開発された移動金属触媒による脱水素化反応

<table>
<thead>
<tr>
<th>その他のタイトル</th>
<th>遷移金属触媒による不飽和分子のヒドロアリール化及びアシロキシアルキル化反応の開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与年月日</td>
<td>2018-03-22</td>
</tr>
<tr>
<td>ページ</td>
<td>2018-03-22</td>
</tr>
</tbody>
</table>
博士論文

論文題目 Development of Transition Metal-Catalyzed Hydroarylation and Acyloxyalkylation of Unsaturated Molecules

（遷移金属触媒による不飽和分子のヒドロアリール化及びアシロキシアルキル化反応の開発）

氏名 王子嘉
Development of Transition Metal-Catalyzed Hydroarylation and Acyloxyalkylation of Unsaturated Molecules

(遷移金属触媒による不飽和分子のヒドロアリール化及びアシロキシアルキル化反応の開発)

Graduate School of Pharmaceutical Sciences
The University of Tokyo

Zijia Wang
王子嘉
Contents

Abbreviations ... 2

Chapter 1 .. 3
 1.1 Introduction ... 3
 1.2 Hydroarylation of Unsaturated Molecules .. 3
 1.3 Difunctionalization of Unsaturated Molecules ... 7
 1.4 References ... 11

Chapter 2 Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates .. 13
 2.1 Introduction ... 13
 2.2 Precedents of Rhenium-Catalyzed C-H Bond Transformations .. 13
 2.3 Precedents of Synthesis of 1,3-Diiminoisoindolines ... 17
 2.4 Research Purpose ... 19
 2.5 Summary .. 26
 2.6 References ... 27

Chapter 3 Iron-Catalyzed Acyloxyalkylation of Styrenes via Decarboxylation of Hypervalent Iodine(III) Reagents .. 29
 3.1 Introduction ... 29
 3.2 Precedents of Metal-Catalyzed Oxyalkylation of Alkenes .. 29
 3.3 Research Purpose ... 32
 3.4 Summary .. 40
 3.5 References ... 40

Chapter 4 Summary .. 43

Experimental Section .. 45
 Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates ... 45
 References ... 57
 Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine (III) Reagents 58
 References ... 68

Publication List ... 69

Acknowledgement .. 70
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>"Bu</td>
<td>normal-butyl</td>
</tr>
<tr>
<td>'Bu</td>
<td>tert-Butyl</td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
</tr>
<tr>
<td>cod</td>
<td>1,5-cyclooctadiene</td>
</tr>
<tr>
<td>cot</td>
<td>1,3,5,7-cyclooctatetraene</td>
</tr>
<tr>
<td>Cp*</td>
<td>pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DTBP</td>
<td>di-tert-butyl peroxide</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
</tr>
<tr>
<td>Ir</td>
<td>iridium</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>NHPI</td>
<td>N-hydroxyphthalimide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>Pd</td>
<td>palladium</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>'Pr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>R</td>
<td>alkyl or general substituent</td>
</tr>
<tr>
<td>Re</td>
<td>rhenium</td>
</tr>
<tr>
<td>Rh</td>
<td>rhodium</td>
</tr>
<tr>
<td>Ru</td>
<td>ruthenium</td>
</tr>
<tr>
<td>TBHP</td>
<td>tert-butyl hydroperoxide</td>
</tr>
</tbody>
</table>
Chapter 1

1.1 Introduction

Addition reaction is one of the most efficient and useful methods to introduce many functional groups and substituents to two atoms of unsaturated molecules. Useful organic molecules, such as drugs, bioactive molecules, agrochemicals and organic functional materials, can be synthesized by the addition reactions. Unfortunately, two regioisomers are often formed in the process of operation, if less-polarized and/or less sterically differentiated C–C multiple bonds are used as acceptors of the addition reactions. Therefore, the development of highly regioselective addition reactions is extremely desirable.

1.2 Hydroarylation of Unsaturated Molecules

Formation of C-C bonds is a core issue in synthetic organic chemistry. A useful method for the formation of aromatic C-C bonds is palladium- or nickel-catalyzed cross-coupling reactions between aryl halides (or pseudohalides) and various organometallic reagents, that is, Suzuki-Miyaura, Stille, Kumada-Tamao, Negishi, and Mizoroki-Heck cross-coupling reactions. However, these transition metal-catalyzed cross-coupling reactions can be realized by prefunctionalizations, such as halogenation and triflation of aromatic substrates. Therefore, several steps are required to synthesize the desired products.

A C-H bond is one of the most basic chemical bonds that constitute organic compounds. Because of its high bond energy, stability, and resistance, it is usually difficult to promote chemical reactions of C-H bonds (Table 1.1). The C–H bond activations have recently been received much attention as ideal transformations. Compared to conventional methods involving cross-coupling reactions, C–H transformations require fewer reaction steps to obtain target molecules and can enhance the atom economy. Therefore, effective activation of inert C-H bonds and
development of novel, efficient, and environmentally friendly methods to construct C-C bonds are hot topics in synthetic organic chemistry.

A report from Fujiwara group is the earliest research in this area. In 1967, they reported that styrene reacted with benzene to yield stilbene in the presence of one equivalent of PdCl$_2$ (Scheme 1.1).$^{[3]}$ Then in 1969 they further found Pd(OAc)$_2$ to be a more efficient catalyst.$^{[4]}$

![Scheme 1.1 Pd-catalyzed aromatization of olefins](image)

The first practical hydroarylation of unsaturated molecules via C-H activation was reported by Murai in 1993 (Scheme 1.2).$^{[5]}$ The C-H bonds in aromatic groups are cleaved by a ruthenium complex to give the addition products. The reaction proceeded efficiently and selectively.
The γ-C(sp3)-H olefination of aliphatic amides has been achieved under palladium catalysis (Scheme 1.3). The use of a combination of a quinoline-based ligand and a weakly coordinating amide directing group is important to promote the reaction. The reaction provided a new method for constructing highly functionalized quaternary carbon centers at the β-position of aliphatic acids.

A practical and efficient rhodium-catalyzed aerobic C–H activation for the facile synthesis of a broad range of 2,3-disubstituted indoles from simple anilines and alkynes has been developed (Scheme 1.4). Environmentally friendly oxygen was employed as the sole clear oxidant to oxidize the Rh(I) to Rh(III) species in the presence of an appropriate acid.
Although the pioneering synthesis of an ortho-nickelated complex via C–H bonds activation has been reported, there was no example of a nickel-catalyzed C–H transformation. A nickel-catalyzed synthesis of isoquinoline derivatives through chelation assistance and oxidative cycloaddition between aromatic amides and alkynes was achieved (Scheme 1.5).[9]

In 2010, cobalt-catalyzed addition reactions of 2-arylpyridines and aromatic imines to unactivated internal alkynes to give trisubstituted alkenes with high regio- and stereoselectivities using a catalytic system consisting of a cobalt salt, phosphine ligand, and Grignard reagent (Scheme 1.6).[10]
In the case of hydroarylation reactions using less polarized and/or less sterically differentiated C–C multiple bonds, two regioisomers are generally formed. For example, a nickel-catalyzed synthesis of 3,4-disubstituted isoquinolines between alkynes and aromatic imines afforded a mixture of isoquinolines (Scheme 1.7).\[^{[11]}\]

![Scheme 1.6 Co-catalyzed hydroarylation of alkynes](image)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1.3 Difunctionalization of Unsaturated Molecules

More than 50 years ago, researchers in Wacker Chemical Corporation found that alkenes were converted to aldehydes and ketones in the presence of palladium chloride as a catalyst and copper chloride as an oxidant in an aqueous phase (Scheme 1.8).\[^{[12]}\] Nowadays, palladium-catalyzed Wacker reactions are successfully applied to the industrial manufacture of acetaldehyde. In addition, a silver-catalyzed epoxidation of ethylene is also an important commercial synthetic route for ethylene oxide, which is a chemical raw material. Transition metal-catalyzed functionalization of alkenes have sprung up like mushrooms after rain owing to painstaking research works.
Transition metal-catalyzed difunctionalization of alkenes is also an important subject because two new functional groups can be brought into unsaturated molecules in only one step to efficiently construct highly functionalized structures of pharmaceuticals and natural products.[13]

Mechanistically, difunctionalization of alkenes can be divided into two categories: radical and metal-catalyzed nucleophilic difunctionalizations, respectively. The radical difunctionalization begins with the addition of a radical to a C-C double bond to give intermediate A, which is trapped by extrinsic radical species to provide the product or oxidized to carbocation B (Scheme 1.9).[14] Subsequently, nucleophilic attack of the extrinsic nucleophile to generate difunctionalization product. By the way, carbocation B also undergoes β-H elimination to give alkylated alkene.

![Scheme 1.9 Radical difunctionalization of simple alkenes](image)

Lei developed a copper-catalyzed radical carboxygenation of styrenes with alkyl bromides as a radical resource (Scheme 1.10).[15] Both the alkylation and alkoxylation of styrenes occur under catalytic radical difunctionalization in one pot. A wide range of styrenes and alcohols are well compatible under the reaction conditions. The result of EPR experiment indicates that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation.
The first visible light-driven three-component oxytrifluoromethylation of alkenes was described by Akita using photoredox Ir catalysis (Scheme 1.11). The choice of the Umemoto’s reagent is a key to promote the reaction. Nucleophiles, such as water, alcohols, and carboxylic acids, are suitable to provide highly efficient and regioselective oxytrifluoromethylated products under the irradiation of a light-emitting diode (LED) lamp even on natural sunlight.

Zou achieved a novel hydroxysulfurization of styrenes with arylthiols in the presence of 0.5 mol% TBHP as a catalyst and green air (O₂) as a sole oxidant (Scheme 1.12). The various hydroxysulfurized products can be obtained effectively, simply and conveniently, even on scaled up in a one-pot process without other additives.
Radical azidooxygenation of various alkenes is described using an easily prepared N$_3$-iodine(III) reagent as N$_3$ source and mild organic reducing reagent, TEMPONa (Scheme 1.13). The reaction proceeded to give azidated products in good to excellent yields. Furthermore, cyclic systems delivered azidooxygenated products with excellent diastereoselectivity.

![Scheme 1.13 Stereoselective radical azidooxygenation of alkenes](image)

In difunctionalization of non-polarized and/or less sterically differentiated alkenes, two regioisomers are sometimes formed. For example, the addition of DBPA to an alkene gave a 1:1 mixture of the corresponding adducts (Scheme 1.14).

![Scheme 1.14 Ionic addition of diethyl N,N-dibromophosphoroamidate to alkenes](image)

As mentioned above, not only is hydroarylation faced with a regioselective problem but also difunctionalization of unsaturated molecules. For solving this problem, in the doctor course thesis, I developed rhenium-catalyzed synthesis of 1,3-diiminoisoindolines via C-H bond activation (Chapter 2) and iron-catalyzed acyloxyalkylation of styrenes via decarboxylation of hypervalent iodine(III) reagents (Chapter 3).
1.4 References

Chapter 2 Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates

2.1 Introduction

Rhenium is a manganese-group, sixth-period, transition metal (Group 7) in the same group with manganese, technetium, and bohrium in the periodic table. The electronegativity of rhenium is lower than late transition metals, such as ruthenium, rhodium, and palladium. Therefore, Re–X (X = C, N, O) bonds are more polarized than other M–X bonds of late transition metals. In other words, the Re–X bond in rhenium complexes or intermediates has relatively strong nucleophilicity, and the complexes or intermediates can react with polar unsaturated molecules.\(^1\)-\(^2\)

2.2 Precedents of Rhenium-Catalyzed C-H Bond Transformations

Rhenium(I) carbonyl complexes also catalyze C(sp\(^2\))-H bond functionalization (Scheme 2.1).\(^3\) In 2005, Kuninobu and Takai successfully reported synthesis of aminooindene derivatives from aromatic aldimines and alkynes using a rhenium complex [ReBr(CO)\(_3\)(thf)]\(_2\) as a catalyst. It proceeds via the following steps: (1) coordination of a nitrogen atom of the imino group to a rhenium center; (2) C-H bond activation to form an ortho-metalated intermediate; (3) insertion of an alkyne into a rhenium-carbon bond to give an alkenyl-rhenium intermediate; (4) intramolecular nucleophilic attack to a carbon atom of the imino group; and (5) reductive elimination and 1,3-rearrangement of the hydrogen atom.
In 2006, Kuninobu and Takai group described a cyclization reaction from aromatic ketimines and acrylates, and indene derivative was obtained in 85% yield in the presence of catalytic amounts of \([\text{ReBr(CO)}_3(\text{thf})]_2\) (Scheme 2.2).[4] In this reaction, a C=N double bond plays a role as both a directing group for C-H bond activation and an acceptor of the cyclization.

When acetophenone was used instead of the ketimine in the presence of a catalytic amount of \([\text{ReBr(CO)}_3(\text{thf})]_2/p\)-anisidine cocatalyst in toluene at 180 °C for 24 h gave the desired indene derivative in 93% yield (Scheme 2.3).
The rhenium complex $\text{[ReBr(CO)}_3\text{(thf)}_2]_2$ can be employed as a catalyst to promote insertion of polar unsaturated molecules, such as isocyanates and aldehydes, into a C-H bond of aromatic compounds to form phthalimidine and isobenzofuran derivatives (Scheme 2.4).[^5-6]

![Scheme 2.3 One-pot annulation of ketones and α,β-unsaturated esters](image)

The formed isobenzofuran derivatives can be trapped easily by (Z)-cyclooctene via Diels–Alder reaction (Scheme 2.5).[^7] Naphthalene derivatives were formed by dehydration under acidic conditions without isolation.[^8]
Synthesis of indenone derivatives was achieved using 3 equivalents of aryl aldehydes under rhenium/amide catalysis (Scheme 2.6). This reaction is a new synthetic route to construct indenones via rhenium-catalyzed three-component annulation. The rhenium catalyst plays as both a catalyst for C-H bond transformation and a Lewis acid.

The rhenium complex [ReBr(CO)₃(thf)]₂ also activates heteroaromatic C-H bonds. Notably, the insertion of isocyanates into a C-H bond of heteroaromatic compounds occurs regioselectively (Scheme 2.7).
Rhenium complexes also catalyze olefinic C-H bond functionalization. When [ReBr(CO)$_3$(thf)]$_2$ is used as a catalyst, insertion of polar unsaturated molecules into an olefinic C-H bond occurs to give γ,δ-unsaturated carbonyl compounds (Scheme 2.8).[11]

\begin{align*}
\text{Scheme 2.8 Re-catalyzed olefinic C-H bond transformation}
\end{align*}

2.3 Precedents of Synthesis of 1,3-Diiminoisoindolines

A 1,3-diiminoisoindoline skeleton is a partial structure of phthalocyanines and their metal complexes, which are useful as organic functional materials, such as pigments, organic electroluminescence, and organic field effect transistors (Figure 1.1).[12] In addition, 1,3-diiminoisoindolines and their derivatives show biological activities as complement component antagonist[13] and antimalarial candidates.[14]
Several reactions to synthesize 1,3-diiminoisoindolines have been reported. These reactions, however, require harsh reaction conditions and only symmetrical 1,3-diiminoisoindolines are obtained (Scheme 2.9). Therefore, it is necessary to develop a new method for the synthesis of 1,3-diiminoisoindolines. Synthetic reactions of 1,3-diiminoisoindolines are, however, still rare. In addition, synthesis of unsymmetrical 1,3-diiminoisoindolines is still difficult.

Scheme 2.9 Previous method for synthesis of diiminoisoindolines
2.4 Research Purpose

Our group recently reported a rhenium-catalyzed synthesis of 3-iminoisoindolinones using aromatic imidates and isocyanates. Due to the methoxy leaving group, a C=N double bond of the directing groups remains after the reaction (Scheme 2.10).\(^{[17]}\) I investigated several reactions of imidates with other unsaturated molecules, such as carbodiimides. As a result, I found that a rhenium complex catalyzed a reaction between aromatic imidates and carbodiimides to give 1,3-diiminoisoindolines efficiently.

![Scheme 2.10 C-H Insertion-cyclization sequence](image)

I began my studies with several transition metal complexes and salts using aromatic imidate 1a and N,N'-diisopropylcarbodiimide 2a as model substrates. A rhenium complex, Re\(_2\)(CO)\(_{10}\), exhibited high catalytic activity. Treatment of 1a with 2a in the presence of Re\(_2\)(CO)\(_{10}\) catalyst in chlorobenzene at 170 °C for 24 h gave 1,3-diiminoisoindoline 3a in 99% yield (Scheme 2.11). I also checked several other transition metal complexes for the annulation reaction, but their reactivity shows low efficiency.\(^{[18]}\)
(E)-N-((E)-5-Bromo-2-isopropyl-3-(isopropylimino)-1-isoindolylidene)-1-propylanmine 3A was employed to investigate nuclear Overhauser effect experiments (see experimental section for details) for confirming the stereochemistry of the imino groups (Scheme 2.12). These protons, Hₐ and Hₖ, Hₜ and Hₜ', are positive correlation, so I confirmed that the configuration of these imino groups are E.

Interestingly, the by-product, methanol, fails to add to carbodiimide 2a. Previous results show that methanol can add to carbodiimide.[19]

I then investigated the scope of aromatic imidates 1 in the rhenium-catalyzed annulation reaction with N,N'-diisopropylcarbodiimide 2a (Table 2.1). A reaction of aromatic imidate with a phenyl group on the nitrogen, 1b, proceeded well to give the expected 1,3-diiminoisoindoline 3b in 85% yield. Functional groups, such as -OMe, -CF₃, -MeO₂C, -Br and -Ph, were tolerated and the desired products were obtained in excellent yield. Two regioisomers, 3h and 3h', were observed when an aromatic
imidate with a methyl group at the meta-position 1h. In this reaction, 3h is the major product because of the sterically less hindered site. The desired reaction also proceeded regioselectively when naphthyl imidate 1i and heteroaromatic imidates 1j and 1k were used as substrates.
Next, I examined the substrate scope of carbodiimides (Table 2.2). Under the optimized reaction conditions, a reaction of dicyclohexylcarbodiimide (2b) with 1a afforded the corresponding 1,3-diiminoisoindoline 3l in 90% yield. Better results were
obtained for carbodiimides bearing primary alkyl groups, 2c-2e to afford 1,3-diiiminoisoindolines 3m-3o in 82%-94% yields without loss of the functional groups. Gratifyingly, reactions of dibenzylic carbodiimides proceeded smoothly and provided desired 1,3-diiiminoisoindolines 3p and 3q in good yields. Interestingly, the regioselectivity was completely controlled in the reaction between 1a and unsymmetric carbodiimide 2h, and a single product 3r was produced. Diaryl carbodiimide 2i gave the corresponding 1,3-diiminoisoindoline 3s in 83% yield (E/Z = 5:1).

This reaction is the first example of transition metal-catalyzed insertion of a carbodiimide into a C-H bond of aromatic and heteroaromatic compounds and a novel example of the synthesis of an unsymmetric 1,3-diiminoisoindoline derivative.
A proposed mechanism for the formation of 1,3-diiminoisoindolines 3 is shown in Scheme 2.13: (1) oxidative addition of aromatic imidate 1 to a rhenium catalyst (C-H bond activation); (2) insertion of carbodiimide 2 into the formed rhenium-carbon bond; (3) stereoinversion of a C=N double bond to avoid the steric repulsion between substituents R³ and R⁴, and intramolecular nucleophilic cyclization; and (4) reductive elimination and elimination of methanol to give
1,3-diiminoisoindoline 3 and regenerate the rhenium catalyst. As described above, the stereochemistry of product 3 was determined by nuclear Overhauser effect experiments. In addition, the formation of methanol was detected by 1H NMR of the crude mixture.

![Scheme 2.13 Proposed mechanism for the formation of 1,3-diiminoisoindolines 3](image)

The imidate 1a was employed to conduct a gram-scale reaction, demonstrating the practicability of this method (Scheme 2.14). An annulation reaction of 1.09 g of aromatic imidate 1a with carbodiimide 2a gave 1.28 g of the desired product 3a in 85% yield.
A double annulation reaction also proceeded in excellent yield (Scheme 2.15). Treatment of aromatic diimidate 4 with N,N-diisopropylcarbodiimide (2a) in the presence of Re$_2$(CO)$_{10}$ catalyst in chlorobenzene at 170 °C for 24 h gave 1,3-diiminoisoindoline 5 in 97% yield as a single product. The reaction proceeded highly regioselectively and only single product 5 was obtained, whereas a regioisomer could be formed.

2.5 Summary

I established a novel, facile and efficient method for the synthesis of 1,3-diiminoisoindolines and their related compounds from aromatic or heteroaromatic imidates and carbodiimides via C-H bond activation. The desired reaction proceeded in advance of the consumption of carbodiimides by the addition of methanol (byproduct) to carbodiimides. To the best of my knowledge, this is the first example of a transition metal-catalyzed C-H insertion of carbodiimides.
2.6 References

[18] ReBr(CO)$_5$, 26%; [ReBr(CO)$_3$(thf)$_2$, 30%; Re$_2$(CO)$_{10}$, 33%; [Rh(OH)(cod)]$_2$/rac-BINAP, 8%; [Cp*IrCl$_2$, 16%. The desired reaction did not proceed using the following transition metal complexes and salts: Mn$_2$(CO)$_{10}$, MnBr(CO)$_5$, Ru$_3$(CO)$_{12}$, RuH$_2$(CO)(PPh$_3$)$_3$, [RuCl$_2$(p-cymene)]$_2$, RhCl(PPh$_3$)$_3$, [Cp*RhCl$_2$, [Ir(OMe)(cod)]$_2$/dtbpy, Pd(OAc)$_2$, and Cu(OAc)$_2$.

Chapter 3 Iron-Catalyzed Acyloxyalkylation of Styrenes via Decarboxylation of Hypervalent Iodine(III) Reagents

3.1 Introduction

Organic reactions involving olefins play a very important role in the development of organic synthesis. Olefin compounds are readily available at low cost and allow for more conversion of functional groups. Therefore, it is necessary to develop new and efficient ways to realize olefin functionalization. Recently, transition metal-catalyzed difunctionalizations of alkenes are important topic because these reactions can synthesize highly functionalized backbones of pharmaceuticals and natural products.\(^1\) In traditional oxyalkylation of alkenes, the osmium-catalyzed Sharpless epoxidation play an important role, but the toxic osmium catalyst and two steps (epoxidation and alkylation) are necessary, which hasn’t meet the requirements of modern organic reactions. Oxyalkylation of alkenes is still challenging and the examples are quite rare.

3.2 Precedents of Metal-Catalyzed Oxyalkylation of Alkenes

As a representative method for oxyalkylation of alkenes, epoxidation of alkenes is well known. However, the reaction requires two steps, epoxidation and alkylation, which is not ideal considering the requirements of modern organic reactions, such as environmentally benign, eased handling, low cost, and ready availability. Along this line, transition metal-catalyzed oxyalkylation of alkenes has received gradual attention.

Ishii described a novel cobalt/N-hydroxyphthalimide co-catalytic method for a free radical addition of cycloalkanes and molecular oxygen to electron-deficient alkenes (Scheme 2.1).\(^5\) A reaction between 1,3-dimethyladamantane and methyl acrylate under oxygen atmosphere in the presence of catalytic amounts of NHPI and
Co(acac)$_3$ at 75 °C for 16 h gave oxyalkylated product in 91% yield.

![Scheme 2.1 Co-catalyzed oxyalkylation of alkenes using N-hydroxyphthalimide](image)

Scheme 2.1 Co-catalyzed oxyalkylation of alkenes using N-hydroxyphthalimide

Zhang reported Cu-catalyzed difunctionalization of vinylarenes with cyclic ethers and oxygen in the presence of 1-1.2 equivalents of TBHP under aerobic conditions (**Scheme 2.2**).[^1] The various oxyalkylated products of vinylarenes were obtained with excellent regioselectivity and good functional group tolerance.

![Scheme 2.2 Cu-mediated oxyalkylation of vinylarenes](image)

Scheme 2.2 Cu-mediated oxyalkylation of vinylarenes

A similar result of regioselective oxyalkylation of vinylarenes catalyzed by diatomite supported manganese oxide nanoparticles was developed by Wang (**Scheme 2.3**).[^2] α-Carbonyl β-alkylated aryl derivatives can be obtained in good yields with high regioselectivity at 80 °C for 12 h under air atmosphere using a new heterogeneous catalyst SMONP-1.

![Scheme 2.3 SMONP-1-catalyzed regioselective oxyalkylation of vinylarenes](image)

Scheme 2.3 SMONP-1-catalyzed regioselective oxyalkylation of vinylarenes
A simple, practical, inexpensive and new strategy for synthesis of \(N-(3\text{-oxo-3-phenylpropyl})\)-acetamide derivatives via a copper-catalyzed oxidative coupling between styrenes and \(N,N\)-disubstituted amides was reported by Mao (Scheme 2.4).\(^8\) The reaction of various styrenes with \(N,N\)-disubstituted acetamides give the corresponding products in moderate yields. Furthermore, some amides products could be changed into \(\beta\)-amino carbonyls by successive hydrolysis.

![Scheme 2.4 Functionalization of amides via Cu-catalyzed oxyalkylation of vinylarenes](image)

Zhu achieved copper-catalyzed intramolecular oxyalkylation of alkenes with alkylnitriles (Scheme 2.5).\(^9\) Formation of C(sp\(^3\))-C(sp\(^3\)) and C(sp\(^3\))-O bonds can be achieved from alkylnitriles by using copper salt in situ generated the alkylative lactonization products to generate two quaternary carbon atoms simultaneously. The addition of a cyanomethyl radical was not dependent on di-\textit{tert}-butylperoxide (DTBP), which initiated the present domino process.

![Scheme 2.5 Cu-mediated/catalyzed oxyalkylation of alkenes](image)

Buchwald recently realized a rapid synthesis of enantiomerically enriched lactones by copper-catalyzed enantioselective radical oxyalkylation of alkenes (Scheme 2.6).\(^10\) Enantioselective difunctionalization reactions including
oxyazidation, oxysulfonylation, oxyarylation, diacyloxylation, and oxyalkylation are applicable to the synthesis of various useful chiral lactones, which contains a tetrasubstituted stereocenter.

Wang reported the first example which both of oxygenation and alkylation sources come from hypervalent iodine(III) reagents in the difunctionalizations of alkenes (Scheme 2.7). This reaction proceeded via decarboxylative acyloxyalkylation of alkenes in the presence of a rhenium catalyst and hypervalent iodine(III) reagents. Visible light irradiation is, however, necessary to promote the reaction in some cases.

Scheme 2.6 Cu-catalyzed enantioselective radical oxyalkylation of alkenes

Scheme 2.7 Re-catalyzed oxyalkylations of alkenes

3.3 Research Purpose

Second and third row transition metal catalysts, such as rhenium, palladium, and gold exhibit powerful catalytic activities. However, the relatively high price and considerable toxicity limit their applications and improvements. Iron is the most abundant transition metal and has recently received much attention in synthetic organic chemistry.
I successfully replaced the rhenium catalyst in the reaction (Scheme 2.7) with an iron catalyst. Iron-catalyzed acyloxyalkylation is economical and environmentally benign, and the reaction requires no visible light irradiation.

I chose 1-((tert-butyl)-4-vinylbenzene (1a) and iodobenzene diacetate (2a) as model substrates for optimizing the reaction conditions (Table 3.1). Formation of the desired product was not observed in the presence of catalytic amounts of Fe(CO)$_3$(cot) and phenanthroline (L1) (entry 1). Acyloxyalkylated product 3aa was obtained employing ligand L2 or L3 (entries 2 and 3). The desired product 3aa was not formed when electron-withdrawing or electron-donating groups were introduced into the phenyl groups of phenanthroline derivatives (entries 4 and 5). The results of phenanthrolines L6-L9 with substituents, Ph, 'Bu, "Bu or Me groups, at the 2- and 9-positions suggest that the two methyl groups on 2,9-position of phenanthroline are indispensable (entries 6-9). A combination of 4,7-diphenylphenanthroline and 2,9-dimethylphenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L10) gave the best result and 3aa was isolated in 53% yield (entry 10). 9,10-Phenanthrenedione (L11) or 4,7-di((tert-butyl)bipyridine (L12) did not provide the desired product 3aa (entries 11 and 12). Acyloxyalkylated product 3aa was also delivered in 50% yield using Fe(OAc)$_2$ as a catalyst (entry 13). Other iron complexes and salts gave 3aa the lower yields.\cite{13}
Table 3.1 Oxyalkylation of alkenes: optimization of reaction conditions.a

\[
\begin{array}{cccc}
\text{entry}a & \text{cat. iron} & \text{ligand} & 3\text{aa} (\%)b \\
1 & \text{Fe(CO)}_3(cot) & \text{L1} & 0 \\
2 & \text{Fe(CO)}_3(cot) & \text{L2} & 23 \\
3 & \text{Fe(CO)}_3(cot) & \text{L3} & 12 \\
4 & \text{Fe(CO)}_3(cot) & \text{L4} & 0 \\
5 & \text{Fe(CO)}_3(cot) & \text{L5} & 0 \\
6 & \text{Fe(CO)}_3(cot) & \text{L6} & 7 \\
7 & \text{Fe(CO)}_3(cot) & \text{L7} & 20 \\
8 & \text{Fe(CO)}_3(cot) & \text{L8} & 15 \\
9 & \text{Fe(CO)}_3(cot) & \text{L9} & 20 \\
10 & \text{Fe(CO)}_3(cot) & \text{L10} & 53c \\
11 & \text{Fe(CO)}_3(cot) & \text{L11} & 0 \\
12 & \text{Fe(CO)}_3(cot) & \text{L12} & 3 \\
13 & \text{Fe(OAc)}_2 & \text{L10} & 50 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{L1} & \text{Me} & \text{Me} & \text{Me} \\
\text{L2} & \text{Me} & \text{Me} & \text{Ph} \\
\text{L3} & \text{Me} & \text{Me} & \text{Ph} \\
\text{L4} & \text{Ar} = 4-\text{CF}_3-\text{C}_6\text{H}_4 & \text{Ar} = 4-\text{MeO-} & \text{Ph} \\
\text{L5} & \text{Ar} = 4-\text{MeO-} & \text{C}_6\text{H}_4 & \text{Ph} \\
\text{L6} & \text{Ph} & \text{Me} & \text{Me} \\
\text{L7} & \text{Ph} & \text{Me} & \text{Me} \\
\text{L8} & \text{O} & \text{C} & \text{O} \\
\text{L9} & \text{Ph} & \text{Me} & \text{Me} \\
\text{L10} & \text{Bu} & \text{Bu} & \text{Bu} \\
\text{L11} & \text{Bu} & \text{Bu} & \text{Bu} \\
\text{L12} & \text{Bu} & \text{Bu} & \text{Bu} \\
\end{array}
\]

aReaction conditions: 1\text{a} (0.25 mmol, 1.0 equiv.), 2\text{a} (0.325 mmol, 1.3 equiv.), iron catalyst (0.05 mmol, 10 mol%), ligand (0.05 mmol, 10 mol%), CH\textsubscript{3}CN (1 mL), 70 °C, 12 h. bYield determined by 1H NMR analysis using Cl\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}Cl\textsubscript{2} as an internal standard. cIsolated yield. cot = cyclooctatetraene.
Next, the substrate scope of styrenes was investigated (Table 3.2). Styrenes bearing a methoxy group, 1b, or phenyl group, 1c, gave target products 3ba and 3ca without loss of the functional groups. α-Methylstyrenes 1d-1k bearing a strong electron-donating group, ester, halogens including iodine or naphthalenyl group, also reacted smoothly with iodobenzene diacetate. Styrenes 1l-1p with other α-substituent, such as benzyl, butyl, phenyl, or a substituted aromatic group, delivered the acyloxyalkylated products in moderate yields. The corresponding five-membered heteroaromatic compounds with a vinyl group, 1q and 1r, were well compatible with the reaction conditions to form the corresponding acetoxyalkylated products 3qa and 3ra in 66% and 51% yields, respectively.
Next, several hypervalent iodine(III) reagents were investigated as shown (Table 3.3). In all entries, no visible light irradiation was necessary to produce radical species derived from the hypervalent iodine(III) reagents. Hypervalent iodine(III) reagents 2b-2d attached primary, secondary, and tertiary aliphatic carboxylate provided the
desired acyloxyalkylated products **3bb-3bd** in 63%-82% yields. In a previous study by Wang, no results of the using any hypervalent iodine(III) reagents containing functional groups were reported (Scheme 2.7).[11] I therefore screened hypervalent iodine(III) reagents **2e-2j** bearing functional groups, such as trifluoromethyl, chlorine, bromine, or iodine atoms, carbonyl groups and inactive alkene moieties. As a result, the acyloxyalkylation reactions took place to give products **3be-3bj** in moderate to good yields. The reaction of styrene **1b** with hypervalent iodine(III) reagent **2k** or **2l** bearing 4-chlorophenyl or 4-methylbenzyl groups afforded the corresponding products in 73% and 52% yields, respectively.
To elucidate the reaction mechanism, we carried out a reaction in the presence of 1.0 equivalent of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as a radical scavenger under the standard reaction conditions to check whether the reaction involves radical species or not. As a result, the acyloxyalkylation reaction was inhibited completely. This result indicated that the mechanism of the acyloxyalkylation reaction processes a radical pathway. The plausible reaction mechanism for the iron-catalyzed acyloxyalkylation of styrene derivatives using hypervalent iodine(III) reagents is

Table 3.3 Reactions between styrene 1b and (diacyloxyiodo)benzene 2.\(^a\)

<table>
<thead>
<tr>
<th>Products</th>
<th>Reaction Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3bb</td>
<td>83%</td>
</tr>
<tr>
<td>3bc</td>
<td>82%</td>
</tr>
<tr>
<td>3bd</td>
<td>66%</td>
</tr>
<tr>
<td>3be</td>
<td>80%</td>
</tr>
<tr>
<td>3bf</td>
<td>65%</td>
</tr>
<tr>
<td>3bg</td>
<td>68%</td>
</tr>
<tr>
<td>3bh</td>
<td>45%</td>
</tr>
<tr>
<td>3bi</td>
<td>42%</td>
</tr>
<tr>
<td>3bj</td>
<td>45%</td>
</tr>
<tr>
<td>3bk</td>
<td>73%</td>
</tr>
<tr>
<td>3bl</td>
<td>52%</td>
</tr>
</tbody>
</table>

\(^a\)Reaction conditions: 1b (0.250 mmol, 1.0 equiv), 2 (0.325 mmol, 1.3 equiv), Fe(CO)\(_3\)(cot) (0.0500 mmol, 10 mol %), L10 (0.0500 mmol, 10 mol %), CH\(_2\)CN (1.0 mL), 70 °C, 12 h.
shown in Scheme 2.8, based on the previous report: \(^{[14]}\) (1) Generation of cationic specie \(A\) through heterolysis of iodobenzene diacetate; (2) oxidation of \(A\) by \(\text{Fe}^0\) to give radical iodine intermediate \(B\); (3) homolysis of \(B\) to provide radical species \(C\) with the formation of iodobenzene and release carbon dioxide; (4) addition of \(C\) radical to styrene derivative 1 to convey benzylic radical \(D\); (5) oxidation of \(D\) by \([\text{Fe}^0]^{n+1}\) to deliver benzylic cation \(E\); and (6) nucleophilic attack of the carboxylate to \(E\) to give the desired product 3.

For demonstrating the practicability of this method, gram scale reaction was conducted by treatment of 1.71 g of 1a with 2a in the presence of catalytic amounts of \(\text{Fe(CO)}_3\)(cot) and \(L_4\) gave 1.15 g of 3aa in 46% yield (Scheme 2.9).
3.4 Summary

I succeeded in the development of an iron-catalyzed acyloxyalkylation of styrene derivatives using hypervalent iodine(III) reagents. A variety of styrenes and hypervalent iodine(III) reagents were well compatible with the reaction conditions to give acyloxyalkylated products in moderate to good yields, even in gram scale, without loss of the functional groups. The phenanthroline ligands are very important in the reaction system even though the role of phenanthroline ligands is unclear. In a similar previously reported rhenium-catalyzed oxyalkylation, some cases needed visible light irradiation to promote reaction. The present reaction, however, required no irradiation. Furthermore, compared with Wang’s result, I expanded the scope of hypervalent iodine(III) reagents with functional.

3.5 References

[13] Fe(0) powder, 41%; [FeCp*(CO)₂]₂, 30%; Fe(acac)₂, 38%; Fe(OTf)₂, 0%; Fe(ClO₄)₂, 12%; FeS, 34%; FeF₂, 24%; FeCl₂, 19%; FeBr₂, 25%; Fe₃O₄, 0%; Fe(OEt)₃, 26%; Fe(OTf)₃, 0%.

Chapter 4 Summary

I developed a rhenium-catalyzed synthesis of 1,3-diiminoisoindolines from aromatic imidates and carbodiimides via C-H bond activation (Scheme 4.1). Various unsymmetrical 1,3-diiminoisoindolines were obtained in good to excellent yields with good functional group tolerance. This reaction could be applicable for the gram-scale synthesis. To the best of my knowledge, this is the first example of a transition metal-catalyzed C-H insertion of carbodiimides, and this reaction is a novel method for synthesizing 1,3-diiminoisoindolines. Especially, it can be applied to synthesis of unsymmetrical 1,3-diiminoisoindolines.

\[\text{Scheme 4.1 Re-catalyzed synthesis of 1,3-diiminoisoindolines via C-H bond activation} \]

I also succeeded in the development of iron-catalyzed oxyalkylation of styrene derivatives using hypervalent iodine(III) reagents (Scheme 4.2). The choice of bathocuproine ligand was important to promote the reaction. Visible light irradiation was not necessary in this reaction. The reaction proceeded in moderate to good yields, even on gram scale, using a variety of styrenes and hypervalent iodine(III) reagents without loss of the functional groups. Compared with a previously reported similar rhenium-catalyzed oxyalkylation, the scope of hypervalent iodine(III) reagents with functional groups was expanded, and the iron-catalyzed reaction is expected to be used for the synthesis of medicines and nature products.
The following is a summary of the above: I have achieved to develop transition metal-catalyzed regioselective hydroarylation and acyloxyalkylation of unsaturated molecules. Both of reactions proceeded in good yields with high regioselectivity even in gram scale under low catalyst loadings. I hope that these results will give a useful insight into synthetic organic chemistry.

Scheme 4.2 Fe-catalyzed acyloxyalkylation of styrenes
Experimental Section

Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates

General. All reactions were carried out in a dry solvent under an argon atmosphere. Chlorobenzene was purchased from Aldrich Co. and were dried and degassed before use. Re$_2$(CO)$_{10}$ was purchased from Aldrich Co. Aromatic imidates (1a-1k and 4) and carbodiimides (2c-2h) were prepared according to the literature methods.1,2 Carbodiimides (2a, 2b, and 2h) were purchased from Tokyo Kasei Kogyo Co. NMR spectra were recorded on JEOL ECX500 (500 MHz for 1H NMR and 125 MHz for 13C NMR) and JEOL ECS400 (400 MHz for 1H NMR, 125 MHz for 13C NMR, 78 MHz for 29Si, 376 MHz for 19F NMR) spectrometers. Proton chemical shifts are reported relative to Me$_4$Si (CDCl$_3$) at 0.00 ppm or residual solvent peak (CDCl$_3$ at 7.26 ppm). Carbon chemical shifts are reported relative to CDCl$_3$ at 77.26 ppm. Fluorine chemical shifts are reported relative to TFA (CDCl$_3$) at -76.55 ppm as an external standard. Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. ESI-mass spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer for HRMS.

Typical procedure for the preparation of (Z)-methyl N-octylbenzimidate (1a). A mixture of N-octylbenzamide (9.32 g, 40.0 mmol) and SOCl$_2$ (40 mL) was refluxed for 24 h in a 100 mL round-bottom flask under an argon atmosphere. Then, the remained SOCl$_2$ was removed in vacuo to give N-octylbenzimidoyl chloride.

To a 100 mL round-bottom flask was added MeONa (60.0 mmol in 5M Methanol solution) and remove MeOH by vacuum pump. Then, THF (40 mL) and the prepared (Z)-N-octylbenzimidoyl chloride in THF (20 mL) was added to the mixture and stirred at room temperature for 24 h. The resulting mixture was quenched with water and extracted with ethyl acetate (3 x 20 mL). And the combined organic layer was dried with anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 19/1) to give (Z)-methyl N-octylbenzimidate as a yellow oil (1a, 7.71 g, 78% yield).

Typical procedure for the preparation of N,N’-Methanediyldenedibis(1-octanamine) (2c). A dry 100 mL round-bottom flask was charged with 80 mL of dichloromethane, 4.23 g of triphenylphosphine (16.1
mmol, 1.25 equiv), and a magnetic stir bar. A dry pressure-equalizing dropping funnel was charged with 6 mL of dichloromethane and 0.83 mL of bromine (16.1 mmol, 1.25 equiv) and was then placed on the 100 mL round-bottom flask. The whole apparatus was placed under a nitrogen atmosphere, and the triphenylphosphine solution was cooled to 0 °C. The bromine solution was added dropwise over the course of 30 min, and the resulting solution was allowed to stir for an additional 10 min. To the resulting suspension of dibromotriphenylphosphorane, 4.5 mL of triethylamine (32.3 mmol, 2.26 equiv) was added. In a similar fashion, 3.67 g of N,N′-di-n-octylurea (12.9 mmol) was added in five equivalent portions to the suspension at 0 °C over 1 h. One hour after the last addition of the urea, the reaction mixture was stirred at room temperature for overnight. Water was poured to the round-bottom flask in order to extract the triethylammonium hydrobromide, and organic and aqueous phases were separated using a separatory funnel. The organic phases were combined and dried over anhydrous Na₂SO₄. After the removal of solvent under reduced pressure, the crude product was purified by short column chromatography on silica gel with hexane as the eluent to give the pure product 2c as a colorless oil. Yield: 2.75g (80%) (Z)-Methyl N-octylbenzimidate (1a). 7.71 g, 78%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.24 (m, 3H), 7.24-7.17 (m, 2H), 3.69 (s, 3H), 3.17 (t, J = 6.9 Hz, 2H), 1.45 (tt, J = 7.4, 6.9 Hz, 2H), 1.25-1.01 (m, 10H), 0.77 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 132.7, 129.3, 128.3, 128.0, 52.9, 50.1, 32.2, 32.0, 29.5, 29.4, 27.4, 22.8, 14.2.; IR (neat, ν/ cm⁻¹) 2926, 2855, 1728, 1674, 1275, 1115, 699; HRMS (ESI⁺) Calcd for C₁₇H₂₆NO [M+H]⁺ 248.2014, Found 248.2025.

(Z)-Methyl N-phenylbenzimidate (1b). 6.92 g, 91%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.27 (m, 3H), 7.22 (dd, J = 7.4, 7.4 Hz, 2H), 7.17 (dd, J = 8.0, 8.0 Hz, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 7.4 Hz, 2H), 3.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.3, 148.6, 131.5, 130.1, 129.5, 129.1, 128.1, 122.8, 121.9, 54.2. The analytical data match those reported in the literature.[³]

(Z)-Methyl 4-methoxy-N-octylbenzimidate (1c). 3.24 g, 62%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.77 (s, 3H), 3.29 (t, J = 7.1 Hz, 2H), 1.54-1.48 (m, 2H), 1.51-1.21 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 160.4, 129.8, 125.0, 113.7, 55.4, 53.0, 50.3, 32.3, 32.1, 29.6, 29.5, 27.4, 22.9, 14.3.; IR (neat, ν/ cm⁻¹) 2927, 2854, 1670, 1609, 1511, 133, 1273, 1249, 1175, 836; HRMS (ESI⁺) Calcd for C₁₇H₂₈NO₂ [M+H]⁺ 278.2120, Found 278.2122

(Z)-Methyl N-octyl-4-(trifluoromethyl)benzimidate (1d). 5.45 g, 80%; Yellow oil;
(Z)-Methyl 4-(methoxy(octylimino)methyl)benzoate (1e). 3.55 g, 50%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.68 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 3.80 (s, 3H), 3.22 (t, J = 7.1 Hz, 2H), 1.57-1.46 (m, 2H), 1.37-1.14 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 159.4, 136.3, 131.5 (q, 2J_{CF} = 37.4 Hz), 128.6, 125.5 (q, 2J_{CF} = 3.8 Hz), 124.1 (q, 1J_{CF} = 271 Hz), 53.3, 50.2, 32.13, 32.08, 29.6, 29.5, 27.4, 22.9, 14.3; IR (neat, v/cm$^{-1}$) 2928, 2856, 1676, 1620, 1326, 846; HRMS (ESI$^+$) Calcd for C$_{12}$H$_{12}$F$_3$NO [M+H]$^+$ 316.1888, Found 316.1877.

(Z)-Methyl 4-bromo-N-octylbenzimidate (1f). 4.40 g, 78%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 8.07 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 3.92 (s, 3H), 3.79 (s, 3H), 3.21 (t, J = 7.1 Hz, 2H), 1.57-1.42 (m, 2H), 1.42-1.12 (m, 10H), 0.85 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 166.7, 159.8, 137.0, 131.0, 129.8, 128.2, 53.2, 52.5, 50.1, 32.1, 32.0, 29.6, 29.5, 27.4, 22.9, 14.3; IR (neat, v/cm$^{-1}$) 2927, 2855, 1730, 1672, 1435, 1277, 1117, 1020, 714; HRMS (ESI$^+$) Calcd for C$_{18}$H$_{26}$BrNO [M+H]$^+$ 306.2069, Found 306.2057.

(Z)-Methyl N-octyl-[1,1'-biphenyl]-4-carbimidate (1g). 6.44 g, 66%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.70-7.58 (m, 4H), 7.52-7.42 (m, 4H), 7.39 (t, J = 7.3 Hz, 1H), 3.85 (s, 3H), 3.36 (t, J = 7.1 Hz, 2H), 1.66-1.52 (m, 2H), 1.43-1.18 (m, 10H), 0.90 (t, J = 6.7 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 160.6, 142.3, 140.6, 131.6, 129.1, 128.6, 127.9, 127.4, 127.2, 53.1, 50.3, 32.3, 32.1, 29.6, 29.5, 27.5, 22.9, 14.3; IR (neat, v/cm$^{-1}$) 2926, 2854, 1668, 1277, 1113, 768, 738, 697; HRMS (ESI$^+$) Calcd for C$_{22}$H$_{30}$NO [M+H]$^+$ 324.2327, Found 324.2325.

(Z)-Methyl 3-methyl-N-octylbenzimidate (1h). 4.52 g, 65%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.25 (dd, J = 7.5, 7.3 Hz, 1H), 7.18 (d, J = 7.5 Hz, 1H), 7.13-7.06 (m, 2H), 3.76 (s, 3H), 3.22 (t, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.57-1.43 (m, 2H), 1.32-1.13 (m, 10H), 0.84 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.2, 138.3, 132.8, 130.2, 128.6, 128.3, 125.1, 53.1, 50.2, 32.2, 32.1, 29.6, 29.5, 27.4, 22.9, 21.6, 14.4; IR (neat, v/cm$^{-1}$) 2926, 2855, 1730, 1671, 1639, 1278,
(Z)-Methyl N-octyl-1-naphthimidate (1i). 5.28 g, 67%; Reddish brown oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.91-7.84 (m, 2H), 7.72-7.68 (m, 1H), 7.50-7.46 (m, 3H), 7.35 (d, $J = 6.9$, 1H), 3.93 (s, 3H), 3.03 (t, $J = 7.1$ Hz, 2H), 1.51-1.46 (m, 2H), 1.30-1.09 (m, 10H), 0.85 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.2, 133.6, 131.8, 130.3, 129.4, 128.6, 127.0, 126.5, 125.6, 125.5, 125.3, 53.3, 50.3, 32.1, 31.9, 29.6, 29.5, 27.4, 22.9, 14.3; IR (neat, v/cm$^{-1}$) 3058, 2927, 2854, 1672, 1458, 1284, 1105, 820, 750; HRMS (ESI$^+$) Calcd for C$_{20}$H$_{28}$NO [M+H]$^+$ 298.2171, Found 298.2166.

(Z)-Methyl N-octylfurano-3-carboximidate (1j). 4.38 g, 67%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.74 (d, $J = 1.1$ Hz, 1H), 7.43 (dd, $J = 2.0$, 1.5 Hz, 1H), 6.65-6.58 (m, 1H), 3.73 (s, 3H), 3.40 (t, $J = 7.1$ Hz, 2H), 1.65-1.57 (m, 2H), 1.40-1.25 (m, 10H), 0.88 (t, $J = 6.9$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 154.1, 143.9, 142.8, 117.5, 110.4, 52.7, 50.0, 32.3, 32.1, 29.7, 29.6, 27.6, 22.9, 14.4; IR (neat, v/cm$^{-1}$) 2927, 2854, 1671, 1296, 1162; HRMS (ESI$^+$) Calcd for C$_{14}$H$_{24}$NO$_2$ [M+H]$^+$ 238.1807, Found 238.1801.

(Z)-Methyl N-octylthiophene-3-carboximidate (1k). 5.48 g, 60%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.43 (dd, $J = 2.9$, 1.1 Hz, 1H), 7.24 (dd, $J = 5.0$, 2.9 Hz, 1H), 7.13 (dd, $J = 5.0$, 1.1 Hz, 1H), 3.68 (s, 3H), 3.31 (t, $J = 7.1$ Hz, 2H), 1.50-1.45 (m, 2H), 1.30-1.10 (m, 10H), 0.80 (t, $J = 6.9$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 155.8, 132.7, 127.7, 127.0, 125.4, 52.9, 50.2, 32.3, 32.1, 29.7, 29.5, 27.5, 22.9, 14.3; IR (neat, v/cm$^{-1}$) 2926, 2854, 1671, 1264, 1198, 795, 705; HRMS (ESI$^+$) Calcd for C$_{14}$H$_{24}$NOS [M+H]$^+$ 254.1579, Found 254.1577.

N,N'-Methanediylidenebis(1-octanamine) (2c). 5.03 g, 80%; Colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 3.16 (t, $J = 6.8$ Hz, 4H), 1.57-1.50 (m, 4H), 1.35-1.23 (m, 20H), 0.86 (t, $J = 6.5$ Hz, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 140.7, 47.0, 32.0, 31.5, 29.44, 29.39, 27.1, 22.9, 14.3; HRMS (ESI$^+$) Calcd for C$_{17}$H$_{35}$N$_2$ [M+H]$^+$ 267.2800, Found 267.2789.

N,N'-Methanediylidenebis(2-(4-chlor ophenyl)ethanamine) (2d). 2.24 g, 62%; Yellow solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.20 (d, $J = 8.2$ Hz, 4H), 7.03 (d, $J = 8.2$ Hz, 4H), 3.22 (t, $J = 7.0$ Hz, 4H), 2.64 (t, $J = 7.0$ Hz, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 140.1, 137.5, 132.5, 130.4, 128.8, 47.7, 36.9; IR (KBr, v/cm$^{-1}$) 3329, 2932, 2126, 1638, 1492, 1342, 1015, 812; HRMS (ESI$^+$) Calcd for C$_{17}$H$_{16}$Cl$_2$N$_2$Na [M+Na]$^+$ 341.0588, Found 341.0594.
N,N'-Methanediylidenebis(3-(triethoxysilyl)propan-1-amine) (2e). 3.73 g, 80%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 3.84-3.67 (m, 12H), 3.22-3.10 (m, 4H), 1.73-1.55 (m, 4H), 1.24-1.10 (m, 18H), 0.67-0.56 (m, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 140.5, 58.5, 49.5, 25.1, 18.4, 7.9; IR (neat, v/ cm$^{-1}$) 2973, 2927, 2129, 1637, 1369, 1080, 956, 793; HRMS (ESI$^+$) Calcd for C$_{19}$H$_{24}$N$_{2}$O$_{6}$Si$_{2}$Na [M+Na]$^+$ 473.2479, Found 473.2501.

N,N'-Methanediylidenebis(1-phenylmethylamine) (2f). 1.29 g, 44%; Yellow solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.35-7.26 (m, 6H), 7.20 (d, $J = 7.1$ Hz, 4H), 4.30 (s, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 141.6, 138.5 128.7, 127.7, 127.6, 50.5; IR (KBr, v/ cm$^{-1}$) 1685, 1654, 1559, 1457, 1026, 696; HRMS (ESI$^+$) Calcd for C$_{15}$H$_{14}$N$_{2}$Na [M+Na]$^+$ 245.1055, Found 245.1052.

Bis(1-phenylethyl)methanediimine (2g). 2.23g, 38%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.36-7.29 (m, 5H), 7.29-7.23 (m, 5H), 4.62-4.52 (m, 2H), 1.50-1.44 (m, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 143.8, 128.7, 127.53, 127.51, 126.2, 56.9, 24.9; IR (neat, v/ cm$^{-1}$) 2973, 2124, 1684, 1453, 1072, 759, 699; HRMS (ESI$^+$) Calcd for C$_{17}$H$_{19}$N$_{2}$ [M+H]$^+$ 251.1548, Found 251.1548.

N,N'-Methanediylidenebis(4-(trifluoromethyl)aniline) (2i). 1.47 g, 70%; Reddish brown oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.61 (d, $J = 7.8$ Hz, 4H), 7.27 (d, $J = 7.8$ Hz, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 141.4, 133.6, 129.3 (q, 1J$_{CF} = 273$ Hz), 127.1 (q, 3J$_{CF} = 4.0$ Hz), 124.8 (q, 2J$_{CF} = 30.1$ Hz), 123.1; IR (KBr, v/ cm$^{-1}$) 2163, 1664, 1468, 928, 893, 703, HRMS (ESI$^+$) Calcd for C$_{15}$H$_{9}$F$_{9}$N$_{3}$ [M+H]$^+$ 331.0670, Found 331.0672.

Typical procedure for rhenium-catalyzed synthesis of (E)-N-((E)-2-Isopropyl-3-(isopropylimino)-1-isoindolylidene)-1-octanamine 3a by a C-H bond activation and successive dealkoxyative annulation. A mixture of (Z)-methyl N-octylbenzimidate (1a, 61.8 mg, 0.250 mmol), N,N'-methanediylidenebis(propan-2-amine) (2a, 31.5 mg, 0.250 mmol), Re$_2$(CO)$_{10}$ (4.1 mg, 6.3 mol), and chlorobenzene (1.0 mL) was stirred at 170 °C for 24 h in a sealed tube. Then, the solvent was removed in vacuo and the product was isolated by column chromatography on silica gel (n-hexane/EtOAc = 10:1) to give (E)-N-((E)-2-isopropyl-3-(isopropylimino)-1-isoindolylidene)-1-octanamine (3a, 84.8 mg, 99% yield).

(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-1-isoindolylidene)-1-octanamine (3a). 84.8 mg, 99%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 8.02-7.94 (m, 2H),
(E)-N-((E)-2-Bromo-3-(isopropylimino)isoindolin-1-ylidene)-1-propanamine (3A). 71.8 mg, 82%; Yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (s, 1H), 7.74 (d, $J = 7.9$ Hz, 1H), 7.40 (dd, $J = 7.6, 7.6$ Hz, 1H), 7.36-7.29 (m, 2H), 7.14-7.10 (m, 2H), 6.93 (d, $J = 8.0$ Hz, 2H), 6.68 (d, $J = 7.7$ Hz, 1H), 4.99 (hept, $J = 6.9$ Hz, 1H), 4.60 (hept, $J = 6.1$ Hz, 1H), 1.56 (d, $J = 6.9$ Hz, 6H), 1.33 (d, $J = 6.1$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 150.3, 148.6, 133.0, 130.6, 130.5, 129.6, 125.8, 125.6, 122.6, 120.6, 48.7, 43.5, 24.9, 19.4; IR (KBr, v/cm$^{-1}$) 2966, 2929, 1855, 1633, 1363, 806; HRMS (ESI$^+$) Calcd for C$_{17}$H$_{25}$BrN$_3$ [M+H]$^+$ 350.1232, Found 350.1241.

nOe correlation of 3A

(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-1-isindolinylidene)aniline (3b). 65.4 mg, 85%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.94 (d, $J = 7.9$ Hz, 1H), 7.40 (dd, $J = 7.6, 7.6$ Hz, 1H), 7.36-7.29 (m, 2H), 7.14-7.10 (m, 2H), 6.93 (d, $J = 8.0$ Hz, 2H), 6.68 (d, $J = 7.7$ Hz, 1H), 4.99 (hept, $J = 6.9$ Hz, 1H), 4.60 (hept, $J = 6.1$ Hz, 1H), 1.56 (d, $J = 6.9$ Hz, 6H), 1.33 (d, $J = 6.1$ Hz, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 150.6, 148.8, 131.1, 131.0, 130.8, 130.5, 129.6, 129.2, 125.8, 125.6, 122.6, 120.6, 48.7, 43.5, 24.9, 19.4; IR (neat, v/cm$^{-1}$) 2963, 2926, 2855, 1637, 1362, 1239, 1096, 767, 674; HRMS (ESI$^+$) Calcd for C$_{22}$H$_{36}$N$_3$ [M+H]$^+$ 342.2909, Found 342.2899.
(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-5-methoxy-1-isoidolinylidene)-1-octanamine (3c). 89.3 mg, 99%; Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 6.98 (dd, J = 8.6, 2.4 Hz, 1H), 4.88 (hept, J = 7.5 Hz, 1H), 4.52 (hept, J = 6.3 Hz, 1H), 3.87 (s, 3H), 3.84 (t, J = 7.0 Hz, 2H), 1.81-1.69 (m, 2H), 1.52-1.41 (m, 8H), 1.41-1.22 (m, 14H), 0.91-0.86 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 161.1, 151.1, 149.1, 133.2, 127.3, 124.9, 114.6, 112.5, 55.9, 50.2, 48.5, 43.1, 32.8, 32.1, 29.8, 29.6, 27.8, 25.1, 22.9, 19.6, 14.4; IR (neat, v/ cm⁻¹) 2962, 2926, 2855, 1635, 1361, 1290, 1234, 1109; HRMS (ESI⁺) Calcd for C32H38N3O [M+H]⁺ 372.3015, Found 372.3029.

(1E,3E)-Methyl 2-isopropyl-3-(isopropylimino)-1-(octylimino)isoindoline-5-carboxylate (3e). 97.7 mg, 97%; Yellow oil; 1H NMR (500 MHz, CDCl3) δ 8.62 (s, 1H), 8.17 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 4.92 (hept, J = 10.1Hz, 1H), 4.62 (hept, J = 5.3 Hz, 1H), 3.97 (s, 3H), 3.90 (t, J = 6.4 Hz, 2H), 1.82-1.70 (m, 2H), 1.49-1.43 (m, 8H), 1.41-1.21 (m, 14H), 0.88 (t, J = 5.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 166.4, 150.2, 148.2, 135.2, 131.7, 131.5, 131.4, 127.2, 126.0, 52.8, 50.4, 48.7, 43.3, 32.8, 32.1, 29.7, 29.6, 27.8, 25.3, 22.9, 19.6, 14.4; IR (neat, v/ cm⁻¹) 3398, 2928, 1636, 1259, 1031; HRMS (ESI⁺) Calcd for C24H36N3O2 [M+H]⁺ 400.2964, Found 400.2956.
(E)-N-((E)-5-Bromo-2-isopropyl-3-(isopropylimino)-1-isooindolinylidene)-1-octanamine (3f). 101 mg, 96%; reddish brown solid; 1H NMR (500 MHz, CDCl$_3$) δ 8.11 (s, 1H), 7.87 (d, $J = 8.2$ Hz, 1H), 7.61 (d, $J = 8.2$ Hz, 1H), 4.89 (hept, $J = 6.3$ Hz, 1H), 4.85 (hept, $J = 5.7$ Hz, 1H), 3.84 (t, $J = 6.7$ Hz, 2H), 1.80-1.68 (m, 2H), 1.45-1.35 (m, 8H), 1.33-1.26 (m, 14H), 0.88 (t, $J = 6.8$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 150.0, 147.7, 132.8, 132.7, 130.2, 129.0, 127.1, 124.4, 49.8, 48.7, 43.2, 32.4, 31.9, 29.5, 29.4, 27.5, 25.0, 22.7, 19.2, 14.1; IR (KBr, v/cm$^{-1}$) 2929, 2832, 1658, 1378, 1030, 717, 700; HRMS (ESI$^+$) Calcd for C$_{22}$H$_{35}$BrN$_3$ [M+H]$^+$ 420.2014, Found 420.2015.

(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-5-phenylisoindolinylidene)octan-1-amine (3g). 104 mg, 99%; Yellow solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.75 (d, $J = 7.6$ Hz, 1H), 7.30 (dd, $J = 7.6$, 5.3 Hz, 1H), 7.25 (d, $J = 5.3$ Hz, 2H), 4.56 (hept, $J = 6.3$ Hz, 1H), 4.30 (hept, $J = 6.3$ Hz, 1H), 3.95-3.87 (m, 2H), 2.74 (s, 3H), 1.64-1.55 (m, 2H), 1.39-1.15 (m, 22H), 0.88 (t, $J = 6.7$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 151.6, 146.9, 137.3, 134.9, 133.6, 129.6, 129.1, 122.7, 48.4, 47.4, 42.3, 32.1, 29.5, 29.44, 29.43, 27.1, 26.1, 25.2, 22.9, 20.5, 14.4; IR (neat, v/cm$^{-1}$) 2963, 2926, 1635, 1360; HRMS (ESI$^+$) Calcd for C$_{28}$H$_{40}$N$_3$ [M+H]$^+$ 418.3222, Found 418.3235.

(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-4-methyl-1-isooindolinylidene)octan-1-amine (3h). 25.2 mg, 28%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.75 (d, $J = 7.6$ Hz, 1H), 7.30 (dd, $J = 7.6$, 5.3 Hz, 1H), 7.25 (d, $J = 5.3$ Hz, 2H), 4.56 (hept, $J = 6.3$ Hz, 1H), 4.30 (hept, $J = 6.3$ Hz, 1H), 3.95-3.87 (m, 2H), 2.74 (s, 3H), 1.64-1.55 (m, 2H), 1.39-1.15 (m, 22H), 0.88 (t, $J = 6.7$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 151.6, 146.9, 137.3, 134.9, 133.6, 129.6, 129.1, 122.7, 48.4, 47.4, 42.3, 32.1, 29.5, 29.44, 29.43, 27.1, 26.1, 25.2, 22.9, 20.5, 14.4; IR (neat, v/cm$^{-1}$) 2964, 2925, 1636, 1360; HRMS (ESI$^+$) Calcd for C$_{23}$H$_{37}$N$_3$ [M+H]$^+$ 356.3066, Found 356.3076.

(E)-N-((E)-2-Isopropyl-3-(isopropylimino)-5-methylisoindolin-1-ylidene)octan-1-amine (3h'). 65.1 mg, 70%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.86 (d, $J =$
8.0 Hz, 1H), 7.81 (s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 4.89 (hept, J = 7.5 Hz, 1H), 4.53 (hept, J = 6.0 Hz, 1H), 3.89 (t, J = 6.9 Hz, 2H), 2.46 (s, 3H), 1.83-1.72 (m, 2H), 1.54-1.42 (m, 8H), 1.41-1.18 (m, 14H), 0.89 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 151.3, 149.5, 140.4, 132.3, 131.0, 128.9, 126.9, 125.9, 50.2, 48.6, 43.1, 32.8, 32.1, 29.9, 29.7, 27.8, 25.3, 23.0, 22.1, 19.6, 14.4; IR (neat, v/cm$^{-1}$) 2964, 2925, 2856, 1635, 1362; HRMS (ESI$^+$) Calcd for C$_{23}$H$_{38}$N$_3$ [M+H]$^+$ 356.3066, Found 356.3053.

(3i). Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 9.82 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.89-7.79 (m, 2H), 7.60 (t, J = 7.5 Hz, 1H), 4.78-4.62 (m, 2H), 3.88 (t, J = 6.7 Hz, 1H), 1.89-1.75 (m, 2H), 1.60 (t, J = 8.3 Hz, 5H), 1.57-1.45 (m, 3H), 1.44-1.21 (m, 14H), 0.89 (t, J = 6.6 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) 152.3, 151.8, 134.8, 133.0, 131.1, 129.1, 128.4, 128.1, 128.0, 127.3, 127.2, 121.7, 50.6, 48.9, 48.3, 33.5, 32.1, 29.8, 29.6, 27.8, 25.3, 23.0, 21.0, 14.4; IR (neat, v/cm$^{-1}$) 2962, 2927, 2855, 1638, 1360, 1238; HRMS (ESI$^+$) Calcd for C$_{26}$H$_{38}$N$_3$O [M+H]$^+$ 392.3066, Found 392.3042.

(3j). 52.3 mg, 63%; IR (neat, v/cm$^{-1}$) 2963, 2929, 2855, 1638, 1360, 1238; HRMS (ESI$^+$) Calcd for C$_{20}$H$_{34}$N$_3$O [M+H]$^+$ 332.2702, Found 332.2697.

(3k). 59.0 mg, 68%; IR (neat, v/cm$^{-1}$) 2963, 2927, 1651, 1378, 1070; HRMS (ESI$^+$) Calcd for C$_{20}$H$_{34}$N$_3$O [M+H]$^+$ 332.2702, Found 332.2697.
= 4.9 Hz, 1H), 4.79 (hept, J = 6.9 Hz, 1H), 3.91 (hept, J = 6.3 Hz, 1H), 3.73 (t, J = 7.1 Hz, 2H), 1.73-1.64 (m, 2H), 1.49-1.38 (m, 8H), 1.32-1.24 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 150.3, 147.8, 138.9, 134.4, 132.9, 122.6, 53.2, 51.1, 43.9, 32.3, 32.1, 29.8, 29.6, 27.8, 25.0, 22.9, 20.0, 14.4.; IR (neat, ν/cm⁻¹) 2964, 2926, 1637, 1378, 698; HRMS (ESI⁺) Calcd for C20H34N3S [M+H]+ 348.2473, Found 348.2479.

(E)-N-((E)-2-Cyclohexyl-3-(octylimino)isoindolin-1-ylidene)cyclohexanamine (3l). 95.0 mg, 90%; Yellow solid; 1H NMR (500 MHz, CDCl3) δ 8.00 (dd, J = 5.8, 2.7 Hz, 1H), 7.89 (dd, J = 5.8, 2.5 Hz, 1H), 7.50-7.45 (m, 2H), 4.60-4.45 (m, 1H), 4.27-4.15 (m, 1H), 3.89 (t, J = 6.9 Hz, 2H), 2.71-2.59 (m, 2H), 2.05-1.70 (m, 8H), 1.69-1.09 (m, 22H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 151.3, 149.2, 131.8, 131.3, 130.3, 130.0, 126.2, 126.0, 56.2, 51.5, 50.1, 35.2, 32.7, 32.1, 29.7, 29.7, 28.8, 27.7, 26.9, 26.3, 26.2, 24.7, 23.0, 14.4; IR (KBr, ν/cm⁻¹) 3361, 2920, 2849, 1651, 1469, 1371, 1101, 771, 698, 673; HRMS (ESI⁺) Calcd for C28H44N3 [M+H]+ 422.3535, Found 422.3518.

(N,N',E,N,N'E)-N,N'-((2-Octylisoindoline-1,3-diylidene)bis(1-octanamine) (3m). 114 mg, 94%; Yellow solid; 1H NMR (500 MHz, CDCl3) δ 8.01 (dd, J = 5.7, 3.1 Hz, 2H), 7.53-7.50 (m, 2H), 3.91 (t, J = 7.0 Hz, 4H), 3.80 (t, J = 7.0 Hz, 2H), 1.93-1.73 (m, 4H), 1.53-1.43 (m, 4H), 1.35-1.27 (m, 28H), 0.93-0.84 (m, 9H); 13C NMR (125 MHz, CDCl3) δ 151.4, 131.8, 130.3, 126.2, 50.0, 39.0, 32.6, 32.2, 32.1, 29.8, 29.7, 29.66 (2C), 29.57, 27.9, 27.8, 27.3, 23.0 (2C), 14.4; IR (KBr, ν/cm⁻¹) 3361, 2920, 2849, 1651, 1469, 1371, 1100, 676; HRMS (ESI⁺) Calcd for C35H44N3 [M+H]+ 482.4474, Found 482.4491.

(E)-N-((E)-2-(4-Chlorophenethyl)-3-(4-chlorophenethylimino)isoindolin-1-ylidene)octan-1-amine (3n). 110 mg, 83%; Yellow solid; 1H NMR (500 MHz, CDCl3) δ 8.00 (d, J = 7.1 Hz, 1H), 7.95 (d, J = 7.0 Hz, 1H), 7.56-7.47 (m, 2H), 7.33-7.24 (m, 4H), 7.24-7.18 (m, 2H), 7.14 (d, J = 8.2 Hz, 2H), 4.12 (t, J = 7.0 Hz, 2H), 4.01 (t, J = 6.9 Hz, 2H), 3.88 (t,
\[J = 6.8 \text{ Hz}, 2H \], 3.03 (t, \(J = 7.0 \text{ Hz}, 2H \)), 2.94 (t, \(J = 6.9 \text{ Hz}, 2H \)), 1.81-1.68 (m, 2H), 1.55-1.45 (m, 2H), 1.43-1.23 (m, 8H), 0.89 (t, \(J = 6.6 \text{ Hz}, 3H \)); \(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 151.4, 150.8, 139.6, 138.9, 132.0, 131.8, 131.60, 131.56 (2C), 130.7, 130.6, 130.5, 128.6, 128.4, 126.3, 126.1, 51.4, 50.0, 40.3, 38.6, 33.4, 32.6, 32.2, 29.8, 29.7, 27.8, 23.0, 14.4; IR (KBr, v/ cm\(^{-1}\)) 2923, 2850, 1644, 1490, 1428, 1396, 1338, 1093, 1014, 820, 667; HRMS (ESI\(^{+}\)) Calcd for C\(_{32}\)H\(_{38}\)Cl\(_2\)N\(_3\) [M+H]\(^{+}\) 534.2446, Found 534.2446.

\((E)-(E)-2-(3-(Triethoxysilyl)propyl)-3-((3-(triethoxysilyl)propyl)imino)isoindolin-1-ylidene)octan-1-amine\) (3o). 139 mg, 83%; Yellow oil; \(^{1}\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 8.05-7.96 (m, 2H), 7.54-7.47 (m, 2H), 3.95-3.73 (m, 16H), 1.92-1.80 (m, 2H), 1.79-1.67 (m, 6H), 1.50-1.41 (m, 2H), 1.38-1.26 (m, 10H), 1.26-1.15 (m, 16H), 0.91-0.78 (m, 5H), 0.66 (m, 2H); \(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 151.4, 151.3, 131.8, 131.7, 130.40, 130.37, 126.3, 126.2, 58.6, 58.5, 52.7, 50.7, 50.1, 41.7, 32.7, 32.2, 29.8, 29.6, 27.8, 25.9, 25.8, 22.9, 21.1, 18.6, 18.5, 14.4; \(^{29}\text{Si NMR}\) (78 MHz, CDCl\(_3\)) \(\delta \) -44.3, -44.4; IR (KBr, v/ cm\(^{-1}\)) 2128, 1647, 1079, 956, 792; HRMS (ESI\(^{+}\)) Calcd for C\(_{34}\)H\(_{64}\)N\(_3\)O\(_6\)Si\(_2\) [M+H]\(^{+}\) 666.4334, Found 666.4330.

\((E)-(E)-2-Benzyl-3-(benzylimino)isoindolin-1-ylidene)octan-1-amine\) (3p). 69.0 mg, 63%; Yellow solid; \(^{1}\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 8.05 (d, \(J = 6.9 \text{ Hz}, 2H \)), 7.58-7.51 (m, 2H), 7.49 (d, \(J = 7.3 \text{ Hz}, 2H \)), 7.43 (d, \(J = 7.3 \text{ Hz}, 2H \)), 7.36-7.31 (m, 2H), 7.30-7.22 (m, 3H), 7.23-7.16 (m, 1H), 5.21 (s, 2H), 5.15 (s, 2H), 3.95 (t, \(J = 6.9 \text{ Hz}, 2H \)), 1.84-1.74 (m, 2H), 1.53-1.43 (m, 2H), 1.41-1.21 (m, 8H), 0.90 (t, \(J = 6.8 \text{ Hz}, 3H \)); \(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 152.3, 151.0, 141.8, 139.7, 131.7 (2C), 130.8, 130.7, 128.9, 128.5, 128.2, 127.4, 126.7, 126.6, 126.4, 125.3, 53.3, 50.0, 42.6, 32.6, 32.2, 29.8, 29.7, 27.7, 23.0, 14.4; IR (KBr, v/ cm\(^{-1}\)) 2923, 1646, 1396, 1100, 720, 694; HRMS (ESI\(^{+}\)) Calcd for C\(_{30}\)H\(_{36}\)N\(_3\) [M+H]\(^{+}\) 438.2909, Found 438.2927.

\((E)-(E)-2-(1-Phenylethyl)-3-(1-phenylethylimino)isoindolin-1-ylidene)octan-1-amine\) (dr = 2:1) (3q). 79.4 mg, 68%; Yellow solid; \(^{1}\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 8.08-7.96 (m, 1H), 7.93 (dd, \(J = 10.3, 9.0 \text{ Hz}, 1H \)), 7.59-7.30 (m, 6H), 7.30-6.99 (m,
6H), 6.21 (q, \(J = 6.5 \) Hz, 1H), 5.49 (q, \(J = 6.4 \) Hz, 1H), 4.05 (q, \(J = 6.4 \) Hz, 2H), 1.96 (dd, \(J = 7.1, 1.9 \) Hz, 2H), 1.74 (td, \(J = 14.0, 7.0 \) Hz, 2H), 1.57 (d, \(J = 6.5 \) Hz, 2H), 1.51-1.40 (m, 3H), 1.40-1.23 (m, 8H), 0.95-0.81 (m, 4H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 150.8, 150.7, 150.4, 149.7, 149.5, 147.7, 147.4, 143.41, 143.35, 131.7, 131.6, 131.2, 130.5 (2C), 130.43, 130.41, 128.5, 128.3, 128.0, 127.9, 127.6, 126.6, 126.51, 126.45, 126.34, 126.30, 126.26 (2C), 126.13, 126.12, 126.0, 57.3, 57.0, 56.9, 50.0, 48.6, 48.3, 32.7 32.2, 29.8, 29.7, 27.7, 27.3, 27.2, 23.0, 16.9, 16.5, 14.4; IR (neat, \(\nu / \text{cm}^{-1} \)) 2925, 2124, 1637, 1368, 1102, 698; HRMS (ESI\(^+\)) Calcd for C\(_{32}\)H\(_{40}\)N\(_3\) [M+H]\(^+\) 466.3222, Found 466.3203.

\((E)-N-((E)-3-\text{(tert-Butylimino)}-2\text{-ethylisoindolin-1-ylidene})\text{octan-1-amine (3r).} \) 41.7 mg, 53%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.09 (d, \(J = 7.2 \) Hz, 1H), 8.01 (d, \(J = 7.2 \) Hz, 1H), 7.55-7.45 (m, 2H), 3.92 (t, \(J = 7.1 \) Hz, 2H), 3.86 (q, \(J = 8.6 \) Hz, 2H), 1.91-1.71 (m, 2H), 1.57-1.42 (m, 2H), 1.51 (s, 9H), 1.43-1.19 (m, 8H), 1.11 (t, \(J = 8.6 \) Hz, 3H), 0.88 (t, \(J = 6.6 \) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 151.0, 147.1, 133.1, 130.9, 130.0, 129.6, 127.8, 126.1, 52.8, 130.1, 34.0, 32.7, 32.1, 31.7, 29.8, 29.6, 27.8, 23.0, 14.4, 13.0; IR (KBr, \(\nu / \text{cm}^{-1} \)) 2965, 2927, 2855, 1725, 1633, 1398, 1201, 1097, 678; HRMS (ESI\(^+\)) Calcd for C\(_{22}\)H\(_{36}\)N\(_3\) [M+H]\(^+\) 342.2909, Found 342.2906.

\(n\)Oe correlation of 3r

\((E)-N-((E)-3-\text{(Octylimino)}-2-(4-(trifluoromethyl)phenyl)isoindolin-1-ylidene)-4-(trifluoromethyl)aniline (Inseparable mixture of isomers \(E/Z = 5:1\) (3s). 114 mg, 83%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.09 (d, \(J = 7.7 \) Hz, 0.8H), 7.97 (d, \(J = 7.7 \) Hz, 0.2H), 7.76-7.54 (m, 6H), 7.35-7.32 (m, 1H), 7.06-6.60 (m, 4H), 3.96 (t, \(J = 6.7 \) Hz, 1.7H), 2.99 (t, \(J = 6.7 \) Hz, 0.3H),
1.76-1.70 (m, 2H), 1.51-1.39 (m, 2H), 1.37-1.10 (m, 8H), 0.93-0.81 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 153.0, 151.5, 151.0, 138.9, 132.3, 132.2, 131.2, 130.9, 130.6, 130.2, 129.9, 129.3, 129.0, 126.8, 126.6, 126.3, 125.8, 125.5, 125.2, 123.6, 122.9, 120.8, 100.1, 50.3, 45.0, 32.1, 32.0, 31.9, 31.8, 30.0, 29.9, 29.6, 29.5, 29.5, 29.7, 27.5, 22.9, 14.4 [The coupling patterns derived from 19F atoms could not be analyzed because of the complexity of the signals]; 19F NMR (376 MHz, CDCl3) δ -61.91, -61.97, -62.76, -62.80; IR (KBr, v/cm) 2927, 1651, 1322, 1120, 1066; HRMS (ESI+) Calcd for C30H30F6N3 [M+H]+ 546.2344, Found 546.2317.

(1Z,4Z)-Dimethyl N’1,N’4-dioctylterephthalimidate (4)

1H NMR (500 MHz, CDCl3) δ 7.37 (s, 4H), 3.80 (s, 6H), 3.24 (t, J = 7.1 Hz, 4H), 0.99-0.77 (m, 4H), 1.24 (s, 20H), 0.86 (t, J = 6.8 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 160.1, 133.6, 128.1, 53.1, 50.2, 32.2, 32.1, 31.8, 29.6, 27.4, 22.9, 14.3; IR (KBr, v/cm) 3075, 2916, 1509, 1468, 1378, 1299, 1036; HRMS (ESI+) Calcd for C26H45N2O2 [M+H]+ 416.3403, Found 416.3406.

(N,N’E,N,N’E’)-(3E,7E)-2,6-Diisopropyl-3,7-bis(isopropylimino)-2,3,6,7-tetrahydropyrrolo[3,4-f]isoindole-1,5-diylidene)bis(octan-1-amine) (5).

1H NMR (500 MHz, CDCl3) δ 8.63 (s, 2H), 4.90 (hept, J = 6.7 Hz, 2H), 4.51 (hept, J = 5.6 Hz, 2H), 3.92 (t, J = 3.9 Hz, 4H), 1.84-1.69 (m, 4H), 1.48 (d, J = 6.7 Hz, 12H), 1.37 (d, J = 5.6 Hz, 12H), 1.52-1.43 (m, 4H), 1.39-1.24 (m, 16H), 0.89 (t, J = 6.7 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 150.1, 148.3, 132.9, 132.2, 123.4, 50.3, 49.0, 43.5, 32.7, 32.2, 29.8, 29.7, 27.9, 25.3, 22.9, 19.5, 14.4; IR (KBr, v/cm) 2972, 2915, 1685, 1370, 1215, 1078; HRMS (ESI+) Calcd for C38H65N6 [M+H]+ 605.5271, Found 605.5247.

References

Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine (III) Reagents

General. All reactions were carried out in a dry solvent under an argon atmosphere. CH$_3$CN was purchased from Kanto Co. and was dried and degassed before use. Fe(CO)$_3$(cot) was purchased from Tokyo Kasei Kogyo Co. Styrenes (1d-1g, 1i-1m, and 1o-1r), iodobenzene carboxylates (2b and 2d-2k), and ligands (L6-L8) were prepared according to the literature methods. Ligands (L4 and L5) were prepared according to general procedure. Iodobenzene carboxylates (2a and 2c) and ligands (L1-L3 and L9-L12) were purchased from Wako Co. and Sigma Aldrich Co. NMR spectra were recorded on JEOL ECX500 (500 MHz for 1H NMR and 125 MHz for 13C NMR) and JEOL ECS400 (400 MHz for 1H NMR, 100 MHz for 13C NMR, 376 MHz for 19F NMR) spectrometers. Proton chemical shifts are reported relative to Me$_4$Si (CDCl$_3$) at δ 0.00 ppm or residual solvent peak (CDCl$_3$ at δ 7.26 ppm). Carbon chemical shifts are reported relative to CDCl$_3$ at 77.26 ppm. Fluorine chemical shifts are reported relative to TFA (CDCl$_3$) at -76.55 ppm as an external standard. Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. ESI-mass spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer for HRMS.

General Procedure for Preparation of Ligand (L4 and L5).

$\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{Cl} & \quad \text{Cl}
\end{align*}$

$\quad + \quad \text{Ar} - \text{Br(OH)}_2$

(2.2 equiv)

$\xrightarrow{\text{Pd(dba)$_3$CHCl$_3$ (5 mol%), Cy$_3$P (5 mol%), K$_3$PO$_4$ (4.0 eq.)}}$

$\xrightarrow{\text{dioxane/H$_2$O, reflux, 24 h}}$

$\begin{align*}
\text{Ar} & \quad \text{Ar} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N}
\end{align*}$

To a Schlenk tube equipped with a stir bar was added 4,7-dichloro-1,10-phenanthroline (49.8 mg, 0.200 mmol), arylboronic acid (0.440 mmol, 2.2 equiv), Pd(dba)$_3$·CHCl$_3$ (10.4 mg, 0.0100 mmol, 5.0 mol%), tricyclohexylphosphine (2.8 mg, 0.010 mmol, 5.0 mol%), K$_3$PO$_4$ (170 mg, 4.0 equiv in water (1.0 mL)), and dioxane (1.0 mL). After the reaction mixture was allowed to stir at reflux for 24 h, the mixture was purified by column chromatography on silica gel to give a ligand in 70%-75% yield.

General Procedure for Preparation of Styrenes$^{[1]}$. To a 100 mL two-necked, round-bottomed flask charged a solution of Ph$_3$MePBr (4.29 g, 12.0 mmol, 1.20 equiv) in THF (40.0 mL) was added tBuLi (2.69 M, 4.46 mL, 12.0 mmol, 1.20 equiv) at 0 °C, and the mixture was stirred at 0 °C for 15 min. A solution of a ketone (10 mmol, 1.0 equiv) was added at 0 °C. The reaction mixture was stirred at r.t. for 48 h. The resulting solution was quenched with aq. NH$_4$Cl and the mixture was extracted with ethyl acetate (3 x 40 mL). The combined organic phases were dried over MgSO$_4$,
concentrated in vacuo, and the residue was purified by column chromatography on silica gel to give styrene.

General Procedure for Preparation of Iodobenzene Pentanoate 2b.[2] To a 100 mL round-bottom flask, PhI(OAc)₂ (2a, 3.22 g, 10.0 mmol, 1.0 equiv) and pentanoic acid (1.63 g, 22.0 mmol, 2.2 equiv), and xylenes (50 mL) were added and the flask was operated on rotary evaporator at 65 ºC under reduced pressure (ca. 30-50 Torr or 4-6 kPa). After xylenes was removed, the crude product was purified by recrystallization from hexane/dichloromethane to give product 2b as a white solid (3.05 g, 75%).

Iodobenzene divalerate (2b). 3.05 g, 75%; Colorless soil; 1H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (dd, J = 7.8, 7.8 Hz, 2H), 2.35-2.12 (m, 4H), 1.52 (tt, J = 7.6, 7.6 Hz, 4H), 1.26 (qt, J = 7.3, 7.3 Hz, 4H), 0.85 (t, J = 7.4 Hz, 6H); 13C NMR (125 MHz, CDCl₃) δ 179.2, 135.1, 131.8, 131.1, 122.0, 34.0, 27.9, 22.5, 13.9; IR (neat, $\tilde{\nu}$/ cm$^{-1}$) 3410, 2926, 1539, 1412, 1105, 994, 727; HRMS (ESI$^+$) Calcd for C$_{16}$H$_{23}$IO$_{4}$ [M + Na]$^+$ 429.0533, Found 429.0530.

Iodobenzene dicyclopentanecarboxylate (2c). 2.58 g, 60%; Colorless soil; 1H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.9 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (dd, J = 7.9, 7.9 Hz, 2H), 2.66 (tt, J = 7.5, 7.5 Hz, 2H), 1.87-1.36 (m, 16H); 13C NMR (125 MHz, CDCl₃) δ 182.0, 134.9, 131.7, 131.0, 122.2, 43.9, 30.8, 26.0; IR (neat, $\tilde{\nu}$/ cm$^{-1}$) 2927, 1650, 1508, 1110, 980, 830, 750; HRMS (ESI$^+$) Calcd for C$_{18}$H$_{23}$IO$_{4}$ [M + Na]$^+$ 453.0533, Found 453.0517.

Iodobenzene di(4,4,4-trifluorobutanoate) (2e). 2.53 g, 52%; Colorless soil; 1H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 2H), 7.57-7.46 (m, 2H), 2.54-7.47 (m, 4H), 2.46-2.29 (m, 4H); 13C NMR (125 MHz, CDCl₃) δ 175.8, 135.1, 132.4 131.4, 126.7 (q, J = 274 Hz), 122.0, 30.2 (q, J = 28.8 Hz), 26.8 (q, J = 6.3 Hz); 19F NMR (376 MHz, CDCl₃) δ -67.8 (d, J = 11.7 Hz); IR (neat, $\tilde{\nu}$/ cm$^{-1}$) 2980, 2855, 1730, 1672, 1435, 1238, 1117, 1020, 784; HRMS (ESI$^+$) Calcd for C$_{14}$H$_{13}$F$_{6}$IO$_{4}$ [M + Na]$^+$ 508.9655, Found 508.9560.

Iodobenzene di(6-bromohexanoate) (2f). 754.8 mg, 15%; Colorless soil; 1H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (dd, J = 7.4, 7.4 Hz, 2H), 3.47 (t, J = 6.6 Hz, 4H), 2.25 (t, J = 7.3 Hz, 4H), 1.71 (tt, J = 7.2, 6.6 Hz, 4H), 1.55 (tt, J = 7.2, 7.7Hz, 4H), 1.37 (tt, J = 7.7, 7.3 Hz, 4H); 13C NMR (125 MHz, CDCl₃) δ 178.6, 135.0, 131.9, 131.1, 121.9, 45.0, 33.9,
32.3, 26.6, 25.0; IR (neat, v/ cm\(^{-1}\)) 3515, 3081, 2957, 1729, 1629, 1148, 1127, 1072, 763; HRMS (ESI\(^+\)) Calcd for C\(_{18}\)H\(_{25}\)Cl\(_2\)IO\(_4\) [M + Na\(^+\)] 525.0067, Found 525.0052.

Iodobenzene di(6-chlorohexanoate) (2g). 592.3 mg, 10%; Colorless soil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.07 (d, \(J = 8.4\) Hz, 2H), 7.59 (t, \(J = 7.9\) Hz, 1H), 7.49 (t, \(J = 7.9\) Hz, 2H), 3.35 (t, \(J = 6.8\) Hz, 4H), 2.26 (t, \(J = 7.4\) Hz, 4H), 1.82-1.64 (m, 4H), 1.64-1.47 (m, 4H), 1.1-1.28 (m, 4H); 13C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 178.7, 135.2, 132.0, 131.2, 122.0, 34.0, 33.8, 32.6, 27.9, 25.0; IR (neat, v/ cm\(^{-1}\)) 2936, 2861, 1698, 1570, 1260, 1014, 733; HRMS (ESI\(^+\)) Calcd for C\(_{18}\)H\(_{25}\)Cl\(_2\)IO\(_4\) [M + Na\(^+\)] 612.9057, Found 612.9057.

Iodobenzene di(6-iodohexanoate) (2h). 2.31 g, 60%; Colorless soil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.09 (d, \(J = 7.4\) Hz, 2H), 7.60 (t, \(J = 7.4\) Hz, 1H), 7.50 (t, \(J = 7.8\) Hz, 2H), 3.14 (t, \(J = 6.9\) Hz, 4H), 2.27 (t, \(J = 7.4\) Hz, 4H), 1.84-1.68 (m, 4H), 1.61-1.51 (m, 4H), 1.42-1.28 (m, 4H); IR (neat, v/ cm\(^{-1}\)) 2932, 2861, 1698, 1570, 1260, 1014, 733; MS (ESI\(^+\)) Calcd for C\(_{18}\)H\(_{25}\)Br\(_2\)IO\(_4\) [M + Na\(^+\)] 708.8779, Found 708.8790.

Iodobenzene di(4-oxo-4-phenylbutanoate) (2i). 3.28 g, 59%; Colorless soil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.06-7.90 (m, 5H), 7.64-7.37 (m, 10H), 3.33 (t, \(J = 6.6\) Hz, 2H), 3.23 (t, \(J = 6.6\) Hz, 2H), 2.82 (t, \(J = 6.6\) Hz, 2H), 2.71 (t, \(J = 6.6\) Hz, 2H); 13C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 198.6, 177.8, 136.9, 135.0, 133.3, 131.8, 128.8, 128.3, 121.8, 34.3, 28.1; IR (neat, v/ cm\(^{-1}\)) 3354, 3058, 2927, 1684, 1333, 1190, 994, 748, 632; HRMS (ESI\(^+\)) Calcd for C\(_{26}\)H\(_{23}\)IO\(_6\) [M + H\(^+\)] 559.0612, Found 559.0584.

Iodobenzene di(pent-4-enoate) (2j). 421.0 mg, 10%; Colorless soil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.07 (d, \(J = 8.0\) Hz, 2H), 7.59 (t, \(J = 7.8\) Hz, 1H), 7.49 (t, \(J = 7.7\) Hz, 2H), 5.76 (td, \(J = 16.8, 6.3\) Hz, 2H), 5.05-4.88 (m, 4H), 2.36 (dd, \(J = 10.7, 4.3\) Hz, 4H), 2.33-2.22 (m, 4H); 13C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 198.6, 177.8, 136.9, 135.0, 133.3, 131.8, 128.8, 128.3, 121.8, 34.3, 28.1; IR (neat, v/ cm\(^{-1}\)) 2970, 2958, 1635, 1420, 1390, 1230, 1138, 782; HRMS (ESI\(^+\)) Calcd for C\(_{18}\)H\(_{19}\)IO\(_4\) [M + Na\(^+\)] 425.0220, Found 425.0218.
Iodobenzene
di(3-(4-chlorophenyl)propanoate)
(2k). 3.54 g, 62%; Colorless soil; 1H NMR (500 MHz, CDCl$_3$) δ 7.91 (d, $J = 8.1$ Hz, 2H), 7.59 (t, $J = 7.0$ Hz, 1H), 7.45 (dd, $J = 8.1$, 7.0 Hz, 2H), 7.20 (d, $J = 8.2$ Hz, 4H), 7.05 (d, $J = 8.2$ Hz, 4H), 2.83 (t, $J = 7.5$ Hz, 4H), 2.55 (t, $J = 7.5$ Hz, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 177.7, 139.4, 135.0, 132.1, 132.0, 131.1, 129.9, 128.7, 121.8, 35.5, 31.2; IR (neat, μ/ cm$^{-1}$) 2934, 1648, 1490, 1473, 1370, 1190, 1088, 740; HRMS (ESI$^+$) Calcd for C$_{24}$H$_{21}$Cl$_2$IO$_4$ [M + Na]$^+$ 592.9754, Found 592.9758.

Iodobenzene di(2-(p-tolyl)acetate) (2l). 3.68 g, 73%; Colorless soil; 1H NMR (500 MHz, CDCl$_3$) δ 7.95 (d, $J = 8.2$ Hz, 2H), 7.56 (t, $J = 7.4$ Hz, 1H), 7.43 (dd, $J = 8.2$, 7.4 Hz, 2H), 7.20-7.30 (m, 8H), 3.54 (s, 4H), 2.32 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 176.7, 136.6, 134.8, 131.9, 131.8, 131.0, 129.3, 129.2, 122.2, 40.8, 21.3; IR (neat, μ/ cm$^{-1}$) 2990, 2873, 1447, 1730, 1583, 1057, 960, 796; HRMS (ESI$^+$) Calcd for C$_{24}$H$_{23}$IO$_4$ [M + Na]$^+$ 525.0533, Found 525.0538.

Typical Procedure for Oxyalkylation of Styrene 1a. A mixture of 1-(tert-butyl)-4-vinylbenzene (1a, 40.1 mg, 0.250 mmol), Iodobenzene diacetate (2a, 104.7 mg, 0.325 mmol, 1.3 equiv), Fe(CO)$_3$(cot) (6.1 mg, 0.025 mmol, 10 mol%), L$_4$ (bathocuproine, 9.0 mg, 0.025 mmol, 10 mol%), and CH$_3$CN (1.0 mL) was stirred at 70 $^\circ$C for 12 h in a sealed tube. Then, the solvent was removed in vacuo and the product was isolated by column chromatography on silica gel (n-hexane/EtOAc = 20:1) to give 1-(4-(tert-butyl)phenyl)propyl acetate (3aa, 31.0 mg, 53% yield).

1-(4-(tert-Butyl)phenyl)propyl acetate (3aa)$^{[4]}$ 31.0 mg, 53%; Colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.28 (d, $J = 7.8$ Hz, 2H), 7.18 (d, $J = 7.8$ Hz, 2H), 5.58 (t, $J = 6.7$ Hz, 1H), 1.99 (s, 3H), 1.90-1.68 (m, 2H), 1.23 (s, 9H), 0.81 (t, $J = 7.2$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 170.8, 151.0, 137.7, 126.5, 125.5, 77.5, 34.8, 31.6, 29.4, 21.6, 10.3.

1-(4-Methoxyphenyl)propyl acetate (3ba)$^{[4]}$ 40.0 mg, 71%; Yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.25 (d, $J = 8.7$ Hz, 2H), 6.87 (d, $J = 8.7$ Hz, 2H), 5.61 (t, $J = 7.0$ Hz, 1H), 3.80 (s, 3H), 2.05 (s, 3H), 1.96-1.74 (m, 2H), 0.86 (t, $J = 7.4$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 170.7, 159.4, 132.8, 128.3, 114.0, 77.4, 55.5, 29.3, 21.6, 10.2.

1-[[1,1'-Biphenyl]-4-yl]propyl acetate (3ca)$^{[4]}$ 29.2 mg, 46%; Colorless soil; 1H NMR (500 MHz, CDCl$_3$) δ 7.62-7.56 (m, 4H),
7.48-7.38 (m, 4H), 7.38-7.32 (m, 1H), 5.72 (t, J = 6.9 Hz, 1H), 2.09 (s, 3H), 2.2-1.81 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 141.0, 139.8, 129.0, 127.5, 127.4, 127.3, 127.3, 77.4, 29.5, 21.5, 10.2.

2-Phenylbutan-2-yl acetate (3da).² 22.1 mg, 46%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.28 (m, 4H), 7.25-7.20 (m, 1H), 2.07 (s, 3H), 1.85-1.75 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 141.0, 139.8, 129.0, 127.5, 127.4, 127.3, 127.3, 77.4, 29.5, 21.5, 10.2.

²Phenylbutan-2-yl acetate (3da).

2-(3,4,5-Timethoxy phenyl) butan-2-yl acetate (3ea). 44.4 mg, 63%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.50 (s, 2H), 3.85 (s, 6H), 3.82 (s, 3H), 2.07 (s, 3H), 2.04-1.94 (m, 2H), 1.79 (s, 3H), 0.80 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 153.1, 141.1, 137.0, 102.4, 84.6, 61.0, 56.3, 35.4, 24.6, 22.5, 8.6; IR (neat, ν/ cm⁻¹) 2974, 1736, 1589, 1413, 1244, 1126, 1012, 829, 772; HRMS (ESI⁺) Calcd for C₁₅H₂₂O₅ [M + Na⁺] 305.1359, Found 305.1347.

4-(2-Aetoxybutan-2-yl)phenyl acetate (3fa). 33.9 mg, 54%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H), 2.28 (s, 3H), 2.06 (s, 3H), 2.10-1.95 (m, 2H), 1.80 (s, 3H), 0.79 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 153.1, 141.1, 137.0, 102.4, 84.6, 61.0, 56.3, 35.4, 24.5, 22.5, 8.6; IR (neat, ν/ cm⁻¹) 2980, 1375, 1508, 1369, 1202, 1016, 912; HRMS (ESI⁺) Calcd for C₁₃H₂₂O₄ [M + Na⁺] 273.1097, Found 273.1103.

2-(4-Fluorophenyl) butan-2-yl acetate (3ga). 26.8 mg, 51%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, J = 8.7 Hz, 2H), 7.00 (dd, J = 8.7, 8.7 Hz, 2H), 2.05 (s, 3H), 2.00 (q, J = 7.3 Hz, 2H), 1.80 (s, 3H), 0.78 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 161.8 (d, J = 244 Hz), 140.9 (d, J = 2.5 Hz), 126.6 (d, J = 7.5 Hz), 115.2 (d, J = 21.3 Hz), 84.1, 35.4, 24.5, 22.4, 8.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.2; IR (neat, ν/ cm⁻¹) 2973, 1733, 1487, 1105, 1245, 1090, 717; HRMS (ESI⁺) Calcd for C₁₄H₁₄F₂O₂ [M + Na⁺] 233.09483, Found 233.0947.

2-(4-Chlorophenyl) butan-2-yl acetate (3ha). 39.1 mg, 69%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H), 2.05 (s, 3H), 2.03-1.95 (m, 2H), 1.79 (s, 3H), 0.78 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 143.7, 132.8, 128.5, 126.4, 84.0, 35.3, 24.4, 22.4, 8.3; IR (neat, ν/ cm⁻¹) 2976, 1736, 1367, 1243, 1008, 816.; HRMS (ESI⁺) Calcd for C₁₂H₁₃ClO₂ [M + Na⁺] 249.0653, Found 249.0639.
2-(4-Bromophenyl)butan-2-yl acetate (3ia). 46.3 mg, 68%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.44 (d, $J = 8.6$ Hz, 2H), 7.17 (d, $J = 8.6$ Hz, 2H), 2.06 (s, 3H), 2.01-1.95 (m, 2H), 1.78 (s, 3H), 0.78 (t, $J = 7.3$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) 169.9, 144.2, 131.5, 126.8, 121.0, 84.0, 35.3, 24.4, 22.4, 8.3; IR (neat, ν/cm$^{-1}$) 2975, 2938, 1737, 1492, 1368, 1243, 1012, 820; HRMS (ESI$^+$) Calcd for C$_{12}$H$_{13}$BrO$_2$ [M + Na]$^+$ 293.0148 Found 293.0149.

2-(4-Iodophenyl)butan-2-yl acetate (3ja). 51.6 mg, 65%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.64 (d, $J = 7.0$ Hz, 2H), 7.05 (d, $J = 7.0$ Hz, 2H), 2.06 (s, 3H), 1.98 (q, $J = 7.4$ Hz, 2H), 1.77 (s, 3H), 0.78 (t, $J = 7.4$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 170.0, 144.9, 137.5, 127.0, 92.6, 84.1, 35.3, 24.3, 22.4, 8.3; IR (neat, ν/cm$^{-1}$) 2973, 1735, 1366, 1243, 1003, 942, 814; HRMS (ESI$^+$) Calcd for C$_{12}$H$_{15}$IO$_2$ [M + Na]$^+$ 341.0009, Found 341.0024.

2-(Naphthalen-2-yl)butan-2-yl acetate (3ka).$^{[6]}$ 32.7 mg, 54%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.89-7.80 (m, 3H), 7.78 (s, 1H), 7.53-7.41 (m, 3H), 2.20-2.14 (m, 2H), 2.13 (s, 3H), 1.95 (s, 3H), 0.83 (t, $J = 7.4$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.0, 142.4, 133.3, 132.6, 128.4, 128.2, 127.7, 126.2, 126.0, 123.7, 123.3, 84.7, 35.2, 24.5, 22.5, 8.4.

3-Phenylheptan-3-yl acetate (3la). 28.6 mg, 49%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.33-7.22 (m, 4H), 7.22-7.11 (m, 1H), 2.41-2.24 (m, 2H), 2.06 (s, 3H), 2.04-1.89 (m, 2H), 1.22-1.10 (m, 2H), 1.10-0.84 (m, 2H), 0.76 (t, $J = 7.4$ Hz, 3H), 0.62 (t, $J = 7.4$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 170.0, 143.4, 133.3, 132.6, 128.4, 128.2, 127.7, 126.2, 126.0, 123.7, 123.3, 84.7, 35.2, 24.5, 22.5, 8.4; IR (neat, ν/cm$^{-1}$) 2934, 1735, 1366, 1245, 1016, 700; HRMS (ESI$^+$) Calcd for C$_{15}$H$_{22}$O$_2$ [M + Na]$^+$ 257.1512, Found 257.1518.

1,2-Diphenylbutan-2-yl acetate (3ma). 28.4 mg, 42%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.33-7.22 (m, 4H), 6.75 (d, $J = 6.8$ Hz, 2H), 3.58 (d, $J = 13.6$ Hz, 1H), 3.37 (d, $J = 13.6$ Hz, 1H), 2.49 (dq, $J = 14.7$, 7.4 Hz, 1H), 2.21 (dq, $J = 14.7$, 7.4 Hz, 1H), 0.79 (t, $J = 7.4$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.7, 143.9, 136.4, 130.6, 128.2, 127.9, 127.1, 126.6, 125.7, 87.5, 44.2, 29.9, 22.5, 8.0; IR (neat, ν/cm$^{-1}$) 2970, 1735, 1366, 1231, 1021, 700; HRMS (ESI$^+$) Calcd for C$_{18}$H$_{20}$O$_2$ [M + Na]$^+$ 291.1356, Found 291.1352.

1,1-Diphenylpropyl acetate (3na). 46.4 mg, 73%; Colorless soil; 1H NMR (500 MHz, CDCl$_3$) δ 7.34-7.28 (m, 4H), 7.28-7.22 (m, 4H), 7.22-7.14 (m, 2H), 2.75 (q, $J = 7.3$ Hz, 2H), 2.11 (s, 3H), 0.72 (t, $J = 7.3$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.1, 145.0, 128.2,
127.1, 126.2, 87.0, 29.8, 22.3 7.7; IR (neat, v/ cm\(^{-1}\)) 3512, 3059, 2974, 1953, 1717, 1448, 1252, 970, 763, 763; HRMS (ESI\(^+\)) Calcd for C\(_{17}\)H\(_{18}\)O\(_2\) [M + H]\(^+\) 277.1199, Found 277.1209.

1-(3,4-Difluorophenyl)-1-phenylpropyl acetate (3oa). 48.2 mg, 67%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.31-7.23 (m, 4H), 7.23-7.17 (m, 1H), 7.13 (ddd, \(J = 11.7, 7.6, 2.0\) Hz, 1H), 7.07-6.96 (m, 2H), 2.69 (q, \(J = 7.3\) Hz, 2H), 2.11 (s, 3H), 0.70 (t, \(J = 7.3\) Hz, 3H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 168.9, 149.8 (dd, \(J = 248, 99.5\) Hz), 149.7 (dd, \(J = 248, 99.5\) Hz), 144.2, 142.3 (dd, \(J = 5.0, 3.8\) Hz.), 128.5, 127.5, 126.1, 122.4 (dd, \(J = 6.3, 3.8\) Hz), 117.0 (d, \(J = 17.2\) Hz), 115.8 (d, \(J = 18.6\) Hz), 86.1, 29.8, 22.2, 7.7; \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -138.4, -141.0; IR (neat, v/ cm\(^{-1}\)) 3445, 2976, 1738, 1608, 1517, 1370, 1253, 1018, 867, 775; HRMS (ESI\(^+\)) Calcd for C\(_{17}\)H\(_{16}\)F\(_2\)O\(_2\) [M + Na]\(^+\) 313.1011, Found 313.1024.

1-(4-Chlorophenyl)-1-phenylpropyl acetate (3pa). 48.2 mg, 67%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.37-7.11 (m, 9H), 2.72 (q, \(J = 7.3\) Hz, 2H), 2.11 (s, 3H), 0.71 (t, \(J = 7.3\) Hz, 3H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 169.0, 144.5, 143.7, 133.0, 128.43, 128.35, 127.8, 127.3, 126.2, 86.6, 29.8, 22.3, 7.7; IR (neat, v/ cm\(^{-1}\)) 3081, 1983, 1738, 1598, 1517, 1370, 1253, 1018, 867, 775; HRMS (ESI\(^+\)) Calcd for C\(_{17}\)H\(_{17}\)ClO\(_2\) [M + Na]\(^+\) 311.0809, Found 311.0804.

2-(Benzofuran-2-yl)butan-2-yl acetate (3qa). 38.1 mg, 66%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.53 (d, \(J = 7.6\) Hz, 1H), 7.44 (d, \(J = 8.2\) Hz, 1H), 7.31-7.45 (m, 2H), 6.62 (s, 1H), 2.28-2.06 (m, 2H), 2.06 (s, 3H), 1.86 (s, 3H), 0.87 (t, \(J = 7.5\) Hz, 3H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 169.9, 158.8, 154.7, 128.4, 124.1, 122.9, 121.3, 111.4, 103.2, 80.5, 32.3, 22.6, 22.2, 8.3; IR (neat, v/ cm\(^{-1}\)) 3471, 2972, 1740, 1455, 1242, 1017, 941, 751; HRMS (ESI\(^+\)) Calcd for C\(_{14}\)H\(_{16}\)O\(_3\) [M + Na]\(^+\) 255.0992, Found 255.0980.

2-(Thiophen-3-yl)butan-2-yl acetate (3ra). 25.5 mg, 51%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.21-7.16 (m, 1H), 7.05-7.01 (m, 1H), 6.92 (d, \(J = 4.8\) Hz, 1H), 2.07-1.97 (m, 2H), 1.96 (s, 3H), 1.73 (s, 3H), 0.72 (t, \(J = 7.4\) Hz, 3H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 170.0, 146.4, 125.6, 120.2, 83.2, 34.5, 25.0, 22.5, 8.38; IR (neat, v/ cm\(^{-1}\)) 3446, 2968, 1731, 1675, 1456, 1258, 1082, 791, 663; HRMS (ESI\(^+\)) Calcd for C\(_{10}\)H\(_{17}\)O\(_2\)S [M + Na]\(^+\) 221.0607, Found 221.0603.

1-(4-Methoxyphenyl)hexyl pentanoate (3bb). 46.2 mg, 63%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.31-7.22 (m, 2H), 6.87 (d, \(J = 8.7\) Hz, 2H), 5.70 (t, \(J = 7.1\) Hz, 1H), 3.81 (s, 3H), 2.38-2.23 (m, 2H), 1.96-1.84 (m, 1H), 1.80-1.68 (m, 1H), 1.60
(tt, J = 7.4 Hz, 2H), 1.41-1.12 (m, 8H), 0.97-0.80 (m, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 173.5, 159.4, 133.4, 128.2, 113.9, 75.8, 55.5, 36.4, 34.6, 31.7, 27.3, 25.5, 22.7, 22.5, 14.2, 14.0; IR (neat, v/cm$^{-1}$) 2957, 2932, 1733, 1613, 1514, 1248, 1171, 830, 730; HRMS (ESI$^+$) Calcd for C$_{18}$H$_{28}$O$_3$ [M + Na]$^+$ 315.1931, Found 315.1942.

Procedure for gram scale. A mixture of 1-(tert-butyl)-4-vinylbenzene (1a, 1.71 g, 10.7 mmol), iodobenzene diacetate (2a, 4.47 g, 13.9 mmol), Fe(CO)$_3$(cot) (0.260 g, 1.07 mmol), L10 (bathocuproine, 0.385 g, 1.07 mmol), and CH$_3$CN (46.0 mL) was stirred at 70 °C for 12 h in a sealed tube. Then, the solvent was removed in vacuo and the product was isolated by column chromatography on silica gel (n-hexane/EtOAc = 20:1) to give 1-(4-(tert-butyl)phenyl)propyl acetate (3aa, 1.15 g, 46% yield).

2-Cyclopentyl-1-(4-methoxyphenyl)ethyl cyclopentanecarboxylate (3bc). 64.7 mg, 82%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.19 (dd, J = 8.7, 2.1 Hz, 2H), 6.78 (dd, J = 8.7, 2.1 Hz, 2H), 5.62 (t, J = 7.1 Hz, 1H), 3.71 (s, 3H), 2.72-2.58 (m, 1H), 1.95-1.25 (m, 17H), 1.15-0.93 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 176.2, 159.3, 133.6, 128.1, 113.9, 75.3, 55.4, 44.3, 42.8, 36.8, 33.0, 32.8, 30.1, 30.0, 26.01, 25.97, 25.3, 25.2; IR (neat, v/cm$^{-1}$) 2951, 2868, 1729, 1613, 1453, 1248, 1173, 1037, 830; HRMS (ESI$^+$) Calcd for C$_{20}$H$_{28}$O$_3$ [M + Na]$^+$ 339.1931, Found 339.1941.

1-(4-Methoxyphenyl)-3,3-dimethylbutyl pivalate (3bd). 48.5 mg, 66%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.23 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 5.77 (dd, J = 8.9, 3.2 Hz, 1H), 3.78 (s, 3H), 2.02-1.91 (m, 1H), 1.57 (dd, J = 14.8, 3.3 Hz, 1H), 1.15 (s, 9H), 0.94 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 177.8, 159.1, 135.4, 127.6, 114.0, 73.8, 55.4, 50.4, 38.8, 30.6, 30.2, 27.3; IR (neat, v/cm$^{-1}$) 3401, 2935, 1733, 1589, 1508, 1246, 1126, 831, 643; HRMS (ESI$^+$) Calcd for C$_{18}$H$_{28}$O$_3$ [M + Na]$^+$ 315.1931, Found 315.1942.

1-Methoxy-4-(5,5,5-trifluoro-3-methylene-1-((4,4,4-trifluorobut-1-en-2-yl)peroxy)pentyl)benzene (3be). 74.5 mg, 80%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.25 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 5.71 (t, J = 7.1 Hz, 1H), 3.81 (s, 3H), 2.70-2.51 (m, 2H), 2.51-2.36 (m, 2H), 2.15-2.03 (m, 2H), 2.03-1.95 (m, 1H), 1.78-1.90 (m, 1H), 1.68-1.55 (m, 1H), 1.55-1.43 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 170.5, 159.9, 131.7, 128.1, 127.0 (q, J = 253 Hz), 126.7 (q, J = 276 Hz), 114.3, 76.2, 55.5, 35.1, 33.5 (q, J = 29.0 Hz), 29.5 (q, J = 30.2 Hz), 27.6, 18.5; 19F NMR (376 MHz, CDCl$_3$) δ -67.2 (t, J = 10.9 Hz, 3F), -67.8 (t, J = 10.4 Hz, 3F), IR (neat, v/cm$^{-1}$) 2959, 1740, 1613, 1515, 1331, 1251, 1109, 831, 626; HRMS (ESI$^+$) Calcd for C$_{16}$H$_{18}$F$_3$O$_3$ [M + Na]$^+$ 395.1052, Found 395.1043.
7-Chloro-1-(4-methoxyphenyl)heptyl
6-chlorohexanoate (3bf). 63.3 mg, 65% Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.27 (d, \(J = 8.7\) Hz, 2H), 6.88 (d, \(J = 8.7\) Hz, 2H), 5.70 (t, \(J = 7.0\) Hz, 1H), 3.81 (s, 3H), 3.57-3.45 (m, 4H), 2.39-2.25 (m, 2H), 1.98-1.86 (m, 1H), 1.82-1.69 (m, 5H), 1.6-1.56 (m, 2H), 1.52-1.14 (m, 8H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 173.0, 159.4, 133.0, 128.1, 114.0, 75.8, 55.4, 45.2, 45.0, 36.1, 34.5, 32.7, 32.4, 28.7, 26.9, 26.5, 25.6, 24.4; IR (neat, \(v/\text{cm}^{-1}\)) 2935, 2859, 1731, 1612, 1514, 1248, 1035, 729, 649; HRMS (ESI\(^{+}\)) Calcd for C\(_{20}\)H\(_{30}\)Cl\(_2\)O\(_3\) [M + Na]\(^+\) 411.1464, Found 411.1472.

7-Bromo-1-(4-methoxyphenyl)heptyl
6-bromohexanoate (3bg). 81.0 mg, 68% Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.25 (d, \(J = 8.6\) Hz, 2H), 6.87 (d, \(J = 8.6\) Hz, 2H), 5.68 (t, \(J = 7.0\) Hz, 1H), 3.80 (s, 3H), 3.46-3.30 (m, 4H), 2.42-2.16 (m, 2H), 2.04-1.71 (m, 6H), 1.71-1.52 (m, 2H), 1.52-1.09 (m, 8H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 173.0, 159.4, 133.0, 128.2, 114.0, 75.9, 55.5, 36.2, 34.6, 34.1, 33.7, 32.9, 32.6, 28.6, 28.2, 27.8, 25.6, 24.3; IR (neat, \(v/\text{cm}^{-1}\)) 2935, 2857, 1731, 1513, 1461, 1248, 1174, 1034, 831, 732; HRMS (ESI\(^{+}\)) Calcd for C\(_{20}\)H\(_{30}\)Br\(_2\)O\(_3\) [M + Na]\(^+\) 499.0454, Found 499.0451.

7-Iodo-1-(4-methoxyphenyl)heptyl
6-iodohexanoate (3bh). 64.4 mg, 45% Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.27 (d, \(J = 8.5\) Hz, 2H), 6.86 (d, \(J = 8.6\) Hz, 2H), 5.70 (t, \(J = 7.0\) Hz, 1H), 3.81 (s, 3H), 3.46-3.30 (m, 4H), 2.39-2.25 (m, 2H), 1.99-1.87 (m, 1H), 1.87-1.72 (m, 5H), 1.69-1.56 (m, 2H), 1.47-1.28 (m, 7H), 1.28-1.18 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 172.9, 159.4, 153.9, 128.1, 114.0, 75.8, 55.4, 36.1, 34.5, 33.5, 30.5, 30.1, 28.4, 25.6, 24.1, 7.4, 6.8; IR (neat, \(v/\text{cm}^{-1}\)) 2938, 2870, 1671, 1370, 1302, 922, 830 HRMS (ESI\(^{+}\)) Calcd for C\(_{20}\)H\(_{30}\)I\(_2\)O\(_3\) [M + Na]\(^+\) 595.0177, Found 595.0187.

5-(4-Methoxyphenyl)-5-((4-oxo-4-phenylbut-1-en-2-yl)peroxy)-1-phenylpentan-1-one (3bi). 46.3 mg, 42%; Yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.01-7.87 (m, 4H), 7.62-7.51 (m, 2H), 7.45 (dd, \(J = 7.6, 7.6\) Hz, 4H), 7.27 (d, \(J = 8.5\) Hz, 2H), 6.86 (d, \(J = 8.5\) Hz, 2H), 5.76 (t, \(J = 6.8\) Hz, 1H), 3.79 (s, 3H), 3.41-3.20 (m, 2H), 2.98 (t, \(J = 7.1\) Hz, 2H), 2.90-2.79 (m, 1H), 2.79-2.67 (m, 1H), 2.11-1.96 (m, 1H), 1.94-1.75 (m, 2H), 1.75-1.64 (m, 1H); \(^{13}\)C NMR (125 MHz,
CDCl$_3$ δ 200.0, 198.3, 172.5, 159.5, 137.1, 136.8, 133.4, 133.2, 132.6, 128.82, 128.80, 128.3, 128.24, 128.18 114.1, 76.0, 55.5, 38.2, 35.7, 33.6, 28.8, 20.4; IR (neat, v/ cm$^{-1}$) 2932, 1731, 1684, 1514, 1248, 1167, 1033, 831, 691; HRMS (ESI$^+$) Calcd for C$_{28}$H$_{28}$O$_5$ [M + Na]$^+$ 467.1829, Found 467.1828.

1-(4-methoxyphenyl)hex-5-en-1-yl pent-4-enoate (3bj).
432.8 45; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.27 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.89-5.68 (m, 3H), 5.07-4.92 (m, 4H), 3.79 (s, 3H), 2.47-2.30 (m, 4H), 2.11-2.01 (m, 2H), 1.99-1.87 (m, 1H), 1.86-1.71 (m, 1H), 1.51-1.37 (m, 1H), 1.37-1.23 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 172.5, 159.4, 138.5, 136.8, 133.0, 128.1, 115.6, 115.0, 114.0, 75.8, 55.4, 35.7, 34.0, 33.5, 29.1, 25.0; IR (neat, v/ cm$^{-1}$) 2938, 2842 1780, 1520, 1090, 718, 700; HRMS (ESI$^+$) Calcd for C$_{16}$H$_{24}$O$_3$ [M + Na]$^+$ 311.3762, Found 311.3775.

4-(4-Chlorophenyl)-1-(4-methoxyphenyl)butyl
3-(4-chlorophenyl)propanoate (3bk). 83.5 mg, 73%; Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.37-7.21 (m, 6H), 7.14 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 5.78 (t, J = 7.0 Hz, 1H), 3.87 (s, 3H), 2.96 (t, J = 7.7 Hz, 2H), 2.72-2.59 (m, 4H), 2.02-1.89 (m, 1H), 1.89-1.77 (m, 1H), 1.71-1.44 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 172.1, 159.5, 140.5, 139.0, 132.5, 132.1, 131.7, 129.91, 129.87, 128.7, 128.6, 128.1, 114.0, 75.9, 55.4, 36.1, 35.6, 35.0, 30.4, 27.4; IR (neat, v/ cm$^{-1}$) 3445, 2935, 1731, 1612, 1514, 1302, 1248, 1035, 831, 729, 649; HRMS (ESI$^+$) Calcd for C$_{26}$H$_{26}$Cl$_2$O$_3$ [M + Na]$^+$ 479.1151, Found 479.1529.

1-(4-Methoxyphenyl)-3-(p-tolyl)propyl
2-(p-tolyl)acetate (3bl). 50.3 mg, 52% Yellow oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.30-7.21 (m, 2H), 7.21-7.11 (m, 4H), 7.08 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 7.8 Hz, 2H), 6.87 (dd, J = 8.8, 2.4 Hz, 2H), 5.71 (t, J = 6.8 Hz, 1H), 3.81 (s, 3H), 3.59 (s, 3H), 2.59-2.40 (m, 2H), 2.35 (s, 3H), 2.32 (s, 3H); 2.27-2.16 (m, 1H), 2.08-1.98 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 171.2, 159.5, 138.3, 136.8, 135.6, 132.7, 131.3, 129.42, 129.36, 129.3, 128.4, 128.2, 114.0, 75.8, 55.5, 41.5, 38.1, 31.5, 21.3, 21.2; IR (neat, v/ cm$^{-1}$) 2923, 1733, 1514, 1248, 1033, 808; HRMS (ESI$^+$) Calcd for C$_{26}$H$_{26}$O$_3$ [M + Na]$^+$ 411.4962, Found 411.4970.
References

Publication List

1. Zijia Wang, Shunsuke Sueki, Motomu Kanai†, and Yoichiro Kuninobu
Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C–H Bond of Aromatic and Heteroaromatic Imidates

2. Zijia Wang, Motomu Kanai, and Yoichiro Kuninobu
Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine(III) Reagents

3. Shunsuke Sueki, Zijia Wang, and Yoichiro Kuninobu
Manganese- and Borane-Mediated Synthesis of Isobenzofuranones from Aromatic Esters and Oxiranes via C–H Bond Activation
Acknowledgement

The work described in this thesis would not have been possible without the help, the cooperation and support of many people, to whom I am deeply indebted.

First and foremost, I would like to express my sincere gratitude to my supervisor Professor Dr. Motomu Kanai for his supreme guidance for my research activities at The University of Tokyo. His enthusiasm and his intelligence toward organic chemistry impress me so much that all these will definitely influence me in the future. As an ambitious and famous organic chemist, he kindly provided me such a precious opportunity to work in his group, which is a great honor for me forever.

Secondly, I deeply appreciate my second supervisor Professor Dr. Yoichiro Kuninobu for his excellent daily supervision and kind care during my Ph. D course study. He has a tremendous energy and excitement for new chemistry, and it’s always inspiring to be around him. It's beyond words to describe how much I have learned from him through all of our discussions, from synthesizing a simple compound to exploring new chemistry world.

Thirdly, I gratefully acknowledge other staffs in current organic synthetic lab: Lecture Kounosuke Oisaki, Assistant Professor Dr. Yohei Shimizu, Dr. Youhei Sohma, Dr. Kenzo Yamatsugu for their fruitful suggestions and kind help in many affairs. Mrs. Sayuri Moroo, the secretary in our lab, is acknowledged for her help in daily routines at lab.

I would like to thank Lecture Mrs. Mikiko Kikuchi, supervisor of the International Students Advising Room in the Department of Pharmaceutical Sciences, for her enthusiastic help and kind care during my stay in Japan.
I would like to collectively thank all the members in Organic Synthetic Lab for making our laboratory a great working environment. There are also a number of people whom I would like to acknowledge individually: Dr. Shunsuke Sueki, Dr. Takeshi Yamakawa, Dr. Qing Xiao, Dr. Zhen Wang, for constructive talks referred to experiment; Dr. Jizhi Ni, Dr. Bo Sun, Dr. Haiyan Zhu, Dr. Xiaofeng Wei, Dr. Jiaan Liu, Dr. Hongliang Li, Dr. Saito Kenta, Mr. Taisuke Ito, Mr. Takahiro Shirai, Mr. Kiyomichi Shinoda, Dr. Masahiro Kojima, Dr. Prasanna Kumara Chikkade, Dr. Kyalo Stephen Kanyiva for helps in both life and research.

I particularly thank CSC (China Scholarship Council) Scholarship for their generous financial supports.

Finally, I would like to express my sincere gratitude to my family for their endless supports and encouragements throughout my overseas study and life.