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Abstract

In recent years, a substantial number of prokaryotic genomes were completely
sequenced and now additional prokaryotic genome sequencing projects are ongoing.
On the other hand, with the development of new sequencer, direct cloning approach
without cultivation was made possible and studies of metagenome such as
intestinal bacteria florae have been spotlighted. Although many genes have been
found in these studies, most of them have not been functionally annotated yet. To
address this problem, many computational methods have been proposed such as
homology-based annotation transfer, structure prediction, integrative functional
genomics, and so on. The most major method for assigning an annotation to a newly
sequenced gene is to utilize existing information of its similar sequences. It does not,
however, work well in prokaryotic genome sequences, since its similar sequences
often have a variety of annotations or lack reliable annotations. Some of similar
sequence functions are varied in biomedical literature and are not provided for
sequence annotation. The exploitation of biomedical literature is a crucial subject.

Accordingly, we propose a new sequence annotation method and implemented it
as an annotation system that can be applied to newly sequenced prokaryotic genes,
especially for sequenced ones as metagenome by combining a homology-based
technique and biomedical text. In our system, characteristic functional terms of
each gene are extracted from document sets including corresponding gene name
based on tf*idf and are stored in the database in advance. The similar sequences of
the query sequence are searched with BLAST. The characteristic functional terms
of similar sequences in the database are assigned as the annotation of the query
sequence. More distinctively and more commonly described terms in the document
sets of similar sequences are selected in our system to obtain appropriate functional
terms.

In this study, to consider various functional words without increasing

meaningless words, likely insignificant words were predicted using mutual



information between each word and each MeSH term based on their co-occurring
frequencies in MEDLINE abstracts and were removed from all words with high
tf*idf. In this filtering process, functional words were obtained from all words with
F-measure of 57%. When this method was applied to our annotation system, the
precision of our annotation system was increased from 18.9% up to 44.6%. This

system is expected to be useful for annotations of metagenome sequences.
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Chapter 1

Introduction

Currently, 417 bacteria genomes and 31 archaea genomes have been sequenced
and now 1034 bacteria genomes and 59 archaea genomes are being sequenced [8].
In addition to conventional whole genome sequencing, newly emerging field such as
metagenomics or environmental genomics is producing a vast amount of sequences.
To date, 71 metagenome projects are available to public. Although many genes can
be found in these sequences, unfortunately, the most of these genes are not
experimentally characterized or annotated yet and such genes are increasing.
Because of the large number of these genes, characterization and manual
annotation for these genes is not realistic and automated annotation is increasing
its importance in this decade [1].

To annotate genes in automatic fashion, heretofore many methods have been
proposed and implemented as annotation systems. One of the most popular
methods 1s annotation transfer based on the sequence homology. If a newly
determined gene has sequence homology to some well characterized genes, their
annotations can be transferred to the newly determined gene. It does not, however,
work well since its similar sequences often have a variety of annotations or lack
reliable annotations. Manual annotation by curator is sometimes requisite to assign
most appropriate annotation to the sequence. Besides annotation transfer based on
sequence homology, the integrated method of annotation transfer with some other
evidences such as expression profile or protein-protein interaction have been
proposed in this decade. This kind of analysis is called “Integrative functional
genomics” [6, 16]. For example, a newly discovered gene is linked to genes
functionally annotated in other analyses based on protein-protein interactions.
Then the commonest function observed among protein interaction pairs would be

assigned to the gene [12]. However, it does not work well, too. In spite of the



physical interaction, protein partners do not necessarily have the same functions.
On the other hand, though a vast amount of literature about micro-organisms
have been published and stored, they have not been leveraged for functional
annotations. The challenge of Korbel, J. O. et al [7] is one of few examples that tried
to annotate genes of prokaryotes using biomedical literature. They combined
phenotypic information in literature and comparative genome analysis. Their
method can annotate a gene even if its orthologous group in other organisms has no
annotation. However, since their method was designed for the annotation of whole
set of genes in a target organism, it is not suitable for the annotation of newly
sequenced genes obtained from genomic fragments or metagenomic analysis.

In this study, we propose a new framework for gene annotation and implement it
as an annotation system that can be applied to the sequences of metagenomes and
environmental genomes. Our system searches similar sequences for a newly
discovered sequence using homology search and determines commonly observed
feature words among descriptions of these similar sequences. Since our annotation
scheme doesn’t require other information except similar sequences and articles

describing these genes, it can be applied to these sequences.
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Chapter 2

Materials and Methods

The schematic representation of our annotation system is shown in Figure 1. The
details of each step in Fig.1 and evaluation method of the annotation system is

described in this chapter.

Figure 1. The scheme of our annotation system

The system is composed from two of main part. The first one is indexing subsystem
(in figure a, b and c). The index is precompiled by this subsystem and provided to

automatic annotation. The second part is automatic annotation subsystem (in figure

d, e, fand g).
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2.1 Recognition of gene names and selection of feature words/terms

The processes (a)-(c) in Fig.1 are performed in advance. The following explanation

of (a)-(g) correspond to the mark in Fig. 1.

(a) Gene name recognition

To utilize gene names described in biomedical literature, we recognized them and
created their index as shown in Fig.1 (a).

Since we assumed that prokaryote genes are named systematically than
eukaryote ones, we took a dictionary-based approach for gene name recognition in
this study. Since most of genes have multiple names (synonyms), we had to scrape
together these synonym names as far as possible to judge various gene names as an
1dentical gene description. As far as we know, the largest list of genes and their
synonyms is provided as file “gene_info” in EntrezGene [17]. In this list, we
regarded symbols, synonyms, locus, full name and description as gene names. We
extracted gene names from the list and produced term variations such as
conversions between roman numerals and Arabic numerals and replacement of
hyphen with white spaces. based on original symbols and aliases. Entrez Gene was
containing 850 species and 1,130,886 genes of prokaryotes, and we expanded this
dictionary up to 2,103,072 gene names by making variants with this procedure. To
search two million of gene names in millions of MEDLINE abstracts, we made a
search program using SPARE-Parts that is a library containing Aho-Corasick
algorithm. Using Aho-Corasick algorithm we can find gene names in just one scan
through MEDLINE abstracts. This search could be completed within several hours
in our computer environment (Sun UltraSPARC-IIIi, 1.5GHz). Gene IDs were

assigned to detected gene names and gene ID-PubMed ID index was built.

(b) Recognition of feature words/terms of each gene

There are two ideas to obtain feature words of each gene from abstracts. One of the
ideas is to use all words appeared in abstracts, and another is to detect terms
registered in thesaurus such as GO (gene ontology) or UMLS. We expected these
thesauri as non-redundant vocabulary, so we collected terms from UMLS, COGs,

TIGR roles and GO as vocabularies for annotation. Currently, the most widely used
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ontology for gene annotation is GO, but it is originally designed for eukaryote genes,
and its applicability to prokaryote ones has not been sufficiently tested yet. This
problem is discussed in section 3.2. To search these terms in abstracts, the same
program was used for both gene name search and term search. When abstracts were
scanned by this program, all of non alphabetical characters were replaced with
space.

In addition to these thesauri, we parsed MEDLINE archive formatted in XML and

extracted records of MeSH terms attached to each abstract.

(c) Weighting words and terms using tf*idf

After the recognition of words/terms and gene names, abstracts including the
corresponding gene name are prepared as document set for each gene. tf*idf values
for all recognized words/terms were calculated in every document set to extract
feature words/terms of each gene. The #frepresents “term frequency” , while the 1df
represents “inverse document frequency”’”. When terms are appeared frequently in
given documents, they are expected to be significant keywords. On the other hand,
when terms are appeared in limited documents, they are expected to be
characteristic. This is measured as “document frequency” and its inversed form is
1df. Thus high tf*idf indicates significance of the word. To consider the effect of

document length to tf, we also calculated normalized term frequency factor [13]:

B 1 +log( tf )
1 +average (log( tf ))

tf 1)

These relations between genes and terms and their tf *i1df scores were stored into

the index.
2.2 An automated annotation procedure
The automated annotation processes (d)-(g) in Fig. 1 are carried out interactively.

(d) BLAST search

First, using a sequence that a user wants to annotate as the query, he/she does a

BLAST search against the database. As a database for BLAST search, we
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downloaded genomic sequences of prokaryotes from RefSeq [11]. From these
sequences we extracted nucleotide sequences using its annotations that is defining
the start and end position of the gene in the genome and GenelD. And the amino
acid sequences for blastx search were provided by TIGR CMR. The resulting
sequence database contains 1.2 million sequences and then they were compiled into
indexes for BLAST search. The BLAST search would be done with E-value
threshold 0.1 in the default condition.

(e) Acquisition of candidate words and terms for annotation

The result of the BLAST search is a hit-list of similar sequences. The feature
words/terms in the document sets of similar sequences (genes) are used for the

query sequence annotation in the next (f) step.

(f) Scoring words by commonality in similar sequences

The appropriate feature words/terms are expected to be frequently used in the
descriptions of retrieved sequences or specifically used in the descriptions of highly
ranked sequences. We developed a method derived from N-best that finds a suitable
combination of parameters. In our method, appearance frequencies and ranks in a
BLAST hit-list are used for scoring feature words.

In the current implementation, we defined the score for feature words as follows:

Score(w):Taﬁw - (2)
<r< +

where freq(w) is the frequency of the word contained in similar sequences (hit-list)
and r means the rth similar sequence. Once the scores are calculated from rank 1
to AV, finally the highest score is assigned to the word. To normalize the
excessiveness of words of top similarity, one is added to the rank. For example, the
term “X” is in the second and third of the list of similar sequences in figure 1. Then

the scores are calculated for each rank as 0/(1 + 1), 1/(2 + 1), 2/(3 + 1) and 2/(4 + 1),

respectively. Finally, the max score 0.5 is assigned to the term “X” when r = 3.

(g) Sorting words by their score

Finally, assigned feature words are ordered by the descending order of the score

14



assigned at previous step.

2.3 Data set for assessment of gene name recognition

To evaluate the performance of gene name recognition in MEDLINE abstracts, we
prepared a gold standard from gene2pubmed. We extracted 32,732 of gene-PubMed
ID relations as a gold standard from EntrezGene (gene2pubmed) and used it for the
calculation of the recall. The data in gene2pubmed, however, contained some
relations between genes and articles without any occurrences of corresponding gene
names in the abstract. So we used only the abstracts having links to less than or
equal to five genes as the gold standard of recall calculation. By this filtering most
of relations indicating association between genes in genomic fragments and articles
of the genomic fragments were eliminated.

The gene2pubmed was used for obtaining the recall because of its almost perfect
precision. But it couldn’t be used for the precision due to its extremely low recall. To
obtain the precision, therefore, we randomly picked up 100 abstracts from the
MEDLINE abstracts in which gene names were recognized and microbe related

MeSH terms were attached.

2.4 Data set for assessment of automatically assigned annotation

As far as we know, TIGR CMR is the largest resource of GO-annotated genes.
Therefore, the data of TIGR CMR was used as a gold standard for the assessment of
annotation performance at first. The resource contained 87 genomes sequenced at
TIGR and 268 genomes sequenced at the other organizations. As those files
contained GO codes and evidence code, we extract all records having evidence code
“TAS (Traceable Author Statement)”, “IDA (Inferred from Direct Assay)” or “IMP
(Inferred from Mutant Phenotype)”. Subsequently, we downloaded sequences from
TIGR CMR and extracted corresponding nucleotide sequences to above annotated
genes. Thus we chose manually annotated genes, and finally we got 361 genes as

the gold standard.

2.5 Selection of feature words/terms for annotation from all of candidate words

There was a plenty of useless candidate words in an obtained result just after the
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annotation as discussed in section 3.2. To filter out those words, the degree of
association between candidate words and MeSH terms were measured by mutual
information. In this case, if a candidate word occurs independently from any of
MeSH terms, it would give a small mutual-information score, and then it would be a
worthless word for annotation.

The mutual information I(x; y) is computed as follows:

P(x,Y)

— 7 3
* P(X)P(y) )

I (x;y) =log

Here, Ax) is the probability of occurrence of the word, and Ay) is the probability of
the MeSH term. Hx, y) is the probability of observing x and y together. If there is an
association between word x and MeSH term y, then Xx, y) will be much larger than
0. If there was no relationship between xand y, then Xx, y) will be almost equal to 0.
If xand y occur in complementary distribution, Xx, y) will be less than 0. Using the
mutual information as indicator of cohesiveness, we identified the most closely
associated MeSH term for respective candidate words. Thus, if obtained mutual
information between candidate word and the closest MeSH term was small, then we
can regard the candidate word as worthless.

Here, in conjunction with the mutual information, we consider also about
frequencies of candidate words and MeSH terms. Since the terms occurring in low
frequencies could be originally valuable, the mutual information was used only for
filtering out high frequency words and terms.

In order to determine the best combination of the mutual information and these
two frequencies, we used the subset of the gold standard which we made at previous
section. The subset was containing annotations of 20 genes, and those were applied
to our annotation system. Next, we validated the obtained annotations by hand, and
we prepared them for training set. The frequencies were tested at 1, 50, 100, 200,
500, and 1000, respectively. The mutual information was tested from 2.0 to 19 with
0.5 intervals. We tested every combination of these three thresholds on the training
set, and we obtained four scores shown below:

A) The precision Ps and the recall Rs of selected valuable words
B) The precision P and the recall R. of eliminated useless words

To consider these obtained four scores all together, we used the following function:

16



5+5+1+1

E measure =1— =5 1 [ (4)
T
RS Re PS Pe

This function outputs weighted harmonic mean so that the recalls are considered
more importantly than the precisions in order to decrease the improper removal
of useful words. Thus the best set of thresholds that minimized the E-measure

(maximized the F-measure) was obtained from the training set.
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Chapter 3

Results and Discussions

3.1 Evaluation of gene name recognition

As described in 2.3, the gene name recognition performance was investigated by
gene2pubmed data and randomly picked up 100 abstracts containing recognized
gene names. As a result, the recall was 0.54 and the precision was 0.91. To analyze
the reasons of the low recall, we randomly picked up 100 abstracts from
false-negatives and checked them. The primary reason was that the corresponding
gene names were not described in abstracts but described in tables or main text.
The second reason was the deficiency of corresponding gene names in our dictionary,
and the third reason was word order variations such as “ribosome recycling factor”,
“ribosome releasing factor” or attachment of extra words such as "p35”, “p35
lipoprotein”. Further extension of our dictionary is necessary to overcome these
problems and improve the recall.

Otherwise, it 1is possible to employ other technique for gene name
recognition/extraction. Recently, there have been many techniques and their
implementations have been introduced. In the case of prokaryotes, since their genes
are named according to the rule of three lower cases and subsequent one upper case,
1t is quite natural to adopt the technique that can utilize this kind of feature for
gene name recognition. For example, Chang and colleagues [4] proposed a technique
that exploited these several features of gene names such as lower/upper cases and
with/without digits using naive Bayes, maximum entropy and support vector
machines as machine learning methods. In their report, their system achieved

83.3% recall and 81.5% precision for genes of human. Although those techniques
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extract gene names effectively, they can not reliably map extracted gene names to
corresponding gene ID [5]. Therefore, if we employ one of those techniques in our
system, further improvement is indispensable for associating gene names with

sequences.

3.2 Evaluation of extracted terms

We prepared two types of terms for annotation in words/terms extraction
procedure. One is gene related feature words extracted from MEDLINE abstracts,
and another is terms obtained from existing thesauri (i.e., GO, UMLS, COGs and
TIGR roles). These thesauri are non redundant and well structured vocabulary for
annotation. However, it is necessary to check whether the contents of these
vocabularies are sufficient for annotation or not,

Therefore, we surveyed how much feature words (functional words) were covered
by existing ontology/controlled vocabularies. As a preliminary study, we split terms
of those vocabularies into words, and checked whether our feature words were
covered with these words or not. For the sake of reliability we calculated tf*idf and
tf’*1df for each word as described in section 2.1 using the gene-PubMedID link of
gene2pubmed. Thus tf*idf scores were separately calculated within their related
gene group, subsequently we averaged tf*idf for each words. The list of words was
sorted by the averaged tf*idf, and the sorted list was segmented into six blocks of
10,000 words according to the order. Then we picked up 100 words randomly from
each block, and checked whether the words were useful for annotation or not and
summarized in Figure 2. In the first block about 53% of words are meaningful for
annotation and this ratio is decreased according to the rank. From those blocks, we
took the first one and checked whether those meaningful words were contained in
existing vocabularies and summarized in figure 3. Then 43% of those words were
not contained as shown in this figure 3. This result showed that many feature words
remained not registered in vocabularies in those thesauri, so we have to develop a
method for extending the vocabularies to annotate prokaryote genes properly. These

individual words in the graph are listed in Table 1.
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Figure 3. The 100 words of the block of top 10,000



3.3 Evaluation of automatically assigned annotations

When we applied these genes to our system, we do BLAST search using blastn
(nucleotides vs. nucleotides), blastx (nucleotides vs. amino acids) and tblastx
(nucleotides vs. nucleotides with translating to amino acids). The databases of these
sequences were obtained from genome sequences of TIGR CMR as described in
2.2(d). The resulting annotations obtained here were mixture of UMLS terms,
COGs classes, TIGR roles, GO terms and individual words. Since these genes were
annotated with GO, automatically obtained annotations were compared with these
GO annotations, and the result of comparison is summarized as Fig. 4. In this figure
apparent difference between blastn and the others were observed. Since blastx and
tblastx tended to gather many similar but relatively irrelevant sequences than
blastn as expected, irrelevant terms are increased in blastx and tblastx as a results
of gathering annotations linked to these sequences. This figure indicates that all
three of results have extremely low precision and moderate recall. The precision in
Fig 4. is expected quite lower than actual precision, since annotations assigned by
GOA were quite limited. Some annotations of them are plausible to be assigned, and
thorough investigation of individual annotations is necessary to obtain faithful

precision.
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Figure 4. Precision and Recall of GO annotations in our system

Manually annotated data (GOA) were used as a gold standard. Changing E-value
threshold from 1.0E-11 to 1.0E-2

Therefore, as a preliminary evaluation, we randomly picked up candidate
annotations (words and terms) of 20 genes from gold standard randomly and
checked every candidate annotations whether those annotations were appropriate
or not. Since these annotations were overwhelming amount to check all of them by
hand, we extract every top 100 tf’*idf scored annotations of these 20 genes for
manual evaluation. In this evaluation, automatically assigned words were classified
into following three classes. If the annotation was apparently correct, then it was
classified to “Correct”. If the annotation was apparently false, then it was classified
to “Flase”. Otherwise, if we couldn’t judge whether the annotation is true or not,

then we classified it to “Not Confirmed”. Since the annotations classified to “Not

22



Confirmed” required further analysis to determine their validity, and it was hard to
be done within our limited resources, we reserved them into the class. Finally, there
were 2,000 candidate feature words, and 220 of “Correct” words and 151 of “Not
Confirmed”. From these results the precision obtained here was from 0.110 to 0.189.

In the next section of feature words were performed to improve this precision.

3.4 Selection of feature words for annotation from all of candidate words

In the previous section, we showed the recall and the precision of automatically
assigned GO annotations, and confirmed the precision of candidate words/terms
with manual evaluation. According to these results, the problem was low precision
rather than the recall. After we had obtained the list of candidate words, we
checked the validity of these words. The example of the list of these words is shown
in Table 2. As shown in Table 2, the list contained many English words and common
words appeared in biomedical literatures. Although these words indicated high
tf’*1df score, they seemed to be not useful for annotating genes. If we can exclude
these useless words from the list, we would be able to take only valuable words for
annotation.

In general, meaningless terms such as prepositions and demonstrative pronouns
are known to be equally distributed overall literature, while meaning/valuable
terms including functional terms show biased distribution in literatures. To
distinguish these valuable words from meaningless words, the degree of association
to MeSH terms was utilized. That is, we assumed that meaningless words would be
low/no association to MeSH terms. As a measure of degree of association between
MeSH term and a candidate word, mutual information (MI): a measure of mutual
dependence between two variables [9], was calculated based on the frequencies of
MeSH term and a word and their co-occurrence frequency as shown in section 2.5.
MI for all MeSH terms were calculated for a word and the highest MI was adopted
to judge whether the word was meaningless word or valuable word. Similar to other
statistical measures, MI value is not effective for small numbers of Ax) or Ay). The
border value of MI whether meaningless or valuable word is unknown.

Accordingly, we computed mutual information for every combination of three
thresholds as described in section 2.5, and we obtained the best set of thresholds

that minimized the E-measure. The best performance was achieved F-measure of
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0.857 at: Word frequency = 200, MeSH term frequency = 50, and Mutual

information = 7 (Figure 5). Then the precision of extracted words was 56.9%.
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Figure 5. The E measure under the fixed condition of word frequency 200 and
MeSH term frequency 50.

We tested every combination of mutual information threshold and frequencies (1, 50,
100, 200 and 500) of candidate words and MeSH terms. The above combination of
frequencies gave the maximum F-measure (minimum E-measure) where the

mutual information threshold was 7.

3.5 Evaluation of correctness of annotations

Using the thresholds learnt from the training set, we again measured the
performance of our system using newly prepared dataset containing randomly
picked 30 genes. The subset used here was made not to include the genes contained
in the previous subset. We applied these 30 genes to our system, and the resulting
annotations were manually validated. For example, Table 3 is a part of annotation.

This annotation is a list of words and each word are manually validated. In the list
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apparently correct annotations are marked as ‘++ (Correct), and probable
annotations are marked as ‘+’ (Probable). Those probable annotations are not
confirmed whether each word is correct annotation or not but the terms themselves
are meaningful. This measurement resulted in precision from 0.217 to 0.446. Thus,
by the filtering words, the precision was improved two times better than 0.189 of
section 3.3.

This assessment included the entire words retrieved with BLAST and the index. It
is not investigated yet the effect of considering E-value of sequence, or tf*idf in this
annotation procedure. To examine these effects, we used the data of 20 genes and 30
genes prepared by the previous section.

For the tf’*idf, tf’*idf threshold was changed from 1 to 10000, and the result
precision is shown as Fig. 6. It was extremely low precision before the filtering
words (blue ovals and light blue boxes) as described in previous section and they
were increased excessively by the filtering (red ovals and yellow boxes). By changing
the threshold of tf’*idf, precisions were not so increased except for “Not
confirmed”(Correct + Probable) of filtrated. As a result, the increase of precision

would be limited even if we set a threshold on tf*idf.

0.6
05
04
—@— Correct(before)
0.3 —— Not confirmed(before)
. ‘—Q—Q—W e Comectiatter
—— Not confirmed(after)
0.2
0.1
0
1 10 100 1000 10000

Figure 6. Changes in precision by alternating tf’*idf threshold.
It was extremely low precision before the filtering (blue ovals and light blue

boxes), and they were increased excessively by the filtering (red ovals and
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yellow boxes). Precisions were not so increased except for “Not confirmed” of

filtrated.

Since we supposed that precision was also affected by the threshold of similarity
in BLAST search, we observed precision with alternating E-value threshold from
1.0E-100 to 0.1. The result of this analysis is represented in Fig. 7. In this analysis,
the words shared by multiple similar sequences were regarded as independent
annotations. The results showed that no obvious difference was observed even if we
changed the threshold of similarity before the filtering. But the differences were
emerged by the filtering. Looser threshold than 0.1 will corrupt the precision of
annotations. If we set the threshold on E-value, a certain increase in precision will

be observed.
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Figure 7. Changes in precision by alternating E-value threshold of blastn.

Before the filtering precisions were extremely low (blue boxes and deep blue ovals).
After the filtering precisions were excessively improved (yellow boxes and red ovals).

While there were no obvious changes in precisions before the filtering in spite of
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E-value threshold change, after the filtering precisions were correlated with

E-value threshold.
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Chapter 4

Conclusion

In this study, we have developed a new annotation method for prokaryotic genes
and implemented it. By combining homology search and biomedical texts, our
system enables the annotation of sequences of metagenomic analyses or fragments
of genes

There are pros and cons for use of existing thesauri as vocabulary for annotation.
In this report, we showed that those vocabularies were insufficient for the
annotation of prokaryotic genes. When free words were adopted on the basis of this
result, many meaningless words were mixed annotation words. To overcome this
problem, we developed the method that filter out those meaningless words from all
free words using mutual information as described in section 3.4. Consequently, we
could obtain the set of annotations as valuable words and terms with the precision
of 21.7-44.6%, thereby it achieved two times better precision than before the word
filtering.

However, there remains following subjects to improve our annotation system. For
gene name recognition, its performance can be improved by employing more
sophisticated technique. Merely an enlargement or expansion of the gene name
dictionary would improve the performance immediately. To utilize the commonality
and frequency of words in similar sequences, we implemented the scoring system
derived from N-best, but we cannot yet utilize it effectively. In this study, we
considered only feature words and terms of thesauri for annotation, but phrases or
sentence structures are also important for annotation and should be considered
together.

The main goal of our study is to bridge the sequence and its functional annotation

evidences. It would be also worth integrating some genomic information such as a

28



whole sequence set to our annotation system to provide a certain confidence for

annotations made by literature mining.
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Table 1. A part of the word list of the  liroyl ++ 894

first block swarmer ++ 39.2
bacterioplankton 38.6
Word Mean Thesauri f+igf ransplantation - 37.5
flaviolin ++ 114.2 intraerythrocytic - 37.2
acetyldihydrolipoamide 102.0 uveitis 37.0
minvac - 85.0 ceftizoxime 35.8
pseudoligand - 81.5 cosmids 35.8
nonfermenting ++ 80.2 microcystin ++ 34.8
nukacin ++ 75.2 autoprocess ++ - 34.0
coumermycin ++ 71.5 pyrrocorphin ++ - 34.0
epoxypimaricin + 68.0 pluricellular - 34.0
apophotolyase ++ - 68.0 formycinylhomocysteine - 34.0
wzzst - 66.4 benzyloxycarbonylated - 34.0
deglycase ++ 66.4 hypercompetence - 34.0
dicyanide 64.3 language 33.6
carboxyphosphate ++ 62.6 polyene 33.3
cerein ++ 61.6 geranylgeranylglyceryl 33.3
shufflon ++ - 61.0 polychloroethanes - 33.2
ferripyochelin ++ 60.8 intercofactor ++ - 33.2
sirtuins ++ 60.5 zorbonensis - 33.2
subcomponent 58.7 esterifies - 33.2
aminooxyacetate 58.4 erythronate 33.2
dockerin ++ 54.6 futura - 33.2
dipicolinate ++ 53.2 autoassembly - 33.2
enolpyruvyl + 52.1 azidodeoxythymidine 32.6
pyocyanin ++ 52.0 lambdamax - 32.6
biosyntheses ++ - 51.5 propylthioadenosine ++ 32.6
replicator ++ 51.0 fucitol 32.6
archease ++ - 51.0 shrinkage - 32.5
dimethylnaphthoquinone - 51.0 retrons ++ - 32.2
pseudobactin ++ 50.7 intersubdomain - 32.2
pseudoverdine ++ 49.8 linolenic ++ 32.1
phosphoramidase ++ - 48.3 dioxygenolytic ++ - 32.1
maltooligosyltrehalose + - 47.7 filarial 32.1
acetylcoenzyme ++ 45.7 barrels - 32.0
bacteriopheophorbide 45.6 44 Meaningful WOI‘dS, +: hkely
reprint ; 45.6 meaningful words, - Not registered in
anticapsin ++ 45.4 thesauri
rhamnan ++ 44.8
pyrocatechase ++ 43.4
hydroxycobalamin 42.9
sinorhizobial ++ - 40.8
rrinoids ++ - 40.8
endoglycosidase ++ 40.4
clinafloxacin 40.1
mevinolin 39.5
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Table 2. An example of automatically assigned feature words for atpG

Rank Term GO/TIGR/COG/UMLS Score
1 atp 1523.7
2 Genes UMLS:C0017337 823.2
3 ATPase, Aminophospholipid Transporter-Like, .
Class I, Type 8A, Member 2 UMLS:C1366832 819.8
4 Operon UMLS:C0029073 628.3
5 atpase 584.1
6 cfo 544.0
7 operon 541.2
8 genes 541.1
9 mrna 489.3
10 subunits 426.5
11 escherichia 425.6
12 ATP synthase UMLS:C1622485 413.5
13 f 345.8
14 ATP phosphohydrolase UMLS:C0001473 325.8
15 translational 324.0
16 ATPase G0:0016887 315.5
17 gene 290.9
18 synthase 285.5
19 Transcription Initiation UMLS:C1158830 274.8
20 Translation Initiation UMLS:C1519613 272.6
21 translational initiation GO0:0006413 272.6
22 Escherichia coli UMLS:C0014834 269.5
23 b 266.9
24 Chloroplasts UMLS:C0008266 247.6
25 coli 232.9
26 subunit 228.5
27 Proton-Translocating ATPases UMLS:C0018437 222.9
28 ¢ 218.7
29 KEscherichia UMLS:C0014833 207.5
30 from 206.9

This list is obtained with blastn. The score indicates tf’*idf (cf. 2.1-(c) ) and the list is sorted by
this score. The rows containing ID in their center column are terms from those vocabularies.
There were many words not so well related to the gene atpG (ATP synthase F1, gamma

subunit).
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Table 3 An example of automatically assigned feature words for glyceraldehyde-3-phosphate

dehydrogenase, type I

Rank  Term Annotation GO/TIGR/COG/UMLS Score

1 GO0:0048001 ++ erythrose 4 phosphate dehydrogenase 5402.858364

2 UMLS:C1151658 ++ erythrose—4—phosphate dehydrogenase activity 3705.370959

3 nad 2750.461356

4 glycolytic 2637.503312

5 gallisepticum 2628.865652

6 epd 2357.50846

7 UMLS:C0059572 erythrose 4—phosphate 2065.542722

8 glyceraldehyde 2056.787474

9 3-phosphate 2040.482108
10 UMLS:C0014823 erythrose 1972.060344
11 UMLS:C0029073 Operon 1925.048546
12 TIGR_sublrole:116 + Glycolysis gluconeogenesis 1836.253106
13  gap2 ++ 1835.729108
14 operon 1822.714437
15 cytadherence + 1739.575894
16 psgk ++ 1682.247591
17 UMLS:C1516627 Clinical Research Associate 1573.741981
18 UMLS:C0317807 Mycoplasma gallisepticum 1530.144021
19 UMLS:C0016762 + Fructosediphosphate Aldolase 1473.866476
20 UMLS:C0017952 + Glycolysis 1388.8702
21 GO:0006096 + glycolysis 1388.8702
22 gapl ++ 1335.403104
23 UMLS:C0003074 Anion Gap 1314.352611
24  glycolysis + 1205.26966
25 nadp 1161.72189
26 mgc2 1102.41103
27 UMLS:C0034263 Pyridoxal 1084.063822
28 GO:0000910 + cytokinesis 1082.368873
29 GO:0007104 + cytokinesis 1082.368873
30 GO:0009919 + cytokinesis 1082.368873
31 GO:0016288 + cytokinesis 1082.368873
32 cra ++ 1070.77201
33 cytadhesin + 1067.681769
34 UMLS:C0034266 Pyridoxal Phosphate 1061.612572
35 UMLS:C0017857 ++ Glyceraldehyde—3-Phosphate Dehydrogenases 1042.485459
36 UMLS:C0017534 Giardia 1034.56096
37 UMLS:C0597219 phosphoglycerate 1021.586431
38 nadh 945.973539
39 o157 900.771256
40 phb ++ 896.420889
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