公報 発行からの 経過年数</th>
<th>対象 案件数</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
<th>米国[公開+特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.071</td>
<td>0.333</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.093</td>
<td>0.577</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.098</td>
<td>0.404</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.157</td>
<td>0.499</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.189</td>
<td>0.565</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.180</td>
<td>0.482</td>
<td>0.295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.205</td>
<td>0.499</td>
<td>0.319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.208</td>
<td>0.575</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.174</td>
<td>0.514</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.157</td>
<td>0.447</td>
<td>0.350</td>
</tr>
</tbody>
</table>

B. 「特許公報が発行されなかった出願」

<table>
<thead>
<tr>
<th>特許公報 発行からの 経過年数</th>
<th>対象 案件数</th>
<th>米国[公開]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.048</td>
</tr>
</tbody>
</table>
⑪ 米国[公開]、米国[特許]及び米国[公開+特許]の平均値の推移（技術区別）（3．5．
3 図3－7、図3－8参照）

<Electrical engineering>

<table>
<thead>
<tr>
<th>特許公報 発行からの 経過年数</th>
<th>分析対象出願件数</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
<th>米国[公開+特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>-3</td>
<td>155</td>
<td>0.090</td>
<td>0.349</td>
<td>-</td>
</tr>
<tr>
<td>-2</td>
<td>273</td>
<td>0.136</td>
<td>0.757</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>408</td>
<td>0.127</td>
<td>0.430</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>515</td>
<td>0.200</td>
<td>0.537</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>514</td>
<td>0.261</td>
<td>0.686</td>
<td>0.239</td>
</tr>
<tr>
<td>2</td>
<td>462</td>
<td>0.281</td>
<td>0.599</td>
<td>0.320</td>
</tr>
<tr>
<td>3</td>
<td>394</td>
<td>0.251</td>
<td>0.557</td>
<td>0.381</td>
</tr>
<tr>
<td>4</td>
<td>322</td>
<td>0.258</td>
<td>0.621</td>
<td>0.363</td>
</tr>
<tr>
<td>5</td>
<td>232</td>
<td>0.254</td>
<td>0.588</td>
<td>0.332</td>
</tr>
<tr>
<td>6</td>
<td>166</td>
<td>0.163</td>
<td>0.458</td>
<td>0.325</td>
</tr>
</tbody>
</table>

< Instruments>

<table>
<thead>
<tr>
<th>特許公報 発行からの 経過年数</th>
<th>分析対象出願件数</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
<th>米国[公開+特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>-3</td>
<td>32</td>
<td>0.125</td>
<td>0.554</td>
<td>-</td>
</tr>
<tr>
<td>-2</td>
<td>84</td>
<td>0.095</td>
<td>0.481</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>142</td>
<td>0.106</td>
<td>0.487</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>204</td>
<td>0.167</td>
<td>0.597</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>209</td>
<td>0.167</td>
<td>0.486</td>
<td>0.211</td>
</tr>
<tr>
<td>2</td>
<td>197</td>
<td>0.132</td>
<td>0.368</td>
<td>0.284</td>
</tr>
<tr>
<td>3</td>
<td>175</td>
<td>0.223</td>
<td>0.516</td>
<td>0.314</td>
</tr>
<tr>
<td>4</td>
<td>137</td>
<td>0.212</td>
<td>0.669</td>
<td>0.336</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>0.216</td>
<td>0.639</td>
<td>0.265</td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>0.299</td>
<td>0.652</td>
<td>0.418</td>
</tr>
</tbody>
</table>
Chemistry

<table>
<thead>
<tr>
<th>特許公報発行からの経過年数</th>
<th>対象案件数</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
<th>米国[公開+特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>-3</td>
<td>43</td>
<td>0.000</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>-2</td>
<td>105</td>
<td>0.019</td>
<td>0.137</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>157</td>
<td>0.051</td>
<td>0.354</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>0.110</td>
<td>0.435</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>201</td>
<td>0.100</td>
<td>0.436</td>
<td>0.070</td>
</tr>
<tr>
<td>2</td>
<td>169</td>
<td>0.053</td>
<td>0.250</td>
<td>0.118</td>
</tr>
<tr>
<td>3</td>
<td>137</td>
<td>0.095</td>
<td>0.340</td>
<td>0.182</td>
</tr>
<tr>
<td>4</td>
<td>104</td>
<td>0.087</td>
<td>0.315</td>
<td>0.183</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>0.040</td>
<td>0.197</td>
<td>0.173</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>0.065</td>
<td>0.250</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Mechanical engineering

<table>
<thead>
<tr>
<th>特許公報発行からの経過年数</th>
<th>対象案件数</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
<th>米国[公開+特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>-3</td>
<td>31</td>
<td>0.032</td>
<td>0.180</td>
<td>-</td>
</tr>
<tr>
<td>-2</td>
<td>72</td>
<td>0.056</td>
<td>0.231</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>129</td>
<td>0.070</td>
<td>0.285</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>194</td>
<td>0.093</td>
<td>0.325</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>213</td>
<td>0.141</td>
<td>0.433</td>
<td>0.239</td>
</tr>
<tr>
<td>2</td>
<td>197</td>
<td>0.107</td>
<td>0.383</td>
<td>0.401</td>
</tr>
<tr>
<td>3</td>
<td>175</td>
<td>0.149</td>
<td>0.372</td>
<td>0.280</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>0.200</td>
<td>0.531</td>
<td>0.247</td>
</tr>
<tr>
<td>5</td>
<td>119</td>
<td>0.076</td>
<td>0.348</td>
<td>0.261</td>
</tr>
<tr>
<td>6</td>
<td>91</td>
<td>0.099</td>
<td>0.300</td>
<td>0.396</td>
</tr>
</tbody>
</table>
⑫ 公報発行後の3年間の平均審査官前方引用件数の推移
（3.5.3 図3-9参照）

＜特許公報（米国[特許]）＞

<table>
<thead>
<tr>
<th>公開年</th>
<th>分析対象出願件数</th>
<th>特許公報件数（公開後1年目）</th>
<th>特許公報件数（公開後2年目）</th>
<th>特許公報件数（公開後3年間）</th>
<th>公開公報件数（公開後3年間）</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>54</td>
<td>0.241</td>
<td>0.407</td>
<td>0.407</td>
<td>1.056</td>
<td>1.547</td>
</tr>
<tr>
<td>2004</td>
<td>98</td>
<td>0.276</td>
<td>0.480</td>
<td>0.378</td>
<td>1.133</td>
<td>1.854</td>
</tr>
<tr>
<td>2005</td>
<td>92</td>
<td>0.250</td>
<td>0.370</td>
<td>0.348</td>
<td>0.967</td>
<td>2.019</td>
</tr>
<tr>
<td>2006</td>
<td>137</td>
<td>0.212</td>
<td>0.292</td>
<td>0.358</td>
<td>0.861</td>
<td>1.520</td>
</tr>
<tr>
<td>2007</td>
<td>162</td>
<td>0.136</td>
<td>0.247</td>
<td>0.265</td>
<td>0.648</td>
<td>0.968</td>
</tr>
</tbody>
</table>

＜公開公報（米国[公開]）＞

<table>
<thead>
<tr>
<th>公開年</th>
<th>分析対象出願件数</th>
<th>公開公報件数（公開後1年目）</th>
<th>公開公報件数（公開後2年目）</th>
<th>公開公報件数（公開後3年間）</th>
<th>公開公報件数（公開後3年間）</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>25</td>
<td>0.000</td>
<td>0.000</td>
<td>0.040</td>
<td>0.040</td>
<td>0.200</td>
</tr>
<tr>
<td>2004</td>
<td>69</td>
<td>0.000</td>
<td>0.029</td>
<td>0.058</td>
<td>0.087</td>
<td>0.284</td>
</tr>
<tr>
<td>2005</td>
<td>236</td>
<td>0.034</td>
<td>0.097</td>
<td>0.136</td>
<td>0.267</td>
<td>0.626</td>
</tr>
<tr>
<td>2006</td>
<td>130</td>
<td>0.069</td>
<td>0.100</td>
<td>0.069</td>
<td>0.238</td>
<td>0.645</td>
</tr>
<tr>
<td>2007</td>
<td>152</td>
<td>0.066</td>
<td>0.072</td>
<td>0.092</td>
<td>0.230</td>
<td>0.714</td>
</tr>
</tbody>
</table>

⑬ 「後の出願」において引用されている特許文献に関する分析結果
（3.5.3 表3-2参照）

<table>
<thead>
<tr>
<th>区分</th>
<th>対象案件数</th>
<th>合計</th>
<th>特許公報（公開公報なし）</th>
<th>特許公報（公開公報あり）</th>
<th>公開公報</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>合計</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>1,245</td>
<td>11.82</td>
<td>11.94</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>1,414</td>
<td>12.73</td>
<td>18.97</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td>133</td>
<td>22.02</td>
<td>22.48</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>2,792</td>
<td>12.77</td>
<td>16.55</td>
<td>4.86</td>
</tr>
</tbody>
</table>
⑭ 「後の出願」を担当した米国審査官の内訳
（3.6.3 表3-3参照）

<table>
<thead>
<tr>
<th>審査案件数</th>
<th>審査官数</th>
<th>内訳 (X:「公開公報」+「特許公報（公開公報あり）」中の「公開公報」の割合)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X=0 0<X≦0.2 0.2<X≦0.4 0.4<X≦0.6 0.6<X≦0.8 0.8<X<1 X=1</td>
</tr>
<tr>
<td>1</td>
<td>553</td>
<td>148 20 51 104 97 38 95</td>
</tr>
<tr>
<td>2</td>
<td>169</td>
<td>18 20 32 41 40 13 5</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>6 10 13 23 26 3 2</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>2 5 5 12 5 4</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>1 6 5 2</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>1 4 5 1 1</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>1 1 2 2 3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1 1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>882</td>
<td>175 60 113 193 179 59 103</td>
</tr>
</tbody>
</table>

⑮ 選定した米国審査官の引用傾向 －概要分析－
（3.6.3 表3-4参照）

<table>
<thead>
<tr>
<th>区分</th>
<th>対象案件数</th>
<th>合計</th>
<th>特許公報 (公開公報なし)</th>
<th>特許公報 (公開公報あり)</th>
<th>公開公報</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>特許優先引用審査官（候補）</td>
<td>6,519</td>
<td>4.61</td>
<td>2.97</td>
<td>2.78</td>
<td>2.73</td>
</tr>
<tr>
<td>公開優先引用審査官（候補）</td>
<td>3,811</td>
<td>5.07</td>
<td>6.45</td>
<td>2.47</td>
<td>3.28</td>
</tr>
<tr>
<td>合計</td>
<td>10,330</td>
<td>4.78</td>
<td>4.58</td>
<td>2.67</td>
<td>2.95</td>
</tr>
</tbody>
</table>

179
選定した米国審査官の引用傾向 —詳細分析—
（3.6.3 表3-5参照）

<table>
<thead>
<tr>
<th>区分</th>
<th>対象案件数</th>
<th>合計</th>
<th>特許のみ引用可能</th>
<th>両方引用可能</th>
<th>公開のみ引用可能</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>特許公報</td>
<td>公開公報</td>
<td>特許公報</td>
<td>公開公報</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>特許優先引用審査官(候補)</td>
<td>6,519</td>
<td>4.61</td>
<td>2.97</td>
<td>2.40</td>
<td>2.46</td>
<td>0.56</td>
</tr>
<tr>
<td>公開優先引用審査官(候補)</td>
<td>3,811</td>
<td>5.07</td>
<td>6.45</td>
<td>1.90</td>
<td>2.62</td>
<td>0.22</td>
</tr>
<tr>
<td>合計</td>
<td>10,330</td>
<td>4.78</td>
<td>4.58</td>
<td>2.21</td>
<td>2.54</td>
<td>0.44</td>
</tr>
<tr>
<td>区分</td>
<td>対象案件数</td>
<td>合計</td>
<td>特許のみ引用可能</td>
<td>全方引用可能</td>
<td>公開のみ引用可能</td>
<td>その他</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>特許優先引用審査官①</td>
<td>657</td>
<td>1.70</td>
<td>1.83</td>
<td>0.73</td>
<td>1.34</td>
<td>0.40</td>
</tr>
<tr>
<td>特許優先引用審査官②</td>
<td>372</td>
<td>3.43</td>
<td>2.46</td>
<td>2.25</td>
<td>1.96</td>
<td>0.18</td>
</tr>
<tr>
<td>特許優先引用審査官③</td>
<td>648</td>
<td>3.45</td>
<td>2.36</td>
<td>1.50</td>
<td>1.68</td>
<td>0.60</td>
</tr>
<tr>
<td>特許優先引用審査官④</td>
<td>748</td>
<td>6.69</td>
<td>2.02</td>
<td>3.95</td>
<td>2.75</td>
<td>1.24</td>
</tr>
<tr>
<td>特許優先引用審査官⑤</td>
<td>356</td>
<td>6.92</td>
<td>2.74</td>
<td>2.39</td>
<td>2.28</td>
<td>0.85</td>
</tr>
<tr>
<td>特許優先引用審査官⑥</td>
<td>1335</td>
<td>4.31</td>
<td>2.24</td>
<td>2.12</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>特許優先引用審査官⑦</td>
<td>809</td>
<td>5.24</td>
<td>2.44</td>
<td>2.96</td>
<td>2.62</td>
<td>0.52</td>
</tr>
<tr>
<td>特許優先引用審査官⑧</td>
<td>939</td>
<td>6.05</td>
<td>3.39</td>
<td>3.66</td>
<td>3.04</td>
<td>0.40</td>
</tr>
<tr>
<td>特許優先引用審査官⑨</td>
<td>655</td>
<td>3.44</td>
<td>2.28</td>
<td>1.33</td>
<td>1.62</td>
<td>0.36</td>
</tr>
<tr>
<td>公開優先引用審査官①</td>
<td>470</td>
<td>3.08</td>
<td>4.33</td>
<td>2.09</td>
<td>3.00</td>
<td>0.08</td>
</tr>
<tr>
<td>公開優先引用審査官②</td>
<td>509</td>
<td>5.18</td>
<td>4.07</td>
<td>3.04</td>
<td>3.20</td>
<td>0.18</td>
</tr>
<tr>
<td>公開優先引用審査官③</td>
<td>666</td>
<td>4.02</td>
<td>3.33</td>
<td>1.88</td>
<td>2.40</td>
<td>0.40</td>
</tr>
<tr>
<td>公開優先引用審査官④</td>
<td>579</td>
<td>4.80</td>
<td>12.1</td>
<td>3.25</td>
<td>3.08</td>
<td>0.48</td>
</tr>
<tr>
<td>公開優先引用審査官⑤</td>
<td>477</td>
<td>2.30</td>
<td>2.09</td>
<td>0.81</td>
<td>1.28</td>
<td>0.18</td>
</tr>
<tr>
<td>公開優先引用審査官⑥</td>
<td>573</td>
<td>6.30</td>
<td>3.49</td>
<td>0.90</td>
<td>1.62</td>
<td>0.03</td>
</tr>
<tr>
<td>公開優先引用審査官⑦</td>
<td>20</td>
<td>3.05</td>
<td>1.85</td>
<td>0.65</td>
<td>0.99</td>
<td>0.10</td>
</tr>
<tr>
<td>公開優先引用審査官⑧</td>
<td>437</td>
<td>10.5</td>
<td>6.48</td>
<td>1.89</td>
<td>2.22</td>
<td>0.12</td>
</tr>
<tr>
<td>合計</td>
<td>10,330</td>
<td>4.78</td>
<td>4.58</td>
<td>2.21</td>
<td>2.54</td>
<td>0.44</td>
</tr>
</tbody>
</table>

11) 選定した米国審査官の引用傾向 一分析結果分析－
（3.6.3 表3-6参照）
日米それぞれにおける最終審査結果を指標とした分析結果
（4.5.1 表4-1参照）

（米国の審査結果に基づくグループ分け）

<table>
<thead>
<tr>
<th>グループ</th>
<th>対象案件数</th>
<th>米国[公開+特許]</th>
<th>米国[公開]</th>
<th>米国[特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.66</td>
<td>1.98</td>
<td>1.01</td>
</tr>
<tr>
<td>米国特許成立</td>
<td>1,250</td>
<td>2.20</td>
<td>1.97</td>
<td>1.09</td>
</tr>
<tr>
<td>米国特許不成立</td>
<td>895</td>
<td>0.91</td>
<td>1.98</td>
<td>0.91</td>
</tr>
</tbody>
</table>

（日本の審査結果に基づくグループ分け）

<table>
<thead>
<tr>
<th>グループ</th>
<th>対象案件数</th>
<th>日本[公開+特許]</th>
<th>日本[公開]</th>
<th>日本[特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.07</td>
<td>2.17</td>
<td>1.07</td>
</tr>
<tr>
<td>米国特許成立</td>
<td>1,250</td>
<td>1.25</td>
<td>2.40</td>
<td>1.24</td>
</tr>
<tr>
<td>米国特許不成立</td>
<td>895</td>
<td>0.83</td>
<td>1.77</td>
<td>0.82</td>
</tr>
</tbody>
</table>

（日本の審査結果に基づくグループ分け）

<table>
<thead>
<tr>
<th>グループ</th>
<th>対象案件数</th>
<th>日本[公開+特許]</th>
<th>日本[公開]</th>
<th>日本[特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.66</td>
<td>1.98</td>
<td>1.01</td>
</tr>
<tr>
<td>日本特許成立</td>
<td>1,021</td>
<td>2.07</td>
<td>2.30</td>
<td>1.23</td>
</tr>
<tr>
<td>日本特許不成立</td>
<td>1,124</td>
<td>1.30</td>
<td>1.61</td>
<td>0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>グループ</th>
<th>対象案件数</th>
<th>日本[公開+特許]</th>
<th>日本[公開]</th>
<th>日本[特許]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>平均値</td>
<td>標準偏差</td>
<td>平均値</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.07</td>
<td>2.17</td>
<td>1.07</td>
</tr>
<tr>
<td>日本特許成立</td>
<td>1,021</td>
<td>1.43</td>
<td>2.64</td>
<td>1.41</td>
</tr>
<tr>
<td>日本特許不成立</td>
<td>1,124</td>
<td>0.75</td>
<td>1.57</td>
<td>0.75</td>
</tr>
</tbody>
</table>
⑳ 日米における最終審査結果の組み合わせによる分析結果
（4.5.2 表4-2参照）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>標準偏差</td>
<td>標準偏差</td>
<td>標準偏差</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.66</td>
<td>1.98</td>
<td>1.01</td>
</tr>
<tr>
<td>G1[米○日○]</td>
<td>767</td>
<td>2.34</td>
<td>2.22</td>
<td>1.22</td>
</tr>
<tr>
<td>G2[米○日×]</td>
<td>483</td>
<td>1.98</td>
<td>1.47</td>
<td>0.88</td>
</tr>
<tr>
<td>G3[米×日○]</td>
<td>254</td>
<td>1.24</td>
<td>2.51</td>
<td>1.24</td>
</tr>
<tr>
<td>G4[米×日×]</td>
<td>641</td>
<td>0.78</td>
<td>1.70</td>
<td>0.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>標準偏差</td>
<td>標準偏差</td>
<td>標準偏差</td>
</tr>
<tr>
<td>全体</td>
<td>2,145</td>
<td>1.07</td>
<td>2.17</td>
<td>1.07</td>
</tr>
<tr>
<td>G1[米○日○]</td>
<td>767</td>
<td>1.49</td>
<td>2.74</td>
<td>1.48</td>
</tr>
<tr>
<td>G2[米○日×]</td>
<td>483</td>
<td>0.85</td>
<td>1.67</td>
<td>0.85</td>
</tr>
<tr>
<td>G3[米×日○]</td>
<td>254</td>
<td>1.22</td>
<td>2.29</td>
<td>1.20</td>
</tr>
<tr>
<td>G4[米×日×]</td>
<td>641</td>
<td>0.67</td>
<td>1.49</td>
<td>0.67</td>
</tr>
</tbody>
</table>
第7章 論文

第2章の内容について、平成26年6月に印刷公表。

第3章（主に3.5）の内容について、平成27年2月に印刷公表。
第8章 参考文献

【日本語文献】

石井康之、長平彰夫(2014)。特許データによる発明の価値の把握－被引用数と属性統合指標との比較－。研究技術計画, 29, 185-199

後藤晃、玄場公規、鈴木潤、玉田俊平太(2006)。重要特許の判別指標。RIETI Discussion Paper Series, 06-J-018。

鈴木潤(2011)。日本企業の研究開発活動から商業化へのラグ構造の分析。RIETI Discussion Paper Series, 11-J-002。

三原健治(2012)。バイオテクノロジー分野における特許分類および引用情報を指標とした特許の価値評価に関する一考察。情報管理, 54, 738–749。

山内勇、長岡貞夫、米山茂美(2011)。特許制度の改正が企業の審査請求行動に与える影響－審査請求可能期間の短縮と特許料金体系の改定－。Nistep Discussion Paper No.77

和田哲夫(2010)。発明者による先行特許認識と特許後方引用。RIETI Discussion Paper Series, 10-J-001。

WIPO (2013). IPC · Technology Concordance Table.
7日アクセス)