東京大学大学院新領域創成科学研究科 基盤科学研究系 先端エネルギー工学専攻 2006年3月修了 修士論文要旨

蛍光膜を用いた2次元プラズマ粒子密度分布計測系の開発と 電子プラズマ不安定性に関する研究

46214 和田 篤始 (指導教員 吉田 善章 教授、比村 治彦 助教授) nonneutral plasma, diocotron instability, fluorescence screen, feedback control,

1.はじめに

直線マルンバーグ型実験装置BX-Uにおける研究目 的の1つにプラズマの電気的非中性化とそれに伴う 回転流の駆動を実験的に検証することがある。具体 的な実験手法としてあらかじめマルンバーグトラッ プに閉じ込められた電子プラズマに、水素プラズマ を重畳させる。このとき、そのプラズマの持つ自己 電場により、イオン回転流を引き起こそうとするも のである。

1? 1 マッハプローブを用いた電子プラズマ・水素プラ ズマの重畳実験の問題点

すでにBX-Uでは、電子プラズマに対する水素プラ ズマの入射予備実験が行われた。しかし、期待され たE×B方向へのイオン回転流は観測されなかった。 この理由の一つにイオン回転流を測定するために装 置内部に深く挿入されたプローブにより電子プラズ マが消失するという問題がある。

1? 2 本研究の目的

そこで本研究では、その能動的プローブに変わり うる受動的計測器の考案を行った。新たに設計・製 作した計測器は 電子プラズマダイナミクスモニ ター用誘導電荷測定器と 蛍光膜を用いたエンド オン型2次元プラズマ粒子密度分布計測器である。 さらに開発した計測器を用いて電子プラズマダイナ ミクスの観測、電子プラズマの安定な閉じ込めを目 指した。

2. 蛍光膜を用いた 2次元プラズマ粒子密度分布計測 系の開発

本研究では蛍光膜を用いたエンドオン型2次元プ ラズマ粒子密度分布計測器の設計・製作を行い、さ らに電子ビームを用いてその測定系の性能特性評価 を行った。

2?1 蛍光膜を用いた粒子密度分布計測の原理

トラップされたプラズマ粒子を磁力線に沿って軸 方向へと引き出し蛍光膜に衝突させる。この際、電 子・イオンを加速する。電子の密度分布を計測した いときは蛍光スクリーンに正の電位に、イオンの密 度分布の場合は、負の電位にする(図1)。蛍光体の発 光は真空容器のガラス窓と光学フィルタを通って ICCDカメラに記録される。得られた発光強度分布は、 円筒断面上各地点を貫く磁束管中にある電子、イオ ンの数に比例している。発光測定時に蛍光スクリー ンから高圧電源へ流れた総電流量から蛍光スクリー ンに衝突した全粒子数を求め、蛍光スクリーンの総 発光量との比から粒子数と発光強度との比を求める。 この比を用いて各地点の発光強度を粒子数に変換す ることで2次元プラズマ粒子密度分布を解析するこ とができる。

2? 2 蛍光スクリーンの発光の様子

渦巻きフィラメントを電子源として装置中に電子 ビームを生成し、電子ビームの2次元電子密度分布

測定を行った。装置のバイアス磁場B=0.1, 0.2, 0.5, 0.7 kGにおいて得られた2次元電子密度分布を図5 に示す。

図2 各磁場における電子ビームの2次元電子密度 分布

2?3 ファラデーカップによる電子密度計測との比較 図2と同じ条件でファラデーカップによる径方向 電子密度分布計測を行い得られた結果と、開発した 2次元電子密度分布測定系から得られた径方向電子 密度分布とを比較した。この結果、ファラデーカッ プによる計測と蛍光スクリーンによる計測で求めた 径方向密度分布は一致していることを確認した。

3.誘導電荷計測器の導入と電子プラズマの観測

本研究では、閉じ込め領域における中央の三つの電 極を周方向に4分割し、閉じ込めた電子プラズマダ イナミクスに応じて、分割電極の内壁面に誘起され る正電荷量の時間変化を計測することで電子プラズ マダイナミクスの推定を行った。

3-1 分割電極からの信号

電子プラズマ閉じ込め実験を行い、閉じ込め時にそ れぞれの分割電極に流れる電流量をモニターしたと ころ、図3のような波形が得られた。

図3 ダイオコトロン不安定性の波形 これは電子プラズマの1=1ダイオコトロン振動によ る波形と推定される。このダイオコトロンの振動時

間が経つにつれ大きくなり、不安定性が成長してい る。

4-2 フィードバック制御システムによるダイオコトロン 不安定性の抑制

ダイオコトロン不安定性を抑制するためにフィー ドバック制御システムを製作・設計し、BX-Uに導入 した。フィードバック制御システムの原理を図4に 示す。アンテナ部の電極に電子プラズマが接近する とアンテナ部の電位が増幅されてバイアス部にかか る。この電位が作る電場により電子プラズマに対し て半径方向内向きへE×Bドリフトが生じ、電子プラ ズマは中心方向へ運動する。図3のダイオコトロン 不安定性を振動にフィードバックをかけた時の信号 が図5である。ダイオコトロン振動が抑えられてい ることが分かる。

不安定性

5.まとめ

ignal

私は、蛍光膜を用いた2次元プラズマ粒子密度分 布計測器を開発しITO膜を導電性膜として利用する ことで、より容易に製作できる蛍光スクリーンの開 発に成功した。さらにBX-Uに誘導電荷計測系を導入 しダイオコトロン不安定性を観測した。この誘導電 荷計測系でダイオコトロン不安定性を研究する一方、 フィードバック制御を用いてダイオコトロン不安定 性を抑制することに成功した。こうして私は受動的 計測系の開発、さらに電子プラズマの安定な閉じ込 めを実現した。