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Abstract 
 
In recent years, a substantial number of prokaryotic genomes were completely 

sequenced and now additional prokaryotic genome sequencing projects are ongoing. 

On the other hand, with the development of new sequencer, direct cloning approach 

without cultivation was made possible and studies of metagenome such as 

intestinal bacteria florae have been spotlighted. Although many genes have been 

found in these studies, most of them have not been functionally annotated yet. To 

address this problem, many computational methods have been proposed such as 

homology-based annotation transfer, structure prediction, integrative functional 

genomics, and so on. The most major method for assigning an annotation to a newly 

sequenced gene is to utilize existing information of its similar sequences. It does not, 

however, work well in prokaryotic genome sequences, since its similar sequences 

often have a variety of annotations or lack reliable annotations. Some of similar 

sequence functions are varied in biomedical literature and are not provided for 

sequence annotation. The exploitation of biomedical literature is a crucial subject. 

Accordingly, we propose a new sequence annotation method and implemented it 

as an annotation system that can be applied to newly sequenced prokaryotic genes, 

especially for sequenced ones as metagenome by combining a homology-based 

technique and biomedical text. In our system, characteristic functional terms of 

each gene are extracted from document sets including corresponding gene name 

based on tf*idf and are stored in the database in advance. The similar sequences of 

the query sequence are searched with BLAST. The characteristic functional terms 

of similar sequences in the database are assigned as the annotation of the query 

sequence. More distinctively and more commonly described terms in the document 

sets of similar sequences are selected in our system to obtain appropriate functional 

terms. 

 In this study, to consider various functional words without increasing 
meaningless words, likely insignificant words were predicted using mutual 



 3

information between each word and each MeSH term based on their co-occurring 

frequencies in MEDLINE abstracts and were removed from all words with high 

tf*idf. In this filtering process, functional words were obtained from all words with 

F-measure of 57%. When this method was applied to our annotation system, the 

precision of our annotation system was increased from 18.9% up to 44.6%. This 

system is expected to be useful for annotations of metagenome sequences. 
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日本語要旨 
 

近年、数多くの原核生物においてゲノム配列が決定され、現在も複数のゲノムプロジェ

クトが進行中である。他方、新シークエンシング技術の開発によって微生物の単離・培

養を経ず、直接 DNA のクローニングが可能となり、その結果メタゲノムのような研究

が注目を集めるようになっている。しかし、このような研究から新たに多数の遺伝子が

発見されてくる中で、それらの多くは未だにアノテーションできずに残されていること

が現在、問題となっている。この問題を解決するために、アノテーション・トランスフ

ァーや、構造予測、統合機能ゲノムなど各種の手法が提案されている。これらのうち、

機能未知の配列のアノテーションに最もよく用いられる手法は、クエリー配列と相同性

をもつ配列の機能情報を活用するというもので、これがアノテーション・トランスファ

ーと呼ばれるものである。しかし、それらの相同配列群が多様なアノテーションを含ん

でいる場合や、有用なアノテーションが含まれない場合があり、アノテーション・トラ

ンスファーが困難であることも多い。相同配列の機能のいくつかは文献中に埋もれてお

り、アノテーションとして簡便に利用することは難しい。従って、生命科学の文献をい

かに遺伝子アノテーションに活用できるかが鍵となっている。 

 そこで我々は、相同性情報と文献情報を利用して、原核生物の新規に決定された配列、

特にメタゲノムに対しても適用しうる新たな手法を提案・実装した。本システムでは遺

伝子名を含む文献セットから当該遺伝子の機能を示す特徴語を抽出し、tf*idf によって

スコア付けを行い、予めデータベースに格納しておく。一方アノテーション対象のクエ

リー配列については、最初に BLAST を用いて相同配列を収集する。次にデータベース

を参照して相同配列に関連付けられた機能を示す用語を取得し、それらをアノテーショ

ンとしてクエリー配列に付与する。そこで、適切な機能を示す用語を選択するため、本

システムは相同配列群に関する文献セットの中に特徴的に出現し、かつ多くの相同配列

に関する用語を選択する。 

 これらの用語を選択する際には意味のない用語の選択を最小限に抑えて、機能を示す

用語を集めなければならない。そこで我々はそれら用語と MeSH タームの出現頻度、

及び MEDLINE のアブストラクト中におけるそれらの共起の頻度に基づき、相互情報
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量を利用して無意味な用語を予測した。そしてその予測結果を用いて tf*idf の高い用語

群から意味のないとされた語を除去し、最終的には機能用語を F-measure で 57%以上

で収集することができた。本フィルタリング手法をアノテーションシステムに適用した

結果、アノテーションの精度はフィルタリング前後で 18.9%から 44.6％に向上した。

本システムは、メタゲノム由来のような配列アノテーションにも有効と思われる。 
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Chapter 1 
 
Introduction 

 

Currently, 417 bacteria genomes and 31 archaea genomes have been sequenced 

and now 1034 bacteria genomes and 59 archaea genomes are being sequenced [8]. 

In addition to conventional whole genome sequencing, newly emerging field such as 

metagenomics or environmental genomics is producing a vast amount of sequences. 

To date, 71 metagenome projects are available to public. Although many genes can 

be found in these sequences, unfortunately, the most of these genes are not 

experimentally characterized or annotated yet and such genes are increasing. 

Because of the large number of these genes, characterization and manual 

annotation for these genes is not realistic and automated annotation is increasing 

its importance in this decade [1]. 

To annotate genes in automatic fashion, heretofore many methods have been 

proposed and implemented as annotation systems. One of the most popular 

methods is annotation transfer based on the sequence homology. If a newly 

determined gene has sequence homology to some well characterized genes, their 

annotations can be transferred to the newly determined gene. It does not, however, 

work well since its similar sequences often have a variety of annotations or lack 

reliable annotations. Manual annotation by curator is sometimes requisite to assign 

most appropriate annotation to the sequence. Besides annotation transfer based on 

sequence homology, the integrated method of annotation transfer with some other 

evidences such as expression profile or protein-protein interaction have been 

proposed in this decade. This kind of analysis is called “Integrative functional 

genomics” [6, 16]. For example, a newly discovered gene is linked to genes 

functionally annotated in other analyses based on protein-protein interactions. 

Then the commonest function observed among protein interaction pairs would be 

assigned to the gene [12]. However, it does not work well, too. In spite of the 
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physical interaction, protein partners do not necessarily have the same functions.  

On the other hand, though a vast amount of literature about micro-organisms 

have been published and stored, they have not been leveraged for functional 

annotations. The challenge of Korbel, J. O. et al [7] is one of few examples that tried 

to annotate genes of prokaryotes using biomedical literature. They combined 

phenotypic information in literature and comparative genome analysis. Their 

method can annotate a gene even if its orthologous group in other organisms has no 

annotation. However, since their method was designed for the annotation of whole 

set of genes in a target organism, it is not suitable for the annotation of newly 

sequenced genes obtained from genomic fragments or metagenomic analysis. 

 In this study, we propose a new framework for gene annotation and implement it 

as an annotation system that can be applied to the sequences of metagenomes and 

environmental genomes. Our system searches similar sequences for a newly 

discovered sequence using homology search and determines commonly observed 

feature words among descriptions of these similar sequences. Since our annotation 

scheme doesn’t require other information except similar sequences and articles 

describing these genes, it can be applied to these sequences.  
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Chapter 2 
 
Materials and Methods 

 
 The schematic representation of our annotation system is shown in Figure 1. The 

details of each step in Fig.1 and evaluation method of the annotation system is 

described in this chapter.  

 

 
Figure 1. The scheme of our annotation system 
 

The system is composed from two of main part. The first one is indexing subsystem 

(in figure a, b and c). The index is precompiled by this subsystem and provided to 

automatic annotation. The second part is automatic annotation subsystem (in figure 

d, e, f and g). 
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2.1 Recognition of gene names and selection of feature words/terms 

 

The processes (a)-(c) in Fig.1 are performed in advance. The following explanation 

of (a)-(g) correspond to the mark in Fig. 1. 

 
(a) Gene name recognition 

 
To utilize gene names described in biomedical literature, we recognized them and 

created their index as shown in Fig.1 (a).  

Since we assumed that prokaryote genes are named systematically than 

eukaryote ones, we took a dictionary-based approach for gene name recognition in 

this study. Since most of genes have multiple names (synonyms), we had to scrape 

together these synonym names as far as possible to judge various gene names as an 

identical gene description. As far as we know, the largest list of genes and their 

synonyms is provided as file “gene_info” in EntrezGene [17]. In this list, we 

regarded symbols, synonyms, locus, full name and description as gene names. We 

extracted gene names from the list and produced term variations such as 

conversions between roman numerals and Arabic numerals and replacement of 

hyphen with white spaces. based on original symbols and aliases. Entrez Gene was 

containing 850 species and 1,130,886 genes of prokaryotes, and we expanded this 

dictionary up to 2,103,072 gene names by making variants with this procedure. To 

search two million of gene names in millions of MEDLINE abstracts, we made a 

search program using SPARE-Parts that is a library containing Aho-Corasick 

algorithm. Using Aho-Corasick algorithm we can find gene names in just one scan 

through MEDLINE abstracts. This search could be completed within several hours 

in our computer environment (Sun UltraSPARC-IIIi, 1.5GHz). Gene IDs were 

assigned to detected gene names and gene ID-PubMed ID index was built. 

 
(b) Recognition of feature words/terms of each gene 
 
 There are two ideas to obtain feature words of each gene from abstracts. One of the 

ideas is to use all words appeared in abstracts, and another is to detect terms 

registered in thesaurus such as GO (gene ontology) or UMLS. We expected these 

thesauri as non-redundant vocabulary, so we collected terms from UMLS, COGs, 

TIGR roles and GO as vocabularies for annotation. Currently, the most widely used 
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ontology for gene annotation is GO, but it is originally designed for eukaryote genes, 

and its applicability to prokaryote ones has not been sufficiently tested yet. This 

problem is discussed in section 3.2. To search these terms in abstracts, the same 

program was used for both gene name search and term search. When abstracts were 

scanned by this program, all of non alphabetical characters were replaced with 

space.  

In addition to these thesauri, we parsed MEDLINE archive formatted in XML and 

extracted records of MeSH terms attached to each abstract. 

 
(c) Weighting words and terms using tf*idf 
 
  After the recognition of words/terms and gene names, abstracts including the 

corresponding gene name are prepared as document set for each gene. tf*idf values 

for all recognized words/terms were calculated in every document set to extract 

feature words/terms of each gene. The tf represents “term frequency” , while the idf 
represents “inverse document frequency”. When terms are appeared frequently in  

given documents, they are expected to be significant keywords. On the other hand, 

when terms are appeared in limited documents, they are expected to be 

characteristic. This is measured as “document frequency” and its inversed form is 

idf. Thus high tf*idf indicates significance of the word. To consider the effect of 

document length to tf, we also calculated normalized term frequency factor [13]: 

 

)1(
))(log(1

)log(1' L
tfaverage

tftf
+

+
=  

 
These relations between genes and terms and their tf *idf scores were stored into 

the index. 
 
2.2 An automated annotation procedure 
 

The automated annotation processes (d)-(g) in Fig. 1 are carried out interactively. 

 
(d) BLAST search 
 

First, using a sequence that a user wants to annotate as the query, he/she does a 

BLAST search against the database. As a database for BLAST search, we 
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downloaded genomic sequences of prokaryotes from RefSeq [11]. From these 

sequences we extracted nucleotide sequences using its annotations that is defining 

the start and end position of the gene in the genome and GeneID. And the amino 

acid sequences for blastx search were provided by TIGR CMR. The resulting 

sequence database contains 1.2 million sequences and then they were compiled into 

indexes for BLAST search. The BLAST search would be done with E-value 

threshold 0.1 in the default condition.  

 
(e) Acquisition of candidate words and terms for annotation 
 
The result of the BLAST search is a hit-list of similar sequences. The feature 

words/terms in the document sets of similar sequences (genes) are used for the 

query sequence annotation in the next (f) step. 
 
(f) Scoring words by commonality in similar sequences 
 
The appropriate feature words/terms are expected to be frequently used in the 

descriptions of retrieved sequences or specifically used in the descriptions of highly 

ranked sequences. We developed a method derived from N-best that finds a suitable 

combination of parameters. In our method, appearance frequencies and ranks in a 

BLAST hit-list are used for scoring feature words. 

 In the current implementation, we defined the score for feature words as follows: 

)2(
1

)(max)(
1

L
+

=
<≤ r

wfreqwScore
Nr

 

 
where freq(w) is the frequency of the word contained in similar sequences (hit-list) 

and r means the r-th similar sequence. Once the scores are calculated from rank 1 

to N, finally the highest score is assigned to the word. To normalize the 

excessiveness of words of top similarity, one is added to the rank. For example, the 

term “X” is in the second and third of the list of similar sequences in figure 1. Then 

the scores are calculated for each rank as 0/(1 + 1), 1/(2 + 1), 2/(3 + 1) and 2/(4 + 1), 

respectively. Finally, the max score 0.5 is assigned to the term “X” when r = 3. 
 
(g) Sorting words by their score 
 
 Finally, assigned feature words are ordered by the descending order of the score 



 15

assigned at previous step.  
 
2.3 Data set for assessment of gene name recognition 
 
To evaluate the performance of gene name recognition in MEDLINE abstracts, we 

prepared a gold standard from gene2pubmed. We extracted 32,732 of gene-PubMed 

ID relations as a gold standard from EntrezGene (gene2pubmed) and used it for the 

calculation of the recall. The data in gene2pubmed, however, contained some 

relations between genes and articles without any occurrences of corresponding gene 

names in the abstract. So we used only the abstracts having links to less than or 

equal to five genes as the gold standard of recall calculation. By this filtering most 

of relations indicating association between genes in genomic fragments and articles 

of the genomic fragments were eliminated. 

The gene2pubmed was used for obtaining the recall because of its almost perfect 

precision. But it couldn’t be used for the precision due to its extremely low recall. To 

obtain the precision, therefore, we randomly picked up 100 abstracts from the 

MEDLINE abstracts in which gene names were recognized and microbe related 

MeSH terms were attached. 

 
2.4 Data set for assessment of automatically assigned annotation 
 

As far as we know, TIGR CMR is the largest resource of GO-annotated genes. 

Therefore, the data of TIGR CMR was used as a gold standard for the assessment of 

annotation performance at first. The resource contained 87 genomes sequenced at 

TIGR and 268 genomes sequenced at the other organizations. As those files 

contained GO codes and evidence code, we extract all records having evidence code 

‘’TAS (Traceable Author Statement)”, “IDA (Inferred from Direct Assay)” or “IMP 

(Inferred from Mutant Phenotype)”. Subsequently, we downloaded sequences from 

TIGR CMR and extracted corresponding nucleotide sequences to above annotated 

genes. Thus we chose manually annotated genes, and finally we got 361 genes as 

the gold standard. 

 

2.5 Selection of feature words/terms for annotation from all of candidate words 
 
There was a plenty of useless candidate words in an obtained result just after the 
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annotation as discussed in section 3.2. To filter out those words, the degree of 

association between candidate words and MeSH terms were measured by mutual 

information. In this case, if a candidate word occurs independently from any of 

MeSH terms, it would give a small mutual-information score, and then it would be a 

worthless word for annotation. 

 The mutual information I(x; y) is computed as follows: 
 

)3(
)()(

),(log  y) (x; 2 L
yPxP

yxPI =  

 
Here, P(x) is the probability of occurrence of the word, and P(y) is the probability of 

the MeSH term. P(x, y) is the probability of observing x and y together. If there is an 

association between word x and MeSH term y, then I(x, y) will be much larger than 

0. If there was no relationship between x and y, then I(x, y) will be almost equal to 0. 

If x and y occur in complementary distribution, I(x, y) will be less than 0. Using the 

mutual information as indicator of cohesiveness, we identified the most closely 

associated MeSH term for respective candidate words. Thus, if obtained mutual 

information between candidate word and the closest MeSH term was small, then we 

can regard the candidate word as worthless. 

 Here, in conjunction with the mutual information, we consider also about 

frequencies of candidate words and MeSH terms. Since the terms occurring in low 

frequencies could be originally valuable, the mutual information was used only for 

filtering out high frequency words and terms.  

In order to determine the best combination of the mutual information and these 

two frequencies, we used the subset of the gold standard which we made at previous 

section. The subset was containing annotations of 20 genes, and those were applied 

to our annotation system. Next, we validated the obtained annotations by hand, and 

we prepared them for training set. The frequencies were tested at 1, 50, 100, 200, 

500, and 1000, respectively. The mutual information was tested from 2.0 to 19 with 

0.5 intervals. We tested every combination of these three thresholds on the training 

set, and we obtained four scores shown below: 

A) The precision Ps and the recall Rs of selected valuable words 

B) The precision Pe and the recall Re of eliminated useless words 

To consider these obtained four scores all together, we used the following function: 
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This function outputs weighted harmonic mean so that the recalls are considered 

more importantly than the precisions in order to decrease the improper removal 

of useful words. Thus the best set of thresholds that minimized the E-measure  

(maximized the F-measure) was obtained from the training set. 
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Chapter 3 
 
Results and Discussions 

 
 
3.1 Evaluation of gene name recognition 
  
As described in 2.3, the gene name recognition performance was investigated by 

gene2pubmed data and randomly picked up 100 abstracts containing recognized 

gene names. As a result, the recall was 0.54 and the precision was 0.91. To analyze 

the reasons of the low recall, we randomly picked up 100 abstracts from 

false-negatives and checked them. The primary reason was that the corresponding 

gene names were not described in abstracts but described in tables or main text. 

The second reason was the deficiency of corresponding gene names in our dictionary, 

and the third reason was word order variations such as “ribosome recycling factor”, 

“ribosome releasing factor” or attachment of extra words such as ”p35”, “p35 

lipoprotein”. Further extension of our dictionary is necessary to overcome these 

problems and improve the recall. 

Otherwise, it is possible to employ other technique for gene name 

recognition/extraction. Recently, there have been many techniques and their 

implementations have been introduced. In the case of prokaryotes, since their genes 

are named according to the rule of three lower cases and subsequent one upper case, 

it is quite natural to adopt the technique that can utilize this kind of feature for 

gene name recognition. For example, Chang and colleagues [4] proposed a technique 

that exploited these several features of gene names such as lower/upper cases and 

with/without digits using naive Bayes, maximum entropy and support vector 

machines as machine learning methods. In their report, their system achieved 

83.3% recall and 81.5% precision for genes of human. Although those techniques 
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extract gene names effectively, they can not reliably map extracted gene names to 

corresponding gene ID [5]. Therefore, if we employ one of those techniques in our 

system, further improvement is indispensable for associating gene names with 

sequences.  

 
3.2 Evaluation of extracted terms 
 
We prepared two types of terms for annotation in words/terms extraction 

procedure. One is gene related feature words extracted from MEDLINE abstracts, 

and another is terms obtained from existing thesauri (i.e., GO, UMLS, COGs and 

TIGR roles). These thesauri are non redundant and well structured vocabulary for 

annotation. However, it is necessary to check whether the contents of these 

vocabularies are sufficient for annotation or not, 

Therefore, we surveyed how much feature words (functional words) were covered 

by existing ontology/controlled vocabularies. As a preliminary study, we split terms 

of those vocabularies into words, and checked whether our feature words were 

covered with these words or not. For the sake of reliability we calculated tf*idf and 

tf ’*idf for each word as described in section 2.1 using the gene-PubMedID link of 

gene2pubmed. Thus tf*idf scores were separately calculated within their related 

gene group, subsequently we averaged tf*idf for each words. The list of words was 

sorted by the averaged tf*idf, and the sorted list was segmented into six blocks of 

10,000 words according to the order. Then we picked up 100 words randomly from 

each block, and checked whether the words were useful for annotation or not and 

summarized in Figure 2. In the first block about 53% of words are meaningful for 

annotation and this ratio is decreased according to the rank. From those blocks, we 

took the first one and checked whether those meaningful words were contained in 

existing vocabularies and summarized in figure 3. Then 43% of those words were 

not contained as shown in this figure 3. This result showed that many feature words 

remained not registered in vocabularies in those thesauri, so we have to develop a 

method for extending the vocabularies to annotate prokaryote genes properly. These 

individual words in the graph are listed in Table 1. 
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Figure 2. The words covered with COGs/UMLS/GO/TIGR roles. 
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Figure 3. The 100 words of the block of top 10,000 
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3.3 Evaluation of automatically assigned annotations 
 
  When we applied these genes to our system, we do BLAST search using blastn 

(nucleotides vs. nucleotides), blastx (nucleotides vs. amino acids) and tblastx 

(nucleotides vs. nucleotides with translating to amino acids). The databases of these 

sequences were obtained from genome sequences of TIGR CMR as described in 

2.2(d). The resulting annotations obtained here were mixture of UMLS terms, 

COGs classes, TIGR roles, GO terms and individual words. Since these genes were 

annotated with GO, automatically obtained annotations were compared with these 

GO annotations, and the result of comparison is summarized as Fig. 4. In this figure 

apparent difference between blastn and the others were observed. Since blastx and 

tblastx tended to gather many similar but relatively irrelevant sequences than 

blastn as expected, irrelevant terms are increased in blastx and tblastx as a results 

of gathering annotations linked to these sequences. This figure indicates that all 

three of results have extremely low precision and moderate recall. The precision in 

Fig 4. is expected quite lower than actual precision, since annotations assigned by 

GOA were quite limited. Some annotations of them are plausible to be assigned, and 

thorough investigation of individual annotations is necessary to obtain faithful 

precision. 
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Figure 4. Precision and Recall of GO annotations in our system 
 
Manually annotated data (GOA) were used as a gold standard. Changing E-value 

threshold from 1.0E-11 to 1.0E-2 

 

 

 Therefore, as a preliminary evaluation, we randomly picked up candidate 

annotations (words and terms) of 20 genes from gold standard randomly and 

checked every candidate annotations whether those annotations were appropriate 

or not. Since these annotations were overwhelming amount to check all of them by 

hand, we extract every top 100 tf ’*idf scored annotations of these 20 genes for 

manual evaluation. In this evaluation, automatically assigned words were classified 

into following three classes. If the annotation was apparently correct, then it was 

classified to “Correct”. If the annotation was apparently false, then it was classified 

to “Flase”. Otherwise, if we couldn’t judge whether the annotation is true or not, 

then we classified it to “Not Confirmed”. Since the annotations classified to “Not 
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Confirmed” required further analysis to determine their validity, and it was hard to 

be done within our limited resources, we reserved them into the class. Finally, there 

were 2,000 candidate feature words, and 220 of “Correct” words and 151 of “Not 

Confirmed”. From these results the precision obtained here was from 0.110 to 0.189. 

In the next section of feature words were performed to improve this precision. 

 
3.4 Selection of feature words for annotation from all of candidate words 
 
In the previous section, we showed the recall and the precision of automatically 

assigned GO annotations, and confirmed the precision of candidate words/terms 

with manual evaluation. According to these results, the problem was low precision 

rather than the recall. After we had obtained the list of candidate words, we 

checked the validity of these words. The example of the list of these words is shown 

in Table 2. As shown in Table 2, the list contained many English words and common 

words appeared in biomedical literatures. Although these words indicated high 

tf ’*idf score, they seemed to be not useful for annotating genes. If we can exclude 

these useless words from the list, we would be able to take only valuable words for 

annotation. 

In general, meaningless terms such as prepositions and demonstrative pronouns 

are known to be equally distributed overall literature, while meaning/valuable 

terms including functional terms show biased distribution in literatures. To 

distinguish these valuable words from meaningless words, the degree of association 

to MeSH terms was utilized. That is, we assumed that meaningless words would be 

low/no association to MeSH terms. As a measure of degree of association between 

MeSH term and a candidate word, mutual information (MI): a measure of mutual 

dependence between two variables [9], was calculated based on the frequencies of 

MeSH term and a word and their co-occurrence frequency as shown in section 2.5. 

MI for all MeSH terms were calculated for a word and the highest MI was adopted 

to judge whether the word was meaningless word or valuable word. Similar to other 

statistical measures, MI value is not effective for small numbers of P(x) or P(y). The 

border value of MI whether meaningless or valuable word is unknown. 

 Accordingly, we computed mutual information for every combination of three 

thresholds as described in section 2.5, and we obtained the best set of thresholds 

that minimized the E-measure. The best performance was achieved F-measure of 
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0.857 at: Word frequency = 200, MeSH term frequency = 50, and Mutual 

information = 7 (Figure 5). Then the precision of extracted words was 56.9%. 
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Figure 5. The E measure under the fixed condition of word frequency 200 and 
MeSH term frequency 50. 
 
We tested every combination of mutual information threshold and frequencies (1, 50, 

100, 200 and 500) of candidate words and MeSH terms. The above combination of 

frequencies gave the maximum F-measure (minimum E-measure) where the 

mutual information threshold was 7. 
 

 

3.5 Evaluation of correctness of annotations 
 

Using the thresholds learnt from the training set, we again measured the 

performance of our system using newly prepared dataset containing randomly 

picked 30 genes. The subset used here was made not to include the genes contained 

in the previous subset. We applied these 30 genes to our system, and the resulting 

annotations were manually validated. For example, Table 3 is a part of annotation. 

This annotation is a list of words and each word are manually validated. In the list 
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apparently correct annotations are marked as ‘++’ (Correct), and probable 

annotations are marked as ‘+’ (Probable). Those probable annotations are not 

confirmed whether each word is correct annotation or not but the terms themselves 

are meaningful. This measurement resulted in precision from 0.217 to 0.446. Thus, 

by the filtering words, the precision was improved two times better than 0.189 of 

section 3.3.  

This assessment included the entire words retrieved with BLAST and the index. It 

is not investigated yet the effect of considering E-value of sequence, or tf*idf in this 

annotation procedure. To examine these effects, we used the data of 20 genes and 30 

genes prepared by the previous section. 

For the tf ’*idf, tf ’*idf threshold was changed from 1 to 10000, and the result 

precision is shown as Fig. 6. It was extremely low precision before the filtering 

words (blue ovals and light blue boxes) as described in previous section and they 

were increased excessively by the filtering (red ovals and yellow boxes). By changing 

the threshold of tf ’*idf, precisions were not so increased except for “Not 

confirmed”(Correct + Probable) of filtrated. As a result, the increase of precision 

would be limited even if we set a threshold on tf*idf. 
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Figure 6. Changes in precision by alternating tf ’*idf threshold. 
It was extremely low precision before the filtering (blue ovals and light blue 

boxes), and they were increased excessively by the filtering (red ovals and 
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yellow boxes). Precisions were not so increased except for “Not confirmed” of 

filtrated. 

 

 

Since we supposed that precision was also affected by the threshold of similarity 

in BLAST search, we observed precision with alternating E-value threshold from 

1.0E-100 to 0.1. The result of this analysis is represented in Fig. 7. In this analysis, 

the words shared by multiple similar sequences were regarded as independent 

annotations. The results showed that no obvious difference was observed even if we 

changed the threshold of similarity before the filtering. But the differences were 

emerged by the filtering. Looser threshold than 0.1 will corrupt the precision of 

annotations. If we set the threshold on E-value, a certain increase in precision will 

be observed. 
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Figure 7. Changes in precision by alternating E-value threshold of blastn. 
 
Before the filtering precisions were extremely low (blue boxes and deep blue ovals). 

After the filtering precisions were excessively improved (yellow boxes and red ovals).  

While there were no obvious changes in precisions before the filtering in spite of 
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E-value threshold change, after the filtering precisions were correlated with 

E-value threshold. 
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Chapter 4 
 
Conclusion 

 In this study, we have developed a new annotation method for prokaryotic genes  

and implemented it. By combining homology search and biomedical texts, our 

system enables the annotation of sequences of metagenomic analyses or fragments 

of genes  

There are pros and cons for use of existing thesauri as vocabulary for annotation. 

In this report, we showed that those vocabularies were insufficient for the 

annotation of prokaryotic genes. When free words were adopted on the basis of this 

result, many meaningless words were mixed annotation words. To overcome this 

problem, we developed the method that filter out those meaningless words from all 

free words using mutual information as described in section 3.4. Consequently, we 

could obtain the set of annotations as valuable words and terms with the precision 

of 21.7-44.6%, thereby it achieved two times better precision than before the word 

filtering. 

 However, there remains following subjects to improve our annotation system. For 

gene name recognition, its performance can be improved by employing more 

sophisticated technique. Merely an enlargement or expansion of the gene name 

dictionary would improve the performance immediately. To utilize the commonality 

and frequency of words in similar sequences, we implemented the scoring system 

derived from N-best, but we cannot yet utilize it effectively. In this study, we 

considered only feature words and terms of thesauri for annotation, but phrases or 

sentence structures are also important for annotation and should be considered 

together.  

 The main goal of our study is to bridge the sequence and its functional annotation 

evidences. It would be also worth integrating some genomic information such as a 
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whole sequence set to our annotation system to provide a certain confidence for 

annotations made by literature mining.
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Table 1. A part of the word list of the 
first block 
 
Word Mean Thesauri tf*idf 
flaviolin ++  114.2 
acetyldihydrolipoamide   102.0 
minvac  - 85.0 
pseudoligand  - 81.5 
nonfermenting ++  80.2 
nukacin ++  75.2 
coumermycin ++  71.5 
epoxypimaricin +  68.0 
apophotolyase ++ - 68.0 
wzzst  - 66.4 
deglycase ++  66.4 
dicyanide   64.3 
carboxyphosphate ++  62.6 
cerein ++  61.6 
shufflon ++ - 61.0 
ferripyochelin ++  60.8 
sirtuins ++  60.5 
subcomponent   58.7 
aminooxyacetate   58.4 
dockerin ++  54.6 
dipicolinate ++  53.2 
enolpyruvyl +  52.1 
pyocyanin ++  52.0 
biosyntheses ++ - 51.5 
replicator ++  51.0 
archease ++ - 51.0 
dimethylnaphthoquinone  - 51.0 
pseudobactin ++  50.7 
pseudoverdine ++  49.8 
phosphoramidase ++ - 48.3 
maltooligosyltrehalose + - 47.7 
acetylcoenzyme ++  45.7 
bacteriopheophorbide   45.6 
reprint  - 45.6 
anticapsin ++  45.4 
rhamnan ++  44.8 
pyrocatechase ++  43.4 
hydroxycobalamin   42.9 
sinorhizobial ++ - 40.8 
rrinoids ++ - 40.8 
endoglycosidase ++  40.4 
clinafloxacin   40.1 
mevinolin   39.5 

lipoyl ++  39.4 
swarmer ++  39.2 
bacterioplankton   38.6 
ransplantation  - 37.5 
intraerythrocytic  - 37.2 
uveitis   37.0 
ceftizoxime   35.8 
cosmids   35.8 
microcystin ++  34.8 
autoprocess ++ - 34.0 
pyrrocorphin ++ - 34.0 
pluricellular  - 34.0 
formycinylhomocysteine  - 34.0 
benzyloxycarbonylated  - 34.0 
hypercompetence  - 34.0 
language   33.6 
polyene   33.3 
geranylgeranylglyceryl   33.3 
polychloroethanes  - 33.2 
intercofactor ++ - 33.2 
zorbonensis  - 33.2 
esterifies  - 33.2 
erythronate   33.2 
futura  - 33.2 
autoassembly  - 33.2 
azidodeoxythymidine   32.6 
lambdamax  - 32.6 
propylthioadenosine ++  32.6 
fucitol   32.6 
shrinkage  - 32.5 
retrons ++ - 32.2 
intersubdomain  - 32.2 
linolenic ++  32.1 
dioxygenolytic ++ - 32.1 
filarial   32.1 
barrels  - 32.0 

++: Meaningful words, +: likely 
meaningful words, -: Not registered in 
thesauri 
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Table 2. An example of automatically assigned feature words for atpG 
Rank Term GO/TIGR/COG/UMLS Score 

1 atp  1523.7 
2 Genes UMLS:C0017337 823.2 
3 ATPase, Aminophospholipid Transporter-Like, 

Class I, Type 8A, Member 2 
UMLS:C1366832 819.8 

4 Operon UMLS:C0029073 628.3 
5 atpase  584.1 
6 cfo  544.0 
7 operon  541.2 
8 genes  541.1 
9 mrna  489.3 

10 subunits  426.5 
11 escherichia  425.6 
12 ATP synthase UMLS:C1622485 413.5 
13 f  345.8 
14 ATP phosphohydrolase UMLS:C0001473 325.8 
15 translational  324.0 
16 ATPase GO:0016887 315.5 
17 gene  290.9 
18 synthase  285.5 
19 Transcription Initiation UMLS:C1158830 274.8 
20 Translation Initiation UMLS:C1519613 272.6 
21 translational initiation GO:0006413 272.6 
22 Escherichia coli UMLS:C0014834 269.5 
23 b  266.9 
24 Chloroplasts UMLS:C0008266 247.6 
25 coli  232.9 
26 subunit  228.5 
27 Proton-Translocating ATPases UMLS:C0018437 222.9 
28 c  218.7 
29 Escherichia UMLS:C0014833 207.5 
30 from  206.9 

 
This list is obtained with blastn. The score indicates tf ’*idf (cf. 2.1-(c) ) and the list is sorted by 

this score. The rows containing ID in their center column are terms from those vocabularies. 

There were many words not so well related to the gene atpG (ATP synthase F1, gamma 

subunit). 
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Table 3 An example of automatically assigned feature words for glyceraldehyde-3-phosphate 
dehydrogenase, type I 
Rank Term Annotation GO/TIGR/COG/UMLS Score 

1 GO:0048001 ++ erythrose 4 phosphate dehydrogenase 5402.858364

2 UMLS:C1151658 ++ erythrose-4-phosphate dehydrogenase activity 3705.370959

3 nad   2750.461356

4 glycolytic   2637.503312

5 gallisepticum   2628.865652

6 epd   2357.50846

7 UMLS:C0059572  erythrose 4-phosphate 2065.542722

8 glyceraldehyde   2056.787474

9 3-phosphate   2040.482108

10 UMLS:C0014823  erythrose 1972.060344

11 UMLS:C0029073 + Operon 1925.048546

12 TIGR_sub1role:116 + Glycolysis gluconeogenesis 1836.253106

13 gap2 ++  1835.729108

14 operon +  1822.714437

15 cytadherence +  1739.575894

16 pgk ++  1682.247591

17 UMLS:C1516627  Clinical Research Associate 1573.741981

18 UMLS:C0317807  Mycoplasma gallisepticum 1530.144021

19 UMLS:C0016762 + Fructosediphosphate Aldolase 1473.866476

20 UMLS:C0017952 + Glycolysis 1388.8702

21 GO:0006096 + glycolysis 1388.8702

22 gap1 ++  1335.403104

23 UMLS:C0003074  Anion Gap 1314.352611

24 glycolysis +  1205.26966

25 nadp   1161.72189

26 mgc2   1102.41103

27 UMLS:C0034263  Pyridoxal 1084.063822

28 GO:0000910 + cytokinesis 1082.368873

29 GO:0007104 + cytokinesis 1082.368873

30 GO:0009919 + cytokinesis 1082.368873

31 GO:0016288 + cytokinesis 1082.368873

32 cra ++  1070.77201

33 cytadhesin +  1067.681769

34 UMLS:C0034266  Pyridoxal Phosphate 1061.612572

35 UMLS:C0017857 ++ Glyceraldehyde-3-Phosphate Dehydrogenases 1042.485459

36 UMLS:C0017534  Giardia 1034.56096

37 UMLS:C0597219  phosphoglycerate 1021.586431

38 nadh   945.973539

39 o157   900.771256

40 phb ++  896.420889
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