博士論文

論文題目 ω3脂肪酸の早産予防効果に関する研究

氏名 山下 亜紀
早産に対する ω3 脂肪酸の予防効果に関する研究

所属：東京大学大学院 博士課程 医学系研究科 生殖・発達・加齢医学専攻

指導教官：藤井 知行

申請者：山下 亜紀
目次

要旨 .. 4
序文 .. 6
早産と炎症 .. 6
多価不飽和脂肪酸（ω6脂肪酸とω3脂肪酸）について 11
ω3脂肪酸について ... 13
fat-1トランスジェニックマウスについて .. 16
早産とω3脂肪酸 .. 17
研究目的 .. 19
実験方法 .. 20
実験動物 .. 20
マウス早産モデル ... 21
早産率の比較と検体の回収 23
定量的 real-time reverse-transcriptase polymerase chain reaction(以下Q-RT-PCR) 24
免疫組織学的検査 ... 25
ELISA (Enzyme-Linked ImmunoSorbent Assay) 26
マクロファージの分離回収、培養 26
包括的脂肪酸代謝物メタボローム解析 27
EPA代謝物の投与 .. 28
統計解析 .. 29
結果 .. 30
早産頻度の比較 .. 30
子宮内炎症性サイトカイン遺伝子発現 31
腹腔内のサイトカイン産生の比較 33
免疫組織学的検査 ... 34
腹腔内マクロファージのLPS刺激に対する反応の比較 37
血清プロゲステロン濃度 ... 38
脂肪酸代謝物の網羅的解析 41
EPA代謝物投与による早産予防効果 45
おわりに .. 57
謝辞 .. 58
引用文献 .. 59
要旨

多価不飽和脂肪酸は主に細胞の脂質二重膜の構成成分であり、アラキドン酸（AA）に代表されるω6系列と、エイコサペンタンエン酸（EPA）やドコサヘキサエン酸（DHA）に代表されるω3系列がある。それらは、細胞膜への刺激により膜から遊離し、細胞質内で代謝され、炎症、抗炎症作用を持つ脂質メディエーターとして作用する。

早産は、新生児死亡や神経学的後遺症の主要な原因であり、現代周産期医療にとっては、その予防、治療は重要な課題である。早産の一部は、絨毛膜羊膜炎などの子宮局所の過剰な炎症によって惹起されると言われている。本研究では、ω3脂肪酸の抗炎症作用に着目し、炎症が関与する早産に対する予防効果とその機序について検討した。ω3脂肪酸合成酵素（fat-1）の遺伝子導入をしたマウス（fat-1マウス）を用いた。このマウスでは、経口摂取に因らずに全身の細胞でω3脂肪酸が豊富な状態を維持できるため、純粋にω3脂肪酸の効果を検証することができる。妊娠15日目のマウスに大腸菌リポ多糖（LPS）を局注して炎症を惹起し、早産を誘発するマウスモデルを作成し、fat-1マウスと同系野生型マウス（WT）との比較検討を行った。fat-1マウスでは野生型に比べ、有意に早産率が低いことを確認した。各群のマウスの子宮組織を回収し、定量的Real time PCR、免疫組織学的検査、そして脂肪酸代謝物の網羅的解析を行った。LPS局注後の
子宮内炎症性サイトカイン遺伝子発現は、WTに比べ、fat-1マウスで有意に低く、マクロファージの子宮頸部への浸潤も有意に抑えられていることを確認した。脂肪酸代謝物の網羅的解析により、fat-1とWTのLPS局注後の妊娠子宮において、有意な差が生じている代謝物がいくつか同定された。そのうち、fat-1マウス子宮で有意に上昇していたEPAの代謝物、18-HEPEに着目した。18-HEPEはレゾルビンの前駆体となる代謝物であり、レゾルビンは近年同定されたEPA由来の活性代謝産物であり、強力な炎症収束作用を持つことが証明されている。野生型早産モデルマウスへのレゾルビンの投与実験を行い、早産率が低下することを示した。レゾルビンは、新規の早産予防、治療薬になる可能性を示した。
序文

早産と炎症

早産とは、WHOにより、正期産（妊娠37週0日から妊娠41週6日まで）以前の出生と定義されている。日本では妊娠22週0日から妊娠36週6日までの出生を早産という。また、妊娠22週末満の出産は流産といい、さらに12週末満を初期流産、12週以降22週末満を後期流産と分類される（表1）。国による医療技術の違いにより、早産の下限の週数の定義は異なる。早産率は世界的に増加しており、合衆国では2006年の早産率は12.8%で1990年以来20%増加している。日本においても1985年以降増加し続けており、1985年の4.17%から2007年には5.79%にまで増加している。ほとんどの先進国でも同様の傾向が見られている。早産は、新生児死亡の75%、長期神経学的後遺症の50%を占めると言わせており、早産の予防・治療は、現代の周産期医療にとって重要な課題である。早産の種類とその要因については、表2に示すように多様であるが、この中でも感染性早産（炎症性早産）は、自然早産の原因の大半を占めており、早産の病態には炎症が強く関与していると言える1,2。

表1. 早産の定義

<table>
<thead>
<tr>
<th>定義</th>
<th>妊娠週数</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期流産</td>
<td>12週末満</td>
</tr>
<tr>
<td>後期流産</td>
<td>12週以降 22週未満</td>
</tr>
<tr>
<td>早産</td>
<td>22週以降 37週末満</td>
</tr>
<tr>
<td>正期産</td>
<td>37週0日から 41週6日</td>
</tr>
<tr>
<td>過期産</td>
<td>42週0日以降</td>
</tr>
</tbody>
</table>
表2. 早産の種類とその要因

<table>
<thead>
<tr>
<th>早産タイプ</th>
<th>要因</th>
</tr>
</thead>
</table>
| 自然早産 | (1)感染・炎症性要因: 多くは細菌性膿症から感染・炎症が上行性に波及し、絨毛膜羊膜炎となり、破水や陣痛が発来する。その他、歯周病や泌尿生殖器の感染やインフルエンザなどの感染も早産の要因となる。
| (2)頸管因子: 多くは20-24週頃に無症候性に子宮頸管が開大し、早産となる。
| (3)子宮内容積の増大: 多胎妊娠や羊水過多。
| (4)ストレス因子: やせ、喫煙など。 |
| 人工早産 | (1)母体要因: 妊娠高血圧症候群、常位胎盤早期剥離、前置胎盤の出血、重篤な内科合併症増悪。
| (2)胎児要因: IUGR（子宮内胎児発育遅延）の発育停止、胎児機能不全 |

炎症性早産のメカニズムとしては、以下のように考えられている。まず、膿内の病原微生物や炎症が上行性に子宮頸管に及び、やがて子宮内で波及すると絨毛膜羊膜炎を引き起こす。そして、子宮内の炎症は種々の炎症性サイトカインの産生を高め、子宮内で強い炎症が生じる。これらのサイトカインは子宮収縮、子宮頸管熟化作用のあるプロスタグランジンの産生を高め、また好中球や単球などにより卵膜が破壊され、前期破水の要因となる。プロスタグランジンは、アラキドン酸カスケードの代謝産物である。アラキドン酸から、シクロオキシゲナーゼ（COX）を介する代謝経路を経て、生成されるが、COXにはCOX-1とCOX-2があり、ともに妊娠組織に広く分布している。COX-1は広く組織に分布し、生理的因子に反応してプロスタグランジンの生成を調整してい
る。一方、COX-2は炎症性因子に反応して誘導され14,15、妊娠組織においては、
IL-1、TNF-α、IL-6などの炎症性サイトカインや菌体成分等によって誘導される
16,17。IL-1、TNF-αはともに活性化されたマクロファージが細菌の菌体成分に反
応して産生され、感染に対する生体防御機構を司るということが知られている。
IL-6も生体の防御機構として重要な因子であり、マクロファージのほか線維芽細
胞、血管内皮細胞、絨毛細胞などから産生され、細菌の菌体成分以外にも、IL-1、
TNF-αなどのサイトカイン刺激で産生される18。IL-8は、活性化されたマクロフ
ァージから産生され、好中球遊走促進や活性化作用を持つ。好中球を活性化さ
せることによってエラスターゼを放出させ、このエラスターゼがコラーゲン分
解に働くと考えられている。MCAF(monocyte chemotactic and activating
factor)/MCP-1(monocyte chemotactic protein-1)は、単球やマクロファージを遊走・
活性化させるが、子宮内感染に伴って胎盤からの産生が亢進し、羊水中のMCAF
活性が増強することが報告されている19-21。卵膜の脆弱化はコラーゲン分解によ
って起こり、matrix metalloproteinase (MMP) は結合組織の細胞外基質を分解す
るのに重金属を必要とする蛋白分解酵素であり、絨毛膜や脱脂膜から産生され
る。羊膜絨毛膜や脱脂膜にMMP-1、MMP-2、MMP-3、MMP-9などが発現し
ており卵膜の脆弱化との関連が示唆されている22。このように、炎症性早産は、
炎症性サイトカインやコラーゲン分解酵素、脂質メディエーター等の多様な因
子が、好中球やマクロファージなどの免疫細胞だけではなく、妊娠子宮を構成する多様な細胞から産生されることによって引き起こされる。早産の治療、予防のためには、これらの炎症のカスケード反応を抑えることが重要と考えられる。

図1. 炎症性早産のメカニズム

細菌性産症からの直接あるいはサイトカインを介した系によってMMPsやエラスターゼ活性が亢進し、卵膜の脆弱化が起こる。またAA代謝の活性化、PGの
産生増加によって子宮収縮、頸管の熟化が起こり、破水や早産に至ると考えられている。

早産の治療として、FDAで認可されているのはリトドリン（β-アドレナリン受容体作動薬）のみであるが、48時間以上の早産抑制効果は立証されていない。

硫酸マグネシウム、カルシウムチャネル阻害薬、オキシトシン受容体拮抗薬、シクロオキシゲナーゼ阻害薬、一酸化窒素供与体などの早産治療効果が報告されている。これらの薬剤は、ほとんどが子宮平滑筋の収縮を抑えるもので、早産の原因である炎症に対して直接働きかける作用はない。シクロオキシゲナーゼ阻害薬は、アラキドン酸からプロスタグランジンが生成される過程を阻害し、プロスタグランジンの産生を抑えるという抗炎症作用を持つが、胎児の動脈管閉鎖という重大な副作用を持つため妊娠中は使いづらい薬剤である。

現在のところ確立された早産の予防法はない。妊娠マウスにLPSを投与して炎症を惹起し、早産を引き起こすモデルが作成され、この早産モデルを使用した動物実験で、これまでも様々な薬剤が調べられている。ヒトでも、絨毛膜羊膜炎は腔内細菌の上行性感染であることから、早産既往妊婦の細菌性腔症を抗生剤治療することで早産の再発リスクを予防したという報告もあるが、効果がなかったという報告もあり、結論は出ていない。他にプロゲステロン製剤の早産再発予防効果を示すデータもいくつか示されているが、使用するプ
ロゲステロンの種類や投与方法、週数などはまだ確立されていない。そして、

ω3脂肪酸を多く含む魚油等を多く摂取する人々はそうでない人に比べ、妊娠期間の延長が見られたという報告があり42-44、さらにω3脂肪酸の摂取により早産の再発を予防したという報告もある。我々はω3脂肪酸の早産予防効果に着目した。

多価不飽和脂肪酸（ω6脂肪酸とω3脂肪酸）について

多価不飽和脂肪酸(polyunsaturated fatty acid;PUFA)は生体の恒常性維持にとっ
て必須であり、さまざまなPUFA代謝物がメディエーターとして脳神経系、免
疫系、循環器系などの調節因子として機能している。PUFAはメチル端から数え
た二重結合の位置によりω3（n-3）系列とω6（n-6）系列に分けられる。ω6
系列では、リノール酸（18:2, n-6）、アラキドン酸（AA、20:4, n-6）、ω3 系列で
はα-リノレン酸（18:3, n-3）、エイコサペンタンエン酸（EPA、20:5, n-3）、ドコ
サヘキサエン酸（DHA、22:6, n-3）が代表的な多価不飽和脂肪酸である。いずれ
も哺乳類では体内で合成することができないため必須脂肪酸であると考えられ
ている。これらの多価不飽和脂肪酸は、主に生体内では細胞の脂質二重膜に存
在し、その比率により細胞膜の柔軟性などを規定している。細胞膜にストレス
や傷害などの刺激が加わると、多価不飽和脂肪酸は、ホストリパーゼ A2（PLA2）
により膜から細胞質内に遊離され、細胞質内の脂肪酸代謝酵素により代謝される。

ω6系列のアラキドン酸からはエイコサノイド（プロスタグランジンやロイコトリエン）と呼ばれる一連の脂質メディエーターが産生され、とくに炎症反応の初期過程における血管透過性の亢進や好中球の浸潤、活性化において中心的な役割を果たしている。

EPA、DHAなどに代表されるω3脂肪酸には、抗炎症作用、心血管保護作用、脳神経系保護作用などが古くから知られているが、その分子レベルでの作用機構は未だ不明な点が多い。以下にAA、EPA、DHAの構造式を示す。

ω6系列

アラキドン酸 エイコサペンタンエン酸 ドコサヘキサエン酸

ω3系列

図2. 代表的多価不飽和脂肪酸の構造式

ω末端から数えて、3番目の炭素（C）より不飽和二重結合が始まるかからω3脂肪酸と呼ばれ、6番目より始まるかからω6脂肪酸と呼ばれる。
ω3 脂肪酸について

食餌から摂取されるω3脂肪酸の抗炎症作用については古くから知られていたが、現在は、薬剤としても、改めて注目されている45,46。古くから栄養疫学調査より、魚の摂取量が多い集団では虚血性心疾患の死亡率が低いことが認められていたが、ω3系多価不飽和脂肪酸が特に注目されるようになったのは、イヌイットを対象とした調査報告からである。1970年代後半にDyerbergとBangらは、イヌイットの食事調査と臨床研究から、コレステロールの摂取量が多くても魚由来のω3脂肪酸摂取量が多く、血中ω3脂肪酸濃度が高いほど動脈硬化性疾患の発症頻度が低いことを報告した47。1990年代に入り、心筋梗塞の既往のある11324人の集団に対して行われた治験（GISSI-Prevenzione trial）で、ω3脂肪酸の内服は、突然死を45%減らしたと報告された48,49。そして、2000年以降、EPA、DHAの代謝産物であるレゾルビン、プロテクチンが同定された1,50。Serhanらは炎症収束期に存在する脂肪酸代謝物の包括的メタボローム解析から、EPA由来のレゾルビンE1 (RvE1)、DHA由来のプロテクチンD1 (PD1) 等を見出した51-53。近年は、ω3脂肪酸の抗炎症作用メカニズムとして、（1）アラキドン酸 (AA) 代謝酵素シクロオキシゲナーゼ (COX) に対する基質競合作用、(2) EPA、DHAがAAに代わってCOXの基質となることによる作用の弱いエイコサノイドの生成、(3) EPA、DHAが12/15-LOXなどの代謝酵素によ
リ代謝されてできる代謝産物（レゾルビン、プロテクチンなど）による能動的な抗炎症作用、炎症収束作用などが挙げられるようになった。レゾルビン、プロテクチンが同定されてからは、それらの投与によるさまざまな疾患モデルにおける抗炎症効果、疾患抑制効果が示されてきた。酵母サイモゾンで誘導される急性腹膜炎において、RvE1とPD1はいずれも好中球の浸潤を抑制し、炎症性サイトカインの抑制、マクロファージの食食能およびリンパへの移行、消散を促進することによって、一度誘発された急性炎症の収束を促進する機能を有することが明らかになった。ヒトクローン病と同様にTh1型炎症モデルとして知られるマウス2, 4, 6-trinitrobenzene sulfonic acid（TNBS）誘導性大腸炎において、体重減少および死亡率を有意に低下させ、顕著な消化管粘膜組織の保護作用が認められた。また、ウサギの歯肉溝にPorphyromonas gingivalisを播種した歯周病モデルにおいても強力な抗炎症作用、組織保護作用を示した。また、卵白アルブミン誘発アレルギー喘息モデルにおいて、Th17型反応を抑えることで気道炎症の収束を促進する効果が認められた。In vitroの実験系においても、レゾルビン、プロテクチンが好中球やマクロファージ、樹状細胞、血小板、内皮細胞、T細胞、ミクログリア、神経細胞、上皮細胞などに細胞レベルで作用していることが明らかにされている。特に、RvE1は好中球の遊走阻害やスーパーオキサイドの産生阻止作用や、マクロファージや樹
状細胞からの炎症性サイトカインの放出抑制、血小板凝集を阻害する活性が報告されている。

図3. ω3脂肪酸の抗炎症作用
細胞膜に刺激が加わると、脂質二重膜に存在するAAやEPAはPLA2により膜から切り離され、細胞質内に遊離し、細胞質内の代謝酵素により代謝される。AA代謝物は炎症性作用を持つ一方でEPAは抗炎症性作用を持つことは知られているが、その根拠として以下の3つが言われている。
(1) COXやLOXなどのアラキドン酸カスケードの代謝酵素に対する基質競合作用(2) EPAを基質として生成されたPGsやLTsの作用は弱く、結果的に炎症反応を減弱する(3) EPAの代謝によりRVsなどの脂質メディエーターが生成され、能動的に炎症を収束させる作用を持つ。
fat-1トランスジェニックマウスについて

2004年にKangらによりfat-1トランスジェニックマウス（以下、fat-1マウス）が開発された63-65。このマウスは、哺乳動物は生来持たない、線虫Caenorhabditis elegansに由来するfat-1遺伝子を全身性に発現させたマウスである（図4）。fat-1遺伝子は、ω6脂肪酸からω3脂肪酸へ変換する酵素をコードしており、この酵素の働きにより、食餌で摂取されるω6脂肪酸を体内でω3脂肪酸に変換することができる。結果として、fat-1マウスは、全身の組織でω3脂肪酸が豊富な状態が維持される。従来までのω3脂肪酸に関する研究は、食餌内容を変えることが主だった方法であったが、目的の脂肪酸以外の栄養素やビタミン等を全くなじみに統一することは困難であり、消化吸収の影響等も考慮しなければならなかった。fat-1マウスの開発により全く同一の食餌を与えて、同系野生型マウスと比較することが可能となり、より純粋にω3脂肪酸そのものの機能を見ることができるようになった。以来、fat-1マウスは様々な疾患モデルに利用されており66、薬剤性腸炎15,67,68、肝炎69,70、膝炎71,72、アレルギ性気管支炎73、肺傷害74などにおける疾患抑制効果が示されている。
ω6脂肪酸からω3脂肪酸を合成変換する酵素をコードするfat-1遺伝子を導入し、全身の細胞で発現させたマウス。

図4. fat-1トランスジェニックマウス

早産とω3脂肪酸

早産とω3脂肪酸に関する報告はこれまでにいくつかなされている。早産とω3脂肪酸に関する研究は、主にデンマークなどの北欧諸国で盛んに行われてきた。フェロー諸島の人々の妊娠期間が長く、出生体重も大きいという事実からヒントを得て、魚油由来のω3脂肪酸の高い摂取量が、妊娠期間の延長や出生体重の増加に寄与するのではないかという仮説が立てられた。そして、魚油摂取群とオリーブ油摂取群に無作為に分けて、妊娠期間や出生体重を比較した結果、ω3脂肪酸の摂取が早産の予防に有効であることが示された。
した結果、魚油摂取群で有意に妊娠期間が延長し、出生体重が増加していたということ75や、早産既往のある妊婦に対し、魚油を摂取させることで早産の再発リスクを軽減したということ76などが示されてきた。他にも類似した内容の研究がなされ、魚油摂取（ω3脂肪酸摂取）による早産率低下を支持する結果43,77としない結果78,79の両方が報告されてきた。また魚油摂取による低出生体重児や子瘡、子瘡前症などその他の妊娠合併症に対する影響も同時に報告されてきた。人種や食文化、生活習慣の違いなどが相反する結果に影響していると考えられたが、これらの介入研究、観察研究の結果を総合して解析すると、概ねω3脂肪酸の摂取は、早産率の低下（特に34週未満）と出生体重の増加に寄与していることは確かな事実として認めることができそうである80。一方、子瘡前症や妊娠高血圧症候群、新生児死亡や死産に対する予防効果は認められていない。

しかしながら、ω3脂肪酸による早産予防機序に関する基礎的研究は少ない。前述のような他の分野の研究からω3脂肪酸の抗炎症効果が炎症性疾患である早産の予防にも寄与していることは予測されるが、妊娠という特殊な状態において、ω3脂肪酸がどのように作用し、妊娠予後を改善しうるのかは、不明な点も多い。機序を明らかにすることで、より効果的に早産を予防することができると考えられる。

我々は、以下のような目的を設定し、研究を行った。
研究目的

1. ω3脂肪酸が体内に豊富にあることにより、早産予防になるのかどうか。

 fat-1マウスを用いて、炎症誘発型早産モデルを作成し、確かめる。

2. ω3脂肪酸による早産予防効果の機序を解明する。

3. 早産モデルにおけるω3脂肪酸代謝、ω6脂肪酸代謝について網羅的に解析し、ω3/ω6脂肪酸の組成の違いがどのように影響するのかを調べる。

4. 重要なω3脂肪酸代謝物を同定し、新規の早産予防薬を探究する。
実験方法

実験動物

動物の管理は東京大学が定める施設動物実験規則を遵守した。fat-1 マウスは、ハーバード大学の Kang 先生と東京大学薬学部衛生化学教室の有田誠先生のご好意を得て、Material Transfer Agreement を結び、譲り受けた。fat-1 マウスの継代はヘテロで行い、遺伝背景となる C57BL/6J マウス（日本クレア）を Wild type マウスとして交配させることで、同腹仔として得られるヘテロの fat-1 マウスと、fat-1 遺伝子を持たない wild type マウスをジェノタイピングにより決定し、以下の実験系に使用した。ジェノタイピングは、マウス耳組織より DNA を抽出し、KOD-FX PCR Kit(TOYOBO LIFE SCIENCE)を用い、fat-1 遺伝子領域に対する PCR 法により行った。マウスの食餌には、既報の論文に従い、「AIN-76A+10%サフラワー油」を日本クレアに作製依頼し、使用した。この餌は、高ω6、低ω3 脂肪酸含有食であり、ω6/ω3 比は 273 倍である。通常の食餌に比べ、fat-1 と WT の差がより顕著に表れ、fat-1 を用いた実験系では、標準的な食餌とされている。

8-10 週齢の fat-1 と wild type それぞれの未経妊雌雄マウスと、同週齢の wild type 雄マウスを同じケージで 48 時間交配させ、睪プラグの確認された日を妊娠 0 日目（Day0）とした。プラグが確認されたマウスはその時点で雌から離した。妊娠
妊娠15日目（Day15）まで高ω6脂肪酸含有食を与え、妊娠の確認のため体重を2日おきに測定した。体重増加の見られないマウスは非妊娠マウスと判断し、除外した。妊娠15日目のfat-1、wild typeマウスをそれぞれLPS投与群とvehicle（生食）投与群に無作為に分け、4群に分類し、比較実験を行った。

マウス早産モデル

これまでマウスを用いた早産モデルは数多く報告されており、炎症性早産のモデルとしては、妊娠15日目にLPSを投与する方法が最も普及している（表2）。マウスの正常妊娠期間は、妊娠19日から21日であり、19週未満は早産とされている。マウスの妊娠15日目はヒトへ換算すると、30週前後に当たると考えられる。既報の論文において、LPS局注後、48時間以内すなわち妊娠17日目までには早産することが報告されているため、LPS局注後48時間の観察とした。投与量、マウス種類、投与経路も表2に示すようにさまざまであるが、投与経路やマウスの種類によってLPSに対する感受性は異なっていた。投与経路については、①腹腔内へ注射、②小開腹後子宮体部に直接注射、③経膣的に子宮頸部へ注射する方法が報告されている。まず、これらの3つの経路について検討し、最も手技が安定していたことと、細菌性膣症から上行性感染し、子宮内に炎症が波及するという絨毛膜羊膜炎の病態を最も反映していることを考慮し、経膣的に子宮頸部へLPSを局注する方法を採用した。その際、まず、あ
らかじめ長さを調整したガイド用の先丸チューブをマウス腔内に挿入し、その
先を子宮頸部へ接触させた上で、23G カテラン針をチューブガイド下に挿入し、
1 ml シリンジにて子宮頸部へ注射した。針先が子宮頸部に刺入される(2 mm 程
度)長さ以上は進めることができないようにチューブの長さを調整した（図 5）。
我々は、このようにして、妊娠 15 日目のマウスに、生食 0.2 ml に溶解した LPS
を、エーテル麻酔下に経腔的に子宮頸部へ 23G カテラン針にて局注し、早産を
誘発した。Vehicle 群は、同様の方法で生食 0.2 ml のみを局注するものとした。

投与量については、5 μg/body-50 μg/body まで LPS の量を漸増させ、早産率を
比較し、wild type と fat-1 マウスで最も差の出る量を決定した。

表 3. マウス早産モデルの報告例

<table>
<thead>
<tr>
<th>投与経路</th>
<th>マウス種類</th>
<th>投与量</th>
<th>早産率</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraperitoneal</td>
<td>C3H/HEN</td>
<td>50 μg/kg twice at a 3-hour interval</td>
<td>100%</td>
<td>N. Kaga et al. 199680</td>
</tr>
<tr>
<td></td>
<td>ICR</td>
<td>50 μg/mouse</td>
<td>90%</td>
<td>P.R. Lee et al. 200325</td>
</tr>
<tr>
<td></td>
<td>C3H</td>
<td>100 μg/mouse</td>
<td>100%</td>
<td>G. Gross et al. 200086</td>
</tr>
<tr>
<td></td>
<td>C57BL/6NHsd</td>
<td>10 μg/mouse</td>
<td>100%</td>
<td>I.A. Buhimschi et al. 200387</td>
</tr>
<tr>
<td>Intravenous</td>
<td>不明</td>
<td>10 μg/mouse</td>
<td>70%</td>
<td>M.J. Harper, R.C. Skarnes 197388</td>
</tr>
<tr>
<td>Intrauterine</td>
<td>CD1</td>
<td>250 μg/mouse</td>
<td>100%</td>
<td>M.A. Elovitz et al. 200389</td>
</tr>
<tr>
<td>Intracervical</td>
<td>CD-1, HS, C57BL</td>
<td>5 mg/kg</td>
<td>100%</td>
<td>Reznikov et al. 199990</td>
</tr>
<tr>
<td>Intravaginal</td>
<td>C57BL/6</td>
<td>250 μg/mouse</td>
<td>94.7%</td>
<td>Gonzalez et al. 201191</td>
</tr>
</tbody>
</table>
図 5. 経腔的頸管への局注方法

マウスの膣内にガイドとなるチューブを挿入し、頸部へ接触させ、その位置で固定した上で、23G カテラン針を進め、頸部へ針を刺入し、シリンジ内の LPS または生食を頸部へ局注する。チューブの先から出る針の長さは 2 mm 程度で、それ以上は進まないように、あらかじめチューブの長さを調整しておく。

早産率の比較と検体の回収

妊娠 15 日日に LPS+生食または生食のみを経腔的に頸管へ局注された fat-1 及び WT マウスをそれぞれ 1 匹ずつケージに入れ、十分な餌と水を与えた上で、48 時間後で観察した。既報の論文に則り、LPS 局注後 48 時間以内に、胎仔を 1 匹でも娩出した場合を早産と定義した 91。WT の LPS 投与群、生食投与群、fat-1 の LPS 投与群、生食投与群の 4 群で早産率を比較検討した。

次に、妊娠 15 日日に上記と同様、LPS または生食のみを局注し、6 時間後に 4 群それぞれのマウスを、エーテル麻酔下に心臓採血を行い、安楽死させ、検体を回収した。血液は、1 時間、室温静置後、4℃、1700×g、20 分間遠心し、上
清を回収し、血清として、-80℃凍結保存した。腹腔内を5mlの生食で洗浄し、回収したものは腹腔洗浄液として、100μmフィルター後、1500×rpm10分間遠心し、上清と沈殿物（細胞成分）に分け、上清を-80℃凍結保存した。細胞成分は、セルバンカーに懸濁し、ゆっくり凍結し、-80℃保存した。子宮（頸部・体部）、卵巣を摘出した。卵巣は、摘出後すぐに4%パラホルムアルデヒド固定した。子宮体部は切開を入れ、胎仔を入れた卵膜・胎盤と子宮内膜との付着部分を分離し、子宮体部筋層と内膜のみの状態とし、体部筋層の一部（2mm四方角）をRNA later（ライフテクノロジー東京、日本）に浸透させ、一晩4℃静置後、-80℃保存した。残りの部分を4%パラホルムアルデヒド固定し、保存した。子宮頸部は体部と分離し、4%パラホルムアルデヒド固定した。

定量的real-time reverse-transcriptase polymerase chain reaction(以下Q-RTPCR)

RNA laterに浸透凍結保存された検体をそれぞれホモジェナイズし、全RNAをRNA easy mini kit(Qiagen)を用いて抽出した。分光光度計を用いて、波長260nmの吸光度を測定し、抽出された全RNAを定量した。RNAの持ちこみ量を1μgに揃え、逆転写反応を行い（東洋紡、大阪、日本）、相補的DNA(以下cDNA)を生成した。Light Cycler®480(ロシュアプライドサイエンス、東京、日本)、Universal Probe Master(ロシュアプライドサイエンス)、及び下記のプライマー（シグマ・アルドリッチジャパン）とプローブ（ロシュ）を用いてcDNAを40サイクル増幅した。β-actin, 5′-ATTGAAACATCAGCCAAGACC-3′and
免疫組織学的検査

4%パラホルムアルデヒドにて固定された検体をパラフィン包埋した後、5μmの連続切片を作成した。卵巣は、ヘマトキシリンエオジン染色(HE染色)を行い、4群の黄体の状態を観察、比較した。子宮体部、頚部の切片は、キシレンにて脱パラフィンし、アルコールにて水和後、ターゲットバッファー(DAKO Japan 東京、日本)にて5分間電子レンジ加熱し、抗原賦活化を行った。次に、3%過酸化水素水にて5分間、プロテインブロッキングバッファーにて室温10分間反応させ、ラット抗マウスマクロファージ F4/80 抗体（1μg/ml; アブカム, ケンブリッジ UK）で一次染色した。その後、西洋ワサビペルオキシダーゼでラベルされた、ヤギ抗ラット二次抗体（ニチレイ、東京、日本）で二次染色し、アミノエチルカバゾール基質（ニチレイ）で発色させた。対比染色としてヘマトキシリン染色を行い、光学顕微鏡を用いて観察した。4群で比較、観察を行った。
ELISA （Enzyme-Linked ImmunoSorbent Assay）

凍結保存していた妊娠15日目、子宮頸管局注6時間後に回収した腹水洗浄液の上清を氷上で融解し、Quantikine ELISA kit（R＆D Systems 社）を用いて、プロトコールに従い、IL-6、IL-1β、TNF-αのサイトカインを測定した。凍結保存していた血清は、氷上で融解し、Rodent progesterone ELISA kit（ENDOCRINE TECHNOLOGIES, INC）を用いて、プロトコールに従い、血清プロゲステロン濃度を測定した。WT、fat-1それぞれLPS投与群と生食のみの投与群の計4群で比較検討した。

マクロファージの分離回収、培養

fat-1とWTの非妊娠マウスの腹腔内を5.0 mlのPBSで洗浄後回収し、70 μmフィルターを通した後、1500 rpm、10分間、遠心し、腹腔内細胞を沈殿させた。磁気細胞分離キット（MACS®、ミルテニーバイオテク）を用いて、マクロファージ（CD11b陽性細胞）を分離回収した。回収したマクロファージを0.5×10⁶/mlの細胞密度で、10%FBS添加RPMIにて一晩培養した後、LPS(1 μg/ml)で刺激した。刺激前、1時間後、3時間後のマクロファージを回収し、total RNAを抽出した。前述のQ-RT-PCR法にてIL-6、IL-1β、TNF-αの発現レベルを測定した。
包括的脂肪酸代謝物メタボローム解析

脂肪酸代謝物（脂質メディエーター）の網羅的解析は、有田らによって確立された方法92に基づき行った。妊娠15日目、LPSまたは生食局注6時間後にsacrificeしたマウスより子宮を摘出した。摘出直後に検体を液体窒素で凍結し、解凍の日まで-80℃冷凍庫にて保存した。WT、fat-1マウスそれぞれのLPS投与群、生食投与群の4群の検体について、解析した（n=3-5）。

それぞれの検体に重水素化内部標準（PGE₂-d₄、LTB₄-d₄、15-HETE-d₈、arachidonic acid-d₈）を添加したのち、Sep-Pak C₁₈ cartridges(Waters, Milford, MA, USA)を用い、蟻酸メチル画分として脂肪酸代謝物を固相抽出した。抽出した画分は、高速液体クロマトグラフィー・タンデムマススペクトロメトリー（LC-MS/MS）にて測定を行った。LCによる分離は、Acquity UltraPerformance LCシステム（Waters Co.）を用いて、カラムにはAcquity UPLC BEH C₁₈ column(1.0 mm×150 mm×1.7 μm)を使用して行った。MS/MSによる検出は、エレクトロスプレーイオン化法（ESI）三連四重極型質量分析計（QTRAP5500; AB SCIEX）を組み合わせて行った。ネガティブイオンモードで行い、エイコサノイドおよびドコサノイドを多重反応モニタリング（multiple reaction monitoring:以下 MRM）によって定性かつ定量的に測定した。MRMによる定量は、クロマトグラムのピーク面積
を、あらかじめ作成した各種標準の検量線から、添加した内部標準をもとに誤差を補正して計算を行った。EPA 代謝物の投与

メタボローム解析により同定された EPA 代謝物(18-HEPE)、またはその活性代謝物(RvE3)の投与による早産予防効果を検討した。妊娠 15 日目、WT の早産モデルマウスに対し、LPS 頸管局注時とその数時間後（6-12 時間後）の 2 回、代謝物を尾静脈へ静注した。LPS 局注 48 時間後まで観察し、早産の有無を確認した。前述の実験と同様に、胎仔を 1 匹でも娩出した場合を早産と定義した。48 時間の観察の後、早産の有無にかかわらず、全ての母マウスをエーテル麻酔下に解剖し、妊娠子宮の着床部位と胎仔の有無、生存状態を確認した。代謝物の調整は、要時調整とした。エタノール中に溶解され-20℃に保存されている脂質代謝物の必要量（1 匹あたりの投与量×投与匹数）をチューブに移し、窒素によりエタノールを置換し、乾燥させた上で、1 匹あたり生食 100 l として投与匹数分の生食に溶解し、よくビベッティングした後に 100 l ずつ分注し、マウス尾静脈へ静注した。コントロールとして、純粋なエタノールを同様に窒素置換し、生食に溶解して投与した。
統計解析

早産頻度の比較は、コクランアーミテージ検定とフィッシャーの直接確率検定を用いて解析した。サイトカイン量、mRNA の発現量、Lipid mediator 量の比較は、マン・ホイットニーの U 検定を用いて解析した。P<0.05 を有意差ありとみなした。
結果

早産頻度の比較

早産のメカニズムのひとつとして、細菌性腟症によって引き起こされた炎症が子宮頸管より上行性に波及し、絨毛膜羊膜炎となって早産に至るということが言われている。炎症性早産のモデルとして、妊娠マウスに LPS を局注し、早産を誘発する方法はこれまで多数なされてきており、このモデルを使用して、早産率を低下させることのできる薬剤等が検証されてきた。我々は、fat-1 マウスを使用し、抗炎症効果を持つ ω3 脂肪酸が体内に豊富な状態であることが、早産率を低下させることに寄与するかどうかを検証した。妊娠 15 日目の fat-1、WT のマウスに経嚢的に頸管へ LPS または生食を局注した。生食のみを局注(表 4 :LPS 0 μg/head)されたマウスは、全て妊娠継続し、通常どおり、妊娠 20 日目±1日に、出産した。また、5-10 □μg/head までの量を局注されたマウスも早産はしなかった。一方、50 μg/head を局注した場合は、fat-1、WT いずれのマウスも全て早産した。15 μg/head、30 μg/head の LPS 局注量では fat-1 と WT の早産率に有意な差を認め、LPS 量が増えるほど、早産率が増加したが、WT に比べて、fat-1 マウスでは有意に早産率が低かった。15 μg/head、30 μg/head を合わせた早産頻度は、WT で 23 匹中 14 匹が早産 (早産率 60.9%)、fat-1 で 17 匹中 4 匹が早産 (早
産率 23.5%）しており、コクランアーミテージ検定で解析し、有意差 (p=0.0267) を認めた（表 4）。また、15 μg/head の LPS 量においては、フィッシャーの直接確率検定による解析で、WT に比べ、有意に fat-1 の早産頻度が低いという結果が得られ、以降の実験は、15 μg/head の量で行った。全ての LPS 局注マウスで、母体死亡や著しく状態の悪化したマウスは認めなかった。

表 4. 早産頻度の比較

<table>
<thead>
<tr>
<th>LPS 量 (μg/head)</th>
<th>0</th>
<th>5-10</th>
<th>15**</th>
<th>30*</th>
<th>50*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>0/4 (0%)</td>
<td>0/6 (0%)</td>
<td>11/20 (55%) *</td>
<td>3/3 (100%) *</td>
<td>4/4 (100%) *</td>
</tr>
<tr>
<td>fat-1</td>
<td>0/2 (0%)</td>
<td>0/2 (0%)</td>
<td>3/15 (20%) *</td>
<td>1/2 (50%) *</td>
<td>1/1 (100%) *</td>
</tr>
</tbody>
</table>

(1)*p=0.0267(Cochran Armitage Trend test)
(2)**p<0.05(Fischer’s exact test)

子宮内炎症性サイトカイン遺伝子発現

LPS 誘発型の早産においては、LPS 刺激により局所の炎症性サイトカイン産生が起こり、それによってプロスタグランジン E2(PGE2)やプロスタグランジン F2α(PGF2α)の産生が上昇し、それらの作用で子宮筋の収縮や子宮頸管の熟化が起こり、最終的に早産に至るということが報告されている。これらのカスケード反応は、主に子宮筋や胎盤で起こることと言われており、IL-6、IL-1β、TNF-αな
どの炎症性サイトカインが、早産のメカニズムにおいて重要な役割を担っているということも報告されてきた13,18,93-98。fat-1マウスはω3脂肪酸が豊富にあることから、早産モデルにおいて抗炎症的な作用が強く働き、上記の炎症性サイトカイン産生が抑制されるという仮説を立てた。LPSまたは生食局注6時間後の子宮筋局所におけるIL-6、IL-1β、TNF-αの遺伝子発現を定量的PCR法により測定し、各群で比較した。生食のみを局注されたマウスの子宮筋ではIL-6、IL-1β、TNF-αのmRNA発現は低値であり、fat-1とWTマウスとの間で差は認めなかった。一方、LPSを局注されたマウスの子宮筋においては、生食局注群に比べ、有意なmRNA発現上昇を認めた。TNF-αのmRNA発現はfat-1とWTの有意差を認めなかったが、IL-6、IL-1βに関しては、fat-1マウスでは、WTに比べ、有意に低値であった。（図6）
図6. 子宮頸部へのLPS局注後の子宮内炎症性サイトカイン遺伝子発現

妊娠15日目のfat-1とWTマウスへLPS(15μg)+生食または生食のみを局注した。局注6時間後にマウスより子宮を回収し、total RNAを抽出し、逆転写反応後、定量的PCR法により(Q-RT-PCR法)、IL-6(A)、IL-1β(B)、TNF-α(C)のmRNA発現量を測定した。WT(黒)とfat-1(白)のLPS投与群と生食投与群で比較した。IL-6、IL-1β、TNF-αのmRNA発現量は、β-actinにより補正した(Ratio:Target gene/β-actin)。平均値と標準偏差をグラフに示した。アスタリスクは、WTとfat-1に有意差があることを示す。(p<0.05)(n=4)

腹部内サイトカイン産生の比較

子宮頸部へLPSを局注する本研究の早産モデルは、子宮局所の炎症により早産が誘発されるモデルであるが、局所で産生されたサイトカインについては、子宮周囲の腹部へ及んでいると考えられ、腹部洗浄液中のIL-6、IL-1β、TNF-αのサイトカイン量をELISA法で測定し、各群で比較した。TNF-αに関しては、いずれの群も検出感度以下であった。IL-6、IL-1βに関しては、生食のみの局注では、予想通り、fat-1、WTともに検出感度以下であったが、LPS局注後
のサイトカイン量については、fat-1、WT ともに増加していた。また、IL-6 は両者の差を認めなかったが、IL-1βの産生量は、WT に比べ、fat-1 で有意に低下していた（図 7）。

図 7. 腹腔洗浄液中サイトカイン量の比較

妊娠 15 日目に LPS(15 µg) + 生食または生食のみを局注し、局注 6 時間後の腹腔内洗浄液（生食 5 ml による）中のサイトカイン量を ELISA 法で測定した。IL-6 (A)、IL-1β (B)を測定した。WT (黒) と fat-1 (白) の LPS 投与群と生食投与群で比較した。平均値と標準偏差をグラフに示した。アスタリスクは、WT と fat-1 に有意差があることを示す。（p<0.05）（n=4-5）

免疫組織学的検査

マクロファージは、子宮における主要な免疫細胞であり 99,100、プロスタグランジンや IL-6、IL-1β、TNF-αなどの炎症性サイトカインを産生することで知られる 101。妊娠子宮においては、それらの作用により子宮収縮活性が制御されるということも知られている。ω-3 脂肪酸が、マクロファージ誘導性の炎症反応を
抑制することは古くから知られており、さらにその代謝物であるレゾルビンなどの脂質メディエーターは、炎症局所におけるマクロファージの食食作用の促進やリンパ管への消散も促進することが最近報告されている。我々は、WTとfat-1マウス妊娠子宮へのマクロファージ浸潤数に差があるのかどうかを調べるため、子宮体部、頚部へのマクロファージ数を抗マウスマクロファージ F4/80抗体による免疫染色で検査し、各群で比較した。子宮体部のマクロファージ浸潤数は、生食局注に比べ、LPS局注した場合に有意に増加していたが、fat-1とWTマウスとの間には有意差を認めなかった。一方、子宮頚部へのマクロファージ浸潤数は、WTにおいては、生食局注に比べ、LPS局注したものは有意に増加していた（26±5.7個/10視野、n=3）が、fat-1マウスにおいては、LPS局注後の浸潤数（11±2.0個/10視野、n=3）は有意に少なかった（図8）。

抑制することは古くから知られており、さらにその代謝物であるレゾルビンなどの脂質メディエーターは、炎症局所におけるマクロファージの食食作用の促進やリンパ管への消散も促進することが最近報告されている。我々は、WTとfat-1マウス妊娠子宮へのマクロファージ浸潤数に差があるのかどうかを調べるため、子宮体部、頚部へのマクロファージ数を抗マウスマクロファージ F4/80抗体による免疫染色で検査し、各群で比較した。子宮体部のマクロファージ浸潤数は、生食局注に比べ、LPS局注した場合に有意に増加していたが、fat-1とWTマウスとの間には有意差を認めなかった。一方、子宮頚部へのマクロファージ浸潤数は、WTにおいては、生食局注に比べ、LPS局注したものは有意に増加していた（26±5.7個/10視野、n=3）が、fat-1マウスにおいては、LPS局注後の浸潤数（11±2.0個/10視野、n=3）は有意に少なかった（図8）。

抑制することは古くから知られており、さらにその代謝物であるレゾルビンなどの脂質メディエーターは、炎症局所におけるマクロファージの食食作用の促進やリンパ管への消散も促進することが最近報告されている。我々は、WTとfat-1マウス妊娠子宮へのマクロファージ浸潤数に差があるのかどうかを調べるため、子宮体部、頚部へのマクロファージ数を抗マウスマクロファージ F4/80抗体による免疫染色で検査し、各群で比較した。子宮体部のマクロファージ浸潤数は、生食局注に比べ、LPS局注した場合に有意に増加していたが、fat-1とWTマウスとの間には有意差を認めなかった。一方、子宮頚部へのマクロファージ浸潤数は、WTにおいては、生食局注に比べ、LPS局注したものは有意に増加していた（26±5.7個/10視野、n=3）が、fat-1マウスにおいては、LPS局注後の浸潤数（11±2.0個/10視野、n=3）は有意に少なかった（図8）。
図 8. 子宮体部・頸部へのマクロファージ浸潤数の比較

(A) LPS 局注 6 時間後の子宮体部と頸部を抗マウスマクロファージ F4/80 抗体にて免疫染色した。マクロファージは抗マウス F4/80 抗体(1:500)で染色され、ネガティブコントロールとしてアイソタイプ抗体を使用し、確認した。それぞれの群で代表的なスライドを図に示した。マクロファージを矢印で示した。(倍率: 200 倍) (B) LPS 局注 6 時間後の子宮体部、頸部それぞれのスライドで、全視野の F4/80 陽性細胞を数え、WT(黒) と fat-1 (白)で比較した。アスタリスクは、WT と fat-1 に有意差があることを示す。(p<0.05) (n=3)

腹腔内マクロファージの LPS 刺激に対する反応の比較

我々は、fat-1 と WT マウスマクロファージの、LPS に対する反応性を比較するため、それぞれの非妊娠マウスより腹腔内マクロファージを単離し、24 時間培養後、LPS にて刺激し、経時的なサイトカイン遺伝子発現量を定量的 RT-PCR 法にて測定した。LPS 刺激前（0h）の IL-6、IL-1βの mRNA 量は、fat-1、WT 両群で同じレベルであった。WT マクロファージでは、1 時間後、3 時間後と時間依存性に mRNA 発現量が増加した。一方、fat-1 マクロファージでは、増加は軽
血清プロゲステロン濃度

プロゲステロン（黄体ホルモン）は、妊娠維持ホルモンであり、マウスの場合、妊娠黄体が、全妊娠期間にわたって妊娠の維持に関与している。妊娠中のマウスより卵巣を摘出すると早産するということは知られている。また、LPS刺激などの感染や炎症は、プロゲステロン濃度を低下させるということも知ら

図9. 腹腔内マクロファージのLPSに対する反応の比較

非妊娠、非刺激のWTとfat-1マウスより腹腔内細胞を回収し、CD11b磁気ビーズによるポジティブセレクションによりマクロファージを単離した。単離されたマクロファージを専用メディアミにて24時間培養し、LPSを添加した。LPS添加直前、1時間後、3時間後にマクロファージのtotal RNAを抽出し、IL-6(A)とIL-1β(B)のmRNA発現量をRT-qPCR法にて測定した。β-actinにより補正し(Ratio:Target gene/β-actin)、WT(黒)とfat-1(白)の0、1、3時間後の平均値と標準偏差をグラフに示した。アスタリスクは、WTとfat-1に有意差があることを示す。(p<0.05)(n=8)

血清プロゲステロン濃度

プロゲステロン（黄体ホルモン）は、妊娠維持ホルモンであり、マウスの場合、妊娠黄体が、全妊娠期間にわたって妊娠の維持に関与している。妊娠中のマウスより卵巣を摘出すると早産するということは知られている。また、LPS刺激などの感染や炎症は、プロゲステロン濃度を低下させるということも知ら
れている。我々の早産モデルにおける、プロゲステロン濃度、妊娠黄体の変化を確認するため、妊娠15日目、局注6時間後の血清プロゲステロン濃度と卵巣における妊娠黄体をHE染色で観察した。WTマウスにおいては、血清プロゲステロン濃度は、生食局注後と比べ、LPS局注後で有意に低下していたが、fat-1マウスでは、低下は見られなかった。また、妊娠黄体についてもWTではLPS局注後の退縮が見られたが、fat-1では比較的保たれていた。ただし、ヒトの場合、プロゲステロンは、初期は妊娠黄体から産生されるが、妊娠12週頃から胎盤が形成され、黄体ホルモンの分泌は胎盤が担うようになるため、同様の現象がヒトの炎症性早産においても起こるとは言えないかもしれない。
図10．局注6時間後の血清プロゲステロン濃度(A)と妊娠黄体の変化(B)

(A)妊娠15日目、LPSまたは生食を局注し、6時間後の血清を回収し、ELISA法にてプロゲステロン濃度を測定した。WT(黒)とfat-1（白）のLPS投与群
(n=16-17)と生食投与群(n=8-10)で比較した。平均値と標準偏差をグラフに示した。アスタリスクは、WTとfat-1に有意差があることを示す。(p<0.05)

(B)妊娠15日目、LPSまたは生食を局注し、6時間後に卵巣を摘出した。パラフィン切片のHE染色標本で、妊娠黄体を観察した。WT(黒)とfat-1(白)のLPS投与群と生食投与群で比較し、代表的なスライドを図に示した(倍率：40倍)。妊娠黄体を黒矢印で示し、退縮した黄体を赤矢印で示した。(n=3)

脂肪酸代謝物の網羅的解析

ω3脂肪酸が豊富な状態にあるfat-1マウスでは、WTに比べ、有意に早産率が低下しており、炎症性サイトカインの有意な低下とマクロファージの子宮頸部への浸潤抑制を認めた。これらの表現型の違いは、脂肪酸組成の違いに由来するものと考えられた。この脂肪酸組成の違いが、LPS刺激により、どのような脂肪酸代謝の違いをもたらすのかを網羅的に解析することで、ω3脂肪酸の早産予防効果において重要な機能を持つ脂質メディエーターを同定することを目的とし、妊娠15日のWTとfat-1の、LPS群と生食群の、各群の子宮を回収し、包括的メタボローム解析を行った。ω6系脂肪酸であるアラキドン酸(AA)とω3系脂肪酸であるエイコサペンタンエン酸(EPA)の比(EPA/AA比)は、fat-1マウスでは、WTの約7倍であった。AAの代謝物であるPGE2やPGF2αは、子宮筋収縮や子宮頸管熟化作用を持つが、fat-1ではWTの約1/10の量に押さえられていた。そして、EPA代謝物のうち、18-HEPE、17(18)-EpETEの生成がWTの5-10倍多く、有意な上昇を認めた。18-HEPEは、ここ10年で同定されてきた

41
強力な抗炎症性メディエーターである EPA 活性代謝物：レゾルビン E シリーズの前駆体である。

脂肪酸組成の違いは、その代謝物生成の有意な違いをもたらしていることが分かった。この代謝物の違いが、早産の抑制という疾患予防効果に寄与しているものと考えられた。特に fat-1 マウスにおいて有意に上昇している EPA 代謝物は、強力な抗炎症作用を持つことは既に報告されており、この代謝物が有意に生成されると抗炎症効果が発揮され、早産の抑制につながったと考えられた。アラキドン酸から COX を介して生成されるプロスタグランジンが、fat-1 マウスでは有意に低下していることも fat-1 マウスの早産予防効果に寄与していると、十分考えられたが、我々は、そのこと以上に EPA 由来の脂質メディエーターによる抗炎症作用が重要であると予測し、それを検証するために次の投与実験を行った。
図11. 脂肪酸代謝物の網羅的解析 (A) AA (B) EPA (C) DHA

LC-MS/MSに基づいた脂質メタボローム解析により omega-3 PUFAs と omega-6 PUFAs の代謝産物を網羅的に解析した。妊娠15日目、LPS または生食局注6時間後に回収した妊娠子宮筋における AA 代謝物と EPA 代謝物の網羅的解析結果を示す。WT/生食投与群（濃灰）、WT/LPS 投与群（黒）、fat-1/生食投与群（薄灰）、fat-1/LPS 投与群（白）で比較した。アスタリスクは、WT と fat-1 に有意差があることを示す。\((p<0.05)\) \(n=3-5\)
EPA代謝物投与による早産予防効果

WTとfat-1マウスの包括的メタボローム解析の結果より、fat-1マウスにおいて有意に上昇していたEPA由来の代謝物18-HEPE、17(18)-EpETEが早産予防薬候補として挙げられた。一方でfat-1マウスにおけるPGE2、PGF2αの有意な低下も検出された。アラキドン酸から生成されるPGE2やPGF2αは古くから炎症性早産の過程で重要な働きを持つことは報告されており、それらが低下していることが早産抑制効果に寄与しているとも考えられたが、我々は、それ以上にEPA由来の18-HEPE、17(18)-EpETEなどの抗炎症性脂質メディエーターが上昇していることで直接、早産の予防につながる可能性が高いと仮説を立てた。特に、18-HEPEは強力な炎症収束作用を持つ活性代謝物レゾルビンE3シリーズ（RvE1、RvE2、RvE3）の前駆体であり、18-HEPEの投与による早産抑制効果が予測された。そこで、18-HEPEをWTの早産モデルマウスに投与することで、早産が抑制されるかどうかを検証した。前述の実験と同様に高ω-6脂肪酸含有食をWT妊娠マウスに与え、妊娠15日目にLPSを経腟的に頸管へ局注した。LPS局注と同時に18-HEPEを尾静脈より静注し、早産が抑制されるかどうかを観察した。18-HEPEの量を10-100μg/headまで漸増して試行したが、いずれの量においても早産抑制効果は得られなかった。そこで、18-HEPEの活性代謝物であり、磯部らにより同定されたレゾルビンE3(RvE3)を直接静注することとした。
10 ng/head の RvE3 を生食 100 μl に溶解し、対照として、同量のエタノールを生食 100 μl に溶解したものを準備した。これらを、LPS 局注時と、局注 6-12 時間後の 2 回、尾静脈より静注した。対照群では、16 匹中 15 匹早産(早産率 94%)したが、RvE3 群では 15 匹中 6 匹の早産で（早産率 40%）あり、有意に早産率を低下させた（表 5）。

表 5. RvE3 投与による早産抑制効果

<table>
<thead>
<tr>
<th></th>
<th>早産率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RvE3 (10 ng/head)</td>
</tr>
<tr>
<td>Exp. 1</td>
<td>1/3</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>2/5</td>
</tr>
<tr>
<td>Exp. 3</td>
<td>2/4</td>
</tr>
<tr>
<td>Exp. 4</td>
<td>1/3</td>
</tr>
<tr>
<td>計(%) *</td>
<td>6/15 (40%) *</td>
</tr>
</tbody>
</table>

(1) N.D.: not done (2)*p=0.0021E

早産したマウスもしなかったマウスも全て、LPS 局注 48 時間後にエーテル麻酔下に開腹し、子宮内の胎児の状態を観察した。それぞれの着床部位の胎盤への血流が保たれているかどうか、胎仔の色等で胎仔の viability を判断した。LPS局注後、1 匹でも娩出されたものは、早産と定義したが、早産したマウスでは、たとえ子宮内に胎仔が残っていたとしても IUFD に至っているもののが多かった。

一方、RvE3 投与により早産が抑制されたマウスの子宮内胎仔の生存率は 97.2%(37 匹中 36 匹)であり、良好に保たれていた。
表 6. 子宮内胎児生存率

<table>
<thead>
<tr>
<th>Mouse No.</th>
<th>早産の有無</th>
<th>子宮内胎児数/着床部位数</th>
<th>生存数/子宮内胎児数</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>(+)</td>
<td>2/6</td>
<td>1/2</td>
</tr>
<tr>
<td>②</td>
<td>(-)</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>③</td>
<td>(-)</td>
<td>7/8</td>
<td>7/7</td>
</tr>
<tr>
<td>④</td>
<td>(-)</td>
<td>9/10</td>
<td>9/9</td>
</tr>
<tr>
<td>⑤</td>
<td>(+)</td>
<td>2/5</td>
<td>0/2</td>
</tr>
<tr>
<td>⑥</td>
<td>(+)</td>
<td>0/8</td>
<td>-</td>
</tr>
<tr>
<td>⑦</td>
<td>(+)</td>
<td>0/8</td>
<td>-</td>
</tr>
<tr>
<td>⑧</td>
<td>(-)</td>
<td>7/7</td>
<td>6/7</td>
</tr>
<tr>
<td>⑨</td>
<td>(-)</td>
<td>6/6</td>
<td>6/6</td>
</tr>
</tbody>
</table>

対照群

<table>
<thead>
<tr>
<th>Mouse No.</th>
<th>早産の有無</th>
<th>子宮内胎児数/着床部位数</th>
<th>生存数/子宮内胎児数</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>(+)</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>②</td>
<td>(+)</td>
<td>2/7</td>
<td>0/2</td>
</tr>
<tr>
<td>③</td>
<td>(+)</td>
<td>0/8</td>
<td>-</td>
</tr>
<tr>
<td>④</td>
<td>(+)</td>
<td>7/10</td>
<td>7/7</td>
</tr>
<tr>
<td>⑤</td>
<td>(+)</td>
<td>0/7</td>
<td>-</td>
</tr>
<tr>
<td>⑥</td>
<td>(+)</td>
<td>0/10</td>
<td>-</td>
</tr>
<tr>
<td>⑦</td>
<td>(+)</td>
<td>0/10</td>
<td>-</td>
</tr>
<tr>
<td>⑧</td>
<td>(+)</td>
<td>0/7</td>
<td>-</td>
</tr>
<tr>
<td>⑨</td>
<td>(+)</td>
<td>0/10</td>
<td>-</td>
</tr>
</tbody>
</table>
考察

本研究で、ω3脂肪酸が体内で豊富な状態が恒常的に維持されるfat-1マウスにおいて、LPS誘発型炎症性早産が有意に抑えられることを示した。これらの早産予防効果は、ω3脂肪酸による炎症性サイトカイン産生の抑制やマクロファージの子宮頸部への浸潤抑制などの抗炎症作用が寄与していることも示した。

また、WTとfat-1マウスの脂肪酸代謝物を網羅的に解析し、fat-1マウスで有意に上昇している脂質メディエーターを同定した。さらに、この脂質代謝物を前駆体とする活性代謝産物であるレゾルビンを直接投与することで、有意に早産が抑制されることを証明し、炎症が関与する早産に関しては、新たな治療法、予防法となる可能性を示した。

ω3脂肪酸の抗炎症作用、心血管保護作用は古くから知られており、特に循環器系の分野では注目され、研究も進めている。近年では、JELIS試験105が行われ、EPAの内服により冠動脈イベント発症を19%低下させたという結果が得られ、動脈硬化性疾患予防ガイドラインや脳卒中治療ガイドラインなどで一次予防や再発予防薬として位置づけられるようになった。婦人科領域でも早産の予防効果だけでなく、ヒトや動物モデルにおいて子宮内膜症や月経困難症などを抑える効果も示されてきた。1988年にラビットの内膜症モデルにEPA、DHAの豊富な魚油を与えると内膜症が抑えられたという結果が報告され106、それに追随して、EPA単独の内服でも内膜症抑制効果が示されたという結果も報告さ
れた107。またラットにおいてもEPAの内服が内膜症の予防となることが示された108。そして、ヒトの疫学研究においても、ω3脂肪酸の摂取が月経困難症や子宮内膜症の予防となる可能性が示されてきた109-111。

多価不飽和脂肪酸であるω3脂肪酸やω6脂肪酸は、必須脂肪酸であり、経口摂取のみから獲得できるものであり、食餌を調整することがこれらに関する研究の古典的アプローチであった。しかしながら、目的の脂肪酸以外の条件を全く同一にすることは困難であり、微量の添加物の違いや消化吸収の個体差などの影響を完全には除外できないという問題点もあった。また、多価不飽和脂肪酸は酸化の影響を受けやすいため、脂肪酸の効果を凌駕して、酸化によると思われる結果が全面に出ることもある。fat-1マウスは、食餌の影響を受けずにω3脂肪酸の効果を検証することができる非常に有用なマウスである。これまでfat-1マウスを使用して、さまざまな疾患モデルに対するω3脂肪酸の効果が実証されており、腹膜炎モデル、肝炎モデル、膵炎モデル、アレルギー性気管支炎のモデルなどで疾患抑制効果が証明されている15,69,71-73,112。早産についても、炎症が関与する疾患のひとつであり、fat-1マウスにおける早産抑制効果が期待された。これまでにも、妊娠の魚油摂取による早産予防効果は、いくつか報告されている。しかし、この妊娠のω3脂肪酸摂取に関する報告は、結果のばらつきや食習慣、人種の違いによる差も出ており113-115、ω3脂肪酸の純粋な効果であることをの証明や機序の解明には至っていない。我々のマウス実験において、
fat-1 マウスでは有意な早産率の低下が見られた。fat-1 マウスを使用することで、純粋に ω3 脂肪酸の効果を証明することができ、それに続く、機序の解明や脂質メディエーターの同定にも有用であった。

LPS の投与はマウス早産モデルにおいて最も広く使われている方法であり、我々は、LPS を経腔的に頸管へ局注し早産を誘発するマウスモデルを使用した。他に腹腔内投与、小開腹下の子宮への局注、経静脈投与などの投与方法が報告されている。ヒトの炎症性早産のメカニズムとして代表的なものは絨毛羊膜炎を介した早産であるが、これは、細菌性膿瘍などによる感染や炎症が子宮頸管から上行性に波及し、子宮内でも炎症が起き、サイトカインやプロスタグランジンの産生により子宮収縮、頸管熟化、卵膜の脆弱化が引き起こされ、早産に至ると考えられている。このメカニズムに最も近いモデルは、頸管に LPS を局注する方法であると考え、経腸投与を選択した。経腸投与の既報の論文における LPS の量は 250 μg/body であったが、我々の実験系では 50 μg/body 以上のが LPS 量では全てのマウスが早産し、10-15 μg/body という少ない量で fat-1 と WT マウスの早産率に差を認めた。このことより、ω3 脂肪酸は、マウス個体差の範囲を超える程度の炎症性早産に対して、予防効果を認めると考えられた。また WT の早産率に関しては、ω6 脂肪酸含有量の多い食餌の影響で、通常状態より炎症が増幅されやすくなり、これまで報告された論文より少量の LPS で早産に至ったものと考えている。
我々は、fat-1マウスの早産率低下の機序として、LPSにより誘発された子宮局所における炎症がω3脂肪酸によって抑制されたという仮説を立てた。fat-1マウス子宮におけるIL-6、IL-1βのサイトカイン遺伝子発現が有意に低下していたことから、ω3脂肪酸による子宮局所の炎症性サイトカイン遺伝子発現の抑制効果が示された。さらに、炎症性サイトカイン産生を腹腔洗浄液中で間接的に測定し、IL-1βが有意に低値に押さえられていることが分かった。また、これらの炎症性サイトカインを産生することが知られているマクロファージの子宮頸部への浸潤もfat-1マウスでは抑制されていることが分かった。炎症性早産モデルにおいてマクロファージは重要な働きを持つと考え、マクロファージのLPSに対する反応性の違いを見るためWTとfat-1マウスの腹腔内マクロファージを単離、培養し、経時的に炎症性サイトカイン遺伝子発現を測定した結果、IL-1βはfat-1マクロファージで有意に低下していたが、IL-6では差を認めなかった。妊娠子宮局所においてはIL-6の遺伝子発現も有意に低下していたことから、マクロファージ以外の子宮筋細胞や線維芽細胞などの影響が考えられた。fat-1マウスは全身の細胞でω3脂肪酸リッチな状態が維持されるため、免疫細胞以外でも抗炎症効果が発揮されたものと考えられた。

ヒトの炎症性早産のメカニズムにおいては、IL-8やエラスターゼ、好中球の遊走も重要と考えられているが、本研究では、それらについては十分には調べられていない。IL-8については、マウスには存在しないためマウスモデルでの
検証は難しいが、ヒト角化細胞や線維芽細胞、ヒト子宮内膜間質細胞の培養実験においてTNF-α刺激によって誘導されるIL-8の産生はEPA、DHAの添加により抑制されたという報告116があり、IL-8の産生を抑制する効果もあると予測される。好中球遊走に関しては、本研究においても子宮体部、頸部の好中球数をHE染色やLy-6Gによる免疫染色で比較検討したが、明らかな差は認めなかった。

LPS局注6時間後だけではなくLPS局注直後から経時的に追って検索する必要があると思われる。また、ヒトにおいて、エラスターゼ検査は早産診療において重要視されており、ヒトへの応用に当たっては、ω3脂肪酸がエラスターゼへどのように影響を及ぼすかについても明らかにする必要がある。

有田らは、LC-MS/MSという質量分析技術を用いて、ω3脂肪酸代謝の包括的メタボローム解析を行うシステムを確立し、EPAやDHAから代謝生成されるレゾルビンなどの新しい抗炎症性脂質メディエーターを同定した52,59,92,117,118。さらにこのメタボローム解析システムをfat-1トランスジェニックマウスに適用し、ω3脂肪酸代謝と生理的機能についての研究も進められてきた。我々も共同研究により、このシステムを用いてfat-1とWTの早産モデルマウス子宮の脂肪酸代謝の違いを網羅的に解析した。ω6脂肪酸であるAAとω3脂肪酸であるEPAの代謝物とで、両群で対照的な結果が出た。AAの代謝物であるPGE2やPGF2αは、子宮筋収縮や子宮頸管軟化作用を持つが、WTで有意に上昇しており、fat-1ではほとんど上昇を認めなかった。PGE2、PGF2αは、AAからCOXによる代謝
を介して生成される。ω-3脂肪酸が豊富にあるfat-1マウスにおいては、EPAのCOXに対する基質競合作用により、PGE2、PGF2αの上昇が抑制されていたと考えられる。EPAのCOX系代謝物PGE3やPGD3などがfat-1で上昇していたことも、そのことを支持する結果であると言える。一方、COX系ではないEPA代謝物である18-HEPE、17(18)-EpETEはfat-1で有意な上昇を認め、これらがfat-1マウスの早産予防効果、抗炎症効果に寄与しているとも考えられた。特に18-HEPEは、5-LOXにより代謝されるとRvE1、RvE2が生成され、12/15-LOXにより代謝されるとRvE3が生成されることが報告されており、強力な炎症収束作用を持つ活性代謝物の前駆体である。

炎症収束期に存在する脂肪酸代謝物の包括的メタボローム解析から見出されたEPA由来のRvE1（5S,12R,18R-trihydroxy-EPE）、DHA由来のPD1（10R,17S-dihydroxy-DoHE）は、ナノモルレベルで好中球の遊走抑制、炎症性サイトカインの産生抑制などの活性が認められている51-53。RvE1は、炎症局所で活性化した好中球が血管内皮細胞と接着した際に、細胞間生合成経路によって生成すると考えられている52。また、細胞レベルで、好中球の遊走阻害、マクロファージや樹状細胞からの炎症性サイトカインの放出抑制、血小板凝集を阻害する活性が報告されている62。一方、PD1は、マウス脳梗塞組織中やサイモザン腹膜炎、喘息組織中から検出されており、脳神経機能の改善効果51や気道炎症や過敏症などをアレルギー症状を軽減する作用119が認められている。いずれの化合物も強力な
抗炎症作用、組織保護作用が認められており、RvE1がナノモルレベルで結合し作用する受容体としてChemR23とBLT1が報告されている118。

ω3脂肪酸による早産抑制効果が、AA代謝物の低下によるものか、それともEPA代謝物の増加によるものかを検証するために、fat-1マウス妊娠子宮で上昇していたEPA代謝物をWTの早産モデルマウスへ投与することで、fat-1と同様の早産予防効果が得られるかどうかを調べた。まず、投与経路は、これまでの脂質メディエーターの投与実験に倣って、尾静脈からの経静脈投与とした。18-HEPE、17(18)-EpETEなどの中間代謝物が一旦細胞内に取り込まれ、それがさらに代謝されることで、活性代謝物となり、抗炎症作用を発揮することを期待し、LPS投与と同時に18-HEPE、17(18)-EpETEを静注した。量を漸増して効果を検証したが、18-HEPE、17(18)-EpETEの投与による早産率の低下は見られなかった。そこで、18-HEPEは活性代謝物レゾルビンの前駆体であることに着目し、レゾルビンを直接静注することとした。磯部らにより、腹膜炎モデルにおけるRvE3の静注による強力な好中球遊走抑制効果が既に報告されており103,104、投与方法、投与量はこの論文を参考に施行した。LPS局注時の1回のみの静注では有意な早産抑制効果は得られなかった。体内ではすぐに活性が失われる可能性も考えられ、LPS局注直後だけではなく炎症反応が起こり始めると思われる6-12時間後にも静注し、合計2回の注射を行った。その結果、RvE3
投与による有意な早産予防効果を認めた。また、胎児生存への影響も認めなかった。

マウスにおいては、血清プロゲステロン値の低下や黄体の退縮は早産を引き起こす重要なファクターである。妊娠中に卵巣を摘出されるマウスやプロゲステロンレセプター拮抗薬（RU486）を投与されたマウスは早産したという報告もある。我々の研究では、WT マウスで見られた LPS 剤注後の血清プロゲステロン値の低下や黄体の退縮が fat-1 妊娠マウスでは有意に抑えられていた。マウス LPS 誘発型早産においてこのプロゲステロン値の低下が早産の直接の原因であるのかもしくは炎症反応の波及による随伴現象であるのかは明らかにはされておらず、この結果の意義の解釈も十分とは言えない。ω3 脂肪酸の効果として、黄体の維持に直接作用した可能性も否定はできないが、前述のように抗炎症作用が示されており、fat-1 マウスでは WT に比べて妊娠黄体が維持されていたという結果は、その前段階の炎症を抑制したことによるものであろうと考えている。今後の課題であるが、卵巣摘出による早産誘発モデルにおいて、fat-1 と WT の差が出るかどうかを比較することで、ω3 脂肪酸に黄体維持の直接作用があるかどうかを証明できるかもしれない。RvE3 投与前後の黄体の変化も見るべき項目と考えられる。

抗炎症作用により早産抑制効果を認めた、fat-1 の早産モデルマウス子宮の包括的脂肪酸代謝物メタボローム解析により、重要な EPA 代謝物（18HEPE）が同定
された。18HEPE の下流にある活性代謝物であり、強力な抗炎症作用を持つ RvE3 の静注は、LPS によって誘発される早産を有意に抑制するということが証明された。EPA 由来の脂質メディエーターである RvE3 は、新規の早産予防薬としての応用が期待される。
おわりに

本研究により、fat-1の早産モデルマウス子宮の脂質メタボローム解析により、重要なω-3脂肪酸代謝物が同定された。さらに、その活性代謝物であり、強力な抗炎症作用を持つことで知られるRvE3は、LPSによって誘発される早産を有意に抑制するということが証明された。ω-3脂肪酸を経口摂取することは、消化吸収や代謝の個体差、必要な摂取量の個体差等を考慮しなければならず、それに比べ、RvE3の静注は、より直接的であり確実で、効果的、効率的な早産治療法となると考えられた。ただ、今回、胎仔への短期的影響は認めなかったが、長期予後にに関しては不明であり、それについても確認する必要がある。また、RvE3の量や投与のタイミング等を最適化し、RvE3投与時の脂肪酸代謝や炎症性サイトカインについても解析し、作用機序を明らかにすることが今後の課題である。

特に磯部らの報告ではRvE3による好中球浸潤抑制が示されており、早産モデルにおける好中球浸潤について検討することは非常に重要な課題と考えられる。レゾルビンEシリーズのRvE1などは、既にヒトでも治療が始まっており、アレルギー性気管支炎や歯周病、ドライアイなどで有用な効果が報告されている。まだ課題は多く残っているものの、RvE3は、妊娠中の炎症性早産への新規治療薬として大いに期待され、今後ヒトへの応用を目指して研究を発展させていきたいと思う。
謝辞

本研究を遂行するにあたり、研究の立案から、実験手技、論文執筆まで、様々な面において終始ご指導、ご鞭撻をいただきました東京大学医学部産婦人科の川名敬先生に深く感謝の意を表します。また東京大学医学部産婦人科の武谷雄二先生、上妻志郎先生、藤井知行先生、大須賀穣先生には、当教室の教授として、研究にご理解、ご支援をいただきました。東京大学薬学部衛生化学教室の有田誠先生には、研究の立案から、実験手技、論文執筆まで、貴重なご支援、ご指導をいただきました。東京大学医学部産婦人科の織田克利先生、平池修先生には、実験手技や研究内容について貴重なご指導、ご意見をいただきました。東京大学薬学部衛生化学教室の磯部洋輔先生、岩本涼先生、増田功嗣先生には、実際の実験において、様々なご指導をいただきました。ミズーリ大学の Danny J Schust 先生には、研究内容、論文執筆の際に貴重なご指導をいただきました。この場を借りて御礼申し上げます。

研究室でともに実験をしてまいりました東京大学医学部産婦人科の永松健先生、長阪一憲先生、富尾賢介先生、小島聡子先生、佐山清亮先生、田口歩先生、横山照史先生には、カンファランスや実際の実験において様々なアドバイスやご協力をいただきました。あらためて感謝の意を表したいと思います。

34. Holmgren C, Esplin MS, Hamblin S, Molenda M, Simonsen S, Silver R.

44. Mardones F, Urrutia MT, Villarroel L, et al. Effects of a dairy product fortified with multiple micronutrients and omega-3 fatty acids on birth weight and

78. Oken E, Kleinman KP, Olsen SF, Rich-Edwards JW, Gillman MW. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of

