大気中微小粒子状物質による短期健康影響の地域間差を検出するためのモデル開発

<table>
<thead>
<tr>
<th>著者</th>
<th>竹内 文乃</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与年月日</td>
<td>2014年12月</td>
</tr>
<tr>
<td>学位</td>
<td>博士工学士</td>
</tr>
</tbody>
</table>
博士論文

大気中微小粒子状物質による
短期健康影響の地域間差を検出するためのモデル開発

竹内文乃
目次

1 序文... 3

1.1 大気汚染と粒子状物質 ... 3

1.2 微小粒子状物質がもたらす健康影響 ... 5

2. 目的 .. 10

3. 対象 ... 10

3.1 対象地域 .. 10

3.2 解析に用いたデータ ... 10

3.2.1 日死亡データ ... 10

3.2.2 大気汚染物質データおよび気象データ ... 11

4. 方法 ... 12

4.1 解析データセットの作成と基本集計 .. 12

4.2 本研究に適用する統計的手法の概要と先行適用事例 .. 12

4.2.1 一般化線形モデル ... 13

4.2.2 一般化加法モデル ... 15

4.2.3 Distributed Lag Model ... 17

4.2.4 分数多項式回帰モデル ... 19

4.2.5 Case-Crossover 解析 ... 21

4.2.6 地域ごとに推定された死亡リスクの併合方法 ... 22

4.3 本研究での PM2.5 による短期健康影響の検討方針 ... 23

4.3.1 GLIM の適用 ... 23

4.3.2 GAM の適用 ... 24

4.3.3 FP モデルの適用 ... 25

4.3.4 地域ごとに算出した PM2.5 日死亡リスクの併合 ... 26

4.3.5 変量効果モデルを利用した PM2.5 日死亡リスクの地域間差の検討 26

4.3.5.1 変量効果モデルの定式化 ... 27

4.3.5.2 MCMC 法による未知パラメータ推定 ... 28

4.3.6 季節を区切った PM2.5 日死亡リスクの地域間差の検討 30

5. 結果 ... 31

5.1 地域ごとの日死亡データの集計 .. 31

5.2 地域ごとの大気汚染物質・気象データの集計 ... 31

5.3 GLIM 適用による地域ごとの PM2.5 濃度の日死亡リスク比 32

5.4 GAM 適用による地域ごとの PM2.5 濃度の日死亡リスク比 32

5.5 FP 適用による地域ごとの PM2.5 濃度の日死亡リスク比 33

5.6 地域ごとに算出した日死亡リスク比の併合 .. 33

5.7 PM2.5 日死亡リスクの地域間差 ... 33

5.8 季節を限定した場合の PM2.5 日死亡リスクの地域間差 34

6. 考察 ... 35

7. 参考文献 ... 41

8. 結果表 .. 52
1 序文

1.1 大気汚染と粒子状物質

大気汚染は、人間の社会・経済活動や自然災害などが原因となって、大気が有害物質で汚染されることであり、人体や動植物の生活環境や生育に悪影響を与えることが知られている。大気汚染の原因物質は、火山などの自然発生源のほかに工場等の固定発生源、自動車や航空機等の移動発生源から発生することが知られ、その形状はガス、液体、固体、粒子と様々である。

欧米では1900年代前半から、日本では1950年代半ばから60年代にかけて、人々は経済の成長とともに健康被害をもたらす大気汚染を経験した。中でも粒子状物質（Particulate Matter: PM）は、もっとも古くから存在する大気汚染物質であると言われ、大気汚染による健康被害が、疫学的に初めて明らかにされたのは、1930年にベルギーのミューズ川渓谷で発生した高濃度二酸化硫黄汚染であるとされる2。一方、同時期の大気汚染のなかでも特に被害が大きかったのは、1952年にイギリスのロンドンで約10日間にわたって発生した大気汚染で、当時スモッグと呼ばれた大気中粒子状物質の濃度上昇によって約4,000人の超過死亡が発生した3。

PMは、大気中を漂う固体や液体の総称で、大きさや構成要素、発生源の異なる様々な粒子の混合物である。大気中のPMは、1日10,000リットルにも及ぶとされる換気によって呼吸器系から体内に吸入される。しかし、気管の直径が2cm弱なのに対し、そこから20回以上の枝別れを繰り返した気管支の末端では、直径が1mm以下となるため、吸入されたPMのすべてが気道に停留・沈着するわけではない。また、PMは粒径によってその生成機構が異なり、微小粒子の方が健康により影響を与える成分が多く含まれる。
そのため、PMの粒径は、呼吸器系への沈着の程度と成分の違いの両面から健康影響に大きく関わると考えられる4,5。

PMの中でも粒径が10μm以下のは非常に軽く、大気中に長期間浮遊・滞留して体内に取り込まれ、呼吸器系へ沈着することから、特に浮遊粒子状物質(Suspended Particulate Matter: SPM)と呼ばれる。SPMには、土壤や海塩粒子、黄砂や火山灰などの自然発生源に由来するもの、工場や自動車、特にディーゼル車などの人為的発生源からの粉じんや排出ガスに由来するもの、窒素酸化物(NOx)や硫黄酸化物(SOx)、揮発性有機化合物などのガス状物質が化学反応を起こして二次生成されるものがある5。

米国では、1971年に全浮遊粒子を対象とした大気環境基準が設定され、その後1987年には大気中の粒径10μm以下の粒子状物質(PM10)を指標として基準に改定された。なお、米国で定めるPM10とは、粒径別の捕集効率が50%となる空気力学径が10μmとなる粒子のことで、粒径10μmを超える粒子を100%カットして測定するSPMより粒径分布が大きくなる。一方わが国では、1967年の公害対策基本法施行以降、二酸化硫黄(SO2)、一酸化炭素(CO)、SPM、光化学オキシダント(Ox)、二酸化窒素(NO2)といった個別の大気汚染物質については、個別の環境基準・総量規制が導入された。SPMに関しては1972年に環境基準が設定され、様々な対策が講じられたが、1980年初頭から自動車排出ガスの寄与が增大したことによってSPM濃度の抑制が困難になり、大都市地域を中心に基準が達成されない状況が続いていた。このような背景を受け、排出ガス規制の逐次強化が行われ、2001年には「自動車NOx・PM法」が定められた。自動車NOx・PM法では、首都圏・大阪・愛知などを対策地域と定め、自動車から排出される窒素酸化物(NOx)とPMに関する排出基準が設けられた。さらに2003年には、自動車NOx・PM法に関係な
く、PM排出量が基準を満たしていない車両は東京・神奈川・埼玉・千葉に、通過を含めた乗り入れもできないように運行を規制するディーゼル車規制条例が制定され、現在では、我が国の環境基準の達成状況はかなり改善されている。

さらに、PMの中でも粒径が2.5μm以下のものは、さらに肺の深部まで侵入して沈着しやすいことから、微小粒子状物質またはPM2.5と呼ばれ、それ以上の粒径の粗大粒子と区別される。粗大粒子は自然発生源由来のものが多いのに対して、PM2.5は人為的発生源由来のものが多く、一般にSPMの質量濃度を縦軸にとり、粒径を横軸にとると粒径約2μmを境に二峰性の分布を示すことが知られている。

1.2 微小粒子状物質がもたらす健康影響

1970年代以降、大気汚染防止法や各種環境基準が整備されたことによって、高濃度大気汚染による健康への急性影響は目に見えて減り、1979年には、一般の大気環境でみられる濃度範囲のPMが、健康人を死に至らしめることがないとする総説論文も発表され、大気汚染疫学研究はその役割を終えたかに思われた。大気汚染関連の研究者の間でも、今後は長期にわたり低濃度汚染物質への曝露による慢性的な健康影響のみが研究対象であると考えられるようになっていた。

しかし1990年代に入って、当時の環境基準を下回る低水準でのPM10の濃度変動が日別死亡数の変動と関連するとの疫学研究の結果が相続いで報告され始めた。さらには、米国6都市で実施されたSix Cities Study（1974年以降現在まで追跡）で、同様の関連がPM10よりPM2.5で顕著であることが示された。これらの研究結果は、日常的な濃度で健康影響が認められたことと、その影響が即日または数日以内の死亡に関連する急性影
響であったことが大きな特徴である。具体的に Six Cities Study では、PM2.5の濃度 10 μg/m³ 増加ごとに、即日ないしは数日以内の全死亡（事故死を除く）、虚血性心疾患・肺炎・慢性閉塞性肺疾患による死亡が 1〜2%増えることなどが示された。

このような低濃度の PM10 および PM2.5 が健康に与える急性影響は、既存のコホート研究や官庁統計データと PM の測定値を突合せることで、比較的容易に検討可能なことから、大気科学や動物実験、毒性学・生理学による裏付けや作用機序の解明に先んじて、疫学研究による知見が蓄積されていったことも大きな特徴である。

Six Cities Study の研究結果を皮切りに、世界各地で続々と PM10 および PM2.5 の濃度変動が、死亡率をはじめとする健康指標と関連するという結果が発表され、2004年時点までに 80 報以上の研究結果が示された。このような多数の国際的な研究結果を受けて、米国では 1997 年に粒子状物質の環境基準を改定し、新たに PM2.5 の基準値を日平均 65 μg/m³、年平均 15 μg/m³ と設定した。ただ産業界などからは、作用機序の解明が追い付いていないこと、研究デザインとして時系列研究やパネル研究が多く、当時の段階では結果に不確実性が多く含まれていて因果関係の裏付けには至っていないことなどが強く指摘された。

そこで米国では、1998 年に環境保護庁が中心となって研究の枠組みを整理し、不確実性をもたらす原因となり得る要因をリストアップした上で、科学的根拠としての価値、政策決定上の価値、実行可能性とタイミングという 3 つの軸で評価を行い、 「PM 測定値と真の曝露量の関連」「有害成分の評価」「高感受性群の同定」などの 10 項目の優先課題を掲げた。さらには、この優先課題に取り組むための、2010年までの研究ポートフォリオと予算が提示されて、特別推進研究として全米で PM に関する研究が始まった。
この優先課題の中には，統計データ解析手法の改善・開発も盛り込まれたため，交絡因子の探索および調整方法の検討，測定誤差の取り扱いなどを課題とした統計解析手法に関する検討が積極的に行われるようになった 6,22,23,24,25,26．上記ポートフォリオの修正および研究結果の中間評価を経て，2006年にはPM2.5の濃度に関する環境基準として，より厳しい値である日平均35μg/m³，年平均15μg/m³を採用された 27,28,29．その後，世界保健機関(WHO)でもAir Quality Guidelinesを更新してPM2.5に関する環境目標値を日平均25μg/m³，年平均10μg/m³と設定した30,31,32．

一方我が国では，1972年にSPMに係る環境基準が設定され，1973年にはSPMと併せて「伝統の大気汚染物質」と呼ばれるNO₂，Ox，SO₂，COについても個別の環境基準が設定された1．これらの環境基準はいずれも当時欧米で行われた疫学研究の結果に，我が国で独自に実施したいくつかの調査結果を加えたものである1,2,12．具体的には各国の疫学研究の結果を収集し，検討会・シンポジウムが開催され，1999年から2006年までの8年間でPM2.5についての曝露評価，3年間の死亡データとPM2.5濃度測定値を結び合した疫学研究，毒性学的評価などが実施された。それらの結果を踏まえて2007年に微小粒子状物質曝露影響に関する調査報告書がまとめられ33，2009年9月に「微小粒子状物質に係る環境基準」によって年平均値15μg/m³以下かつ1日平均値35μg/m³以下との基準値が設定された34．

上記調査の中でも，全国20都市における2002年1月1日から2004年12月31日までの日死亡数とPM2.5濃度測定値の関連を検証した疫学研究（以後，20都市研究と呼ぶ）は，世界各国で環境基準設定の重要な根拠とされてきた疫学研究を日本において実施したものである33．ただ20都市研究では，主に米国で開発された同様の疫学研究のための統計
解析モデルがほぼそのままの形で利用されている。曝露の発生状況を含む大気汚染の状況、生活習慣、アウトカムとしての死因分布が日米では大きく違うことなどから、日本での疫学データに対して、解析手法の比較検討を独自に行う必要があると考えられる。具体的には、都市研究の報告書ではPM2.5濃度の推計リスクは死因によって違いがみられ、また解析地域間比較においても一貫性がみられなかった。このような違いが各地域の共存大気汚染物質を含む大気汚染の質的・量的に反映したものの、また解析モデルに依存したものであるかについては未だ明らかではない。また、気象要因（特に気温）は一般に大気汚染物質よりも死亡に対して大きな寄与を持っており、さらに、大気汚染濃度も気象要因の影響を受ける。したがって、解析モデルにおいて気象要因の影響をどのように調整するかは非常に重要な問題であるが、この解決方法についての国際的なコンセンサスは得られていない」とされており、気象要因のモデル化と地域間差の影響について更なる検討が必要であることが示唆されている33,35,36。

またPM2.5は、その定義通り微小粒子の粒径で区分されたものであり、その構成成分・付着成分（組成）は金属元素、硝酸イオンや硫酸イオンなどの各種イオン、有機炭素、無機炭素、多環芳香族炭化水素など様々である。作用機序についての検討では、PM2.5抽出物をマウスに気管内投与することで、肺組織中で細胞死を引き起こすこととが明らかになった33。気管支肺胞洗浄液中の中性粒細胞の増加や肺胞出血を引き起こすこととが明らかになった。気管支肺胞洗浄液や誘発痰中のサイトカイン上昇はヒトボランティアによる短期曝露影響評価でも確認され、マウスでは特に細菌毒素との併投与でサイトカイン発現増強が見られたことから、呼吸器感染症を引き起こしている場合にはPM2.5に対する感受性が高まる可能性も示唆された33。ただし、実際にはPM2.5の組成は
発生源によって違いがあるされ、地域や季節による変動もあるため、その健康影響も常に一定ではないと考えられる。これまで世界各国で行われてきた同様の規模の疫学研究では、PM$_{2.5}$濃度の短期健康影響の季節差は、時間に関する変数を統計解析モデルに組み込むことで調整が行われてきた。また、地域ごとに算出された結果は、地域を層とみなした層別解析の枠組みで扱われることが多く、健康影響の地域間差を明らかにする目的の研究は、前述の20都市研究を含め、現在までほとんど行われていない。

特にわが国のPM$_{2.5}$には、国内の人間活動を発生源とするものと自然界に由来するものに加えて、黄砂と呼ばれる東アジア内陸部から飛来する季節性・地域性の強いものも存在する。黄砂は、粒径などでは定義されてはいないものの、土壤由来の黄砂粒子は粒径が数μmから数十μmと粗大なため、これまでPM$_{2.5}$と比較して健康影響は大きくないと考えられてきた。ただ、最近になって、その成分には硫酸塩や硝酸塩も多く含まれ、粒径も4μmをピークとする一峰性に分布するため、PM$_{2.5}$としての捕集にも含まれることが明らかになってきた。また、近年では黄砂が飛来してくる過程で通過する中国工業地帯での大気汚染の悪化の影響が黄砂とともに日本に飛来してくる可能性への懸念も高まっている。PM$_{2.5}$の組成に関しては、日本国内では経時的な測定とは別に、地域ごと季節ごとに期間を区切って分析され、健康影響が検討されているが、時間単位で経時的に組成が測定されているわけではないため、季節影響のように統計モデルでの調整はこれまで行われてこなかった。海外の先行研究では、PMの組成に焦点を当てて日死亡の関連を検討する研究もあり、20都市研究のようなPM$_{2.5}$濃度の短期健康影響評価を行う疫学研究においても、黄砂の影響等による地域差が存在する可能性があり統計解析モデルによる地域間差の影響の検討が必要であると考えられる。
2．目的

本研究では我が国の人口動態統計データと每時測定されている微小粒子状物質（PM2.5）濃度を日単位で突合し、PM2.5濃度変動が日死亡に与える影響を検証し、地域によるPM2.5の影響の違いを検出する統計モデルを開発する。

3．対象

3.1 対象地域

環境省が設置する大気の汚染状況を常時監視（24 時間測定）する大気汚染常時監視測定局のうちPM2.5の濃度測定を行っている20地点の一般環境測定局（一般局）を有する市区町を調査対象地域とした。具体的な解析対象地域は北海道（札幌市）、宮城県（仙台市、涌谷町）、茨城県（取手市）、群馬県（太田市【旧新田町】）、埼玉県（戸田市、蓮田市）、千葉県（市川市）、東京都（23区）、神奈川県（川崎市）、新潟県（上越市）、愛知県（名古屋市）、大阪府（大阪市、堺市、守口市）、兵庫県（尼崎市、神戸市）、岡山県（倉敷市）、福岡県（福岡市）及び宮崎県（日向市）の15都道府県20市区町である。

3.2 解析に用いたデータ

3.2.1 日死亡データ

本研究ではPM2.5測定局のある都道府県における外因死を除く全ての死亡のデータを人口動態調査の目的外使用許可を得て入手した。また、20都市研究から3年間延長した2002年1月1日から2007年12月31日を解析対象期間とする。データには、市町村符号及び保健所符号、性別、年齢、死亡の年月日時、居住していた市区町村符号、死亡の
種別、死亡の原因（国際疾病分類第10版に基づく簡単分類）が含まれる。これらの個票データを65歳以上に限定し、市町村符号を用いて対象地域ごとに日単位の当該地域での死亡数を算出し、日死亡データとした。

3.2.2 大気汚染物質データおよび気象データ

PM$_{2.5}$質量濃度の連続自動測定方法としては、フィルター振動法(Tapered Element Oscillating Microbalance: TEOM), β線吸収法、光散乱法などがあるが、本研究ではTEOM方式によって測定されている24時間測定データを用いた42。その他の共存汚染物質(NO$_2$, Oxなど)については、原則としてPM$_{2.5}$測定器を設置した常時監視局の24時間測定データを用いた。なお、PM$_{2.5}$濃度測定地点において共存汚染物質が測定されていない地域については、最も近くの測定局の測定値を利用した。

気象データについては、原則として対象地域あるいは隣接する地域（市町村）の気象観測所が測定する気温、相対湿度のデータを用いた。該当する気象観測所がない場合には常時監視局で測定されている気象データを、いずれも存在しない場合には、対象地域と同一都道府県内の最も近くの気象観測所のデータを用いた。なお、大気汚染物質データ及び気象データに関しても、解析対象期間は2002年1月1日から2007年12月31日である。
４．方法

4.1 解析データセットの作成と基本集計

本研究での日死亡データは、2002年から2007年までの人口動態統計データを目的外使用申請・許可を受けて借用し、20都市研究と同様、当該地域の事故死を除く全死因（簡単分類死因コード20000未満、総死亡とする）、循環器系疾患に起因する死亡（簡単分類死因コード09100から09500）、呼吸器系疾患に起因する死亡（簡単分類死因コード10100から10600）の3種類に区分して抽出した。その後、対象地域ごとに死因別の日死亡数として集計を行った。

本研究でのPM2.5濃度、共存汚染物質濃度（NO2, Ox）、気温、相対湿度の日平均値は、大気汚染防止法に基づいて大気の常時監視を行っている一般環境大気測定局および自動車排出ガス測定局、気象条件に関しては必要に応じて気象台に対して利用申請を行い、当該汚染物質と気象に関する24時間測定データ（時間値データ）を借用した。これらの時間値データの0時から23時までの測定値を平均して日平均値として用いた。なお時間値データに欠測がある場合は常時監視マニュアルに準じて、20時間以上の測定データがあるものを有効測定日とした33,42。有効測定日とならなかった日に関しては、妥当な外挿を行うことができる近隣測定局データが存在する場合には補完を行い、そのような測定局が存在しない場合には欠測日として解析から除外した。

4.2 本研究に適用する統計的手法の概要と先行適用事例

序文で述べた日本でのPM2.5に関する環境基準設定を目的として、専門委員会による粒子状物質研究に関する包括的文献レビューが行われ、環境省の報告書としてまとめら
れた 35. 対象となった研究は、動物実験、ヒトボランティア実験、疫学研究である。ここでは、
PM2.5の短期健康影響に限定し、報告書で重点的にレビューされた疫学研究の結果ではなく、個別に取り上げられなかったデータ解析手法に焦点を当て、本研究で用いる統計的手法を示す。まず、先行研究でも頻繁に用いられており、本研究でも比較のための手法として用いる一般化線形モデル及び一般化加法モデルを示し、効果の時間差（ラグタイム）に分布を仮定する Distributed-Lag モデルに触れる。その後、本研究で地域間差の検出に適用する分数多項式回帰モデルの概要を示す。また、先行研究で用いられる Case-Crossover 解析についても比較のため概観し、最後にリスクの併合方法を述べる。

4. 2. 1 一般化線形モデル

日単位の死亡数と PM2.5濃度データの関連を、時間（日付）、気温と相対湿度、共存汚染物質を考慮した上で推定することを考える。この問題が注目され始めた当初、1990年代によく利用されていたのは、一般化線形モデル（Generalized linear model: GLIM）である 43-46. 様々な検討を経て、PM2.5濃度と死亡の間に対数線型関係を想定し、パラメトリックなスプライン関数を用いて気象条件などを調整する一般化線形回帰モデルが良く使われるようになった 47. 具体的には、気温や湿度に 2 次の回帰スプラインや自然スプライン関数を当てはめ、デバイアンス最小となるような節点の探索を行うなどしてモデルを推定する。また、季節的な変動を含めた長期トレンドを調整するために、しばしば各年の月 1 日から 12 月 31 日に対応する日付の変数や、月を表すダミー変数を共変量としてモデルに加える場合が多い 6.
ここでは、一例として c を地域、t を日付を表す添え字、y を日死亡数、x を PM2.5 濃度、TEMP を気温、HUMI を相対湿度とする。気温については 2 次の回帰スプラインを、長期トレンドは 1 月から 12 月までの 2 ヶ月ごと 6 要因からなるダミー変数 DUM をモデルに含めて調整する場合を考える。そのような場合、GLIM は以下のように定式化される。

$$\ln\left(E\left[y_i^c \right] \right) = \alpha^c + \beta_0^c x_i^c + \beta_1^c TEMP_i^c + \beta_2^c \left(TEMP_i^c \right)^2 + \beta_3^c \left(TEMP_i^c - knot \right)^2 + DUM_i$$

$TEMP_i^c > knot$の場合

$TEMP_i^c \leq knot$の場合

ここでの knot は回帰スプラインの節点を表し、任意に動かしてデバイアンスが最小になる節点を探す、そのモデルを採用する 33.

また、PM2.5 の濃度変動が翌日以降の死亡に影響を与える可能性を考え、効果のタイムラグを検討する。具体的には、想定するタイムラグを k 日とし、上式の右辺 t を $t-k$ とし、同様の解析を実施する。他にも、z_i^c にイベント発症（死亡）前数日間の平均 PM2.5 濃度を入れたり、TEMP や HUMI に死亡前数日間の最大値、最小値を採用したりするなどの検討も行われてきた 47。さらには、このようなタイムラグを検討するために、計量経済などの領域で開発された分布ラグモデル（Distributed Lag Model: DL モデル）も適用されるようになった 48,49。DL モデルでは、当日だけではなく死亡前数日間の PM2.5 濃度が結果に影響を与えると考え、上記モデルの $\beta_i^c x_i^c$ 項を $\beta_0^c x_i^c + \beta_1^c x_{i-1}^c + \cdots + \beta_k^c x_{i-k}^c$ と置き換え、それぞれの回帰係数を推定する。さらに有限多項式を使って説明変数の数を減らすことができ 49。具体的に 3 次多項式を使った DL モデルの場合であれば、上記回帰係数 $\beta_0^c, \ldots, \beta_k^c$ のそれぞれに対して

$$\beta_{iu}^c = \gamma_0^c + \gamma_1^c u + \gamma_2^c u^2 + \gamma_3^c u^3 \quad (u = 1, \ldots, k)$$

を考えることになる。
4. 2. 2 一般化加法モデル

2000年ごろから以降現在までの先行研究で最もよく用いられているのは、ノンパラメトリックなスプライン関数を使って気象条件などをモデルの平均構造に含める一般化加法モデルである（Generalized Additive Models; GAM）である33,47,50. GAMは、古典的なノンパラメトリック回帰をカテゴリカルデータにも拡張したものとして提案された51,52. GAMは、平均構造には加法モデルを仮定し、説明変数を非線形な関数を使ってモデルに含め、その関数形をデータから推定する。平滑化手法には平滑化スプラインやLocally Weighted Scatterplot Smoother (LOESS) などを利用する。iを対象者(i=1,…,n), jを説明変数の数(j=1,…,p)を表す添え字として、結果変数をy、説明変数をqとすると、GAMは次のような一般式で表すことができる。

\[g(E[y_i]) = \alpha_i + \sum_{j=1}^{p} s_j(q_j) \]

ここで、\(g(\cdot) \) はリンク関数で、\(s_j(\cdot) \) は \(q_j \) についての何らかの非線形関数でデータから推定する。平滑化スプラインを用いる場合には、自由度を \(\lambda \) とし、次のペナルティ付き残差平方和(Residual Sum of Squares: RSS)を最小とする推定量を算出する。

\[RSS = \sum_{i=1}^{n} \left[y_i - s(q_i) \right]^2 + \frac{2}{2} \int [s''(q)]^2 dq \]

複数の説明変数に対して平滑化スプライン関数を考える場合には、説明変数ごとに解を求めて更新していくバックフィッティングアルゴリズムを利用する。具体的には、最初の平滑化関数 \(s_1(q_1) \) に初期値を与えて \(\hat{s}_1^{(0)} \) とし、他の平滑化関数は \(\hat{s}_j^{(0)} = 0 \) を初期値とする。\(q_{i1} \) のみを説明変数としてあてはめる、\(\hat{s}_i^{(1)} \) を \(\hat{s}_i^{(2)} \) に更新、次に \(q_{i2} \) をあてはめて \(\hat{s}_2^{(1)} \) を \(\hat{s}_2^{(2)} \) に更新というプロセスを繰り返す。更新のたびに RSS を計算し、RSS の減少幅が
収束基準を下回った時点で収束したと判断し、反復計算を終了してその時点でのモデルを採用する。

PM2.5濃度が死亡に与える急性影響を検討する研究領域では、1998年から1999年にかけてGAMの適用例が示されて以降、気温・相対湿度・長期トレンドなどの共変量の非線形な影響を柔軟に調整できるという長所に注目が集まったことと、結果を国際比較する観点から同様のモデルを用いた結果を示したいとの気運があったことから、ほとんどの研究でGAMを採用する傾向にある。特に米国の当該研究では、GAMでの平滑化項の自由度や収束基準が結果に与える影響なども詳細に検討されてきた。その結果、欧米を中心に2000年以降GLIMのみの結果を提示している論文は影をひそめ、アジアなどその他の地域でも軒並みGAMを用いた結果が中心に報告されるようになっていった。

具体的には、cを地域、tを日にちを表す添え字、yを日死亡数、xをPM2.5濃度、TEMPを気温、HUMIを相対湿度とすると、GAMでは地域ごとの期待日死亡数を以下のようにモデル化する。

\[
\ln\left(E\left[y^c_t\right]\right) = \alpha + \beta_0 x^c_t + s(Calender^c_t, \lambda_1) + s_2(TEMP^c_t, \lambda_2) + s_3(HUMI^c_t, \lambda_3)
\]

ここでCalenderは、各年の1月1日から12月31日に対応する日付の変数であり、長期トレンドの影響による交絡を調整するためにモデルに含める。また \(s(w, \lambda)\) は、変数 \(w\) に対して自由度 \(\lambda\)を割り当てた平滑化スプライン関数である。自由度に関しては、別途検討のうえ適切な値を決めて代入する場合と、一般化クロスバリデーション(Generalized Cross-Validation: GCV)アルゴリズムを用いて、データに応じてその都度最適なものを推定して選択する場合がある。後者の場合、平滑化スプラインの推定量を \(\hat{s} = Ay\) のように表すとすると、自由度 \(\lambda\) は \(A\) の対角要素の和(trace)であるとして、以下の基準を最小にする。
る \lambda を選ぶことができる。

\[GCV = \frac{n \sum_{i=1}^{n} [y_i - \hat{y}(q_i)]^2}{[n - \text{trace}(A)]^2} \]

ただし、実際には複数の研究で自由度についての検討がなされており、自由度が大きくなるに従って PM2.5 のリスク比が低下する傾向がみられた 55,56,59. 日本の 20 都市研究では Calendar については 1 年あたり自由度 7, TEMP については自由度 6, HUMI については自由度 3 という Dominici 2000 の提案以降頻繁に使われている自由度が採用された 60. 結果がモデルや自由度の選択に依存するとの指摘もしばしば見受けられる 61 が、本研究では比較対象として用いるため、20 都市研究と同じ自由度を用いた。

4.2.3 Distributed Lag Model

PM2.5 の短期健康影響に関する研究が進むにつれて、死亡だけではなく、関連疾患の発症や、関連疾患による救急車の出動要請（医師への緊急連絡）、救急受診、入院、学校の欠席など様々な健康影響指標が研究対象となるようになってきた 62,63,64,65,66,67. 古典的な大気汚染の事例報告だけでなく、これらの比較的新しい健康影響指標を対象とした研究を通じて、PM2.5 による短期的な健康影響には、数時間から数日の時間的遅れが存在することが知られるようになった 68,69,70,71. このような時間的遅れをラグタイムと呼び、その日の健康影響指標が当日だけでなくラグタイム分だけ過去の PM2.5 濃度と関連するかどうかの探索が行われ、一般的には循環器系の健康影響指標は数時間から 1 日前の PM2.5 濃度と、呼吸器系の影響指標関連性が大きく、呼吸器系に関わる影響指標は数日間の時間的な遅れで関連性が大きくなるとの報告が多い結果となった 33,48,71.
詳細には、設定するラグタイムによってPM_{2.5}の健康影響リスクの推定値も大きく変わることが報告されてきた。集団でみれば、影響が最も大きく現れるラグタイムは一時点ではなく広がりを持つと考えられるため、特定のラグタイムを設定したリスクの推定値は考え得る全体のリスク推定値よりも小さいことが想定される。一般に粒子状物質の測定が24時間単位で行われている。したがって、24時間よりも短い時間単位の曝露に関する研究の数は非常に少ないため、ラグタイムのもっとも単純な扱いは、当日、前日…などのようにラグタイムを1日ずつ増やしていて、ラグタイムごとにリスクを推定する方法である。他にも、最も大きいリスク推定値を与えるラグタイムを探索して採用する方法や、健康影響指標の測定日から数日間の平均PM_{2.5}濃度を求めて曝露とする方法、ラグタイムに分布を仮定する方法などが提案されている。

中でも、このラグタイムに分布を仮定する手法はdistributed lag modelと称され、計量経済分野で用いられている手法をSchwartzらがPM_{2.5}の健康影響評価に適用した。具体的には、ラグタイムに分布を仮定し、分布の特定に必要なパラメータを研究地域ごとに推定するという方法である。本研究では、cを地域、tを日にちを表す添え字、yを日死亡数、xをPM_{2.5}濃度としてその他の共変量を省略すると、distributed lag modelは、k日前PM_{2.5}濃度まで結果に影響を与えると考えて、次のようにモデル化するものとする。

\[
\ln\left(E\left[y_t^c\right]\right) = \alpha_0^c + \beta_1 x_t^c + \beta_2 x_{t-1}^c + \cdots + \beta_k x_{t-k}^c
\]

ただ、このようなモデル化をすると、通常kが増えるに従って推定が不安定になることが知られており、通常は上記モデルに次のような多項分布を仮定した制約を入れることが多い。

\[
\beta_k = \sum_{v=0}^{d} \eta_v k^v
\]
ここで、k はラグタイム、v は多項式の次数を表し、3 次で十分なあてはまりが得られることが先行研究で示されている 48。また、このようにラグタイムに分布を仮定すると、これまで行われてきた曝露と発症のラグタイムを 1 日ずつずらし、それぞれ別々の推定を行って複数の結果を得る手法は、ラグタイムに制約を置かない分布を仮定した場合と一致する。distributed lag model は、2000 年代に入ってから前述 GLIM モデル、GAM モデルによる解析での PM2.5 濃度の調整に用いられる他、仮定する分布の違いが結果に与える影響の検討や感度解析なども目的として適用されてきた。本研究では、対象とする健康影響が古典的な日死亡であることと都市研究との結果の比較のため、ラグタイムの分布に制約を置かずに 1 日ずつずらした検討を実施した。

4.2.4 分数多項式回帰モデル

PM2.5 の健康影響は、気温や他の共存汚染物質の影響と比べて強いものではないため、ラグタイムの取り方をはじめ、共変量のモデル化の違いによって推定されるリスクに違いが生じることが知られている 24,33。各種モデル間の結果の比較も行われているが、ここでは現在まで当該分野には適用されておらず、利用可能な分数多項式(Fractional Polynomial; FP)モデルについて述べる。FP モデルは必ずしも線形の影響を持たない共変量を柔軟に調整するモデル化の手法として提案され 74、ソフトウェアの発展などに伴って、循環器疫学などの領域で、生活習慣を共変量として調整する目的などで徐々に利用されるようになってきた 75。線形な影響を持たない共変量をモデルで調整する際の最も簡単な扱いは、カテゴリ化してダミー変数としてモデルに含めることであるが、カテゴリ化のカットオフ点が恣意的になる点や、カットオフ値の取り方に結果が影響さ
れる点、いずれにせよカテゴリ内ではリスク一定という生物学的に無理のある仮定を置かねばならない点などが批判の対象となっている。仮定によって生じる無理を和らげるためにカテゴリ数を増やすと、端のカテゴリでデータが少なくなったり、信頼区間幅が増大するなどの影響が考えられる。

FP モデルでは、通常の多項式回帰モデルを拡張して、共変量に対して分数を含めた累乗項の当てはめを検討する。他の共変量を省略し、変数 x のみを分数多項式としてモデルに含める場合、m 次の分数多項式モデルは以下のように定式化される。

$$E[y] = \alpha_0 + \beta_1 x^p + \cdots + \beta_m x^{p_m}$$

通常は $m=2$ までの分数多項式で十分良くデータにあてはまるとされ、次数 2 の場合は、p_1, p_2 は{-2, -1, -0.5, 0, 0.5, 1, 2, 3}の中から $\binom{8}{2}=28$ 通りと、$p_1=p_2$ となる場合 8通りの計 36通りのモデルを検討する。ただし、$p_1=p_2$ となる場合は、2 項目に $\log(x)$ を掛けてモデル化する。モデル選択手順としては、$m=1$ を選択する場合は全 8 モデル中最もデビアンスの小さくなったモデルを選ぶ。また、$m=2$ を選択する場合は、$m=1$ とした場合の 8 モデルのうち最もデビアンスが小さくなったモデルを選び、また、$m=2$ とした場合の 36 モデルのうち最もデビアンスが小さくなったモデルを選び、次数およびモデルを選択するという手順でモデルを決めることが推奨されている。

このモデルは、GAM 同様、結果変数に対して非線形な変数の記述に対して有用であるが、関係や GLIM と同様、単純な線形モデルで調整することができない共変量のモデル化に着目したアプローチであるが、$PM_{2.5}$ の健康影響評価に際しては現在まで適用事例はない。
わが国の都市研究では、推定された PM2.5 の日死亡リスクの推定値は、いずれの死因に関しても GAM に比べて GLIM による解析の方が一貫してやや大きな値をとる傾向がみられた。GAM と GLIM は前述の通りパラメタ推定の方法も含め、統計的には異なるモデルであるが、当該研究に際しての一番の違いは、気温と相対湿度、およびカレンダー時間（長期トレンド）のモデル化である。都市研究の結果からは、GLIM で上記共変量が十分に調整されなかったため過大評価が起きているか、GAM でスプライン関数を用いた柔軟なあてはめを行ったことで、オーバーフィッティングによる過小評価が起きている可能性等が考えられる。その点、FP モデルは共変量の調整という目的で利用する場合には、データへの当てはめの柔軟さにおいて GAM と GLIM の中間的な性能を持つ可能性があり、モデルが定められたあとは一般化線形モデルの枠組みで取り扱うことができるため本研究の目的である地域間差の検討が可能となる。

4.2.5 Case-Crossover 解析

Case-Crossover 解析は、比較的最近 PM2.5 のリスク評価で用いられるようになった。通常のケースコントロール研究と異なり、ケース集団とコントロール集団の過去の曝露を比較するのではなく、イベントを発症した同一個人内で発症までに経時に変化してきた曝露と疾患の関連を比較する解析手法である。Case-Crossover 解析は、1991 年に Maclure らによって提案され、過去の複数時点にわたる曝露状況が分かるようであれば、同一個人内での複数時点とマッチングを行うことも可能である 81。GLIM や GAM、FP とは異なる研究デザインに対するアプローチであるが、仮定した同一対象者内で曝露が短期間に変化して疾患発症に急性影響を与えるような疾患に適していることが 81 さらに
新たなデータを必要とせず、従来 PM2.5 のリスク評価で用いられていたデータをそのまま利用して解析を実施できることから、2000年前後から世界各国で PM の短期影響評価に適用されるようになった 82,83。PM2.5曝露による短期健康影響評価という観点からは、Case-Crossover 解析の結果とも比較を行うことは可能であるが、本研究の主眼である地域間差の検出に拡張・適用できる解析手法ではないため、本研究では実施しない。4.2.6 地域ごとに推定された死亡リスクの併合方法

PM2.5の死亡リスクは地域ごとに変動することを想定する。GLIM や GAM によって地域ごとに推定された死亡リスク比 \(\exp(\beta_{0}) \) を、PM2.5濃度 10 \(\mu g/m^3 \) 上昇あたりの地域ごとの死亡リスク比 \(\exp(10\beta_{0}) \) として、リスク比とその標準誤差を用いて restricted maximum likelihood (REML) 法で併合する。

これに代わる手法として 2004年に行われるがベイズ流の階層モデルである 84。具体的には、地域の PM2.5濃度と実際の個人曝露には乖離があることがしばしば指摘されており 85,86、PM2.5の個人曝露量と地域での濃度の関連をモデルに組み込むために GAM を拡張した2段階モデルが提案された 8。この2段階モデルでは、前述の GAM 内の地域曝露濃度が個人曝露との線形に関連するという高次のモデルを仮定する。このように多段階のモデルを仮定することで、地域を併合した結果を一つのモデルから推定することが可能になる。
4. 3 本研究でのPM2.5による短期健康影響の検討方針

本研究では、新たに作成したデータセット（20都市研究に3年間分の新規データが追加されたもの）に対して、20都市研究と同様に定義した地域ごとの総死亡、循環器疾患死亡、呼吸器疾患死亡の日死亡数をアウトカムとして、GLIMとGAMを適用した。共変量としては、共存汚染物質であるNO2とOxを、気象条件としては日平均気温、日平均相対湿度、日付を共変量としてモデルに含めた。モデルごとにPM2.5日平均濃度10μg/m³増加分に対する日死亡のリスクの増加を地域ごとの推定し、さらに地域ごとに算出された死亡リスクの併合を行った。その際、解析対象は65歳以上に限定して、PM2.5日平均濃度のタイムラグについては当日から3日前までをそれぞれ個別に検討し、その後、本研究で独自に検討するFPモデルの適用や一般化線形混合モデルを利用した地域間差の検討、季節を限定した地域間差の検討などを行った。詳細は次節以降に示す。

4. 3. 1 GLIMの適用

本研究では、20都市研究と同様のGLIMを適用した。具体的には、cを地域、tを日付を表す添え字、yを日死亡数、xをPM2.5濃度、NO2とOxを調整に用いる共存汚染物質濃度、TEMPを気温、HUMIを相対湿度とする。気温については2次の回帰スプラインを含めて調整することとした。また、長期トレンド（インフルエンザ流行などの季節的な変動）の影響による交絡を調整するために、1月から12月までの2ヶ月ごとに6要因からなるダミー変数DUMをモデルに含めた。GLIMを用いたモデルは以下のように定式化した。
$TEMP_i^c > knot$の場合

\[
\ln\left(E\left[y_i^c \right] \right) = \alpha_0^c + \beta_1^c x_i^c + \beta_2^c NO_{2_i}^c + \beta_3^c Ox_i^c \\
+ \beta_4^c TEMP_i^c + \beta_5^c \left(TEMP_i^c \right)^2 + \beta_6^c \left(TEMP_i^c - knot \right)^2 + \beta_7^c HUMI_i^c + DUM_i
\]

$TEMP_i^c \leq knot$の場合

\[
\ln\left(E\left[y_i^c \right] \right) = \alpha_0^c + \beta_1^c x_i^c + \beta_2^c NO_{2_i}^c + \beta_3^c Ox_i^c \\
+ \beta_4^c TEMP_i^c + \beta_5^c \left(TEMP_i^c \right)^2 + \beta_6^c HUMI_i^c + DUM_i
\]

また、パラメタ推定に際しては y_i^c の分散として $E\left[y_i^c \right] = V\left[y_i^c \right]$ というポアソン回帰モデルを仮定した上でデバイアンスが最小となる knot を探索し、そのモデルを採用した。また、PM$_{2.5}$の濃度変動が翌日以降の死亡に影響を与える可能性を考え、効果のタイムラグも検討する。具体的には、想定するタイムラグを k 日とし、上式の右辺 t を $t-k$ として $k=0,1,2,3$ の4通りの場合で同様の解析をそれぞれ実施した。

4.3.2 GAMの適用

本研究では都市研究と同様の GAM を適用した。具体的には、c を地域、t を日にちを表す添え字、y を日死亡数、x を PM$_{2.5}$濃度、NO$_2$ と Ox を調整に用いる共存汚染物質濃度、TEMP を気温、HUMI を相対湿度、Calender を長期トレンドによる交絡調整のための各年1月1日から12月31日に対応する日付の変数として、地域ごとに期待日死亡数を以下のようにモデル化した。

\[
\ln\left(E\left[y_i^c \right] \right) = \alpha_0^c + \beta_1^c x_i^c + \beta_2^c NO_{2_i}^c + \beta_3^c Ox_i^c + s_1(Calender, 7 / year) + s_2(TEMP_i^c, 6) + s_3(HUMI_i^c, 3)
\]
ここでは，$s(w, \lambda)$ は，変数 w に対して自由度 λ を割り当てたスプライン関数である。本研究での λ は，米国で Dominici らが提案し，世界的に多くの研究で標準的に用いられている自由度を採用し，日付に対して 1 年当たり 7，気温に対して 6，相対湿度に対して 3 を与えるものとした。また，効果のタイムラグは GLIM と同様，当日から 3 日前までの 4 通りの場合でそれぞれ同様の解析を実施した。なお，RSS の減少幅に対する収束基準には 10^{-8} を用いた。

4.3.3 FP モデルの適用

本研究では，c を地域，t を日付を表す添え字，y を日死亡数，x を PM2.5 濃度，NO2 と Ox を調整に用いる共存汚染物質濃度，TEMP を気温，HUMI を相対湿度，Calender を長期トレンドによる交絡調整のための日付に対応する変数として，FP モデルを適用した地域ごとに期待日死亡数のモデル化を試みた。

なお，分数多項式としてモデルに含めるのは気温，相対湿度，日付とし，各項の次数は最大 2 次までとして 1 次，2 次の場合を検討した。最終的には各次数でデビアンスが最小となったモデル同士を比較し，デビアンスが小さい方を当該地域の FP モデルとして選択した。

[1 次の FP モデル]

\[
\ln \left(E \left[y_i^c \right] \right) = \alpha_0^c + \beta_1^c x_i^c + \beta_2^c NO_2^c + \beta_3^c Ox_i^c + \beta_4^c (TEMP)^{p_{11}} + \beta_5^c (HUMI)^{p_{52}} + \beta_6^c (Calender)^{p_{73}} \\
\]

[2 次の FP モデル]

\[
\ln \left(E \left[y_i^c \right] \right) = \alpha_0^c + \beta_1^c x_i^c + \beta_2^c NO_2^c + \beta_3^c Ox_i^c + \beta_4^c (TEMP)^{p_{11}} + \beta_5^c (TEMP)^{p_{51}} \\
+ \beta_6^c (HUMI)^{p_{52}} + \beta_7^c (HUMI)^{p_{52}} + \beta_8^c (Calender)^{p_{73}} + \beta_9^c (Calender)^{p_{73}}
\]
次数が1次の場合，p1は{-2，-1，-0.5，0，0.5，1，2，3}から1つ選んで最もデビアンスが小さくなったモデルを選択した。次数が2次の場合，p1とp2は{-2，-1，-0.5，0，0.5，1，2，3}から重複を許容して2つ選び，p1=p2となる場合は，2項目にlog(x)を掛けてモデル化を行い，最もデビアンスが小さくなったモデルを選択した62,66。

4.3.4 地域ごとに算出したPM2.5日死亡リスクの併合

ここでは，地域ごとに得られた総死亡，呼吸器疾患死亡，循環器疾患死亡の日死亡リスクの推定値の併合を行った。具体的には，GLIM，GAM，FPモデルを適用して推定したPM2.5濃度10㎍/m³上昇あたり，NO2とOx濃度10ppb/m³上昇あたりの地域ごとの死亡リスク比とその標準誤差を用いてREML法で死亡リスク比の併合を行った。ラグタイムに関しては0日から3日を想定し，それぞれ別々に併合を実施した。

4.3.5 変量効果モデルを利用したPM2.5日死亡リスクの地域間差の検討

欧米の疫学研究では，人種差をはじめとする地域ごとの特性の違いが大きく，大規模な疫学研究であっても，地域や地域を代表する特性によってデータを層別すると，しばしば十分な精度を保った推定を行うことができなくなるため，結果の地域差を検討するよりも地域ごとの結果を併合するに重きが置かれがちである。また，日本では複数地域を対象とした疫学研究が数多くあるわけではないことと，人種差をはじめとする地域による特性の違いが欧米ほど顕著ではないため，異なる地域のデータを個票レベル併合して結果を算出したり，欧米と同様の結果の併合方法が採用されたりしてきた。しかし，さまざまな特性を持った地域を解析対象とする疫学研究の結果が地域選択に対して一般
化可能かどうかを議論するためには、得られた健康影響が複数の地域間で一様であるかどうかを検討することが必要となる。

ここでは、地域ごとに得られた日死亡リスク比の推定値の併合および、結果の地域間差の検討を試みる。本研究やそれに類似する PM2.5 濃度の短期健康影響に関する研究では、地域を層としたり固定効果として扱って地域の影響を定量したりするよりも、多施設で行われる臨床研究における施設間差を検出する場合のように、地域を変量効果とみなして一般化線形混合モデルの枠組みで PM2.5 濃度と地域の交互作用の評価を行うのが適していると考えられる87。

4.3.5.1 変量効果モデルの定式化

地域ごとではなく全データに対して FP モデルを当てはめてモデル推定を行い、地域を変量効果として、PM2.5 濃度と変量効果の交互作用項を含めたモデル化をすることで、PM2.5 の影響の地域間差の評価を実施した。本研究では、c を地域、t を日にちを表す添え字、y を日死亡数、x を PM2.5 濃度、NO2 と Ox を調整に用いる共存汚染物質濃度、z を FP モデルで選択された気温、相対湿度、長期トレンドを調整するための日付からなる分数多項式とする、地域間差を検討するための混合効果モデルを次のように定式化した。

\[
\ln\left(\mathbb{E}\left[y^c_i \mid \beta^c_i \right] \right) = \alpha^c + \beta_0 x^c_i + \beta_1 NO_2^c_i + \beta_2 Ox^c_i + \beta_3 z^c_i + b_0^c + b_1 x_i^c \]

このモデルは 4.3.3 で定式化した地域ごとにモデル選択を行う FP モデルと異なり、すべての地域をデータ個票レベルで併合した上で、平均的な PM2.5 の日死亡リスク（\(\beta_0 \)）等を算出するモデルである。ここで、\(\beta_0 \) から \(\beta_1 \) はそれぞれの変数に対する固定効果パラメータ、
\(b_0^c \) と \(b_1^c \) は地域 \(c \) の効果を表す変量効果パラメタである。\(b_0^c \) は地域 \(c \) の日死亡が全体平均からどの程度ズレがあるかを表すパラメタであり、\(b_1^c \) は、平均的な PM2.5 の日死亡リスクである \(\beta_0 \) からの地域 \(c \) のズレを表している。本研究では、PM2.5 の日死亡リスクの地域間差の検討を目的としているため、\(\beta_0 \) から \(\beta_1 \) に加えて \(b_0^c \) と \(b_1^c \) も推定する。変量効果パラメタは互いに独立に平均 0、分散共分散行列 \(D \) の 2 変量正規分布に従うと仮定した。

\[
\begin{pmatrix}
 b_0^c \\
 b_1^c
\end{pmatrix} \sim \left(\begin{array}{cc} 0 \\
 0 \end{array}\right), D = \begin{pmatrix} d_{11} & d_{12} \\
 d_{21} & d_{22} \end{pmatrix}
\]

以上を踏まえ、上記混合効果モデルの尤度関数を次のように表す。

\[
\prod_{c=1}^{20} \prod_{t=1}^{day_c} f(y_t^c | b^c) |D|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} b^c \cdot D^{-1} b^c \right) db^c
\]

なお、ここで \(t \) は地域 \(c \) ごとの測定時点数（day_c）を表す。上記尤度関数は、未知パラメタ推定のための目的関数を明示的に書き下せず、解析的に解くことができないため、近似計算を行う必要がある。本研究では、ベイズ流のパラメタ推定法であるマルコフ連鎖モンテカルロ法（MCMC 法）に基づく Gibbs sampling を採用した。また、タイムラグの影響に関しては、先行 20 都市研究でいずれの死因に対しても比較的 PM2.5 のリスクが高かった 1 日前（\(k=1 \)）に固定した検討を実施した。

4. 3. 5. 2 MCMC 法による未知パラメタ推定

MCMC 法は、複雑な変数間の同時確率分布を解析的に直接計算するのではなく、モンテカルロシミュレーションによって当該確率分布に従う標本を繰り返しサンプリングす
ことで推定する手法である。その中でも Gibbs sampling は、複数の確率変数に対するが構成する同時分布が複雑なものであったとしても、各々のパラメータの完全条件付き分布を既知として、初期値を与える。その上で、最初のパラメータ以外を固定した完全条件付き分布から目的とするパラメータのサンプリングを行い、またその標本で条件づけて次のパラメータのサンプリングを行うという連続的なサンプリングを繰り返すことでパラメータの情報を更新していく。繰り返し回数が増大すれば、このようにして得られたサンプルはそれぞれの真の周辺分布に従うことが知られているため、収束基準を満たしたもの以降のサンプルを事後分布として、そこから興味のあるパラメータの事後平均、事後分散などを自由に算出することが可能になる。

ここでは、固定効果を併せて \(\beta \) と表し、収束判断基準を満たした時点の反復を \(r \) とし、\(r \) 時点の固定効果の尤推定量を \(\hat{\beta}(r) \) で表すとする。変量効果で条件づけたものでの \(\beta \) の完全条件付き事後分布は、平均が \(\hat{\beta}(r) \) で分散が Fisher 情報量の逆数となる多変量正規分布で近似することができる。一方、\(\beta(r) \) と \(D(r) \) で条件づけた変量効果 \(b \) の条件付き事後分布は明示的な表現をすることができないが、サンプリングが行えれば事後平均、事後分散などの評価は行うことは可能である。そこで本研究では、形が明示できない分布に、密度関数が明示できる分布を重ね、その差分を利用して本来の対象である明示的に表せない分布からのサンプルを選ぶ、棄却サンプリング法を採用した。また、変量効果の分散 \(D \) の条件付き事後分布は、変量効果のパラメータ行列である \(\sum_{c=1}^{20} b(c) b^*(r) \) のコレスキー分解根を持つウィッシャート分布に従うとされるので、標準ウィッシャート分布から乱数行列を発生させることで評価可能である。

本研究での Gibbs sampling は 5000 回行い、Gelman の基準に基づいた収束判断を行った。なお、Gelman の基準による収束
判断では、初期値に依存する burn in period の標本数を n、発生させた独立なマルコフ連鎖の数を m、i 番目の連鎖の j 番目の観測値を θ_{ij}、その関数を g_{ij} とすると

$$\sqrt{R} = \sqrt{1 + \frac{1}{n} \left(\frac{B}{W} - 1 \right)}$$ が 1.1 未満で収束したとみなすものである。

ここで B はマルコフ連鎖間の変動、W はマルコフ連鎖内での変動を表しており、上記の表現を用いて以下のように表される。

$$B = \frac{n}{m-1} \sum_{i=1}^{m} \left(\frac{1}{n} \sum_{j=m+1}^{2n} g_{ij} - \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{n} \sum_{j=m+1}^{2n} g_{ij} \right) \right)$$

$$W = \frac{1}{m} \sum_{i=1}^{m} \left(g_{ij} - \frac{1}{n} \sum_{j=m+1}^{2n} g_{ij} \right)^2$$

4.3.6 季節を区切った PM2.5 日死亡リスクの地域間差の検討

前述の通り、本研究では PM2.5 の成分を考慮した解析は実施することができない。本研究では、黄砂がもたらす健康影響の一端を検討するために、季節によって地域間差に変化があるかどうかの検証を行う。日本では、2 月から 5 月の 4 ヶ月間で全飛来黄砂の 90% が集中し、中でも 3 月から 5 月の 3 ヶ月間で頻繁に観測されるため 37,38、季節を 3 月から 5 月に限定して、限定して 4.3.4 と同様の地域間差の評価を実施した。なお、季節を限定した地域間差の検討についても、同様にタイムラグを 1 日前 (k=1) に固定した検討を実施した。

本研究での統計解析は、FP モデルの選択部分と MCMC 法の適用には STATA version11、R version 2.14.1 それ以外の解析にはすべて SAS release 9.3 を用いた。
5. 結果

5.1 地域ごとの日死亡データの集計

解析対象期間の人口動態統計データから、その年に死亡申請があったもののその年に死亡していない対象者（過去に死亡していたことが事後的に判明し、その年に収載された場合）を除いて、対象地域ごとに事故死を除く全死因死亡（簡単分類死因コード20000未満）、呼吸器疾患死亡（簡単分類死因コード10100から10600）、循環器疾患死亡（簡単分類死因コード09100から09500）の平均日死亡数、最小値、最大値、全死亡に占める割合を表1から表3に集計した。いずれの死因でも東京23区の死亡が全体の40%弱を占め、大阪府大阪市が13%前後、愛知県名古屋市が10%前後、北海道札幌市と兵庫県神戸市が7%程度と都市部が上位に続いた。また、総死亡（791,507人）の17.2%が呼吸器疾患死亡（136,444人）、32.4%が循環器疾患死亡（256,695人）であった。

5.2 地域ごとの大気汚染物質・気象データの集計

対象地域ごとにPM_{2.5}日平均濃度、NO_{2}とOxの日平均濃度、日平均気温、日平均相対湿度の平均値、最小値、最大値、四分位点を表4から表8に集計した。大気汚染物質に関してはいずれも右に歪んだ分布となっており、特にPM_{2.5}日平均濃度については、最大値では13の地域で新設の環境基準（日平均65μg/m³）を上回っていた。また、図の平均値は、全期間を通じての日平均値の平均値であるが、17の地域で新設の環境基準（年平均15μg/m³）を上回っていた。さらに、表9から表13に同データの年ごとの平均値とその標準偏差を示した。PM_{2.5}、NO_{2}の日平均濃度の年平均値およびその標準偏差についても、ほとんどの地域で経年的に減少傾向がみられ、特に2002年と2007年の比較に
5. 3 GLIM 適用による地域ごとの PM2.5 濃度の日死亡リスク比

対象地域ごとに 4.3.1 で定式化した GLIM を適用し、本研究で定義をした総死亡、呼吸器疾患死亡、循環器疾患死亡それぞれのアウトカムに対して、PM2.5、NO2、Ox 日平均濃度 10 μg/m³ 増あたりの日死亡リスク比とその 95%信頼区間を評価した結果を表 14 から表 25 に示した。なお、影響のタイムラグについては、当日から 3 日後まで（k=0,1,2,3）の影響を想定してそれぞれ別に検討した。

5. 4 GAM 適用による地域ごとの PM2.5 濃度の日死亡リスク比

対象地域ごとに 4.3.2 で定式化した GAM を適用し、本研究で定義をした総死亡、呼吸器疾患死亡、循環器疾患死亡それぞれのアウトカムに対して、PM2.5 濃度、NO2、Ox 日平均濃度 10 μg/m³ 増あたりの日死亡リスク比とその 95%信頼区間を評価した結果を表 26 から表 37 に示した。なお、影響のタイムラグについては、当日から 3 日後まで（k=0,1,2,3）の影響を想定してそれぞれ別に検討した。
5. 5 FP 適用による地域ごとの PM2.5 濃度の日死亡リスク比

対象地域ごとに 4.3.3 で手順を示した FP モデルを適用し、本研究で定義をした総死
亡、呼吸器疾患死亡、循環器疾患死亡それぞれのアウトカムに対して、PM2.5 濃度、NO2、
Ox 日平均濃度 10 μg/m³増あたりの日死亡リスクを定量した。まず、表 38 から表 40 に、
各地域で選択された分数多項式の次数とモデル、および各地域のデータを単純に個票レ
ベルで併合した上で同様に FP モデルを適用した際に選択された分数多項式の次数とモ
デルを示した。また、このようにして推定されたモデルを用いて推定した PM2.5 濃度、
NO2、Ox 日平均濃度 10 μg/m³増あたりの日死亡リスクとその 95%信頼区間を評価し
た結果を表 41 から表 52 に示した。なお、影響のタイムラグについては、当日から 3 日
後まで（k=0,1,2,3）の影響を想定してそれぞれ別に検討した。

5. 6 地域ごとに算出した日死亡リスク比の併合

GLIM、GAM、FP モデルの適用によって地域ごとに推定された PM2,5, NO2, Ox 濃
度 10 単位上昇あたりの地域ごとの日死亡リスク比を 4.2.6 で記述した REML 法で併合し
た結果を表 53 から表 55 に示した。ほぼすべての解析において GAM の推定値が GLIM
を下回る傾向がみられた。

5. 7 PM2.5 日死亡リスクの地域間差

5000 回の Gibbs sampling に対して、各パラメータのサンプルパス描画による確認に
加えて、Gelman の収束判断指標を算出した。すべてのエンドポイントで 2000 回目以降
は収束判断指標 √R が 1.1 未満となり、収束しているとみなすことができたため、2000
回目までを burn-in-period とみなし、それ以降のサンプルを周辺分布から得られたものとして、固定効果に関しては日死亡リスク比と、2.5％点、97.5％点を、変量効果分散に関しては中央値と標準偏差を算出して表 56 に示した。また、変量効果の事後分布は地域ごとに 2.5％点、50％点、97.5％点を算出して表 57 から表 58 に示した。地域の死亡数の全体平均からのズレの方が PM2.5 日死亡リスク比の地域間差よりバラツキが大きかったものの、いずれも地域間差があるとはいえなかった。

5. 8 季節を限定した場合の PM2.5 日死亡リスクの地域間差

季節を 3 月から 5 月に限定して 4.3.5 と同様の解析を実施した結果を示す。すべてのエンドポイントで 2000 回目以降は収束判断指標が 1.1 未満となり、収束しているとみなすことができたため、2000 回目までを burn-in-period とみなし、それ以降のサンプルを周辺分布から得られたものとして、固定効果に関しては日死亡リスク比と、2.5％点、97.5％点を、変量効果分散に関しては中央値と標準偏差を算出して表 59 に示した。また、PM2.5 濃度の日死亡リスクの地域間差に相当する変量効果 b_i の推定事後分布から、地域ごとに 2.5％点、50％点、97.5％点を算出して表 60 に示した。季節を限定しない場合と異なり、総死亡と呼吸器疾患死亡では新潟、岡山、福岡、宮崎の 4 地域で、循環器疾患死亡では新潟、岡山、福岡の 3 地域で有意な地域間差が検出された。
6．考察

はじめに、本研究の解析対象データについて考察する。本研究の前半では、20都市研究と同一地域に関して、解析対象期間が2004年までであった20都市研究の解析期間を2007年まで拡張して同様の目的で解析を実施した。対象地域の死因は、20都市研究と比較して、呼吸器疾患死亡は微減、循環器疾患死亡は増加傾向にあった。この傾向は日本全体の当該期間の死因の経時的推移と合致するものであった。また、大気汚染物質を20都市研究と比較すると、PM$_{2.5}$、NO$_2$の日平均濃度の年平均値およびその標準偏差については、ほとんどの地域で年平均濃度の標準偏差も増加傾向であった。これには、大気環境測定が実施されているものの、PM$_{2.5}$を測定項目にしていないなどの理由で本研究では解析対象していない全国他地域の大気モニタリングデータとも同様の傾向を示すものであった。PM$_{2.5}$とNO$_2$に関しては、車などの移動発生源による影響が大きく、祝祭日には濃度が低く、平日夕方には濃度が高くなることが知られており、この減少傾向は自動車NOx・PM法の規制による効果であると考えられる。ただし、PM$_{2.5}$に関しては新設の環境基準である年平均15μg/m3が未達成の地域が17か所あり、継続的な健康影響評価を実施し、警告を発していく必要がある。また、多くの地域で増加傾向であったOxは光化学スモッグの原因となる物質であり、近年は年間約0.25ppbの割合で増加しており、光化学オキシダント注意報を発令した都道府県は2007年に観測史上最大の28都府県に達し、汚染の拡大が懸念されている。OxはNO$_2$から2次生成されることが知られており、原因物質のNO$_2$は減少傾向にもかかわらず、Oxは増加の一途をたどっている現象には大陸からの越境汚染の影響と、まだ検討中ながらも気温の上昇との関連が考えられている。
今回利用した測定局の設置に関しては、複数ある候補測定局から選択したわけではない条件に合致する測定局データをすべて利用しているため、感度解析的な測定局の代表性に関する検討はできないが、自動車排気ガスの監視のために設置された測定局も含まれることから、特に自動車排気ガスと関連の強い NO₂については実際の個人曝露よりも高く評価をしている可能性がある。

本研究の対象地域では、日平均気温の年平均値は多くの地域で微増、相対湿度に関しては横ばいの傾向であった。また、データが欠測しているのは、年平均にして多くても10 日分程度であり、機器の整備・交換などによるもので、選択バイアスや測定バイアスといった、結果に与える系統的影響はないと考えた。

次に、PM₂.₅濃度の日死亡との関連について考察する。本研究で定量された PM₂.₅の日死亡リスクは、多くの地域で20都市研究より低くなってしまいおり、その原因としては、PM₂.₅濃度の高い地域と低い地域の差がなくなってきたことが考えられる。また、NO₂及びOxの日死亡との関連は20都市研究と類似していたこともあり共存汚染物質の中でも健康影響の大きいOxの濃度上昇や気温の上昇など、PM₂.₅濃度よりも死亡に関連する要因の変動で関連が見えにくくなっている可能性が示唆された。多重共線性の影響を考え、政策決定のための資料としては、共存汚染物質を除いたPM₂.₅単一での健康影響評価も参考にする必要があると考える。また、PM₂.₅濃度との総死亡との関連について地域ごとのリスクを併合した結果は、呼吸器疾患死亡でラグタイム1日とした場合が一番高いリスクとなった点は先行20都市研究と類似した特徴がみられたが、総死亡（本研究ではラグタイム1日が最大リスク）および循環器疾患死亡（本研究ではラグタイム0日が最大リスク）に関しては、20都市研究のもの（総死亡はラグタイム2日、循環器疾患死亡は
ラグタイム 3 日が最大リスク）とは異なる結果の傾向となったが、本研究の解析データを 2004 年までに限定すると 20 都市研究と一致する結果が得られたため、解析対象期間が延長されたための結果の変化と考える。

次に、推計モデルによる結果の違いについて考察する。20 都市研究でも実施された GAM と GLIM で推定された PM_{2.5} 濃度の日死直リスクの違いに関して、20 都市研究では明らかに GAM の推定値が GLIM を下回る傾向がみられたが、本研究でも GAM の推定値が GLIM を下回る傾向は一貫してみられた。また論理的には GAM と GLIM の間に位置するリスク推定値を導くと想定 67,68 されていた FP モデルを適用した結果は、地域ごとには必ずしも一貫した結果は得られなかったが、地域ごとの推定値を併合した結果は、ほとんどどの点推定値が GAM と GLIM の間に収まり、信頼区間は同程度からわずかに広がった。このことは、GAM 利用によるリスクの過小評価や GLIM による過大評価を指摘する先行研究 67,68 に照らしても FP モデルが共変量の調整に関して双方の問題点を補完するモデルであることを示唆する。地域ごとの推定結果に一貫性がなかった原因としては、他モデルと異なり FP モデルのみが地域ごとに共変量調整の次数を推定して定めていっているためと考えられる。また、信頼区間の広がりについては共変量調整のために消費された自由度の影響と考えられる。地域ごとの PM_{2.5} リスク推定結果については、前述の通り FP モデルに関してのみ地域ごとに別々のモデル推定を実施してから結果の併合を行ったが、地域ごとに推定されたモデルについて考察する。まず、相対湿度については、すべての地点で常に 1 次の線形モデルが選択された。解析対象期間での経時的な変化がないこと、リスクとしての影響がほとんどないこと、諸外国では相対湿度を除いたモデルを利用する場合も増えてきていること 24,35 から、日本においては調整変数として考慮
する必要が低い可能性が示唆された。実際、相対湿度を除いて同様の解析を実施した結果、PM_{2.5} 濃度のリスクは、点推定値で小数点 2 ケタ以下しか変化しなかった。また、気温については呼吸器疾患死亡に対しては 1 次線形が、循環器疾患死亡に対しては地域によって異なるものの 7 地点で複雑な非線形モデルが選ばれた。世界的には複数の疫学研究で平均気温と循環器疾患死亡の関連が指摘されており 96, 97, 日本の循環器疾患コホート研究でも線形的な関係しか探索されていないものの、屋外の年平均気温や気温変動と循環器疾患発症の間には有意な関連があることが知られている 98。本研究では日平均気温を用いた調整を行っており、南北に長い日本では地域によって平均気温も変動も大きく違うため、地域によって異なるモデルが選ばれたことは自然と考える。また、総死亡に関しては 5 地域を除いて 1 次線形モデルが選ばれたが、当該 5 地域は呼吸器疾患か循環器疾患のいずれかで 1 次線形モデルが選ばられなかった地域であり、双方の影響が反映された結果となった可能性がある。以上のモデル間の結果の評価検討によって、少なくとも日本のデータに対しては、現在世界で標準利用されている GAM を適用することで、相対湿度や気温といった気象条件に対してオーバーフィットが起こり、過小評価につながっていた可能性が示唆された 67, 68, 82。気温に関しては大気汚染物質よりも細かい範囲で多くの測定局による測定がおこなわれているため、今後、死亡ではなく循環器疾患発症を捉えるコホート研究などで、より詳細な気温と循環器疾患発症の非線形な関係を定量することが必要と考える。

また、影響の特徴ををともに踏まえた結果になったさらに、長期トレンド（季節性など）を調整するための日付変数については、総死亡と循環器疾患死亡でかなり近いモデルが選ばれる傾向にあり、12 地域で同一のモデルが、うち 8 地域では同じ 1 次線形モデル
ルが選ばれた。呼吸器疾患死亡と併せて 1 次線形モデルが選ばれたのは 6 地域で、長期トレンドの影響が線形か否かは地域によって異なる可能性が考えられた。この点は、長期トレンドが死亡に対して地域ごとに異なる影響を及ぼしている可能性は、気温や湿度、汚染物質濃度等で説明できない地域性の存在を示唆し、地域による効果の違いを検討する必要性を強めると考える。また結果の表としては示していないが、ラグタイムを当日から 3 日目まで変化させた場合もすべての地域で本研究と同じモデルが選ばれた。

共存汚染物質の健康影響については総じて Ox の健康影響が最も強く、本研究において 20 都市研究よりもリスクが高く評価されていること、PM2.5 濃度の影響についてはリスクが低く評価されたことについては、Ox の経年的な増加、PM2.5 の経年的な減少の影響が反映されているものと考える。

次に、PM2.5 濃度の日死亡リスクの地域間差について考察する。疫学研究では一般的にリスク因子として扱われる生活習慣や健康診断データ、化学物質等の健康影響は地域に寄らず性別や人種、年齢（年代）が同じであれば普遍的に一定という仮定が置いた解析や解釈が行われる場合が多い。ほとんどの疫学研究では地域ごとの解析結果は 20 都市研究のように REML 法で併合されたり、もっと単純に情報量に応じた重みを付けて併合されたりする。それに対して本研究では、臨床研究などでしばしば用いられる医薬品や治療効果の施設間差の検出に利用される混合効果モデルを本研究データに適合するよう拡張し、適用した。20 都市研究や欧米で提案されている GAM や GLIM では、通常の統計解析ソフトウェアを利用して、MCMC 法によるベースライン地域間差と PM2.5 濃度の影響の地域間差の同時推定を行うことは極めて困難であったため、共変量の調整という目的において GAM と GLIM の間の性質をもつ FP モデルの適用を提案し、それに対して
混合効果モデルの当てはめを実行した。地域ごとおよび地域を併合しての推定結果について想定通りの結果を示したため、また相関のある共変量と地域間差を恣意的な発生させた数値実験が有用な状況ではないため、実データ解析の妥当性を持ってその後の地域間差の検討に問題がないと判断した。実際の地域間差は、研究対象期間全体ではベースライン地域間差も、PM$_{2.5}$濃度影響の地域間差も見られなかったが、季節を黄砂飛来期に限定することで、黄砂の観測が多いとされる福岡をはじめ、日本海側の新潟、さらに岡山・宮崎といずれも西日本の地域で地域間差が検出された。実際に、解析期間中の黄砂飛来日を集計すると、福岡の71日が最大で、岡山57日、大阪50日、宮崎49日、神戸42日と観測日が多い地域で表60の事後確率が高くなっている一方、東京8日、群馬8日、神奈川6日、茨城2日、千葉1日と事後確率が低かった地域は軒並み観測日が少なかった100。この検討を踏まえ、PM$_{2.5}$の濃度だけでなく構成成分が日死亡に影響を与える可能性が示唆された。多くの疫学研究でリスクの地域間差の影響に言及しない理由の一つに、介入可能な結果を提示しないと公衆衛生学的な成果や生産的な対策に結び付かないということが挙げられる。実際に、地域によってリスクの影響が違うという指摘は、具体的な対策に結び付きづらいが、本研究ではPM$_{2.5}$の構成成分に地域差、季節差があり構成成分によって健康影響が異なってくるのではないかとの指摘38を統計的に検証した。またそのような検証に基づき、今後成分測定研究が促進されることが望まれる。

本研究を通じて、PM$_{2.5}$濃度の経年的な減少に伴って日本のPM$_{2.5}$濃度の短期健康影響そのものは減少傾向にあること、また通年・経年的には健康影響に地域間差はないが、季節を限定することで短期健康影響にも地域差があることが確認され、大陸由来の黄砂が日死亡に影響している可能性が示唆された。
7. 参考文献
1. 大気環境学会資料整理研究委員会. 日本の大気汚染の歴史. 2007.
10. 国立環境研究所. 環境儀. 22. 2006.

29. USEPA, Provisional Assessment of Recent Studies on Health Effects of Particulate Matter Exposure. 2006.

30. WHO. Health aspects of air pollution: answer to follow-up questions from CAFÉ. 2004.

Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. 2006.

33. 環境省. 微小粒子状物質曝露影響調査報告書. 2007.

34. 環境省. 微小粒子状物質による大気の汚染に係る環境基準について. 2009年9月9日. 環境省告示33.

35. 環境省. 粒子状物質の健康影響に関する文献調査報告書. 2007.

37. 気象庁リーフレット. 2月の気象・黄砂の飛来-.2008.

38. 環境省. 黄砂実態解明調査報告書. 2009.

42. 環境庁. 環境大気常時監視マニュアル（第4版）. 1998.

1990.

59. Roberts S and Martin MA. Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air

71. Air Quality Research Subcommittee, Committee on Environment and Natural Resources : Strategic Research Plan For Particulate Matter, 2002.

82. Ueda K., Nitta H., Ono M. and Takeuchi A. Estimating Mortality Effects of Fine

90. Brooks S, Gelman A, Jones G and Meng XL. Handbook of Markov Chain Monte Carlo

94. 厚生労働省. 平成19年人口動態統計の年間推計. 2007.

95. 光化学オキシダント・対流圈オゾン検討会報告書. 2007.

100. 環境省黄砂飛来情報（ライダー黄砂測定データ提供ページ）

8. 結果表

表1. 地域別総死亡数の集計

<table>
<thead>
<tr>
<th>地域</th>
<th>平均</th>
<th>最小値</th>
<th>最大値</th>
<th>各地域の占める%</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>25.97</td>
<td>9</td>
<td>49</td>
<td>7.19</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>12.68</td>
<td>2</td>
<td>30</td>
<td>3.51</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>3.63</td>
<td>0</td>
<td>13</td>
<td>1.00</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.44</td>
<td>0</td>
<td>8</td>
<td>0.40</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.93</td>
<td>0</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>5.22</td>
<td>0</td>
<td>15</td>
<td>1.44</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>133.92</td>
<td>83</td>
<td>209</td>
<td>37.07</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>35.12</td>
<td>16</td>
<td>64</td>
<td>9.72</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>2.44</td>
<td>0</td>
<td>9</td>
<td>0.68</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>12.43</td>
<td>2</td>
<td>29</td>
<td>3.44</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>25.35</td>
<td>9</td>
<td>47</td>
<td>7.02</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>7.42</td>
<td>0</td>
<td>20</td>
<td>2.05</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>17.57</td>
<td>6</td>
<td>35</td>
<td>4.86</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.11</td>
<td>0</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.48</td>
<td>0</td>
<td>5</td>
<td>0.13</td>
</tr>
<tr>
<td>群馬県太田市（旧新田町）</td>
<td>3.19</td>
<td>0</td>
<td>11</td>
<td>0.88</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.11</td>
<td>0</td>
<td>7</td>
<td>0.31</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>15.35</td>
<td>3</td>
<td>33</td>
<td>4.25</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>47.71</td>
<td>24</td>
<td>80</td>
<td>13.21</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>8.19</td>
<td>1</td>
<td>20</td>
<td>2.27</td>
</tr>
<tr>
<td>合計</td>
<td>18.06</td>
<td>0</td>
<td>209</td>
<td>100</td>
</tr>
</tbody>
</table>
地域別呼吸器疾患死亡数の集計（n=136,444 人）

<table>
<thead>
<tr>
<th>地域</th>
<th>平均</th>
<th>最小値</th>
<th>最大値</th>
<th>各地域の占める%</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>4.24</td>
<td>0</td>
<td>13</td>
<td>6.80</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>2.02</td>
<td>0</td>
<td>12</td>
<td>3.24</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.53</td>
<td>0</td>
<td>5</td>
<td>0.86</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>0.23</td>
<td>0</td>
<td>3</td>
<td>0.37</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.18</td>
<td>0</td>
<td>4</td>
<td>0.29</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.98</td>
<td>0</td>
<td>6</td>
<td>1.58</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>22.65</td>
<td>5</td>
<td>56</td>
<td>36.38</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>5.88</td>
<td>0</td>
<td>17</td>
<td>9.44</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.43</td>
<td>0</td>
<td>4</td>
<td>0.69</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>2.31</td>
<td>0</td>
<td>9</td>
<td>3.71</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>4.38</td>
<td>0</td>
<td>14</td>
<td>7.03</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.45</td>
<td>0</td>
<td>6</td>
<td>2.34</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>3.43</td>
<td>0</td>
<td>11</td>
<td>5.51</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.21</td>
<td>0</td>
<td>4</td>
<td>0.35</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.08</td>
<td>0</td>
<td>2</td>
<td>0.12</td>
</tr>
<tr>
<td>群馬県太田市（旧新田町）</td>
<td>0.61</td>
<td>0</td>
<td>4</td>
<td>0.97</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.18</td>
<td>0</td>
<td>3</td>
<td>0.29</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>2.49</td>
<td>0</td>
<td>11</td>
<td>3.99</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>8.65</td>
<td>0</td>
<td>26</td>
<td>13.89</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>1.34</td>
<td>0</td>
<td>7</td>
<td>2.15</td>
</tr>
<tr>
<td>合計</td>
<td>3.11</td>
<td>0</td>
<td>56</td>
<td>100</td>
</tr>
</tbody>
</table>
表3．地域別循環器疾患死亡数の集計

<table>
<thead>
<tr>
<th>地域</th>
<th>循環器疾患死亡 (n=256,695人)</th>
<th>平均</th>
<th>最小値</th>
<th>最大値</th>
<th>各地域の占める%</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>窒喘</td>
<td>8.64</td>
<td>1</td>
<td>26</td>
<td>7.38</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>窒喘</td>
<td>4.27</td>
<td>0</td>
<td>15</td>
<td>3.65</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>窒喘</td>
<td>1.35</td>
<td>0</td>
<td>7</td>
<td>1.15</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>窒喘</td>
<td>0.49</td>
<td>0</td>
<td>4</td>
<td>0.42</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>窒喘</td>
<td>0.31</td>
<td>0</td>
<td>3</td>
<td>0.27</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>窒喘</td>
<td>1.79</td>
<td>0</td>
<td>8</td>
<td>1.53</td>
</tr>
<tr>
<td>東京都23区</td>
<td>窒喘</td>
<td>44.59</td>
<td>20</td>
<td>86</td>
<td>38.06</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>窒喘</td>
<td>11.73</td>
<td>1</td>
<td>32</td>
<td>10.01</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>窒喘</td>
<td>0.74</td>
<td>0</td>
<td>6</td>
<td>0.63</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>窒喘</td>
<td>3.90</td>
<td>0</td>
<td>14</td>
<td>3.32</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>窒喘</td>
<td>7.55</td>
<td>0</td>
<td>20</td>
<td>6.45</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>窒喘</td>
<td>2.54</td>
<td>0</td>
<td>10</td>
<td>2.17</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>窒喘</td>
<td>5.03</td>
<td>0</td>
<td>15</td>
<td>4.29</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>窒喘</td>
<td>0.38</td>
<td>0</td>
<td>4</td>
<td>0.33</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>窒喘</td>
<td>0.15</td>
<td>0</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>窒喘</td>
<td>1.13</td>
<td>0</td>
<td>8</td>
<td>0.96</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>窒喘</td>
<td>0.37</td>
<td>0</td>
<td>4</td>
<td>0.32</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>窒喘</td>
<td>5.09</td>
<td>0</td>
<td>15</td>
<td>4.34</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>窒喘</td>
<td>14.54</td>
<td>3</td>
<td>33</td>
<td>12.41</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>窒喘</td>
<td>2.56</td>
<td>0</td>
<td>12</td>
<td>2.18</td>
</tr>
<tr>
<td>合計</td>
<td>窒喘</td>
<td>5.86</td>
<td>0</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>
地域別のPM2.5日平均値濃度分布（μg/m3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5日平均値</th>
<th>平均</th>
<th>最小値</th>
<th>25%値</th>
<th>50%値</th>
<th>75%値</th>
<th>最大値</th>
<th>欠測日</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市西測定局</td>
<td>12.2</td>
<td>3.3</td>
<td>8.3</td>
<td>10.9</td>
<td>14.5</td>
<td>85.1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>宮城県仙台市長町測定局</td>
<td>13.3</td>
<td>1.0</td>
<td>8.2</td>
<td>11.2</td>
<td>16.5</td>
<td>50.8</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>新潟県上越市深谷測定局</td>
<td>15.1</td>
<td>2.4</td>
<td>9.1</td>
<td>13.0</td>
<td>19.4</td>
<td>59.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>岐阜県可児市役所測定局</td>
<td>16.7</td>
<td>0.8</td>
<td>10.4</td>
<td>14.9</td>
<td>20.7</td>
<td>71.2</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>埼玉県蓮田測定局</td>
<td>20.1</td>
<td>0.9</td>
<td>12.6</td>
<td>18.4</td>
<td>25.4</td>
<td>81.7</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>千葉県市川市真間小学校</td>
<td>17.9</td>
<td>1.4</td>
<td>11.2</td>
<td>16.2</td>
<td>22.5</td>
<td>64.5</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>東京都板橋区水川測定局</td>
<td>19.4</td>
<td>1.7</td>
<td>12.5</td>
<td>17.9</td>
<td>24.3</td>
<td>63.7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>名古屋市鳴海配水場測定局</td>
<td>19.6</td>
<td>3.2</td>
<td>12.1</td>
<td>17.8</td>
<td>25.5</td>
<td>72.2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>大阪府守口市大日測定局</td>
<td>20.1</td>
<td>2.9</td>
<td>12.5</td>
<td>18.3</td>
<td>25.5</td>
<td>75.0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>大阪府堺市金岡測定局</td>
<td>19.5</td>
<td>2.6</td>
<td>12.3</td>
<td>17.5</td>
<td>24.7</td>
<td>75.5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>兵庫県神戸市垂水測定局</td>
<td>19.7</td>
<td>2.8</td>
<td>12.3</td>
<td>17.8</td>
<td>24.9</td>
<td>78.3</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>岡山県倉敷市玉島測定局</td>
<td>22.0</td>
<td>2.2</td>
<td>13.5</td>
<td>19.7</td>
<td>28.5</td>
<td>77.2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>福岡県福岡市吉塚測定局</td>
<td>21.7</td>
<td>3.3</td>
<td>13.3</td>
<td>19.0</td>
<td>27.3</td>
<td>81.1</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>宮崎県日向保健所測定局</td>
<td>17.2</td>
<td>1.7</td>
<td>11.5</td>
<td>15.5</td>
<td>21.1</td>
<td>61.3</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>宮崎県国設篠内</td>
<td>11.9</td>
<td>0.0</td>
<td>7.0</td>
<td>10.0</td>
<td>15.0</td>
<td>60.0</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>群馬県太田市総合中学校</td>
<td>19.7</td>
<td>3.0</td>
<td>12.0</td>
<td>18.0</td>
<td>25.0</td>
<td>94.0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>埼玉県戸田市戸田・巌</td>
<td>19.3</td>
<td>3.0</td>
<td>12.0</td>
<td>18.0</td>
<td>24.0</td>
<td>74.0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>神奈川県国設川崎</td>
<td>19.9</td>
<td>2.0</td>
<td>13.0</td>
<td>18.0</td>
<td>25.0</td>
<td>64.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>大阪府国設大和</td>
<td>20.5</td>
<td>2.0</td>
<td>13.0</td>
<td>19.0</td>
<td>26.0</td>
<td>87.0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>兵庫県国設尼崎</td>
<td>22.3</td>
<td>4.0</td>
<td>14.0</td>
<td>20.0</td>
<td>28.0</td>
<td>84.0</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>地域</td>
<td>NO₂日平均値</td>
<td>平均</td>
<td>最小値</td>
<td>25%値</td>
<td>50%値</td>
<td>75%値</td>
<td>最大値</td>
<td>欠測日</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>北海道札幌市西測定局</td>
<td>21.9</td>
<td>3.2</td>
<td>14.1</td>
<td>19.7</td>
<td>27.4</td>
<td>74.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>宮城県仙台市長町測定局</td>
<td>15.1</td>
<td>0.0</td>
<td>10.1</td>
<td>14.0</td>
<td>19.1</td>
<td>41.6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>新潟県上越市深谷測定局</td>
<td>9.7</td>
<td>0.4</td>
<td>6.0</td>
<td>8.8</td>
<td>12.1</td>
<td>49.5</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>茨城県取手市役所測定局</td>
<td>18.2</td>
<td>2.7</td>
<td>11.2</td>
<td>16.7</td>
<td>23.8</td>
<td>58.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>埼玉県蓮田測定局</td>
<td>20.6</td>
<td>1.8</td>
<td>14.6</td>
<td>19.9</td>
<td>26.0</td>
<td>64.2</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>千葉県市川市戸田小学校</td>
<td>21.8</td>
<td>2.5</td>
<td>13.9</td>
<td>20.3</td>
<td>28.0</td>
<td>72.4</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>東京都板橋区水戸測定局</td>
<td>33.1</td>
<td>3.0</td>
<td>25.5</td>
<td>33.5</td>
<td>40.6</td>
<td>74.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>名古屋市鳴海配水場測定局</td>
<td>26.5</td>
<td>4.8</td>
<td>18.9</td>
<td>25.5</td>
<td>33.2</td>
<td>63.3</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>大阪府守口市大日測定局</td>
<td>25.7</td>
<td>3.3</td>
<td>17.1</td>
<td>24.3</td>
<td>33.6</td>
<td>78.0</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>大阪府豊中市金岡測定局</td>
<td>22.2</td>
<td>3.0</td>
<td>15.0</td>
<td>20.5</td>
<td>28.1</td>
<td>66.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>兵庫県赤穂市垂水測定局</td>
<td>24.2</td>
<td>3.8</td>
<td>16.5</td>
<td>23.1</td>
<td>30.6</td>
<td>70.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>岡山県倉敷市玉島測定局</td>
<td>18.7</td>
<td>1.9</td>
<td>13.4</td>
<td>18.3</td>
<td>23.2</td>
<td>47.5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>福岡県福岡市吉塚測定局</td>
<td>19.7</td>
<td>0.0</td>
<td>12.6</td>
<td>18.3</td>
<td>26.1</td>
<td>61.3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>宮崎県旧日向保健所測定局</td>
<td>5.9</td>
<td>0.0</td>
<td>4.0</td>
<td>5.4</td>
<td>7.1</td>
<td>22.4</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>宮城県国設篠ヶ崎</td>
<td>3.0</td>
<td>0.0</td>
<td>1.5</td>
<td>2.5</td>
<td>3.9</td>
<td>16.2</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>群馬県太田市緑中学校</td>
<td>18.3</td>
<td>1.4</td>
<td>12.3</td>
<td>17.5</td>
<td>23.3</td>
<td>55.9</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>埼玉県川越市川越</td>
<td>26.5</td>
<td>5.5</td>
<td>18.5</td>
<td>25.2</td>
<td>32.6</td>
<td>83.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>神奈川県国設川崎</td>
<td>30.8</td>
<td>5.8</td>
<td>22.7</td>
<td>30.0</td>
<td>37.5</td>
<td>82.9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>大阪府国設大阪</td>
<td>28.1</td>
<td>5.8</td>
<td>20.3</td>
<td>26.7</td>
<td>34.5</td>
<td>68.8</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>兵庫県国設尼崎</td>
<td>24.3</td>
<td>3.4</td>
<td>16.1</td>
<td>22.6</td>
<td>31.6</td>
<td>67.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>地域</td>
<td>平均</td>
<td>最小値</td>
<td>25%値</td>
<td>50%値</td>
<td>75%値</td>
<td>最大値</td>
<td>欠測日</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>北海道札幌市西測定局</td>
<td>24.1</td>
<td>3.1</td>
<td>16.3</td>
<td>22.5</td>
<td>30.3</td>
<td>67.3</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>宮城県仙台市長町測定局</td>
<td>25.6</td>
<td>1.4</td>
<td>17.6</td>
<td>24.9</td>
<td>33.2</td>
<td>72.3</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>新潟県上越市深谷測定局</td>
<td>26.1</td>
<td>2.3</td>
<td>17.9</td>
<td>25.2</td>
<td>33.4</td>
<td>74.4</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>茨城県取手市役所測定局</td>
<td>24.7</td>
<td>0.3</td>
<td>16.4</td>
<td>23.5</td>
<td>32.4</td>
<td>64.4</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>埼玉県蓮田測定局</td>
<td>22.1</td>
<td>0.7</td>
<td>12.9</td>
<td>20.5</td>
<td>30.0</td>
<td>65.5</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>千葉県市川市真間小学校</td>
<td>27.4</td>
<td>1.5</td>
<td>16.3</td>
<td>26.6</td>
<td>37.1</td>
<td>87.4</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>東京都板橋区氷川測定局</td>
<td>21.0</td>
<td>0.6</td>
<td>10.6</td>
<td>18.9</td>
<td>29.0</td>
<td>78.7</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>名古屋市鳴海配水場測定局</td>
<td>20.3</td>
<td>1.3</td>
<td>11.0</td>
<td>17.7</td>
<td>27.1</td>
<td>69.0</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>大阪府守口市大日測定局</td>
<td>20.5</td>
<td>1.9</td>
<td>12.4</td>
<td>18.5</td>
<td>27.0</td>
<td>59.7</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>大阪府堺市金岡測定局</td>
<td>27.2</td>
<td>2.8</td>
<td>18.0</td>
<td>26.4</td>
<td>34.8</td>
<td>68.3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>兵庫県神戸市垂水測定局</td>
<td>27.4</td>
<td>1.2</td>
<td>19.1</td>
<td>27.1</td>
<td>35.1</td>
<td>62.5</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>岡山県倉敷市玉島測定局</td>
<td>21.5</td>
<td>0.5</td>
<td>14.1</td>
<td>20.3</td>
<td>28.2</td>
<td>61.3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>福岡県福岡市吉塚測定局</td>
<td>25.6</td>
<td>0.8</td>
<td>16.9</td>
<td>25.1</td>
<td>33.5</td>
<td>66.4</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>宮崎県日向保健所測定局</td>
<td>32.4</td>
<td>1.2</td>
<td>18.2</td>
<td>22.2</td>
<td>31.8</td>
<td>41.7</td>
<td>78.5</td>
<td>19</td>
</tr>
<tr>
<td>宮城県国設豊川</td>
<td>35.6</td>
<td>6.3</td>
<td>29.2</td>
<td>35.3</td>
<td>42.0</td>
<td>71.3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>群馬県太田市緑川中学校</td>
<td>24.1</td>
<td>1.1</td>
<td>15.4</td>
<td>22.6</td>
<td>31.1</td>
<td>66.4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>埼玉県戸田市戸田・蔵</td>
<td>24.0</td>
<td>1.3</td>
<td>14.5</td>
<td>22.0</td>
<td>32.0</td>
<td>70.8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>神奈川県国設川崎</td>
<td>22.1</td>
<td>1.7</td>
<td>13.6</td>
<td>20.8</td>
<td>29.4</td>
<td>64.4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>大阪府国設大阪</td>
<td>22.9</td>
<td>0.4</td>
<td>14.0</td>
<td>21.3</td>
<td>30.6</td>
<td>58.6</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>兵庫県国設尼崎</td>
<td>24.7</td>
<td>1.0</td>
<td>15.3</td>
<td>23.1</td>
<td>32.9</td>
<td>66.1</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>地域</td>
<td>気温日平均値</td>
<td>平均</td>
<td>最小値</td>
<td>25%値</td>
<td>50%値</td>
<td>75%値</td>
<td>最大値</td>
<td>欠測日</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>北海道札幌市西測定局</td>
<td>9.2</td>
<td>-10.8</td>
<td>0.6</td>
<td>9.8</td>
<td>17.5</td>
<td>29.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>宮城県仙台市長町測定局</td>
<td>12.6</td>
<td>-3.7</td>
<td>5.3</td>
<td>13.0</td>
<td>19.2</td>
<td>31.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>新潟県上越市深谷測定局</td>
<td>14.2</td>
<td>-1.8</td>
<td>6.2</td>
<td>14.4</td>
<td>21.6</td>
<td>31.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>茨城県取手市役所測定局</td>
<td>14.0</td>
<td>-1.5</td>
<td>6.5</td>
<td>14.4</td>
<td>20.6</td>
<td>30.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>埼玉県蓮田測定局</td>
<td>15.5</td>
<td>-0.9</td>
<td>7.9</td>
<td>15.9</td>
<td>22.2</td>
<td>33.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>千葉県市川市央間小学校</td>
<td>15.2</td>
<td>-0.7</td>
<td>8.0</td>
<td>15.6</td>
<td>21.8</td>
<td>31.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>東京都板橋区氷川測定局</td>
<td>16.7</td>
<td>0.5</td>
<td>9.8</td>
<td>17.2</td>
<td>22.9</td>
<td>33.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>名古屋市喰海配水場測定局</td>
<td>16.2</td>
<td>-0.3</td>
<td>8.3</td>
<td>16.7</td>
<td>23.6</td>
<td>32.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>大阪府守口市大日測定局</td>
<td>17.3</td>
<td>-0.1</td>
<td>9.7</td>
<td>17.6</td>
<td>24.6</td>
<td>32.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>大阪府堺市金岡測定局</td>
<td>17.3</td>
<td>-0.1</td>
<td>9.7</td>
<td>17.6</td>
<td>24.6</td>
<td>32.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>兵庫県神戸市垂水測定局</td>
<td>17.2</td>
<td>-0.8</td>
<td>9.7</td>
<td>17.8</td>
<td>24.5</td>
<td>32.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>岡山県倉敷市玉島測定局</td>
<td>16.7</td>
<td>-1.7</td>
<td>8.7</td>
<td>17.1</td>
<td>24.3</td>
<td>32.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>福岡県福岡市吉塚測定局</td>
<td>17.5</td>
<td>-0.8</td>
<td>10.6</td>
<td>17.9</td>
<td>24.3</td>
<td>31.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>宮崎県旧日向保健所測定局</td>
<td>18.0</td>
<td>1.9</td>
<td>11.5</td>
<td>18.5</td>
<td>24.5</td>
<td>31.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>宮城県国設篠岳</td>
<td>12.6</td>
<td>-3.7</td>
<td>5.3</td>
<td>13.0</td>
<td>19.2</td>
<td>31.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>群馬県太田市経栄中学校</td>
<td>14.9</td>
<td>-1.4</td>
<td>7.2</td>
<td>15.3</td>
<td>21.9</td>
<td>32.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>埼玉県戸田市戸田・戸</td>
<td>15.5</td>
<td>-0.9</td>
<td>7.9</td>
<td>15.9</td>
<td>22.2</td>
<td>33.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>神奈川県国設川崎</td>
<td>16.2</td>
<td>0.5</td>
<td>9.4</td>
<td>16.6</td>
<td>22.4</td>
<td>30.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>大阪府国設大阪</td>
<td>17.3</td>
<td>-0.1</td>
<td>9.7</td>
<td>17.6</td>
<td>24.6</td>
<td>32.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>兵庫県国設尼崎</td>
<td>17.2</td>
<td>-0.8</td>
<td>9.7</td>
<td>17.8</td>
<td>24.5</td>
<td>32.0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
表8. 地域別相対湿度日平均値濃度分布（%）

<table>
<thead>
<tr>
<th>地域</th>
<th>相対湿度日平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均</td>
</tr>
<tr>
<td>北海道札幌市西測定局</td>
<td>67.5</td>
</tr>
<tr>
<td>宮城県仙台市長町測定局</td>
<td>71.4</td>
</tr>
<tr>
<td>新潟県上越市深谷測定局</td>
<td>69.7</td>
</tr>
<tr>
<td>福城県取手市役所測定局</td>
<td>72.6</td>
</tr>
<tr>
<td>埼玉県蓮田測定局</td>
<td>62.6</td>
</tr>
<tr>
<td>千葉県市川市花間小学校</td>
<td>72.9</td>
</tr>
<tr>
<td>東京都板橋区水川測定局</td>
<td>59.1</td>
</tr>
<tr>
<td>名古屋市営海配水場測定局</td>
<td>65.1</td>
</tr>
<tr>
<td>大阪府守口市大日測定局</td>
<td>63.1</td>
</tr>
<tr>
<td>大阪府堺市今岡測定局</td>
<td>63.1</td>
</tr>
<tr>
<td>兵庫県神戸市垂水測定局</td>
<td>65.0</td>
</tr>
<tr>
<td>岡山県倉敷市玉島測定局</td>
<td>66.4</td>
</tr>
<tr>
<td>福岡県福岡市吉塚測定局</td>
<td>64.9</td>
</tr>
<tr>
<td>宮崎県旧日向保健所測定局</td>
<td>71.1</td>
</tr>
<tr>
<td>宮城県国設箇岳</td>
<td>71.4</td>
</tr>
<tr>
<td>群馬県太田市緑葉中学校</td>
<td>60.9</td>
</tr>
<tr>
<td>埼玉県戸田市戸田・戸田・戸田・戸田</td>
<td>62.6</td>
</tr>
<tr>
<td>神奈川県国設川崎</td>
<td>64.1</td>
</tr>
<tr>
<td>大阪府国設大阪</td>
<td>63.1</td>
</tr>
<tr>
<td>兵庫県国設尼崎</td>
<td>65.0</td>
</tr>
<tr>
<td>地域</td>
<td>2002年平均</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>12.8</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>14.4</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>15.8</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>18.6</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>22.6</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>19.7</td>
</tr>
<tr>
<td>東京都23区</td>
<td>21.7</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>21.8</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>21.7</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>20.8</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>19.7</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>22.7</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>23.2</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>17.6</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>11.6</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>19.3</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>21.2</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>21.3</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>22.6</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>23.8</td>
</tr>
</tbody>
</table>
表 10. 地域別年別 NO2 日平均値濃度分布(ppb)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>24.7</td>
<td>11.2</td>
<td>26.5</td>
<td>12.1</td>
<td>22.7</td>
<td>10.3</td>
<td>20.9</td>
<td>9.5</td>
<td>18.7</td>
<td>9.3</td>
<td>17.9</td>
<td>9.0</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>15.2</td>
<td>6.3</td>
<td>16.6</td>
<td>7.0</td>
<td>15.9</td>
<td>6.6</td>
<td>14.7</td>
<td>6.9</td>
<td>14.3</td>
<td>7.1</td>
<td>13.7</td>
<td>5.9</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>9.4</td>
<td>4.6</td>
<td>8.4</td>
<td>4.1</td>
<td>7.6</td>
<td>4.9</td>
<td>7.9</td>
<td>3.5</td>
<td>14.8</td>
<td>9.3</td>
<td>10.5</td>
<td>4.1</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>19.5</td>
<td>9.9</td>
<td>19.9</td>
<td>9.7</td>
<td>18.6</td>
<td>8.7</td>
<td>18.3</td>
<td>8.5</td>
<td>16.1</td>
<td>8.6</td>
<td>17.1</td>
<td>8.3</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>23.5</td>
<td>9.4</td>
<td>19.7</td>
<td>9.0</td>
<td>16.9</td>
<td>7.3</td>
<td>19.9</td>
<td>7.7</td>
<td>22.0</td>
<td>8.2</td>
<td>21.5</td>
<td>7.8</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>22.8</td>
<td>11.5</td>
<td>21.6</td>
<td>11.2</td>
<td>21.4</td>
<td>10.5</td>
<td>21.7</td>
<td>10.5</td>
<td>21.8</td>
<td>9.8</td>
<td>21.8</td>
<td>9.7</td>
</tr>
<tr>
<td>東京都23区</td>
<td>33.5</td>
<td>11.9</td>
<td>36.1</td>
<td>10.9</td>
<td>34.3</td>
<td>11.6</td>
<td>32.4</td>
<td>10.3</td>
<td>32.3</td>
<td>11.0</td>
<td>29.7</td>
<td>11.0</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>26.8</td>
<td>10.1</td>
<td>28.8</td>
<td>10.2</td>
<td>28.1</td>
<td>10.4</td>
<td>27.0</td>
<td>9.2</td>
<td>25.7</td>
<td>9.8</td>
<td>22.5</td>
<td>9.4</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>28.8</td>
<td>12.8</td>
<td>26.8</td>
<td>10.9</td>
<td>26.8</td>
<td>11.5</td>
<td>26.2</td>
<td>10.9</td>
<td>22.9</td>
<td>10.9</td>
<td>23.5</td>
<td>11.0</td>
</tr>
<tr>
<td>大阪府福井市</td>
<td>22.8</td>
<td>10.8</td>
<td>24.5</td>
<td>10.0</td>
<td>23.7</td>
<td>10.6</td>
<td>20.8</td>
<td>9.2</td>
<td>21.4</td>
<td>10.0</td>
<td>20.1</td>
<td>8.4</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>25.7</td>
<td>11.4</td>
<td>25.9</td>
<td>10.4</td>
<td>26.2</td>
<td>11.0</td>
<td>22.9</td>
<td>9.0</td>
<td>23.1</td>
<td>9.4</td>
<td>21.5</td>
<td>9.0</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>19.8</td>
<td>7.2</td>
<td>19.6</td>
<td>7.3</td>
<td>20.7</td>
<td>7.7</td>
<td>17.6</td>
<td>6.4</td>
<td>17.5</td>
<td>6.7</td>
<td>17.2</td>
<td>6.9</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>19.3</td>
<td>9.1</td>
<td>20.9</td>
<td>9.0</td>
<td>22.0</td>
<td>9.8</td>
<td>20.5</td>
<td>9.3</td>
<td>21.0</td>
<td>9.6</td>
<td>14.8</td>
<td>7.3</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>5.7</td>
<td>2.2</td>
<td>5.1</td>
<td>2.1</td>
<td>6.1</td>
<td>2.2</td>
<td>5.3</td>
<td>2.4</td>
<td>7.0</td>
<td>3.4</td>
<td>6.5</td>
<td>3.5</td>
</tr>
<tr>
<td>宮城県栃木町</td>
<td>3.0</td>
<td>2.2</td>
<td>3.4</td>
<td>2.1</td>
<td>2.5</td>
<td>2.3</td>
<td>2.8</td>
<td>2.1</td>
<td>3.3</td>
<td>2.2</td>
<td>2.7</td>
<td>1.7</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>18.6</td>
<td>7.8</td>
<td>20.6</td>
<td>8.9</td>
<td>19.3</td>
<td>8.8</td>
<td>16.4</td>
<td>6.7</td>
<td>19.2</td>
<td>8.1</td>
<td>15.6</td>
<td>7.6</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>28.3</td>
<td>12.1</td>
<td>28.4</td>
<td>10.7</td>
<td>27.3</td>
<td>10.5</td>
<td>26.1</td>
<td>10.0</td>
<td>25.4</td>
<td>10.3</td>
<td>23.6</td>
<td>9.7</td>
</tr>
<tr>
<td>静岡県川崎市</td>
<td>31.6</td>
<td>11.7</td>
<td>31.5</td>
<td>11.4</td>
<td>30.4</td>
<td>11.2</td>
<td>31.3</td>
<td>10.8</td>
<td>30.9</td>
<td>11.7</td>
<td>29.1</td>
<td>11.0</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>29.0</td>
<td>12.1</td>
<td>29.2</td>
<td>10.4</td>
<td>29.1</td>
<td>10.7</td>
<td>27.0</td>
<td>9.1</td>
<td>28.2</td>
<td>10.0</td>
<td>26.3</td>
<td>10.3</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>23.7</td>
<td>11.3</td>
<td>25.7</td>
<td>10.9</td>
<td>25.4</td>
<td>11.0</td>
<td>23.8</td>
<td>10.1</td>
<td>24.1</td>
<td>11.0</td>
<td>22.9</td>
<td>10.5</td>
</tr>
</tbody>
</table>
表 11. 地域別年別 Ox 日平均値濃度分布(ppb)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>23.7</td>
<td>9.9</td>
<td>21.6</td>
<td>8.6</td>
<td>26.7</td>
<td>12.4</td>
<td>21.5</td>
<td>8.9</td>
<td>25.2</td>
<td>10.6</td>
<td>25.4</td>
<td>10.7</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>22.2</td>
<td>8.5</td>
<td>23.1</td>
<td>9.9</td>
<td>25.4</td>
<td>11.2</td>
<td>26.5</td>
<td>10.6</td>
<td>28.0</td>
<td>11.6</td>
<td>28.6</td>
<td>10.9</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>23.6</td>
<td>8.8</td>
<td>26.6</td>
<td>9.1</td>
<td>21.9</td>
<td>9.9</td>
<td>23.0</td>
<td>9.3</td>
<td>27.7</td>
<td>11.8</td>
<td>33.3</td>
<td>11.1</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>24.3</td>
<td>11.4</td>
<td>28.7</td>
<td>13.8</td>
<td>29.5</td>
<td>15.4</td>
<td>29.0</td>
<td>13.0</td>
<td>35.0</td>
<td>12.1</td>
<td>24.0</td>
<td>12.4</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>28.4</td>
<td>16.5</td>
<td>28.7</td>
<td>13.8</td>
<td>29.5</td>
<td>15.4</td>
<td>25.0</td>
<td>12.1</td>
<td>35.0</td>
<td>12.1</td>
<td>30.0</td>
<td>13.9</td>
</tr>
<tr>
<td>東京都23区</td>
<td>20.8</td>
<td>12.8</td>
<td>18.9</td>
<td>11.4</td>
<td>21.3</td>
<td>13.6</td>
<td>21.7</td>
<td>12.9</td>
<td>21.1</td>
<td>12.4</td>
<td>21.9</td>
<td>14.1</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>17.4</td>
<td>10.5</td>
<td>18.3</td>
<td>10.7</td>
<td>21.1</td>
<td>11.2</td>
<td>18.4</td>
<td>9.1</td>
<td>17.6</td>
<td>9.9</td>
<td>28.5</td>
<td>16.1</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>22.0</td>
<td>10.4</td>
<td>20.5</td>
<td>11.2</td>
<td>19.3</td>
<td>10.4</td>
<td>21.4</td>
<td>9.9</td>
<td>19.5</td>
<td>9.7</td>
<td>20.3</td>
<td>9.9</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>26.8</td>
<td>11.7</td>
<td>27.3</td>
<td>11.9</td>
<td>27.1</td>
<td>11.0</td>
<td>26.4</td>
<td>10.2</td>
<td>25.5</td>
<td>10.3</td>
<td>30.2</td>
<td>13.9</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>26.6</td>
<td>9.8</td>
<td>27.4</td>
<td>10.0</td>
<td>27.6</td>
<td>9.6</td>
<td>28.3</td>
<td>11.2</td>
<td>26.4</td>
<td>12.3</td>
<td>28.4</td>
<td>12.6</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>21.9</td>
<td>8.9</td>
<td>18.1</td>
<td>9.6</td>
<td>19.4</td>
<td>7.9</td>
<td>23.5</td>
<td>9.3</td>
<td>22.2</td>
<td>10.4</td>
<td>23.6</td>
<td>11.0</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>24.3</td>
<td>9.9</td>
<td>26.7</td>
<td>12.3</td>
<td>25.4</td>
<td>11.3</td>
<td>25.5</td>
<td>10.6</td>
<td>24.3</td>
<td>11.7</td>
<td>27.5</td>
<td>12.7</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>32.8</td>
<td>13.0</td>
<td>35.2</td>
<td>14.3</td>
<td>33.7</td>
<td>13.1</td>
<td>31.4</td>
<td>12.4</td>
<td>33.7</td>
<td>15.6</td>
<td>27.6</td>
<td>12.7</td>
</tr>
<tr>
<td>宮崎県延岡町</td>
<td>37.7</td>
<td>8.3</td>
<td>37.8</td>
<td>10.4</td>
<td>35.1</td>
<td>10.3</td>
<td>34.1</td>
<td>9.6</td>
<td>34.6</td>
<td>10.1</td>
<td>34.3</td>
<td>8.7</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>23.8</td>
<td>10.2</td>
<td>23.2</td>
<td>10.7</td>
<td>23.2</td>
<td>11.3</td>
<td>21.1</td>
<td>9.1</td>
<td>22.0</td>
<td>10.0</td>
<td>31.1</td>
<td>13.6</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>23.4</td>
<td>11.9</td>
<td>23.6</td>
<td>10.7</td>
<td>23.2</td>
<td>11.3</td>
<td>23.0</td>
<td>10.3</td>
<td>23.5</td>
<td>12.9</td>
<td>27.3</td>
<td>15.0</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>19.2</td>
<td>9.5</td>
<td>21.0</td>
<td>10.3</td>
<td>21.1</td>
<td>11.1</td>
<td>23.8</td>
<td>10.9</td>
<td>23.9</td>
<td>11.0</td>
<td>23.4</td>
<td>12.1</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>21.7</td>
<td>10.5</td>
<td>21.6</td>
<td>10.6</td>
<td>21.6</td>
<td>11.0</td>
<td>23.4</td>
<td>11.7</td>
<td>23.7</td>
<td>12.2</td>
<td>25.2</td>
<td>12.5</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>22.7</td>
<td>12.5</td>
<td>24.5</td>
<td>12.2</td>
<td>24.9</td>
<td>12.0</td>
<td>26.8</td>
<td>11.9</td>
<td>26.0</td>
<td>11.9</td>
<td>22.7</td>
<td>10.4</td>
</tr>
</tbody>
</table>
表12. 地域別年別気温日平均値濃度分布（度）

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>9.1</td>
<td>8.9</td>
<td>8.8</td>
<td>8.8</td>
<td>9.7</td>
<td>9.4</td>
<td>8.9</td>
<td>10.0</td>
<td>9.2</td>
<td>9.6</td>
<td>9.4</td>
<td>9.3</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>12.8</td>
<td>8.0</td>
<td>12.1</td>
<td>7.3</td>
<td>13.1</td>
<td>8.1</td>
<td>12.2</td>
<td>8.7</td>
<td>12.4</td>
<td>8.2</td>
<td>13.1</td>
<td>8.0</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>14.2</td>
<td>8.6</td>
<td>13.9</td>
<td>8.0</td>
<td>14.8</td>
<td>8.5</td>
<td>13.8</td>
<td>9.2</td>
<td>13.9</td>
<td>8.6</td>
<td>14.4</td>
<td>8.2</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>14.1</td>
<td>8.0</td>
<td>13.3</td>
<td>7.7</td>
<td>14.4</td>
<td>8.2</td>
<td>13.5</td>
<td>8.5</td>
<td>14.0</td>
<td>8.0</td>
<td>14.5</td>
<td>7.9</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>15.5</td>
<td>8.3</td>
<td>14.9</td>
<td>7.9</td>
<td>16.2</td>
<td>8.4</td>
<td>15.1</td>
<td>8.9</td>
<td>15.4</td>
<td>8.1</td>
<td>15.9</td>
<td>8.1</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>15.2</td>
<td>7.7</td>
<td>14.5</td>
<td>7.5</td>
<td>15.8</td>
<td>7.9</td>
<td>14.6</td>
<td>8.2</td>
<td>15.5</td>
<td>8.2</td>
<td>15.6</td>
<td>7.6</td>
</tr>
<tr>
<td>東京都23区</td>
<td>16.8</td>
<td>7.7</td>
<td>16.1</td>
<td>7.5</td>
<td>17.4</td>
<td>7.9</td>
<td>16.3</td>
<td>8.2</td>
<td>16.5</td>
<td>7.7</td>
<td>17.0</td>
<td>7.4</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>16.2</td>
<td>8.5</td>
<td>15.7</td>
<td>8.1</td>
<td>16.8</td>
<td>8.5</td>
<td>15.8</td>
<td>9.1</td>
<td>16.0</td>
<td>8.5</td>
<td>16.6</td>
<td>8.1</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>17.4</td>
<td>8.2</td>
<td>16.9</td>
<td>8.1</td>
<td>17.9</td>
<td>8.3</td>
<td>17.0</td>
<td>8.7</td>
<td>17.1</td>
<td>8.4</td>
<td>17.6</td>
<td>7.9</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>17.4</td>
<td>8.2</td>
<td>16.9</td>
<td>8.1</td>
<td>17.9</td>
<td>8.3</td>
<td>17.0</td>
<td>8.7</td>
<td>17.1</td>
<td>8.4</td>
<td>17.6</td>
<td>7.9</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>17.2</td>
<td>8.2</td>
<td>16.8</td>
<td>8.0</td>
<td>17.8</td>
<td>8.2</td>
<td>16.8</td>
<td>8.6</td>
<td>17.0</td>
<td>8.3</td>
<td>17.5</td>
<td>7.8</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>16.7</td>
<td>8.5</td>
<td>16.2</td>
<td>8.2</td>
<td>17.2</td>
<td>8.5</td>
<td>16.4</td>
<td>9.1</td>
<td>16.5</td>
<td>8.6</td>
<td>17.0</td>
<td>8.2</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>17.4</td>
<td>7.5</td>
<td>17.2</td>
<td>7.5</td>
<td>17.8</td>
<td>7.8</td>
<td>17.2</td>
<td>8.6</td>
<td>17.3</td>
<td>7.7</td>
<td>18.0</td>
<td>7.7</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>18.0</td>
<td>7.1</td>
<td>18.0</td>
<td>7.4</td>
<td>18.3</td>
<td>7.5</td>
<td>17.5</td>
<td>8.0</td>
<td>17.9</td>
<td>7.3</td>
<td>18.2</td>
<td>7.2</td>
</tr>
<tr>
<td>宮崎県久留米市</td>
<td>12.8</td>
<td>8.0</td>
<td>12.1</td>
<td>7.3</td>
<td>13.1</td>
<td>8.1</td>
<td>12.2</td>
<td>8.7</td>
<td>12.4</td>
<td>8.2</td>
<td>13.1</td>
<td>8.0</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>14.9</td>
<td>8.4</td>
<td>14.4</td>
<td>8.1</td>
<td>15.6</td>
<td>8.5</td>
<td>14.5</td>
<td>9.0</td>
<td>14.9</td>
<td>8.3</td>
<td>15.3</td>
<td>8.2</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>15.5</td>
<td>8.3</td>
<td>14.9</td>
<td>7.9</td>
<td>16.2</td>
<td>8.4</td>
<td>15.1</td>
<td>8.9</td>
<td>15.4</td>
<td>8.1</td>
<td>15.9</td>
<td>8.1</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>16.2</td>
<td>7.5</td>
<td>15.6</td>
<td>7.3</td>
<td>16.9</td>
<td>7.6</td>
<td>15.8</td>
<td>7.9</td>
<td>16.0</td>
<td>7.5</td>
<td>16.6</td>
<td>7.2</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>17.4</td>
<td>8.2</td>
<td>16.9</td>
<td>8.1</td>
<td>17.9</td>
<td>8.3</td>
<td>17.0</td>
<td>8.7</td>
<td>17.1</td>
<td>8.4</td>
<td>17.6</td>
<td>7.9</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>17.2</td>
<td>8.2</td>
<td>16.8</td>
<td>8.0</td>
<td>17.8</td>
<td>8.2</td>
<td>16.8</td>
<td>8.6</td>
<td>17.0</td>
<td>8.3</td>
<td>17.5</td>
<td>7.8</td>
</tr>
</tbody>
</table>

63
地域 別年別相対湿度日平均値濃度分布(％)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>67.3</td>
<td>11.0</td>
<td>67.5</td>
<td>10.5</td>
<td>66.1</td>
<td>9.5</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>68.7</td>
<td>12.5</td>
<td>71.7</td>
<td>13.8</td>
<td>70.6</td>
<td>13.7</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>71.1</td>
<td>9.7</td>
<td>70.4</td>
<td>9.5</td>
<td>68.1</td>
<td>9.9</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>71.8</td>
<td>11.8</td>
<td>74.3</td>
<td>11.5</td>
<td>71.8</td>
<td>11.7</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>71.1</td>
<td>9.7</td>
<td>70.4</td>
<td>9.5</td>
<td>68.1</td>
<td>9.9</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>73.2</td>
<td>14.4</td>
<td>75.5</td>
<td>14.5</td>
<td>73.2</td>
<td>14.2</td>
</tr>
<tr>
<td>東京都23区</td>
<td>59.0</td>
<td>15.2</td>
<td>60.9</td>
<td>15.4</td>
<td>58.1</td>
<td>14.6</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>63.6</td>
<td>11.6</td>
<td>68.2</td>
<td>13.7</td>
<td>66.6</td>
<td>12.5</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>62.9</td>
<td>10.8</td>
<td>65.6</td>
<td>10.9</td>
<td>62.7</td>
<td>10.9</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>62.9</td>
<td>10.8</td>
<td>65.6</td>
<td>10.9</td>
<td>62.7</td>
<td>10.9</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>63.5</td>
<td>10.6</td>
<td>67.5</td>
<td>10.9</td>
<td>64.6</td>
<td>10.9</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>66.2</td>
<td>10.6</td>
<td>69.4</td>
<td>11.0</td>
<td>66.6</td>
<td>11.4</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>63.9</td>
<td>10.9</td>
<td>65.9</td>
<td>10.3</td>
<td>64.2</td>
<td>10.7</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>70.5</td>
<td>12.1</td>
<td>71.6</td>
<td>10.9</td>
<td>71.8</td>
<td>11.2</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>68.7</td>
<td>12.5</td>
<td>71.7</td>
<td>13.8</td>
<td>70.6</td>
<td>13.7</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>61.5</td>
<td>14.3</td>
<td>63.2</td>
<td>13.8</td>
<td>58.8</td>
<td>14.5</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>62.3</td>
<td>14.6</td>
<td>64.0</td>
<td>14.0</td>
<td>60.0</td>
<td>14.3</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>63.5</td>
<td>14.2</td>
<td>65.1</td>
<td>14.6</td>
<td>62.6</td>
<td>13.4</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>62.9</td>
<td>10.8</td>
<td>65.6</td>
<td>10.9</td>
<td>62.7</td>
<td>10.9</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>63.5</td>
<td>10.6</td>
<td>67.5</td>
<td>10.9</td>
<td>64.6</td>
<td>10.9</td>
</tr>
<tr>
<td>地域</td>
<td>PM2.5</td>
<td>NO2</td>
<td>Ox</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.027</td>
<td>1.007</td>
<td>1.047</td>
<td>0.957</td>
<td>0.942</td>
<td>0.971</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.990</td>
<td>0.968</td>
<td>1.013</td>
<td>1.032</td>
<td>1.002</td>
<td>1.064</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.933</td>
<td>0.895</td>
<td>0.972</td>
<td>1.164</td>
<td>1.113</td>
<td>1.218</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.005</td>
<td>0.946</td>
<td>1.068</td>
<td>0.965</td>
<td>0.898</td>
<td>1.037</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.996</td>
<td>0.937</td>
<td>1.059</td>
<td>1.011</td>
<td>0.933</td>
<td>1.096</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.994</td>
<td>0.962</td>
<td>1.028</td>
<td>1.021</td>
<td>0.987</td>
<td>1.057</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.999</td>
<td>0.991</td>
<td>1.007</td>
<td>0.994</td>
<td>0.987</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.986</td>
<td>0.974</td>
<td>0.998</td>
<td>1.006</td>
<td>0.993</td>
<td>1.020</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.000</td>
<td>0.959</td>
<td>1.042</td>
<td>0.975</td>
<td>0.931</td>
<td>1.021</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.008</td>
<td>0.990</td>
<td>1.027</td>
<td>0.986</td>
<td>0.965</td>
<td>1.008</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.020</td>
<td>1.006</td>
<td>1.035</td>
<td>0.976</td>
<td>0.962</td>
<td>0.992</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>0.982</td>
<td>1.023</td>
<td>1.008</td>
<td>0.970</td>
<td>1.048</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.007</td>
<td>0.994</td>
<td>1.019</td>
<td>0.996</td>
<td>0.979</td>
<td>1.015</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.967</td>
<td>0.913</td>
<td>1.025</td>
<td>1.006</td>
<td>0.854</td>
<td>1.185</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.947</td>
<td>0.828</td>
<td>1.083</td>
<td>1.076</td>
<td>0.735</td>
<td>1.574</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.994</td>
<td>0.948</td>
<td>1.043</td>
<td>0.983</td>
<td>0.921</td>
<td>1.049</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.127</td>
<td>1.014</td>
<td>1.252</td>
<td>0.923</td>
<td>0.831</td>
<td>1.024</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.007</td>
<td>0.987</td>
<td>1.028</td>
<td>1.000</td>
<td>0.983</td>
<td>1.018</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.998</td>
<td>0.988</td>
<td>1.009</td>
<td>1.000</td>
<td>0.988</td>
<td>1.011</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.986</td>
<td>0.967</td>
<td>1.006</td>
<td>1.010</td>
<td>0.985</td>
<td>1.035</td>
</tr>
</tbody>
</table>
表15. GLIMによって推計された各種大気汚染物質の総死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$</th>
<th>NO$_2$</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.026</td>
<td>1.006</td>
<td>1.046</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.984</td>
<td>0.962</td>
<td>1.007</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.936</td>
<td>0.898</td>
<td>0.975</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.039</td>
<td>0.979</td>
<td>1.104</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.021</td>
<td>0.936</td>
<td>1.050</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.006</td>
<td>0.973</td>
<td>1.040</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.994</td>
<td>0.986</td>
<td>1.002</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.983</td>
<td>1.008</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.017</td>
<td>0.976</td>
<td>1.059</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.023</td>
<td>1.004</td>
<td>1.042</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.022</td>
<td>1.008</td>
<td>1.037</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.003</td>
<td>0.991</td>
<td>1.015</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.992</td>
<td>0.936</td>
<td>1.050</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.033</td>
<td>0.986</td>
<td>1.082</td>
</tr>
<tr>
<td>埼玉県川越市</td>
<td>1.067</td>
<td>0.959</td>
<td>1.188</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.000</td>
<td>0.979</td>
<td>1.021</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.997</td>
<td>0.987</td>
<td>1.008</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.986</td>
<td>0.967</td>
<td>1.006</td>
</tr>
</tbody>
</table>
表 16. GLIM によって推計された各種大気汚染物質の総死亡リスク比(lag=2)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.019</td>
<td>0.999</td>
<td>1.039</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.991</td>
<td>0.969</td>
<td>1.014</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.930</td>
<td>0.892</td>
<td>0.970</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.027</td>
<td>0.967</td>
<td>1.091</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.994</td>
<td>0.935</td>
<td>1.057</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.006</td>
<td>0.973</td>
<td>1.040</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.993</td>
<td>0.985</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.001</td>
<td>0.988</td>
<td>1.013</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.015</td>
<td>0.974</td>
<td>1.058</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.017</td>
<td>0.998</td>
<td>1.036</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.016</td>
<td>1.001</td>
<td>1.030</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.005</td>
<td>0.984</td>
<td>1.026</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.009</td>
<td>0.996</td>
<td>1.021</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.027</td>
<td>0.971</td>
<td>1.087</td>
</tr>
<tr>
<td>兵庫県伊丹市</td>
<td>0.879</td>
<td>0.765</td>
<td>1.009</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.004</td>
<td>0.960</td>
<td>1.050</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.998</td>
<td>0.894</td>
<td>1.114</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.985</td>
<td>0.965</td>
<td>1.006</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.993</td>
<td>0.983</td>
<td>1.003</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.981</td>
<td>0.961</td>
<td>1.001</td>
</tr>
</tbody>
</table>

67
表17. GLIMによって推計された各種大気汚染物質の総死亡リスク比（lag=3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5推計リスク比</th>
<th>95%信頼区間下限</th>
<th>上限</th>
<th>NO2推計リスク比</th>
<th>95%信頼区間下限</th>
<th>上限</th>
<th>Ox推計リスク比</th>
<th>95%信頼区間下限</th>
<th>上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.020</td>
<td>1.000</td>
<td>1.040</td>
<td>0.960</td>
<td>0.946</td>
<td>0.975</td>
<td>0.988</td>
<td>0.973</td>
<td>1.003</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.990</td>
<td>0.967</td>
<td>1.012</td>
<td>1.042</td>
<td>1.011</td>
<td>1.073</td>
<td>1.037</td>
<td>1.016</td>
<td>1.058</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.932</td>
<td>0.894</td>
<td>0.972</td>
<td>1.150</td>
<td>1.098</td>
<td>1.203</td>
<td>1.085</td>
<td>1.053</td>
<td>1.117</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.014</td>
<td>0.955</td>
<td>1.077</td>
<td>0.978</td>
<td>0.911</td>
<td>1.050</td>
<td>0.998</td>
<td>0.946</td>
<td>1.053</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.946</td>
<td>0.888</td>
<td>1.008</td>
<td>1.116</td>
<td>1.029</td>
<td>1.211</td>
<td>1.021</td>
<td>0.960</td>
<td>1.087</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.012</td>
<td>0.979</td>
<td>1.047</td>
<td>0.990</td>
<td>0.957</td>
<td>1.024</td>
<td>0.995</td>
<td>0.971</td>
<td>1.019</td>
</tr>
<tr>
<td>東京都23区</td>
<td>1.000</td>
<td>0.992</td>
<td>1.008</td>
<td>0.994</td>
<td>0.987</td>
<td>1.001</td>
<td>0.999</td>
<td>0.993</td>
<td>1.005</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.983</td>
<td>1.008</td>
<td>1.007</td>
<td>0.993</td>
<td>1.021</td>
<td>1.020</td>
<td>1.009</td>
<td>1.031</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.995</td>
<td>0.955</td>
<td>1.037</td>
<td>0.995</td>
<td>0.950</td>
<td>1.041</td>
<td>0.980</td>
<td>0.935</td>
<td>1.027</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.006</td>
<td>0.987</td>
<td>1.025</td>
<td>0.984</td>
<td>0.963</td>
<td>1.006</td>
<td>0.990</td>
<td>0.973</td>
<td>1.008</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.003</td>
<td>1.032</td>
<td>0.980</td>
<td>0.965</td>
<td>0.995</td>
<td>0.996</td>
<td>0.983</td>
<td>1.009</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.995</td>
<td>0.974</td>
<td>1.016</td>
<td>1.024</td>
<td>0.986</td>
<td>1.064</td>
<td>1.021</td>
<td>0.993</td>
<td>1.049</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.012</td>
<td>1.000</td>
<td>1.025</td>
<td>0.985</td>
<td>0.968</td>
<td>1.003</td>
<td>0.998</td>
<td>0.982</td>
<td>1.013</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.986</td>
<td>0.931</td>
<td>1.044</td>
<td>1.114</td>
<td>0.951</td>
<td>1.305</td>
<td>1.000</td>
<td>0.957</td>
<td>1.046</td>
</tr>
<tr>
<td>宮城県番路町</td>
<td>1.053</td>
<td>0.925</td>
<td>1.200</td>
<td>0.818</td>
<td>0.557</td>
<td>1.201</td>
<td>0.913</td>
<td>0.812</td>
<td>1.026</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.025</td>
<td>0.984</td>
<td>1.069</td>
<td>0.976</td>
<td>0.919</td>
<td>1.037</td>
<td>0.974</td>
<td>0.920</td>
<td>1.031</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.020</td>
<td>0.914</td>
<td>1.138</td>
<td>1.057</td>
<td>0.952</td>
<td>1.174</td>
<td>0.958</td>
<td>0.869</td>
<td>1.055</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.996</td>
<td>0.976</td>
<td>1.017</td>
<td>1.017</td>
<td>0.999</td>
<td>1.035</td>
<td>1.013</td>
<td>0.997</td>
<td>1.030</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.990</td>
<td>0.980</td>
<td>1.001</td>
<td>1.008</td>
<td>0.996</td>
<td>1.020</td>
<td>1.007</td>
<td>0.996</td>
<td>1.018</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.993</td>
<td>0.973</td>
<td>1.013</td>
<td>0.995</td>
<td>0.971</td>
<td>1.019</td>
<td>1.006</td>
<td>0.985</td>
<td>1.027</td>
</tr>
</tbody>
</table>
表18. GLIMによって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=0）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.028</td>
<td>0.983</td>
<td>1.075</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.988</td>
<td>0.931</td>
<td>1.048</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.889</td>
<td>0.809</td>
<td>0.978</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.042</td>
<td>0.897</td>
<td>1.211</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.999</td>
<td>0.873</td>
<td>1.144</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.948</td>
<td>0.878</td>
<td>1.023</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.994</td>
<td>0.978</td>
<td>1.011</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.990</td>
<td>0.962</td>
<td>1.019</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.011</td>
<td>0.919</td>
<td>1.112</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.998</td>
<td>0.966</td>
<td>1.030</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.992</td>
<td>0.948</td>
<td>1.039</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.007</td>
<td>0.981</td>
<td>1.034</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.982</td>
<td>0.860</td>
<td>1.122</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.707</td>
<td>0.479</td>
<td>1.044</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.386</td>
<td>1.084</td>
<td>1.772</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.997</td>
<td>0.949</td>
<td>1.047</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.010</td>
<td>0.987</td>
<td>1.033</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.976</td>
<td>0.928</td>
<td>1.025</td>
</tr>
</tbody>
</table>

69
表 19. GLIM によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM_{2.5}</th>
<th>NO_{2}</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.026</td>
<td>0.977</td>
<td>0.975</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.952</td>
<td>1.059</td>
<td>1.063</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.888</td>
<td>1.183</td>
<td>1.109</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.043</td>
<td>0.964</td>
<td>1.018</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.872</td>
<td>1.365</td>
<td>1.065</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.921</td>
<td>1.096</td>
<td>1.020</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.992</td>
<td>1.008</td>
<td>1.020</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.979</td>
<td>1.032</td>
<td>1.056</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.998</td>
<td>0.937</td>
<td>0.979</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.042</td>
<td>0.949</td>
<td>0.956</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.029</td>
<td>0.970</td>
<td>1.001</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>0.926</td>
<td>1.080</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.010</td>
<td>0.978</td>
<td>0.973</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.002</td>
<td>1.263</td>
<td>1.049</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.907</td>
<td>0.985</td>
<td>0.973</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.008</td>
<td>0.929</td>
<td>0.906</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.014</td>
<td>1.025</td>
<td>1.034</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.991</td>
<td>1.004</td>
<td>1.008</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.954</td>
<td>1.040</td>
<td>1.069</td>
</tr>
<tr>
<td>地域</td>
<td>PM2.5推計リスク比</td>
<td>95%信頼区間下限</td>
<td>95%信頼区間上限</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.017</td>
<td>0.972</td>
<td>1.064</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.978</td>
<td>0.920</td>
<td>1.039</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.919</td>
<td>0.836</td>
<td>1.010</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.049</td>
<td>0.901</td>
<td>1.222</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.931</td>
<td>0.808</td>
<td>1.074</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.960</td>
<td>0.890</td>
<td>1.036</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.988</td>
<td>0.972</td>
<td>1.005</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.002</td>
<td>0.974</td>
<td>1.031</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.032</td>
<td>0.939</td>
<td>1.135</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.053</td>
<td>1.010</td>
<td>1.097</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.050</td>
<td>1.017</td>
<td>1.084</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.007</td>
<td>0.963</td>
<td>1.054</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.985</td>
<td>0.959</td>
<td>1.012</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.969</td>
<td>0.846</td>
<td>1.111</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.784</td>
<td>0.537</td>
<td>1.143</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.019</td>
<td>0.919</td>
<td>1.130</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.886</td>
<td>0.664</td>
<td>1.182</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.004</td>
<td>0.955</td>
<td>1.056</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.999</td>
<td>0.976</td>
<td>1.022</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.950</td>
<td>0.903</td>
<td>1.000</td>
</tr>
</tbody>
</table>
表 21. GLIM によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5推計リスク比</th>
<th>PM2.595%信頼区間</th>
<th>NO2推計リスク比</th>
<th>NO295%信頼区間</th>
<th>Ox推計リスク比</th>
<th>Ox95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.029</td>
<td>0.984</td>
<td>1.075</td>
<td>0.975</td>
<td>0.942</td>
<td>1.009</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.975</td>
<td>0.918</td>
<td>1.036</td>
<td>1.064</td>
<td>0.984</td>
<td>1.150</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.921</td>
<td>0.837</td>
<td>1.013</td>
<td>1.170</td>
<td>1.058</td>
<td>1.295</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.072</td>
<td>0.925</td>
<td>1.243</td>
<td>0.990</td>
<td>0.831</td>
<td>1.181</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.854</td>
<td>0.739</td>
<td>0.988</td>
<td>1.277</td>
<td>1.061</td>
<td>1.536</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.921</td>
<td>0.853</td>
<td>0.995</td>
<td>1.075</td>
<td>0.995</td>
<td>1.162</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>1.006</td>
<td>0.989</td>
<td>1.023</td>
<td>0.986</td>
<td>0.971</td>
<td>1.000</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.994</td>
<td>0.966</td>
<td>1.023</td>
<td>1.016</td>
<td>0.985</td>
<td>1.049</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.970</td>
<td>0.880</td>
<td>1.068</td>
<td>0.996</td>
<td>0.896</td>
<td>1.107</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.035</td>
<td>0.993</td>
<td>1.079</td>
<td>0.943</td>
<td>0.899</td>
<td>0.989</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.046</td>
<td>1.014</td>
<td>1.080</td>
<td>0.949</td>
<td>0.916</td>
<td>0.983</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.005</td>
<td>0.961</td>
<td>1.052</td>
<td>0.998</td>
<td>0.917</td>
<td>1.086</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.013</td>
<td>0.987</td>
<td>1.040</td>
<td>0.967</td>
<td>0.930</td>
<td>1.005</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.001</td>
<td>0.875</td>
<td>1.145</td>
<td>1.141</td>
<td>0.783</td>
<td>1.663</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>1.039</td>
<td>0.742</td>
<td>1.455</td>
<td>0.658</td>
<td>0.241</td>
<td>1.800</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.000</td>
<td>0.906</td>
<td>1.103</td>
<td>1.070</td>
<td>0.929</td>
<td>1.232</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.958</td>
<td>0.719</td>
<td>1.275</td>
<td>0.967</td>
<td>0.738</td>
<td>1.269</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.031</td>
<td>0.982</td>
<td>1.083</td>
<td>0.989</td>
<td>0.948</td>
<td>1.033</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.000</td>
<td>0.977</td>
<td>1.023</td>
<td>1.003</td>
<td>0.977</td>
<td>1.030</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.995</td>
<td>0.947</td>
<td>1.045</td>
<td>1.005</td>
<td>0.946</td>
<td>1.068</td>
</tr>
</tbody>
</table>
表 22. GLIM によって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=0）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5リスク比</th>
<th>PM2.5 95%信頼区間</th>
<th>NO₂リスク比</th>
<th>NO₂ 95%信頼区間</th>
<th>Oxリスク比</th>
<th>Ox 95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.043</td>
<td>1.011</td>
<td>1.076</td>
<td>0.947</td>
<td>0.924</td>
<td>0.970</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1.005</td>
<td>0.967</td>
<td>1.045</td>
<td>1.002</td>
<td>0.953</td>
<td>1.053</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.961</td>
<td>0.904</td>
<td>1.021</td>
<td>1.120</td>
<td>1.046</td>
<td>1.200</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.066</td>
<td>0.968</td>
<td>1.174</td>
<td>0.954</td>
<td>0.849</td>
<td>1.072</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.005</td>
<td>0.904</td>
<td>1.116</td>
<td>1.005</td>
<td>0.874</td>
<td>1.154</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.027</td>
<td>0.971</td>
<td>1.086</td>
<td>1.003</td>
<td>0.947</td>
<td>1.062</td>
</tr>
<tr>
<td>東京都23区</td>
<td>1.003</td>
<td>0.991</td>
<td>1.015</td>
<td>0.995</td>
<td>0.984</td>
<td>1.005</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.999</td>
<td>0.979</td>
<td>1.019</td>
<td>1.017</td>
<td>0.995</td>
<td>1.040</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.037</td>
<td>0.964</td>
<td>1.115</td>
<td>1.006</td>
<td>0.928</td>
<td>1.091</td>
</tr>
<tr>
<td>宇部市</td>
<td>1.103</td>
<td>0.981</td>
<td>1.047</td>
<td>0.981</td>
<td>0.945</td>
<td>1.018</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.036</td>
<td>1.011</td>
<td>1.062</td>
<td>0.980</td>
<td>0.954</td>
<td>1.007</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.995</td>
<td>0.962</td>
<td>1.030</td>
<td>1.007</td>
<td>0.945</td>
<td>1.074</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.015</td>
<td>0.993</td>
<td>1.038</td>
<td>0.990</td>
<td>0.958</td>
<td>1.023</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.994</td>
<td>0.904</td>
<td>1.092</td>
<td>0.914</td>
<td>0.694</td>
<td>1.203</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.996</td>
<td>0.795</td>
<td>1.248</td>
<td>1.233</td>
<td>0.639</td>
<td>2.380</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.029</td>
<td>0.956</td>
<td>1.109</td>
<td>0.955</td>
<td>0.861</td>
<td>1.058</td>
</tr>
<tr>
<td>埼玉県川越市</td>
<td>1.096</td>
<td>0.910</td>
<td>1.319</td>
<td>1.004</td>
<td>0.838</td>
<td>1.202</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.009</td>
<td>0.974</td>
<td>1.045</td>
<td>1.007</td>
<td>0.976</td>
<td>1.038</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.012</td>
<td>0.994</td>
<td>1.029</td>
<td>0.993</td>
<td>0.973</td>
<td>1.013</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.989</td>
<td>0.954</td>
<td>1.024</td>
<td>1.019</td>
<td>0.976</td>
<td>1.064</td>
</tr>
</tbody>
</table>
表 23. GLIM によって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5 推計リスク比 95%信頼区間下限</th>
<th>PM2.5 推定リスク比 95%信頼区間下限</th>
<th>NO2 推計リスク比 95%信頼区間上限</th>
<th>NO2 推定リスク比 95%信頼区間上限</th>
<th>Ox 推計リスク比 95%信頼区間下限</th>
<th>Ox 推定リスク比 95%信頼区間下限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.033</td>
<td>0.959</td>
<td>0.936</td>
<td>0.982</td>
<td>0.979</td>
<td>0.955</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1.024</td>
<td>0.986</td>
<td>1.064</td>
<td>1.049</td>
<td>0.998</td>
<td>1.102</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.941</td>
<td>0.884</td>
<td>1.000</td>
<td>1.155</td>
<td>1.080</td>
<td>1.235</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.101</td>
<td>1.001</td>
<td>1.211</td>
<td>0.879</td>
<td>0.783</td>
<td>0.987</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.997</td>
<td>0.897</td>
<td>1.109</td>
<td>0.955</td>
<td>0.831</td>
<td>1.098</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.029</td>
<td>0.973</td>
<td>1.088</td>
<td>0.955</td>
<td>0.901</td>
<td>1.012</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>1.002</td>
<td>0.990</td>
<td>1.014</td>
<td>0.993</td>
<td>0.982</td>
<td>1.003</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.005</td>
<td>0.985</td>
<td>1.026</td>
<td>1.006</td>
<td>0.984</td>
<td>1.029</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.011</td>
<td>0.940</td>
<td>1.089</td>
<td>1.016</td>
<td>0.937</td>
<td>1.102</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.031</td>
<td>0.998</td>
<td>1.066</td>
<td>0.967</td>
<td>0.931</td>
<td>1.003</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.013</td>
<td>0.988</td>
<td>1.039</td>
<td>0.997</td>
<td>0.970</td>
<td>1.025</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.031</td>
<td>0.997</td>
<td>1.067</td>
<td>0.972</td>
<td>0.913</td>
<td>1.036</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.001</td>
<td>0.979</td>
<td>1.024</td>
<td>0.991</td>
<td>0.958</td>
<td>1.024</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.954</td>
<td>0.866</td>
<td>1.051</td>
<td>1.216</td>
<td>0.938</td>
<td>1.576</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.824</td>
<td>0.645</td>
<td>1.052</td>
<td>1.435</td>
<td>0.739</td>
<td>2.784</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.070</td>
<td>0.995</td>
<td>1.151</td>
<td>0.938</td>
<td>0.847</td>
<td>1.039</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.012</td>
<td>0.837</td>
<td>1.223</td>
<td>1.022</td>
<td>0.852</td>
<td>1.225</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.979</td>
<td>0.945</td>
<td>1.015</td>
<td>1.022</td>
<td>0.991</td>
<td>1.053</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.009</td>
<td>0.991</td>
<td>1.027</td>
<td>1.001</td>
<td>0.981</td>
<td>1.021</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.993</td>
<td>0.959</td>
<td>1.030</td>
<td>1.024</td>
<td>0.981</td>
<td>1.070</td>
</tr>
</tbody>
</table>
表 24. GLIM によって推計された各種大気汚染物質の循環器疾患死亡リスク比(lag=2)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>NO$_2$リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>Oxリスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.025</td>
<td>0.993</td>
<td>1.058</td>
<td>0.959</td>
<td>0.936</td>
<td>0.983</td>
<td>0.984</td>
<td>0.960</td>
<td>1.009</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1.021</td>
<td>0.982</td>
<td>1.061</td>
<td>1.040</td>
<td>1.090</td>
<td>1.093</td>
<td>1.024</td>
<td>0.989</td>
<td>1.060</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.956</td>
<td>0.898</td>
<td>1.017</td>
<td>1.137</td>
<td>1.063</td>
<td>1.217</td>
<td>1.068</td>
<td>1.021</td>
<td>1.116</td>
</tr>
<tr>
<td>福島県取手市</td>
<td>1.058</td>
<td>0.959</td>
<td>1.166</td>
<td>0.854</td>
<td>0.759</td>
<td>0.961</td>
<td>0.967</td>
<td>0.885</td>
<td>1.057</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.102</td>
<td>0.996</td>
<td>1.218</td>
<td>0.933</td>
<td>0.814</td>
<td>1.071</td>
<td>0.970</td>
<td>0.871</td>
<td>1.081</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.999</td>
<td>0.944</td>
<td>1.057</td>
<td>0.988</td>
<td>0.933</td>
<td>1.047</td>
<td>0.996</td>
<td>0.956</td>
<td>1.038</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.998</td>
<td>0.986</td>
<td>1.010</td>
<td>0.996</td>
<td>0.986</td>
<td>1.007</td>
<td>0.995</td>
<td>0.986</td>
<td>1.005</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.015</td>
<td>0.995</td>
<td>1.036</td>
<td>1.004</td>
<td>0.982</td>
<td>1.027</td>
<td>0.995</td>
<td>0.978</td>
<td>1.013</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.030</td>
<td>0.958</td>
<td>1.108</td>
<td>0.968</td>
<td>0.893</td>
<td>1.049</td>
<td>1.008</td>
<td>0.927</td>
<td>1.096</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.021</td>
<td>0.988</td>
<td>1.055</td>
<td>0.981</td>
<td>0.945</td>
<td>1.018</td>
<td>0.973</td>
<td>0.943</td>
<td>1.005</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.999</td>
<td>0.974</td>
<td>1.024</td>
<td>1.014</td>
<td>0.987</td>
<td>1.042</td>
<td>1.007</td>
<td>0.984</td>
<td>1.031</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.017</td>
<td>0.983</td>
<td>1.053</td>
<td>0.992</td>
<td>0.931</td>
<td>1.058</td>
<td>1.027</td>
<td>0.981</td>
<td>1.075</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.027</td>
<td>1.004</td>
<td>1.049</td>
<td>0.969</td>
<td>0.938</td>
<td>1.002</td>
<td>0.972</td>
<td>0.945</td>
<td>1.000</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.030</td>
<td>0.938</td>
<td>1.130</td>
<td>1.309</td>
<td>1.014</td>
<td>1.690</td>
<td>1.001</td>
<td>0.930</td>
<td>1.078</td>
</tr>
<tr>
<td>宮城県酒田市</td>
<td>0.791</td>
<td>0.617</td>
<td>1.015</td>
<td>1.235</td>
<td>0.630</td>
<td>2.422</td>
<td>1.063</td>
<td>0.868</td>
<td>1.301</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.955</td>
<td>0.887</td>
<td>1.029</td>
<td>1.029</td>
<td>0.931</td>
<td>1.138</td>
<td>0.941</td>
<td>0.857</td>
<td>1.033</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.023</td>
<td>0.846</td>
<td>1.238</td>
<td>0.952</td>
<td>0.792</td>
<td>1.143</td>
<td>0.996</td>
<td>0.839</td>
<td>1.181</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.978</td>
<td>0.943</td>
<td>1.013</td>
<td>1.023</td>
<td>0.992</td>
<td>1.055</td>
<td>0.994</td>
<td>0.966</td>
<td>1.023</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.990</td>
<td>0.973</td>
<td>1.008</td>
<td>1.025</td>
<td>1.004</td>
<td>1.046</td>
<td>1.018</td>
<td>0.999</td>
<td>1.037</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.990</td>
<td>0.956</td>
<td>1.026</td>
<td>0.992</td>
<td>0.950</td>
<td>1.036</td>
<td>0.999</td>
<td>0.962</td>
<td>1.038</td>
</tr>
</tbody>
</table>
表 25. GLIM によって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM<sub>2.5</sub></th>
<th>NO<sub>2</sub></th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.005</td>
<td>0.973</td>
<td>1.038</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1.013</td>
<td>0.974</td>
<td>1.053</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.943</td>
<td>0.886</td>
<td>1.003</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.085</td>
<td>0.985</td>
<td>1.196</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.999</td>
<td>0.899</td>
<td>1.110</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.029</td>
<td>0.974</td>
<td>1.089</td>
</tr>
<tr>
<td>東京都23区</td>
<td>1.006</td>
<td>0.994</td>
<td>1.018</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.017</td>
<td>0.997</td>
<td>1.038</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.019</td>
<td>0.947</td>
<td>1.097</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.012</td>
<td>0.979</td>
<td>1.045</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.004</td>
<td>0.979</td>
<td>1.030</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.983</td>
<td>0.950</td>
<td>1.018</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.020</td>
<td>0.998</td>
<td>1.043</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.992</td>
<td>0.903</td>
<td>1.090</td>
</tr>
<tr>
<td>宮崎県大感町</td>
<td>0.974</td>
<td>0.772</td>
<td>1.228</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.953</td>
<td>0.888</td>
<td>1.023</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.130</td>
<td>0.944</td>
<td>1.352</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.979</td>
<td>0.944</td>
<td>1.014</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.993</td>
<td>0.976</td>
<td>1.011</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.991</td>
<td>0.956</td>
<td>1.027</td>
</tr>
</tbody>
</table>
表 26. GAM によって推計された各種大気汚染物質の総死亡リスク比（lag=0）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$</th>
<th>NO$_2$</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推計リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.017</td>
<td>1.000</td>
<td>1.035</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.980</td>
<td>0.959</td>
<td>1.001</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.921</td>
<td>0.891</td>
<td>0.953</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.991</td>
<td>0.985</td>
<td>0.996</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.999</td>
<td>0.960</td>
<td>1.039</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.002</td>
<td>0.985</td>
<td>1.020</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.001</td>
<td>0.981</td>
<td>1.020</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.961</td>
<td>0.909</td>
<td>1.016</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.941</td>
<td>0.826</td>
<td>1.072</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.994</td>
<td>0.949</td>
<td>1.042</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.118</td>
<td>1.011</td>
<td>1.236</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.001</td>
<td>0.982</td>
<td>1.020</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.994</td>
<td>0.985</td>
<td>1.003</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.985</td>
<td>0.967</td>
<td>1.004</td>
</tr>
</tbody>
</table>

77
表 27. GAM によって推計された各種大気汚染物質の総死亡リスク比(lag=1)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.016</td>
<td>0.998</td>
<td>1.033</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.973</td>
<td>0.952</td>
<td>0.995</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.928</td>
<td>0.897</td>
<td>0.959</td>
</tr>
<tr>
<td>秋田県能代市</td>
<td>1.036</td>
<td>0.977</td>
<td>1.099</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.975</td>
<td>0.917</td>
<td>1.036</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.005</td>
<td>0.974</td>
<td>1.037</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.986</td>
<td>0.980</td>
<td>0.992</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.990</td>
<td>0.979</td>
<td>1.001</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.019</td>
<td>0.980</td>
<td>1.059</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.016</td>
<td>0.998</td>
<td>1.034</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.004</td>
<td>1.030</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.019</td>
<td>1.000</td>
<td>1.039</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.999</td>
<td>0.987</td>
<td>1.010</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.985</td>
<td>0.932</td>
<td>1.041</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.868</td>
<td>0.758</td>
<td>0.993</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.036</td>
<td>0.990</td>
<td>1.085</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.053</td>
<td>0.951</td>
<td>1.166</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.993</td>
<td>0.974</td>
<td>1.012</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.993</td>
<td>0.984</td>
<td>1.002</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.985</td>
<td>0.966</td>
<td>1.004</td>
</tr>
</tbody>
</table>
表 28. GAM によって推計された各種大気汚染物質の総死亡リスク比(lag=2)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th></th>
<th>NO2</th>
<th></th>
<th>Ox</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>総死亡リスク比</td>
<td>95%信頼区間</td>
<td>総死亡リスク比</td>
<td>95%信頼区間</td>
<td>総死亡リスク比</td>
<td>95%信頼区間</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.009</td>
<td>0.992</td>
<td>1.027</td>
<td>0.956</td>
<td>0.943</td>
<td>0.969</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.979</td>
<td>0.958</td>
<td>1.001</td>
<td>1.041</td>
<td>1.012</td>
<td>1.071</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.920</td>
<td>0.890</td>
<td>0.952</td>
<td>1.163</td>
<td>1.120</td>
<td>1.207</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.017</td>
<td>0.959</td>
<td>1.078</td>
<td>0.922</td>
<td>0.860</td>
<td>0.988</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.002</td>
<td>0.943</td>
<td>1.064</td>
<td>1.094</td>
<td>1.011</td>
<td>1.185</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.002</td>
<td>0.971</td>
<td>1.034</td>
<td>0.987</td>
<td>0.956</td>
<td>1.019</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.984</td>
<td>0.979</td>
<td>0.990</td>
<td>0.997</td>
<td>0.992</td>
<td>1.002</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.984</td>
<td>1.005</td>
<td>1.008</td>
<td>0.996</td>
<td>1.020</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.007</td>
<td>0.968</td>
<td>1.047</td>
<td>0.956</td>
<td>0.916</td>
<td>0.998</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.010</td>
<td>0.997</td>
<td>1.022</td>
<td>0.982</td>
<td>0.969</td>
<td>0.995</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.001</td>
<td>0.981</td>
<td>1.020</td>
<td>1.011</td>
<td>0.977</td>
<td>1.046</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.005</td>
<td>0.994</td>
<td>1.017</td>
<td>0.996</td>
<td>0.981</td>
<td>1.012</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.027</td>
<td>0.972</td>
<td>1.084</td>
<td>1.191</td>
<td>1.022</td>
<td>1.388</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.891</td>
<td>0.777</td>
<td>1.021</td>
<td>1.276</td>
<td>0.889</td>
<td>1.832</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.003</td>
<td>0.960</td>
<td>1.049</td>
<td>0.947</td>
<td>0.891</td>
<td>1.006</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.996</td>
<td>0.898</td>
<td>1.104</td>
<td>1.027</td>
<td>0.930</td>
<td>1.133</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.976</td>
<td>0.958</td>
<td>0.995</td>
<td>1.017</td>
<td>1.000</td>
<td>1.034</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.988</td>
<td>0.979</td>
<td>0.997</td>
<td>1.012</td>
<td>1.002</td>
<td>1.022</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.974</td>
<td>0.956</td>
<td>0.993</td>
<td>1.008</td>
<td>0.986</td>
<td>1.030</td>
</tr>
<tr>
<td>地域</td>
<td>PM2.5 推計リスク比</td>
<td>95%信頼区間下限</td>
<td>95%信頼区間上限</td>
<td>NO2 推定リスク比</td>
<td>95%信頼区間下限</td>
<td>95%信頼区間上限</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.006</td>
<td>0.989</td>
<td>1.024</td>
<td>0.958</td>
<td>0.945</td>
<td>0.971</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.978</td>
<td>0.957</td>
<td>0.999</td>
<td>1.035</td>
<td>1.006</td>
<td>1.064</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.921</td>
<td>0.891</td>
<td>0.953</td>
<td>1.154</td>
<td>1.111</td>
<td>1.198</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.005</td>
<td>0.948</td>
<td>1.066</td>
<td>0.960</td>
<td>0.896</td>
<td>1.028</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.950</td>
<td>0.894</td>
<td>1.011</td>
<td>1.125</td>
<td>1.039</td>
<td>1.219</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.006</td>
<td>0.975</td>
<td>1.038</td>
<td>0.983</td>
<td>0.952</td>
<td>1.015</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.991</td>
<td>0.985</td>
<td>0.997</td>
<td>0.997</td>
<td>0.992</td>
<td>1.002</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.988</td>
<td>0.977</td>
<td>0.999</td>
<td>1.009</td>
<td>0.997</td>
<td>1.021</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.988</td>
<td>0.950</td>
<td>1.028</td>
<td>0.989</td>
<td>0.948</td>
<td>1.033</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.999</td>
<td>0.982</td>
<td>1.017</td>
<td>0.988</td>
<td>0.969</td>
<td>1.007</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.010</td>
<td>0.998</td>
<td>1.023</td>
<td>0.982</td>
<td>0.969</td>
<td>0.995</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.990</td>
<td>0.970</td>
<td>1.009</td>
<td>1.026</td>
<td>0.992</td>
<td>1.062</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.008</td>
<td>0.997</td>
<td>1.020</td>
<td>0.990</td>
<td>0.975</td>
<td>1.006</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.968</td>
<td>0.916</td>
<td>1.023</td>
<td>1.103</td>
<td>0.945</td>
<td>1.288</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>1.072</td>
<td>0.945</td>
<td>1.217</td>
<td>0.842</td>
<td>0.582</td>
<td>1.219</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.023</td>
<td>0.982</td>
<td>1.066</td>
<td>0.976</td>
<td>0.920</td>
<td>1.035</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.032</td>
<td>0.932</td>
<td>1.142</td>
<td>1.050</td>
<td>0.952</td>
<td>1.158</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.987</td>
<td>0.968</td>
<td>1.006</td>
<td>1.020</td>
<td>1.003</td>
<td>1.037</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.985</td>
<td>0.976</td>
<td>0.994</td>
<td>1.012</td>
<td>1.002</td>
<td>1.022</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.986</td>
<td>0.967</td>
<td>1.004</td>
<td>0.998</td>
<td>0.977</td>
<td>1.021</td>
</tr>
</tbody>
</table>
表 30. GAM によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=0）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5 推計リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>NO2 推定リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>Ox 推定リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.012</td>
<td>0.969</td>
<td>1.056</td>
<td>0.963</td>
<td>0.932</td>
<td>0.995</td>
<td>0.973</td>
<td>0.946</td>
<td>1.001</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.962</td>
<td>0.910</td>
<td>1.016</td>
<td>1.089</td>
<td>1.014</td>
<td>1.169</td>
<td>1.083</td>
<td>1.037</td>
<td>1.130</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.871</td>
<td>0.795</td>
<td>0.953</td>
<td>1.231</td>
<td>1.121</td>
<td>1.353</td>
<td>1.100</td>
<td>1.036</td>
<td>1.169</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.038</td>
<td>0.896</td>
<td>1.204</td>
<td>0.930</td>
<td>0.781</td>
<td>1.107</td>
<td>0.995</td>
<td>0.887</td>
<td>1.116</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.984</td>
<td>0.860</td>
<td>1.126</td>
<td>1.103</td>
<td>0.923</td>
<td>1.318</td>
<td>1.052</td>
<td>0.927</td>
<td>1.194</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.941</td>
<td>0.874</td>
<td>1.014</td>
<td>1.062</td>
<td>0.986</td>
<td>1.144</td>
<td>1.010</td>
<td>0.964</td>
<td>1.059</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.987</td>
<td>0.973</td>
<td>1.001</td>
<td>1.000</td>
<td>0.988</td>
<td>1.013</td>
<td>1.002</td>
<td>0.992</td>
<td>1.012</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.986</td>
<td>0.960</td>
<td>1.013</td>
<td>0.999</td>
<td>0.970</td>
<td>1.028</td>
<td>1.035</td>
<td>1.013</td>
<td>1.057</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.008</td>
<td>0.918</td>
<td>1.107</td>
<td>0.949</td>
<td>0.856</td>
<td>1.052</td>
<td>1.003</td>
<td>0.914</td>
<td>1.100</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.991</td>
<td>0.951</td>
<td>1.032</td>
<td>0.999</td>
<td>0.955</td>
<td>1.044</td>
<td>1.005</td>
<td>0.970</td>
<td>1.041</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.996</td>
<td>0.966</td>
<td>1.027</td>
<td>0.998</td>
<td>0.967</td>
<td>1.030</td>
<td>1.014</td>
<td>0.989</td>
<td>1.041</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.991</td>
<td>0.948</td>
<td>1.035</td>
<td>1.072</td>
<td>0.991</td>
<td>1.159</td>
<td>1.067</td>
<td>1.012</td>
<td>1.125</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.003</td>
<td>0.978</td>
<td>1.030</td>
<td>0.964</td>
<td>0.931</td>
<td>0.999</td>
<td>0.973</td>
<td>0.948</td>
<td>0.999</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.996</td>
<td>0.880</td>
<td>1.127</td>
<td>1.085</td>
<td>0.763</td>
<td>1.544</td>
<td>1.043</td>
<td>0.963</td>
<td>1.131</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.663</td>
<td>0.452</td>
<td>0.971</td>
<td>1.086</td>
<td>0.423</td>
<td>2.790</td>
<td>0.941</td>
<td>0.731</td>
<td>1.212</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.064</td>
<td>0.960</td>
<td>1.180</td>
<td>0.975</td>
<td>0.846</td>
<td>1.125</td>
<td>1.003</td>
<td>0.888</td>
<td>1.134</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.392</td>
<td>1.095</td>
<td>1.770</td>
<td>0.710</td>
<td>0.556</td>
<td>0.905</td>
<td>0.770</td>
<td>0.624</td>
<td>0.950</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.992</td>
<td>0.946</td>
<td>1.040</td>
<td>1.018</td>
<td>0.977</td>
<td>1.061</td>
<td>1.053</td>
<td>1.018</td>
<td>1.090</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.005</td>
<td>0.984</td>
<td>1.027</td>
<td>0.998</td>
<td>0.976</td>
<td>1.021</td>
<td>0.998</td>
<td>0.979</td>
<td>1.017</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.978</td>
<td>0.933</td>
<td>1.025</td>
<td>1.017</td>
<td>0.963</td>
<td>1.074</td>
<td>1.061</td>
<td>1.015</td>
<td>1.109</td>
</tr>
</tbody>
</table>
表 31. GAM によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5推計リスク比</th>
<th>95%信頼区間</th>
<th>NO2推計リスク比</th>
<th>95%信頼区間</th>
<th>Ox推計リスク比</th>
<th>95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.010</td>
<td>0.968</td>
<td>1.055</td>
<td>0.968</td>
<td>0.937</td>
<td>0.999</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.934</td>
<td>0.883</td>
<td>0.988</td>
<td>1.055</td>
<td>0.983</td>
<td>1.133</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.865</td>
<td>0.789</td>
<td>0.947</td>
<td>1.179</td>
<td>1.071</td>
<td>1.299</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.042</td>
<td>0.901</td>
<td>1.206</td>
<td>0.955</td>
<td>0.804</td>
<td>1.134</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.884</td>
<td>0.769</td>
<td>1.016</td>
<td>1.362</td>
<td>1.139</td>
<td>1.629</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.917</td>
<td>0.851</td>
<td>0.988</td>
<td>1.084</td>
<td>1.006</td>
<td>1.168</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.984</td>
<td>0.970</td>
<td>0.999</td>
<td>1.012</td>
<td>0.999</td>
<td>1.025</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.970</td>
<td>0.944</td>
<td>0.996</td>
<td>1.033</td>
<td>1.003</td>
<td>1.064</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.004</td>
<td>0.913</td>
<td>1.103</td>
<td>0.934</td>
<td>0.843</td>
<td>1.035</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.023</td>
<td>0.992</td>
<td>1.054</td>
<td>0.972</td>
<td>0.943</td>
<td>1.003</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>0.959</td>
<td>1.048</td>
<td>1.015</td>
<td>0.939</td>
<td>1.098</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.003</td>
<td>0.977</td>
<td>1.029</td>
<td>0.979</td>
<td>0.945</td>
<td>1.014</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.992</td>
<td>0.875</td>
<td>1.124</td>
<td>1.264</td>
<td>0.892</td>
<td>1.790</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.852</td>
<td>0.600</td>
<td>1.210</td>
<td>0.895</td>
<td>0.358</td>
<td>2.239</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.082</td>
<td>0.976</td>
<td>1.198</td>
<td>0.945</td>
<td>0.820</td>
<td>1.089</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.966</td>
<td>0.740</td>
<td>1.261</td>
<td>0.922</td>
<td>0.717</td>
<td>1.185</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.008</td>
<td>0.961</td>
<td>1.057</td>
<td>1.024</td>
<td>0.982</td>
<td>1.066</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.985</td>
<td>0.964</td>
<td>1.006</td>
<td>1.006</td>
<td>0.984</td>
<td>1.030</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.959</td>
<td>0.914</td>
<td>1.006</td>
<td>1.038</td>
<td>0.982</td>
<td>1.096</td>
</tr>
</tbody>
</table>

82
表32. GAMによって推計された各種大気汚染物質の呼吸器疾患死亡リスク比(lag=2)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>0.997</td>
<td>1.042</td>
<td>0.962</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.962</td>
<td>1.017</td>
<td>1.077</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.900</td>
<td>0.984</td>
<td>1.196</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.056</td>
<td>1.223</td>
<td>0.939</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.949</td>
<td>0.826</td>
<td>1.181</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.966</td>
<td>0.898</td>
<td>1.034</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.978</td>
<td>0.992</td>
<td>1.005</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.992</td>
<td>1.019</td>
<td>1.027</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.034</td>
<td>1.135</td>
<td>0.919</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.048</td>
<td>1.091</td>
<td>0.923</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.046</td>
<td>1.077</td>
<td>0.955</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.000</td>
<td>1.044</td>
<td>1.014</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.978</td>
<td>1.004</td>
<td>1.015</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.975</td>
<td>1.107</td>
<td>1.363</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.753</td>
<td>1.086</td>
<td>2.110</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.014</td>
<td>1.121</td>
<td>0.914</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.853</td>
<td>1.123</td>
<td>1.036</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.989</td>
<td>1.038</td>
<td>1.007</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.992</td>
<td>1.014</td>
<td>1.008</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.948</td>
<td>0.995</td>
<td>1.059</td>
</tr>
</tbody>
</table>
表 33. GAM によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM<sub>2.5</sub>推計リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>NO<sub>2</sub>推計リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>Ox推計リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道 札幌市</td>
<td>1.009</td>
<td>0.967</td>
<td>1.053</td>
<td>0.964</td>
<td>0.933</td>
<td>0.996</td>
<td>0.985</td>
<td>0.958</td>
<td>1.013</td>
</tr>
<tr>
<td>宮城県 仙台市</td>
<td>0.956</td>
<td>0.904</td>
<td>1.011</td>
<td>1.051</td>
<td>0.979</td>
<td>1.128</td>
<td>1.049</td>
<td>1.005</td>
<td>1.094</td>
</tr>
<tr>
<td>新潟県 上越市</td>
<td>0.892</td>
<td>0.816</td>
<td>0.975</td>
<td>1.161</td>
<td>1.054</td>
<td>1.279</td>
<td>1.116</td>
<td>1.051</td>
<td>1.185</td>
</tr>
<tr>
<td>茨城県 草南市</td>
<td>1.082</td>
<td>0.938</td>
<td>1.249</td>
<td>0.971</td>
<td>0.819</td>
<td>1.152</td>
<td>0.964</td>
<td>0.862</td>
<td>1.079</td>
</tr>
<tr>
<td>埼玉県 藤倉市</td>
<td>0.862</td>
<td>0.748</td>
<td>0.994</td>
<td>1.269</td>
<td>1.060</td>
<td>1.520</td>
<td>0.999</td>
<td>0.878</td>
<td>1.136</td>
</tr>
<tr>
<td>千葉県 千葉市</td>
<td>0.916</td>
<td>0.850</td>
<td>0.987</td>
<td>1.058</td>
<td>0.982</td>
<td>1.140</td>
<td>1.035</td>
<td>0.987</td>
<td>1.085</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.995</td>
<td>0.981</td>
<td>1.009</td>
<td>0.990</td>
<td>0.978</td>
<td>1.002</td>
<td>1.010</td>
<td>0.999</td>
<td>1.020</td>
</tr>
<tr>
<td>愛知県 名古屋市</td>
<td>0.980</td>
<td>0.954</td>
<td>1.007</td>
<td>1.019</td>
<td>0.990</td>
<td>1.049</td>
<td>1.068</td>
<td>1.047</td>
<td>1.091</td>
</tr>
<tr>
<td>大阪府 守口市</td>
<td>0.968</td>
<td>0.880</td>
<td>1.064</td>
<td>0.998</td>
<td>0.901</td>
<td>1.106</td>
<td>1.074</td>
<td>0.980</td>
<td>1.178</td>
</tr>
<tr>
<td>大阪府 枚方市</td>
<td>1.027</td>
<td>0.986</td>
<td>1.069</td>
<td>0.944</td>
<td>0.903</td>
<td>0.987</td>
<td>1.010</td>
<td>0.975</td>
<td>1.046</td>
</tr>
<tr>
<td>兵庫県 神戸市</td>
<td>1.041</td>
<td>1.011</td>
<td>1.073</td>
<td>0.952</td>
<td>0.923</td>
<td>0.982</td>
<td>0.995</td>
<td>0.970</td>
<td>1.021</td>
</tr>
<tr>
<td>岡山県 倉敷市</td>
<td>1.000</td>
<td>0.957</td>
<td>1.045</td>
<td>0.990</td>
<td>0.916</td>
<td>1.069</td>
<td>1.027</td>
<td>0.974</td>
<td>1.082</td>
</tr>
<tr>
<td>福岡県 福岡市</td>
<td>1.008</td>
<td>0.983</td>
<td>1.035</td>
<td>0.973</td>
<td>0.939</td>
<td>1.008</td>
<td>0.994</td>
<td>0.968</td>
<td>1.021</td>
</tr>
<tr>
<td>宮崎県 日向市</td>
<td>0.972</td>
<td>0.857</td>
<td>1.103</td>
<td>1.141</td>
<td>0.800</td>
<td>1.627</td>
<td>0.996</td>
<td>0.919</td>
<td>1.079</td>
</tr>
<tr>
<td>宮城県 仙台市</td>
<td>1.037</td>
<td>0.750</td>
<td>1.435</td>
<td>0.676</td>
<td>0.263</td>
<td>1.741</td>
<td>0.992</td>
<td>0.772</td>
<td>1.275</td>
</tr>
<tr>
<td>群馬県 太田市</td>
<td>0.995</td>
<td>0.905</td>
<td>1.095</td>
<td>1.064</td>
<td>0.931</td>
<td>1.217</td>
<td>1.016</td>
<td>0.900</td>
<td>1.146</td>
</tr>
<tr>
<td>埼玉県 戸田市</td>
<td>0.941</td>
<td>0.717</td>
<td>1.236</td>
<td>0.976</td>
<td>0.758</td>
<td>1.256</td>
<td>0.810</td>
<td>0.655</td>
<td>1.002</td>
</tr>
<tr>
<td>神奈川県 川崎市</td>
<td>1.010</td>
<td>0.963</td>
<td>1.059</td>
<td>1.002</td>
<td>0.961</td>
<td>1.044</td>
<td>1.038</td>
<td>1.002</td>
<td>1.074</td>
</tr>
<tr>
<td>大阪府 大阪市</td>
<td>0.995</td>
<td>0.974</td>
<td>1.017</td>
<td>1.006</td>
<td>0.983</td>
<td>1.029</td>
<td>1.009</td>
<td>0.990</td>
<td>1.028</td>
</tr>
<tr>
<td>兵庫県 兵庫市</td>
<td>0.989</td>
<td>0.943</td>
<td>1.036</td>
<td>1.005</td>
<td>0.952</td>
<td>1.062</td>
<td>1.051</td>
<td>1.006</td>
<td>1.098</td>
</tr>
</tbody>
</table>
表 34. GAM によって推計された各種大気汚染物質の循環器疾患死亡リスク比(lag=0)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5推計リスク比</th>
<th>PM2.5 95%信頼区間</th>
<th>NO2推計リスク比</th>
<th>NO2 95%信頼区間</th>
<th>Ox推計リスク比</th>
<th>Ox 95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.032</td>
<td>1.002</td>
<td>1.063</td>
<td>0.941</td>
<td>0.920</td>
<td>0.963</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.950</td>
<td>0.899</td>
<td>1.004</td>
<td>1.004</td>
<td>0.975</td>
<td>1.034</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.000</td>
<td>0.900</td>
<td>1.111</td>
<td>0.976</td>
<td>0.903</td>
<td>1.055</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.022</td>
<td>0.969</td>
<td>1.079</td>
<td>0.967</td>
<td>0.875</td>
<td>1.068</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.991</td>
<td>0.981</td>
<td>1.002</td>
<td>1.000</td>
<td>0.991</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.977</td>
<td>1.015</td>
<td>1.019</td>
<td>0.998</td>
<td>1.040</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.038</td>
<td>0.968</td>
<td>1.114</td>
<td>0.992</td>
<td>0.919</td>
<td>1.072</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.995</td>
<td>0.962</td>
<td>1.029</td>
<td>1.008</td>
<td>0.950</td>
<td>1.070</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.022</td>
<td>0.947</td>
<td>1.103</td>
<td>0.954</td>
<td>0.861</td>
<td>1.058</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.001</td>
<td>0.968</td>
<td>1.035</td>
<td>0.978</td>
<td>0.978</td>
<td>1.036</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.002</td>
<td>0.986</td>
<td>1.019</td>
<td>0.997</td>
<td>0.980</td>
<td>1.015</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.990</td>
<td>0.957</td>
<td>1.025</td>
<td>0.975</td>
<td>0.979</td>
<td>1.014</td>
</tr>
</tbody>
</table>
表35. GAMによって推計された各種大気汚染物質の循環器疾患死亡リスク比(lag=1)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>NO2リスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
<th>Oxリスク比</th>
<th>95%信頼区間下限</th>
<th>95%信頼区間上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.020</td>
<td>0.990</td>
<td>1.051</td>
<td>0.954</td>
<td>0.932</td>
<td>0.976</td>
<td>0.970</td>
<td>0.951</td>
<td>0.989</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1.002</td>
<td>0.966</td>
<td>1.041</td>
<td>1.041</td>
<td>0.992</td>
<td>1.092</td>
<td>1.030</td>
<td>1.000</td>
<td>1.060</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.939</td>
<td>0.888</td>
<td>0.993</td>
<td>1.155</td>
<td>1.085</td>
<td>1.229</td>
<td>1.060</td>
<td>1.020</td>
<td>1.101</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.102</td>
<td>1.000</td>
<td>1.214</td>
<td>0.881</td>
<td>0.784</td>
<td>0.991</td>
<td>0.929</td>
<td>0.861</td>
<td>1.004</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.010</td>
<td>0.910</td>
<td>1.121</td>
<td>0.971</td>
<td>0.845</td>
<td>1.115</td>
<td>0.972</td>
<td>0.879</td>
<td>1.073</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.021</td>
<td>0.967</td>
<td>1.077</td>
<td>0.953</td>
<td>0.902</td>
<td>1.007</td>
<td>0.992</td>
<td>0.958</td>
<td>1.027</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.991</td>
<td>0.981</td>
<td>1.001</td>
<td>0.996</td>
<td>0.987</td>
<td>1.005</td>
<td>1.000</td>
<td>0.992</td>
<td>1.007</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.001</td>
<td>0.982</td>
<td>1.020</td>
<td>1.008</td>
<td>0.988</td>
<td>1.029</td>
<td>1.011</td>
<td>0.996</td>
<td>1.026</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.016</td>
<td>0.946</td>
<td>1.091</td>
<td>1.005</td>
<td>0.930</td>
<td>1.086</td>
<td>0.972</td>
<td>0.905</td>
<td>1.044</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.015</td>
<td>0.984</td>
<td>1.048</td>
<td>0.975</td>
<td>0.942</td>
<td>1.009</td>
<td>0.976</td>
<td>0.949</td>
<td>1.003</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.005</td>
<td>0.982</td>
<td>1.029</td>
<td>0.997</td>
<td>0.974</td>
<td>1.021</td>
<td>0.996</td>
<td>0.977</td>
<td>1.016</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.028</td>
<td>0.994</td>
<td>1.062</td>
<td>0.973</td>
<td>0.918</td>
<td>1.033</td>
<td>0.999</td>
<td>0.959</td>
<td>1.040</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.994</td>
<td>0.973</td>
<td>1.016</td>
<td>1.000</td>
<td>0.971</td>
<td>1.029</td>
<td>0.989</td>
<td>0.968</td>
<td>1.012</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.936</td>
<td>0.850</td>
<td>1.031</td>
<td>1.215</td>
<td>0.939</td>
<td>1.572</td>
<td>0.993</td>
<td>0.935</td>
<td>1.055</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.801</td>
<td>0.630</td>
<td>1.018</td>
<td>1.358</td>
<td>0.715</td>
<td>2.578</td>
<td>1.150</td>
<td>0.969</td>
<td>1.364</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.082</td>
<td>1.005</td>
<td>1.166</td>
<td>0.937</td>
<td>0.847</td>
<td>1.038</td>
<td>0.952</td>
<td>0.873</td>
<td>1.039</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.992</td>
<td>0.830</td>
<td>1.185</td>
<td>1.035</td>
<td>0.874</td>
<td>1.226</td>
<td>0.988</td>
<td>0.856</td>
<td>1.140</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.975</td>
<td>0.942</td>
<td>1.008</td>
<td>1.022</td>
<td>0.993</td>
<td>1.052</td>
<td>0.998</td>
<td>0.974</td>
<td>1.024</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.999</td>
<td>0.983</td>
<td>1.016</td>
<td>1.006</td>
<td>0.989</td>
<td>1.024</td>
<td>1.021</td>
<td>1.006</td>
<td>1.036</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.990</td>
<td>0.957</td>
<td>1.024</td>
<td>1.018</td>
<td>0.979</td>
<td>1.059</td>
<td>0.981</td>
<td>0.950</td>
<td>1.012</td>
</tr>
<tr>
<td>地域</td>
<td>PM$_{2.5}$</td>
<td>NO$_2$</td>
<td>Ox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>--------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
<td>95%信頼区間</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.012</td>
<td>0.982</td>
<td>1.043</td>
<td>0.955</td>
<td>0.934</td>
<td>0.977</td>
<td>0.977</td>
<td>0.958</td>
<td>0.996</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.997</td>
<td>0.960</td>
<td>1.035</td>
<td>1.035</td>
<td>0.986</td>
<td>1.086</td>
<td>1.022</td>
<td>0.992</td>
<td>1.052</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.949</td>
<td>0.898</td>
<td>1.004</td>
<td>1.140</td>
<td>1.071</td>
<td>1.213</td>
<td>1.067</td>
<td>1.026</td>
<td>1.109</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.053</td>
<td>0.954</td>
<td>1.162</td>
<td>0.852</td>
<td>0.757</td>
<td>0.960</td>
<td>0.962</td>
<td>0.892</td>
<td>1.039</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.112</td>
<td>1.007</td>
<td>1.228</td>
<td>0.951</td>
<td>0.830</td>
<td>1.090</td>
<td>0.976</td>
<td>0.884</td>
<td>1.078</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.993</td>
<td>0.941</td>
<td>1.049</td>
<td>0.990</td>
<td>0.937</td>
<td>1.046</td>
<td>0.994</td>
<td>0.960</td>
<td>1.029</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.987</td>
<td>0.977</td>
<td>0.997</td>
<td>1.002</td>
<td>0.993</td>
<td>1.011</td>
<td>0.999</td>
<td>0.991</td>
<td>1.006</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.009</td>
<td>0.990</td>
<td>1.028</td>
<td>1.008</td>
<td>0.988</td>
<td>1.029</td>
<td>1.001</td>
<td>0.986</td>
<td>1.016</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.017</td>
<td>0.947</td>
<td>1.092</td>
<td>0.960</td>
<td>0.888</td>
<td>1.037</td>
<td>1.021</td>
<td>0.952</td>
<td>1.096</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.006</td>
<td>0.975</td>
<td>1.039</td>
<td>0.991</td>
<td>0.958</td>
<td>1.025</td>
<td>0.986</td>
<td>0.960</td>
<td>1.013</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.991</td>
<td>0.968</td>
<td>1.014</td>
<td>1.016</td>
<td>0.993</td>
<td>1.041</td>
<td>1.012</td>
<td>0.992</td>
<td>1.032</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.010</td>
<td>0.977</td>
<td>1.045</td>
<td>1.001</td>
<td>0.943</td>
<td>1.061</td>
<td>1.036</td>
<td>0.995</td>
<td>1.079</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.022</td>
<td>1.000</td>
<td>1.044</td>
<td>0.976</td>
<td>0.948</td>
<td>1.005</td>
<td>0.981</td>
<td>0.960</td>
<td>1.004</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.019</td>
<td>0.929</td>
<td>1.118</td>
<td>1.297</td>
<td>1.005</td>
<td>1.675</td>
<td>0.999</td>
<td>0.940</td>
<td>1.061</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.799</td>
<td>0.625</td>
<td>1.021</td>
<td>1.153</td>
<td>0.598</td>
<td>2.223</td>
<td>1.086</td>
<td>0.914</td>
<td>1.290</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.964</td>
<td>0.894</td>
<td>1.039</td>
<td>1.026</td>
<td>0.928</td>
<td>1.133</td>
<td>0.944</td>
<td>0.865</td>
<td>1.030</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.038</td>
<td>0.867</td>
<td>1.242</td>
<td>0.937</td>
<td>0.789</td>
<td>1.133</td>
<td>0.976</td>
<td>0.844</td>
<td>1.127</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.966</td>
<td>0.934</td>
<td>0.999</td>
<td>1.029</td>
<td>0.999</td>
<td>1.059</td>
<td>1.001</td>
<td>0.977</td>
<td>1.026</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.979</td>
<td>0.963</td>
<td>0.996</td>
<td>1.030</td>
<td>1.012</td>
<td>1.049</td>
<td>1.027</td>
<td>1.012</td>
<td>1.042</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.983</td>
<td>0.950</td>
<td>1.017</td>
<td>0.994</td>
<td>0.956</td>
<td>1.034</td>
<td>1.001</td>
<td>0.970</td>
<td>1.034</td>
</tr>
<tr>
<td>地域</td>
<td>PM<sub>2.5</sub></td>
<td>NO<sub>2</sub></td>
<td>Ox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>0.987</td>
<td>0.957</td>
<td>1.018</td>
<td>0.971</td>
<td>0.949</td>
<td>0.994</td>
<td>0.994</td>
<td>0.974</td>
<td>1.013</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.997</td>
<td>0.960</td>
<td>1.035</td>
<td>1.037</td>
<td>0.988</td>
<td>1.088</td>
<td>1.010</td>
<td>0.981</td>
<td>1.040</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.941</td>
<td>0.890</td>
<td>0.995</td>
<td>1.142</td>
<td>1.072</td>
<td>1.216</td>
<td>1.050</td>
<td>1.010</td>
<td>1.091</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.078</td>
<td>0.977</td>
<td>1.190</td>
<td>0.851</td>
<td>0.757</td>
<td>0.958</td>
<td>0.907</td>
<td>0.840</td>
<td>0.980</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.994</td>
<td>0.896</td>
<td>1.103</td>
<td>1.104</td>
<td>0.962</td>
<td>1.267</td>
<td>1.018</td>
<td>0.922</td>
<td>1.124</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.026</td>
<td>0.972</td>
<td>1.082</td>
<td>0.962</td>
<td>0.911</td>
<td>1.016</td>
<td>0.984</td>
<td>0.951</td>
<td>1.019</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.994</td>
<td>0.984</td>
<td>1.004</td>
<td>1.002</td>
<td>0.993</td>
<td>1.011</td>
<td>1.001</td>
<td>0.993</td>
<td>1.008</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1.009</td>
<td>0.990</td>
<td>1.028</td>
<td>0.996</td>
<td>0.976</td>
<td>1.016</td>
<td>1.002</td>
<td>0.987</td>
<td>1.017</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.005</td>
<td>0.936</td>
<td>1.079</td>
<td>0.990</td>
<td>0.917</td>
<td>1.070</td>
<td>1.023</td>
<td>0.953</td>
<td>1.098</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.002</td>
<td>0.971</td>
<td>1.034</td>
<td>0.995</td>
<td>0.962</td>
<td>1.029</td>
<td>0.996</td>
<td>0.970</td>
<td>1.024</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.995</td>
<td>0.972</td>
<td>1.018</td>
<td>1.005</td>
<td>0.981</td>
<td>1.029</td>
<td>1.014</td>
<td>0.994</td>
<td>1.034</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.973</td>
<td>0.941</td>
<td>1.007</td>
<td>1.037</td>
<td>0.978</td>
<td>1.101</td>
<td>1.033</td>
<td>0.992</td>
<td>1.075</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.011</td>
<td>0.990</td>
<td>1.033</td>
<td>0.978</td>
<td>0.950</td>
<td>1.007</td>
<td>0.997</td>
<td>0.975</td>
<td>1.019</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.966</td>
<td>0.880</td>
<td>1.062</td>
<td>1.231</td>
<td>0.952</td>
<td>1.592</td>
<td>1.039</td>
<td>0.978</td>
<td>1.103</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.977</td>
<td>0.780</td>
<td>1.225</td>
<td>0.905</td>
<td>0.468</td>
<td>1.750</td>
<td>1.152</td>
<td>0.971</td>
<td>1.367</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.955</td>
<td>0.888</td>
<td>1.027</td>
<td>1.018</td>
<td>0.922</td>
<td>1.124</td>
<td>1.005</td>
<td>0.922</td>
<td>1.095</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.165</td>
<td>0.985</td>
<td>1.378</td>
<td>1.003</td>
<td>0.850</td>
<td>1.184</td>
<td>0.928</td>
<td>0.802</td>
<td>1.075</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.966</td>
<td>0.934</td>
<td>1.000</td>
<td>1.032</td>
<td>1.002</td>
<td>1.062</td>
<td>1.008</td>
<td>0.984</td>
<td>1.033</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.983</td>
<td>0.967</td>
<td>0.999</td>
<td>1.015</td>
<td>0.998</td>
<td>1.034</td>
<td>1.007</td>
<td>0.992</td>
<td>1.022</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.984</td>
<td>0.951</td>
<td>1.018</td>
<td>0.994</td>
<td>0.956</td>
<td>1.034</td>
<td>0.998</td>
<td>0.966</td>
<td>1.030</td>
</tr>
</tbody>
</table>
表 38. アウトカムを総死亡とした場合に選択された次数とモデル

<table>
<thead>
<tr>
<th>地域</th>
<th>TEMP (気温)</th>
<th>HUMI (相対湿度)</th>
<th>Calender (日付)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>次数</td>
<td>モデル</td>
<td>次数</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>2</td>
<td>(p_1 = 1, p_2 = 3)</td>
<td>1</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>1</td>
<td>(p_1 = 3)</td>
<td>1</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>宮城県東北市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>埼玉県戸川市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>1</td>
<td>(p_1 = 2)</td>
<td>1</td>
</tr>
<tr>
<td>全地域併合</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
</tr>
</tbody>
</table>
表 39. アウトカムを呼吸器疾患死亡とした場合に選択された次数とモデル

<table>
<thead>
<tr>
<th>地域</th>
<th>TEMP (気温)</th>
<th>HUMI (相対湿度)</th>
<th>Calender (日付)</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>1</td>
<td>p₁=-0.5</td>
<td>1</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>東京都23区</td>
<td>1</td>
<td>p₁=3</td>
<td>1</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
<tr>
<td>全地域併合</td>
<td>1</td>
<td>p₁=1</td>
<td>1</td>
</tr>
</tbody>
</table>
表 40. アウトカムを循環器疾患死亡とした場合に選択された次数とモデル

<table>
<thead>
<tr>
<th>地域</th>
<th>TEMP (気温)</th>
<th></th>
<th>HUMI (相対湿度)</th>
<th></th>
<th>Calender (日付)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>次数</td>
<td>モデル</td>
<td>次数</td>
<td>モデル</td>
<td>次数</td>
<td>モデル</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>1</td>
<td>(p_1 = 0)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = 1, p_2 = 3)</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>2</td>
<td>(p_1 = 0.5, p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 0.5)</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = 1, p_2 = 2)</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>1</td>
<td>(p_1 = 0)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
<tr>
<td>全地域併合</td>
<td>2</td>
<td>(p_1 = p_2 = 3)</td>
<td>1</td>
<td>(p_1 = 1)</td>
<td>2</td>
<td>(p_1 = p_2 = 2)</td>
</tr>
</tbody>
</table>
表 41. FP によって推計された各種大気汚染物質の総死亡リスク比(lag=0)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM<sub>2.5</sub></th>
<th>NO<sub>2</sub></th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推定リスク比 95%信頼区間</td>
<td>推定リスク比 95%信頼区間</td>
<td>推定リスク比 95%信頼区間</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.018</td>
<td>1.039</td>
<td>0.962</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.984</td>
<td>1.006</td>
<td>1.027</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.911</td>
<td>0.947</td>
<td>1.145</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.003</td>
<td>1.065</td>
<td>0.972</td>
</tr>
<tr>
<td>埼玉県さいたま市</td>
<td>1.001</td>
<td>1.063</td>
<td>1.008</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.995</td>
<td>1.028</td>
<td>1.012</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.994</td>
<td>1.002</td>
<td>0.992</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.982</td>
<td>0.994</td>
<td>1.003</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.995</td>
<td>1.037</td>
<td>0.991</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.002</td>
<td>1.021</td>
<td>0.989</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.031</td>
<td>0.973</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>1.024</td>
<td>0.993</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.000</td>
<td>1.012</td>
<td>0.999</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.969</td>
<td>1.026</td>
<td>1.001</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.994</td>
<td>1.002</td>
<td>0.992</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.031</td>
<td>0.973</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>1.024</td>
<td>0.993</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.000</td>
<td>1.012</td>
<td>0.999</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.969</td>
<td>1.026</td>
<td>1.001</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.994</td>
<td>1.002</td>
<td>0.992</td>
</tr>
<tr>
<td>地域</td>
<td>PM2.5</td>
<td>NO2</td>
<td>Ox</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.012</td>
<td>0.991</td>
<td>1.033</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.978</td>
<td>0.956</td>
<td>1.001</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.914</td>
<td>0.879</td>
<td>0.951</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.040</td>
<td>0.980</td>
<td>1.104</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.973</td>
<td>0.915</td>
<td>1.034</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.008</td>
<td>0.975</td>
<td>1.042</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.990</td>
<td>0.982</td>
<td>0.998</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.989</td>
<td>0.977</td>
<td>1.002</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.011</td>
<td>0.970</td>
<td>1.053</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.017</td>
<td>0.998</td>
<td>1.036</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.003</td>
<td>1.032</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.021</td>
<td>1.000</td>
<td>1.042</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.998</td>
<td>0.986</td>
<td>1.010</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.991</td>
<td>0.937</td>
<td>1.049</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.905</td>
<td>0.791</td>
<td>1.037</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.032</td>
<td>0.985</td>
<td>1.081</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.065</td>
<td>0.958</td>
<td>1.184</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.993</td>
<td>0.973</td>
<td>1.013</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.002</td>
<td>0.992</td>
<td>1.012</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.986</td>
<td>0.966</td>
<td>1.006</td>
</tr>
</tbody>
</table>
表43 FPによって推計された各種大気汚染物質の総死亡リスク比（lag=2）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$</th>
<th>NO$_2$</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.003</td>
<td>0.982</td>
<td>1.024</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.986</td>
<td>0.964</td>
<td>1.008</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.911</td>
<td>0.875</td>
<td>0.947</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.029</td>
<td>0.970</td>
<td>1.093</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.998</td>
<td>0.939</td>
<td>1.060</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.008</td>
<td>0.976</td>
<td>1.042</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.988</td>
<td>0.981</td>
<td>0.996</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.983</td>
<td>1.007</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.012</td>
<td>0.972</td>
<td>1.054</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.009</td>
<td>0.990</td>
<td>1.028</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.010</td>
<td>0.995</td>
<td>1.024</td>
</tr>
<tr>
<td>島山県倉敷市</td>
<td>1.004</td>
<td>0.983</td>
<td>1.024</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.004</td>
<td>0.991</td>
<td>1.016</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.024</td>
<td>0.968</td>
<td>1.082</td>
</tr>
<tr>
<td>宮城県桑折町</td>
<td>0.899</td>
<td>0.785</td>
<td>1.031</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.004</td>
<td>0.960</td>
<td>1.050</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.001</td>
<td>0.898</td>
<td>1.116</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.978</td>
<td>0.958</td>
<td>0.998</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.998</td>
<td>0.988</td>
<td>1.009</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.978</td>
<td>0.959</td>
<td>0.998</td>
</tr>
</tbody>
</table>
表 44. FP によって推計された各種大気汚染物質の総死亡リスク比(lag=3)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$リスク比下限</th>
<th>PM$_{2.5}$リスク比上限</th>
<th>NO$_2$リスク比下限</th>
<th>NO$_2$リスク比上限</th>
<th>Oxリスク比下限</th>
<th>Oxリスク比上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>1.004</td>
<td>1.025</td>
<td>0.973</td>
<td>0.991</td>
<td>1.004</td>
<td>1.019</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.985</td>
<td>1.007</td>
<td>1.037</td>
<td>1.067</td>
<td>1.034</td>
<td>1.053</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.911</td>
<td>0.947</td>
<td>1.101</td>
<td>1.193</td>
<td>1.067</td>
<td>1.038</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.017</td>
<td>1.101</td>
<td>0.989</td>
<td>1.061</td>
<td>0.908</td>
<td>1.044</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.951</td>
<td>1.012</td>
<td>1.112</td>
<td>1.215</td>
<td>1.006</td>
<td>1.065</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.014</td>
<td>1.048</td>
<td>0.979</td>
<td>1.012</td>
<td>0.991</td>
<td>1.012</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.996</td>
<td>1.104</td>
<td>0.993</td>
<td>1.000</td>
<td>0.996</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.989</td>
<td>1.101</td>
<td>1.005</td>
<td>1.018</td>
<td>1.017</td>
<td>1.027</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.992</td>
<td>1.033</td>
<td>1.011</td>
<td>1.057</td>
<td>0.988</td>
<td>1.029</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.999</td>
<td>1.018</td>
<td>0.987</td>
<td>1.007</td>
<td>0.993</td>
<td>1.010</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.011</td>
<td>1.026</td>
<td>0.978</td>
<td>0.993</td>
<td>0.995</td>
<td>1.007</td>
</tr>
<tr>
<td>岐山県倉敷市</td>
<td>0.993</td>
<td>1.014</td>
<td>1.012</td>
<td>1.049</td>
<td>1.010</td>
<td>1.035</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.007</td>
<td>1.019</td>
<td>0.989</td>
<td>1.005</td>
<td>1.003</td>
<td>1.017</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.986</td>
<td>1.043</td>
<td>1.116</td>
<td>1.306</td>
<td>0.981</td>
<td>1.017</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>1.070</td>
<td>1.125</td>
<td>0.809</td>
<td>1.173</td>
<td>0.919</td>
<td>1.033</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.023</td>
<td>1.138</td>
<td>1.036</td>
<td>1.148</td>
<td>0.907</td>
<td>0.988</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.022</td>
<td>1.138</td>
<td>1.036</td>
<td>1.148</td>
<td>0.907</td>
<td>0.988</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.986</td>
<td>1.008</td>
<td>0.999</td>
<td>1.038</td>
<td>1.008</td>
<td>1.024</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.996</td>
<td>1.008</td>
<td>0.996</td>
<td>1.020</td>
<td>1.002</td>
<td>1.012</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.988</td>
<td>1.009</td>
<td>0.991</td>
<td>1.014</td>
<td>0.996</td>
<td>1.015</td>
</tr>
</tbody>
</table>
表 45. FP によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=0）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5 推計リスク比</th>
<th>95%信頼区間</th>
<th>NO2 推計リスク比</th>
<th>95%信頼区間</th>
<th>Ox 推計リスク比</th>
<th>95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.025</td>
<td>0.981</td>
<td>1.072</td>
<td>0.965</td>
<td>0.933</td>
<td>0.999</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.983</td>
<td>0.927</td>
<td>1.041</td>
<td>1.084</td>
<td>1.005</td>
<td>1.169</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.856</td>
<td>0.782</td>
<td>0.938</td>
<td>1.184</td>
<td>1.076</td>
<td>1.302</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.044</td>
<td>0.898</td>
<td>1.214</td>
<td>0.938</td>
<td>0.785</td>
<td>1.120</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.003</td>
<td>0.877</td>
<td>1.148</td>
<td>1.097</td>
<td>0.917</td>
<td>1.311</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.948</td>
<td>0.879</td>
<td>1.023</td>
<td>1.059</td>
<td>0.982</td>
<td>1.142</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.991</td>
<td>0.975</td>
<td>1.008</td>
<td>0.993</td>
<td>0.978</td>
<td>1.007</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.982</td>
<td>0.954</td>
<td>1.011</td>
<td>0.999</td>
<td>0.969</td>
<td>1.030</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.017</td>
<td>0.926</td>
<td>1.117</td>
<td>0.964</td>
<td>0.870</td>
<td>1.069</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.991</td>
<td>0.952</td>
<td>1.033</td>
<td>1.005</td>
<td>0.962</td>
<td>1.051</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.004</td>
<td>0.973</td>
<td>1.036</td>
<td>0.988</td>
<td>0.957</td>
<td>1.021</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.989</td>
<td>0.945</td>
<td>1.036</td>
<td>1.063</td>
<td>0.982</td>
<td>1.152</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.000</td>
<td>0.973</td>
<td>1.027</td>
<td>0.971</td>
<td>0.936</td>
<td>1.007</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.990</td>
<td>0.868</td>
<td>1.128</td>
<td>1.101</td>
<td>0.760</td>
<td>1.595</td>
</tr>
<tr>
<td>宮城県栗原市</td>
<td>0.722</td>
<td>0.492</td>
<td>1.060</td>
<td>1.419</td>
<td>0.549</td>
<td>3.667</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.058</td>
<td>0.950</td>
<td>1.179</td>
<td>0.961</td>
<td>0.830</td>
<td>1.112</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.345</td>
<td>1.053</td>
<td>1.718</td>
<td>0.755</td>
<td>0.589</td>
<td>0.966</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.999</td>
<td>0.951</td>
<td>1.049</td>
<td>1.006</td>
<td>0.965</td>
<td>1.049</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>1.006</td>
<td>0.983</td>
<td>1.030</td>
<td>0.999</td>
<td>0.975</td>
<td>1.024</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.986</td>
<td>0.939</td>
<td>1.035</td>
<td>1.014</td>
<td>0.958</td>
<td>1.073</td>
</tr>
</tbody>
</table>
表 46. FP によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM_{2.5}</th>
<th>NO_{2}</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.023</td>
<td>0.979</td>
<td>1.069</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.978</td>
<td>0.949</td>
<td>1.007</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.950</td>
<td>0.896</td>
<td>1.008</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.056</td>
<td>1.009</td>
<td>1.105</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.863</td>
<td>0.787</td>
<td>0.947</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.088</td>
<td>1.024</td>
<td>1.157</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.046</td>
<td>0.900</td>
<td>1.216</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.972</td>
<td>0.866</td>
<td>1.090</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.877</td>
<td>0.762</td>
<td>1.008</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.032</td>
<td>0.909</td>
<td>1.173</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.924</td>
<td>0.856</td>
<td>0.998</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.008</td>
<td>0.959</td>
<td>1.060</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.989</td>
<td>0.972</td>
<td>1.005</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.001</td>
<td>0.989</td>
<td>1.013</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.968</td>
<td>0.941</td>
<td>0.996</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.052</td>
<td>1.028</td>
<td>1.076</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.004</td>
<td>0.912</td>
<td>1.104</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.978</td>
<td>0.891</td>
<td>1.074</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.039</td>
<td>0.998</td>
<td>1.082</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.972</td>
<td>0.938</td>
<td>1.007</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.037</td>
<td>1.005</td>
<td>1.069</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.996</td>
<td>0.970</td>
<td>1.022</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.000</td>
<td>0.955</td>
<td>1.046</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.070</td>
<td>1.013</td>
<td>1.130</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.002</td>
<td>0.975</td>
<td>1.029</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.984</td>
<td>0.955</td>
<td>1.013</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.003</td>
<td>0.880</td>
<td>1.144</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.032</td>
<td>0.948</td>
<td>1.124</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>0.922</td>
<td>0.646</td>
<td>1.316</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.929</td>
<td>0.717</td>
<td>1.202</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.096</td>
<td>0.987</td>
<td>1.218</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.872</td>
<td>0.765</td>
<td>0.994</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.985</td>
<td>0.752</td>
<td>1.290</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>0.913</td>
<td>0.740</td>
<td>1.127</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.015</td>
<td>0.967</td>
<td>1.066</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.021</td>
<td>0.984</td>
<td>1.059</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.988</td>
<td>0.965</td>
<td>1.011</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.014</td>
<td>0.993</td>
<td>1.036</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.963</td>
<td>0.917</td>
<td>1.011</td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>1.049</td>
<td>1.002</td>
<td>1.097</td>
</tr>
</tbody>
</table>
表47. FPによって推計された各種大気汚染物質の呼吸器疾患死亡リスク比（lag=2）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5（推計リスク比 95%信頼区間）</th>
<th>NO2（推計リスク比 95%信頼区間）</th>
<th>Ox（推計リスク比 95%信頼区間）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.015</td>
<td>0.970</td>
<td>1.062</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.971</td>
<td>0.915</td>
<td>1.029</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.891</td>
<td>0.815</td>
<td>0.975</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.049</td>
<td>0.901</td>
<td>1.221</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.937</td>
<td>0.814</td>
<td>1.078</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.960</td>
<td>0.890</td>
<td>1.035</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.984</td>
<td>0.968</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.991</td>
<td>0.963</td>
<td>1.020</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.040</td>
<td>0.948</td>
<td>1.142</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.054</td>
<td>1.012</td>
<td>1.097</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.054</td>
<td>1.022</td>
<td>1.086</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.000</td>
<td>0.956</td>
<td>1.047</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.978</td>
<td>0.952</td>
<td>1.004</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.971</td>
<td>0.849</td>
<td>1.110</td>
</tr>
<tr>
<td>宮崎県久留米市</td>
<td>0.802</td>
<td>0.553</td>
<td>1.163</td>
</tr>
<tr>
<td>青森県津軽市</td>
<td>1.027</td>
<td>0.926</td>
<td>1.138</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.864</td>
<td>0.651</td>
<td>1.148</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.000</td>
<td>0.952</td>
<td>1.051</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.997</td>
<td>0.974</td>
<td>1.020</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.965</td>
<td>0.919</td>
<td>1.014</td>
</tr>
</tbody>
</table>
表 48. FP によって推計された各種大気汚染物質の呼吸器疾患死亡リスク比 (lag=3)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>PM2.5 95%信頼区間</th>
<th>NO2</th>
<th>NO2 95%信頬区間</th>
<th>Ox</th>
<th>Ox 95%信頼区間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推定リスク比</td>
<td>下限</td>
<td>上限</td>
<td>推定リスク比</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.026</td>
<td>0.982</td>
<td>1.072</td>
<td>0.967</td>
<td>0.935</td>
<td>1.000</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.970</td>
<td>0.915</td>
<td>1.029</td>
<td>1.053</td>
<td>0.977</td>
<td>1.135</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.906</td>
<td>0.828</td>
<td>0.991</td>
<td>1.134</td>
<td>1.028</td>
<td>1.251</td>
</tr>
<tr>
<td>福島県取手市</td>
<td>1.070</td>
<td>0.924</td>
<td>1.239</td>
<td>1.012</td>
<td>0.850</td>
<td>1.204</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.856</td>
<td>0.742</td>
<td>0.987</td>
<td>1.287</td>
<td>1.074</td>
<td>1.542</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.923</td>
<td>0.856</td>
<td>0.996</td>
<td>1.061</td>
<td>0.983</td>
<td>1.144</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>1.001</td>
<td>0.984</td>
<td>1.018</td>
<td>0.984</td>
<td>0.970</td>
<td>0.998</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.982</td>
<td>0.954</td>
<td>1.011</td>
<td>1.019</td>
<td>0.989</td>
<td>1.051</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.981</td>
<td>0.891</td>
<td>1.079</td>
<td>1.011</td>
<td>0.912</td>
<td>1.121</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.041</td>
<td>1.000</td>
<td>1.084</td>
<td>0.953</td>
<td>0.912</td>
<td>0.996</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.050</td>
<td>1.018</td>
<td>1.082</td>
<td>0.953</td>
<td>0.923</td>
<td>0.984</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.996</td>
<td>0.952</td>
<td>1.042</td>
<td>1.013</td>
<td>0.936</td>
<td>1.097</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.006</td>
<td>0.980</td>
<td>1.033</td>
<td>0.975</td>
<td>0.940</td>
<td>1.011</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.994</td>
<td>0.871</td>
<td>1.135</td>
<td>1.172</td>
<td>0.809</td>
<td>1.698</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>1.060</td>
<td>0.764</td>
<td>1.469</td>
<td>0.745</td>
<td>0.283</td>
<td>1.958</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.003</td>
<td>0.910</td>
<td>1.107</td>
<td>1.044</td>
<td>0.911</td>
<td>1.196</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.926</td>
<td>0.700</td>
<td>1.225</td>
<td>0.997</td>
<td>0.770</td>
<td>1.292</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.019</td>
<td>0.970</td>
<td>1.070</td>
<td>0.995</td>
<td>0.954</td>
<td>1.037</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.996</td>
<td>0.973</td>
<td>1.020</td>
<td>1.008</td>
<td>0.983</td>
<td>1.033</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>1.009</td>
<td>0.962</td>
<td>1.059</td>
<td>0.997</td>
<td>0.942</td>
<td>1.054</td>
</tr>
</tbody>
</table>
表 49. **FP** によって推計された各種大気汚染物質の循環器疾患死亡リスク比 (lag=0)

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$</th>
<th>NO$_2$</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.018</td>
<td>0.997</td>
<td>1.039</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.984</td>
<td>0.962</td>
<td>1.006</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.910</td>
<td>0.875</td>
<td>0.947</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.003</td>
<td>0.944</td>
<td>1.065</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>1.001</td>
<td>0.942</td>
<td>1.063</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>0.995</td>
<td>0.963</td>
<td>1.028</td>
</tr>
<tr>
<td>東京都 23 区</td>
<td>0.993</td>
<td>0.985</td>
<td>1.001</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.982</td>
<td>0.970</td>
<td>0.994</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.995</td>
<td>0.955</td>
<td>1.037</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.002</td>
<td>0.983</td>
<td>1.021</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.016</td>
<td>1.001</td>
<td>1.030</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.003</td>
<td>0.983</td>
<td>1.024</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.000</td>
<td>0.988</td>
<td>1.012</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.969</td>
<td>0.915</td>
<td>1.026</td>
</tr>
<tr>
<td>宮崎県鹿兒島市</td>
<td>0.962</td>
<td>0.844</td>
<td>1.098</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.993</td>
<td>0.947</td>
<td>1.041</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.124</td>
<td>1.043</td>
<td>1.247</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>1.000</td>
<td>0.980</td>
<td>1.020</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.997</td>
<td>0.986</td>
<td>1.007</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.987</td>
<td>0.967</td>
<td>1.007</td>
</tr>
</tbody>
</table>
表 50. FP によって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=1）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td></td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.012</td>
<td>0.991</td>
<td>1.033</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.978</td>
<td>0.956</td>
<td>1.001</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.916</td>
<td>0.880</td>
<td>0.953</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.040</td>
<td>0.980</td>
<td>1.104</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.973</td>
<td>0.915</td>
<td>1.034</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.008</td>
<td>0.975</td>
<td>1.042</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.988</td>
<td>0.981</td>
<td>0.996</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.989</td>
<td>0.977</td>
<td>1.002</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.011</td>
<td>0.970</td>
<td>1.053</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>1.017</td>
<td>0.998</td>
<td>1.036</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.017</td>
<td>1.003</td>
<td>1.031</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.020</td>
<td>1.000</td>
<td>1.041</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.998</td>
<td>0.986</td>
<td>1.010</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.991</td>
<td>0.937</td>
<td>1.049</td>
</tr>
<tr>
<td>宮城県潮来町</td>
<td>0.905</td>
<td>0.791</td>
<td>1.037</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.032</td>
<td>0.985</td>
<td>1.081</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.065</td>
<td>0.958</td>
<td>1.184</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.993</td>
<td>0.973</td>
<td>1.013</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.995</td>
<td>0.985</td>
<td>1.006</td>
</tr>
<tr>
<td>兵庫県伊崎市</td>
<td>0.986</td>
<td>0.966</td>
<td>1.006</td>
</tr>
</tbody>
</table>
表51. FPによって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=2）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM2.5</th>
<th></th>
<th></th>
<th>NO2</th>
<th></th>
<th></th>
<th>Ox</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.003</td>
<td>0.982</td>
<td>1.024</td>
<td>0.969</td>
<td>0.951</td>
<td>0.987</td>
<td>0.994</td>
<td>0.979</td>
<td>1.010</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.986</td>
<td>0.964</td>
<td>1.008</td>
<td>1.037</td>
<td>1.008</td>
<td>1.067</td>
<td>1.035</td>
<td>1.016</td>
<td>1.053</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.910</td>
<td>0.874</td>
<td>0.947</td>
<td>1.128</td>
<td>1.078</td>
<td>1.179</td>
<td>1.066</td>
<td>1.037</td>
<td>1.095</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.029</td>
<td>0.970</td>
<td>1.093</td>
<td>0.931</td>
<td>0.867</td>
<td>0.999</td>
<td>0.965</td>
<td>0.922</td>
<td>1.010</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.998</td>
<td>0.939</td>
<td>1.060</td>
<td>1.070</td>
<td>0.988</td>
<td>1.158</td>
<td>1.003</td>
<td>0.948</td>
<td>1.062</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.008</td>
<td>0.976</td>
<td>1.042</td>
<td>0.975</td>
<td>0.944</td>
<td>1.008</td>
<td>0.992</td>
<td>0.971</td>
<td>1.013</td>
</tr>
<tr>
<td>東京都23区</td>
<td>0.987</td>
<td>0.980</td>
<td>0.995</td>
<td>0.996</td>
<td>0.989</td>
<td>1.003</td>
<td>0.998</td>
<td>0.993</td>
<td>1.004</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.995</td>
<td>0.983</td>
<td>1.007</td>
<td>1.005</td>
<td>0.991</td>
<td>1.018</td>
<td>1.019</td>
<td>1.009</td>
<td>1.029</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>1.012</td>
<td>0.972</td>
<td>1.054</td>
<td>0.977</td>
<td>0.934</td>
<td>1.022</td>
<td>0.981</td>
<td>0.942</td>
<td>1.021</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.009</td>
<td>0.990</td>
<td>1.028</td>
<td>0.969</td>
<td>0.949</td>
<td>0.988</td>
<td>0.990</td>
<td>0.974</td>
<td>1.007</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>1.010</td>
<td>0.995</td>
<td>1.024</td>
<td>0.981</td>
<td>0.967</td>
<td>0.997</td>
<td>0.994</td>
<td>0.981</td>
<td>1.007</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.004</td>
<td>0.991</td>
<td>1.016</td>
<td>0.991</td>
<td>0.974</td>
<td>1.007</td>
<td>1.003</td>
<td>0.989</td>
<td>1.017</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>1.024</td>
<td>0.968</td>
<td>1.082</td>
<td>1.182</td>
<td>1.011</td>
<td>1.382</td>
<td>0.969</td>
<td>0.935</td>
<td>1.005</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.899</td>
<td>0.785</td>
<td>1.031</td>
<td>1.361</td>
<td>0.947</td>
<td>1.956</td>
<td>0.935</td>
<td>0.847</td>
<td>1.031</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.004</td>
<td>0.960</td>
<td>1.050</td>
<td>0.947</td>
<td>0.891</td>
<td>1.006</td>
<td>0.973</td>
<td>0.922</td>
<td>1.026</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.001</td>
<td>0.898</td>
<td>1.116</td>
<td>1.016</td>
<td>0.916</td>
<td>1.127</td>
<td>0.934</td>
<td>0.858</td>
<td>1.016</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.978</td>
<td>0.958</td>
<td>0.998</td>
<td>1.013</td>
<td>0.996</td>
<td>1.031</td>
<td>1.009</td>
<td>0.993</td>
<td>1.024</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.991</td>
<td>0.981</td>
<td>1.001</td>
<td>1.011</td>
<td>1.000</td>
<td>1.023</td>
<td>1.009</td>
<td>0.999</td>
<td>1.019</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.978</td>
<td>0.959</td>
<td>0.998</td>
<td>0.997</td>
<td>0.974</td>
<td>1.020</td>
<td>1.006</td>
<td>0.987</td>
<td>1.025</td>
</tr>
</tbody>
</table>
表 52. FP によって推計された各種大気汚染物質の循環器疾患死亡リスク比（lag=3）

<table>
<thead>
<tr>
<th>地域</th>
<th>PM$_{2.5}$</th>
<th>NO$_2$</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスク比</td>
<td>95%信頼区間</td>
<td>推定リスク比</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>1.004</td>
<td>0.993</td>
<td>1.025</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.985</td>
<td>0.963</td>
<td>1.007</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.913</td>
<td>0.877</td>
<td>0.950</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>1.017</td>
<td>0.959</td>
<td>1.080</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>0.951</td>
<td>0.894</td>
<td>1.012</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>1.014</td>
<td>0.982</td>
<td>1.048</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>0.994</td>
<td>0.986</td>
<td>1.002</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>0.989</td>
<td>0.977</td>
<td>1.001</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.992</td>
<td>0.952</td>
<td>1.033</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.999</td>
<td>0.980</td>
<td>1.018</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>1.011</td>
<td>0.997</td>
<td>1.026</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.996</td>
<td>0.976</td>
<td>1.017</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>1.007</td>
<td>0.995</td>
<td>1.019</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.986</td>
<td>0.932</td>
<td>1.043</td>
</tr>
<tr>
<td>宮城県潮来町</td>
<td>1.070</td>
<td>0.943</td>
<td>1.215</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>1.023</td>
<td>0.981</td>
<td>1.066</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>1.022</td>
<td>0.919</td>
<td>1.138</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.986</td>
<td>0.966</td>
<td>1.007</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.988</td>
<td>0.978</td>
<td>0.998</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.988</td>
<td>0.969</td>
<td>1.009</td>
</tr>
</tbody>
</table>
表 53. GLIM で算出した地域ごとの死亡リスク比の併合

<table>
<thead>
<tr>
<th>死因</th>
<th>Lag</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>検出</td>
<td>95%信頼区間</td>
<td>検出</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スク比</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>総死亡</td>
<td>0</td>
<td>1.000</td>
<td>0.993</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.003</td>
<td>0.994</td>
<td>1.012</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.000</td>
<td>0.993</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.000</td>
<td>0.994</td>
<td>1.007</td>
</tr>
<tr>
<td>呼吸器疾患</td>
<td>0</td>
<td>0.998</td>
<td>0.989</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.007</td>
<td>0.997</td>
<td>1.017</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.000</td>
<td>0.985</td>
<td>1.015</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.996</td>
<td>0.981</td>
<td>1.011</td>
</tr>
<tr>
<td>循環器疾患</td>
<td>0</td>
<td>1.011</td>
<td>1.003</td>
<td>1.019</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.008</td>
<td>1.001</td>
<td>1.014</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.005</td>
<td>0.997</td>
<td>1.014</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.004</td>
<td>0.997</td>
<td>1.011</td>
</tr>
</tbody>
</table>

表 54. GAM で算出した地域ごとの死亡リスク比の併合

<table>
<thead>
<tr>
<th>死因</th>
<th>Lag</th>
<th>PM2.5</th>
<th>NO2</th>
<th>Ox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>検出</td>
<td>95%信頼区間</td>
<td>検出</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スク比</td>
<td>下限</td>
<td>上限</td>
</tr>
<tr>
<td>総死亡</td>
<td>0</td>
<td>0.994</td>
<td>0.985</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.997</td>
<td>0.987</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.993</td>
<td>0.984</td>
<td>1.001</td>
</tr>
<tr>
<td>呼吸器疾患</td>
<td>0</td>
<td>0.992</td>
<td>0.984</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.995</td>
<td>0.982</td>
<td>1.009</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.991</td>
<td>0.976</td>
<td>1.007</td>
</tr>
<tr>
<td>循環器疾患</td>
<td>0</td>
<td>0.988</td>
<td>0.971</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.002</td>
<td>0.994</td>
<td>1.011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.999</td>
<td>0.992</td>
<td>1.006</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.996</td>
<td>0.987</td>
<td>1.006</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 55. FP モデルで算出した地域ごとの死亡リスク比の併合

<table>
<thead>
<tr>
<th>死因</th>
<th>Lag</th>
<th>PM₂.₅</th>
<th>NO₂</th>
<th>Oₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>推計リスケル比</td>
<td>95%信頼区间</td>
<td>推計リスケル比</td>
<td>95%信頼区间</td>
</tr>
<tr>
<td>総死亡</td>
<td>0</td>
<td>0.996</td>
<td>0.987</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.999</td>
<td>0.989</td>
<td>1.008</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.995</td>
<td>0.988</td>
<td>1.003</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.995</td>
<td>0.989</td>
<td>1.002</td>
</tr>
<tr>
<td>呼吸器疾患</td>
<td>0</td>
<td>0.995</td>
<td>0.986</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.002</td>
<td>0.988</td>
<td>1.016</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.996</td>
<td>0.980</td>
<td>1.013</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.992</td>
<td>0.975</td>
<td>1.010</td>
</tr>
<tr>
<td>循環器疾患</td>
<td>0</td>
<td>1.005</td>
<td>0.997</td>
<td>1.013</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.004</td>
<td>0.995</td>
<td>1.013</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.004</td>
<td>0.996</td>
<td>1.011</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.001</td>
<td>0.994</td>
<td>1.007</td>
</tr>
</tbody>
</table>

表 56. MCMC 法による固定効果と変量効果分散の点推定値と 95%区間

<table>
<thead>
<tr>
<th></th>
<th>PM₂.₅</th>
<th>NO₂</th>
<th>Oₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>推計リスケル比</td>
<td>推計リスケル比</td>
<td>推計リスケル比</td>
<td>95%区間</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>1.000</td>
<td>0.991</td>
<td>1.010</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.003</td>
<td>0.988</td>
<td>1.020</td>
</tr>
<tr>
<td>Oₓ</td>
<td>1.003</td>
<td>1.091</td>
<td>1.016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>中央値</th>
<th>標準偏差</th>
<th>中央値</th>
<th>標準偏差</th>
<th>中央値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d₁₁</td>
<td>0.081</td>
<td>0.323</td>
<td>0.075</td>
<td>0.489</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>d₁₂</td>
<td>0.023</td>
<td>0.064</td>
<td>0.018</td>
<td>0.086</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>d₂₂</td>
<td>0.057</td>
<td>0.009</td>
<td>0.054</td>
<td>0.012</td>
<td>0.037</td>
</tr>
</tbody>
</table>
表 57 地域ごとの変量効果 \(b_i \) の事後分布

<table>
<thead>
<tr>
<th>地域</th>
<th>総死亡</th>
<th>呼吸器疾患死亡</th>
<th>循環器疾患死亡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中央値</td>
<td>95%区間</td>
<td>中央値</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5%</td>
<td>97.5%</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>0.053</td>
<td>-0.188</td>
<td>0.294</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.029</td>
<td>-0.215</td>
<td>0.272</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.164</td>
<td>-0.061</td>
<td>0.388</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>0.043</td>
<td>-0.143</td>
<td>0.230</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>-0.049</td>
<td>-0.252</td>
<td>0.155</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>-0.035</td>
<td>-0.242</td>
<td>0.172</td>
</tr>
<tr>
<td>東京都23区</td>
<td>-0.130</td>
<td>-0.302</td>
<td>0.042</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>-0.097</td>
<td>-0.224</td>
<td>0.029</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.122</td>
<td>-0.088</td>
<td>0.332</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>0.173</td>
<td>-0.063</td>
<td>0.408</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.153</td>
<td>-0.107</td>
<td>0.412</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>0.113</td>
<td>-0.143</td>
<td>0.332</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.071</td>
<td>-0.170</td>
<td>0.312</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.150</td>
<td>-0.174</td>
<td>0.474</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>-0.146</td>
<td>-0.372</td>
<td>0.079</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.026</td>
<td>-0.160</td>
<td>0.212</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>-0.132</td>
<td>-0.338</td>
<td>0.074</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>-0.118</td>
<td>-0.320</td>
<td>0.085</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>0.172</td>
<td>-0.116</td>
<td>0.461</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>-0.001</td>
<td>-0.192</td>
<td>0.190</td>
</tr>
</tbody>
</table>
表 58 地域ごとの変量効果（b_i^*）の事後分布

<table>
<thead>
<tr>
<th>地域</th>
<th>総死亡</th>
<th>呼吸器疾患死亡</th>
<th>循環器疾患死亡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中央値</td>
<td>95%区間</td>
<td>中央値</td>
</tr>
<tr>
<td></td>
<td>2.5%</td>
<td>97.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>北海道札幌市</td>
<td>0.003</td>
<td>-0.031 -0.036</td>
<td>0.004</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>0.001</td>
<td>-0.033 -0.035</td>
<td>0.002</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>-0.012</td>
<td>-0.040 -0.017</td>
<td>-0.015</td>
</tr>
<tr>
<td>茨城県取手市</td>
<td>0.002</td>
<td>-0.024 -0.028</td>
<td>0.003</td>
</tr>
<tr>
<td>埼玉県蓮田市</td>
<td>-0.002</td>
<td>-0.031 -0.026</td>
<td>-0.003</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>-0.002</td>
<td>-0.031 -0.027</td>
<td>-0.002</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>-0.011</td>
<td>-0.036 -0.013</td>
<td>-0.015</td>
</tr>
<tr>
<td>愛知県名古屋市</td>
<td>-0.005</td>
<td>-0.023 -0.013</td>
<td>-0.006</td>
</tr>
<tr>
<td>大阪府守口市</td>
<td>0.011</td>
<td>-0.018 -0.040</td>
<td>0.015</td>
</tr>
<tr>
<td>大阪府堺市</td>
<td>-0.013</td>
<td>-0.039 -0.013</td>
<td>-0.018</td>
</tr>
<tr>
<td>兵庫県神戸市</td>
<td>0.008</td>
<td>-0.029 -0.044</td>
<td>0.010</td>
</tr>
<tr>
<td>岡山県倉敷市</td>
<td>-0.010</td>
<td>-0.038 -0.018</td>
<td>-0.014</td>
</tr>
<tr>
<td>福岡県福岡市</td>
<td>0.004</td>
<td>-0.030 -0.037</td>
<td>0.005</td>
</tr>
<tr>
<td>宮崎県日向市</td>
<td>0.007</td>
<td>-0.038 -0.053</td>
<td>0.010</td>
</tr>
<tr>
<td>宮城県涌谷町</td>
<td>-0.007</td>
<td>-0.039 -0.024</td>
<td>-0.010</td>
</tr>
<tr>
<td>群馬県太田市</td>
<td>0.001</td>
<td>-0.025 -0.027</td>
<td>0.002</td>
</tr>
<tr>
<td>埼玉県戸田市</td>
<td>0.008</td>
<td>-0.023 -0.040</td>
<td>0.011</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>0.009</td>
<td>-0.032 -0.049</td>
<td>0.011</td>
</tr>
<tr>
<td>大阪府大阪市</td>
<td>-0.006</td>
<td>-0.034 -0.023</td>
<td>-0.008</td>
</tr>
<tr>
<td>兵庫県尼崎市</td>
<td>0.000</td>
<td>-0.027 -0.027</td>
<td>0.000</td>
</tr>
</tbody>
</table>
表 59 MCMC 法による固定効果と変量効果分散の点推定値と 95% 区間

<table>
<thead>
<tr>
<th>地区</th>
<th>総死亡推計リスク比</th>
<th>95% 区間下限</th>
<th>95% 区間上限</th>
<th>呼吸器疾患死亡推計リスク比</th>
<th>95% 区間下限</th>
<th>95% 区間上限</th>
<th>循環器疾患死亡推計リスク比</th>
<th>95% 区間下限</th>
<th>95% 区間上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>1.002</td>
<td>0.985</td>
<td>1.020</td>
<td>1.001</td>
<td>0.976</td>
<td>1.024</td>
<td>1.012</td>
<td>0.996</td>
<td>1.026</td>
</tr>
<tr>
<td>NO2</td>
<td>1.002</td>
<td>0.983</td>
<td>1.026</td>
<td>1.003</td>
<td>0.990</td>
<td>1.017</td>
<td>1.003</td>
<td>0.989</td>
<td>1.020</td>
</tr>
<tr>
<td>Ox</td>
<td>1.003</td>
<td>1.087</td>
<td>1.020</td>
<td>1.009</td>
<td>0.991</td>
<td>1.021</td>
<td>1.002</td>
<td>0.989</td>
<td>1.015</td>
</tr>
</tbody>
</table>

表 60 季節を限定した地域ごとの変量効果（\mathbf{b}^t）の事後分布

<table>
<thead>
<tr>
<th>地域</th>
<th>総死亡中央値</th>
<th>95% 区間 2.5%</th>
<th>95% 区間 97.5%</th>
<th>呼吸器疾患死亡中央値</th>
<th>95% 区間 2.5%</th>
<th>95% 区間 97.5%</th>
<th>循環器疾患死亡中央値</th>
<th>95% 区間 2.5%</th>
<th>95% 区間 97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道札幌市</td>
<td>0.025</td>
<td>-0.010</td>
<td>0.060</td>
<td>-0.011</td>
<td>-0.047</td>
<td>0.026</td>
<td>-0.018</td>
<td>-0.037</td>
<td>0.000</td>
</tr>
<tr>
<td>宮城県仙台市</td>
<td>-0.028</td>
<td>-0.058</td>
<td>0.001</td>
<td>-0.023</td>
<td>-0.051</td>
<td>0.006</td>
<td>0.008</td>
<td>-0.023</td>
<td>0.039</td>
</tr>
<tr>
<td>新潟県上越市</td>
<td>0.032</td>
<td>0.013</td>
<td>0.050</td>
<td>0.054</td>
<td>0.028</td>
<td>0.080</td>
<td>0.036</td>
<td>0.006</td>
<td>0.066</td>
</tr>
<tr>
<td>岐阜県高山市</td>
<td>0.015</td>
<td>-0.015</td>
<td>0.045</td>
<td>-0.017</td>
<td>-0.043</td>
<td>0.009</td>
<td>0.002</td>
<td>-0.045</td>
<td>0.050</td>
</tr>
<tr>
<td>埼玉県入間市</td>
<td>0.009</td>
<td>-0.021</td>
<td>0.039</td>
<td>-0.011</td>
<td>-0.047</td>
<td>0.026</td>
<td>-0.032</td>
<td>-0.059</td>
<td>-0.005</td>
</tr>
<tr>
<td>千葉県市川市</td>
<td>-0.005</td>
<td>-0.041</td>
<td>0.030</td>
<td>-0.018</td>
<td>-0.044</td>
<td>0.008</td>
<td>-0.006</td>
<td>-0.041</td>
<td>0.030</td>
</tr>
<tr>
<td>東京都 23区</td>
<td>-0.014</td>
<td>-0.044</td>
<td>0.016</td>
<td>-0.010</td>
<td>-0.041</td>
<td>0.021</td>
<td>-0.022</td>
<td>-0.055</td>
<td>0.011</td>
</tr>
<tr>
<td>神奈川県川崎市</td>
<td>-0.007</td>
<td>-0.043</td>
<td>0.028</td>
<td>0.010</td>
<td>-0.021</td>
<td>0.041</td>
<td>-0.008</td>
<td>-0.043</td>
<td>0.028</td>
</tr>
</tbody>
</table>

108