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Abstract

In this work, we study in depth the problem of Portfolio Optimization, and the

application of Genetic Algorithms to solve it. We discuss the limitation of current

approaches, that do not take into consideration multiple scenarios, nor transaction

costs, and propose a modification of the Genetic Algorithm System for Portfolio

Optimization to address these issues.

A Financial Portfolio is a strategy of making investiments in a number of

different applications, instead of focusing in a single security. The idea behind the

creation of a Financial Portfolio is that by investing in many different assets, the

investor can reduce the specific risk from each asset, while maintaining a target

return rate. Markowitz, in 1958, proposed a formal model for this strategy, which

is called the Modern Portfolio Theory (MPT).

Nowadays, there is a number of optimization techniques that propose to solve

the MPT’s equations in order to find out the risk/return optimal portfolio for any

given market. However, while Markowitz model has a very elegant mathematical

construction, when we remove the restrictions that do not hold in the real world,

it becomes a very hard optimizaton problem.

A number of numerical techniques have been developed to solve this prob-

lem. Among then, we highlight the Genetic Algorithms (GA), which are random

search heuristics which have showed themselves very appropriate for such large

problems. Current GA-based approaches, however, still tackle a limited version of

the problem, without complications like transaction costs.

In this work we extend the current GA-algorithms for Portfolio Optimzation,

aiming at a system that is able to overcome some of the incomplete points in its

predecessors. More specifically, we wish to address the modeling of a transaction

cost measure, and the influence of market changes over time.

In this work we develop two new techniques: Objective Sharing and Seeding,

to address the above questions. We perform experiments of these new techniques

using historical data from the NIKKEI and the NASDAQ market indexes.

From the results of our experiments we can see that it is possible to get consis-

tently high returns while reducing the distance of the optimal portfolios between

scenarios. It becomes apparent that our approach is a fruitful one, and can be used

to build models that are closer to the real world than other current techniques.
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Chapter 1

Introduction

With the popularization of the Internet and personal computers in the past decade

and a half, the trading of financial instruments has left the realm of the financial

institutions, and became much more accessible. Many people nowadays trade

stocks from different markets as their secondary (sometimes even primary) means

of income. Simulations of the market to the public are also common, and allow

people without much knowledge of financial theory to get an intuitive grasp of the

workings of the market place.

In this environment, the interest on financial research, and its development

outside the academic circles of economists and mathematicians, has also flourished.

The improved computer power allows the calculation of a greater amount of data,

faster. This leads to the development of computational tools for the aid of the

financial trader. For instance, more accurate methods for prediction of future

trends (Nikolaev and Iba, 2001), the simulation of market behavior (Subramanian

et al., 2006), and more recently, the automation of simpler tasks in the financial

market (Jiang and Szeto (2003), Aranha et al. (2007)).

In this work, we address the problem of Financial Portfolio Optimization from

a Genetic Algorithm perspective. This is a problem that has gathered a lot of

attention in recent years, yet poses many open questions. In this dissertation we’ll

overview the Portfolio Optimization problem, the most relevant work in regards

to it, and then address some of those open problems.

1
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1.1 Financial Portfolios

The word Portfolio usually means “collection”. Thus we can have the portfolio

of a company, meaning the different products that this company produces, or the

portfolio of an artist, which is the collection of his significant works.

In the financial sense, a portfolio is a collection of different investments. Since

any market activity involves a certain amount of risk, it is often a good idea not

to put all of your resources into a single security. Also, different securities (like

bonds, stocks, options, foreign currency, etc) have different characteristics regard-

ing liquidity, dividends, and valorization rate. Because of this, an investment

strategy must take into account the characteristics of each of the many securities,

and divide the available resources accordingly.

The idea behind a portfolio spread is that different securities may show different

behaviors over time, even when their perceived risk and return are the same. For

instance, if two securities belong to two competing industries, some external factor

that affects negatively one of them, may affect positively the other one. If we had

concentrated all of our capital in one of the two securities, there would be 50%

chance that we picked the “right” security, and a 50% chance that we picked the

wrong one. On the other hand, by sharing the capital between the two securities

would mean that the losses in one of them would be offset by the gains in the

other.

For the day trader or other short term investors, it might be more rewarding to

take the risk of concentrating their capital in a few lucrative investments. These

investors work with many transactions of small value, hoping to profit from local

fluctuations of individual securities. However, for longer-term investors and funds,

it is better to reduce risk as much as possible (while maintaining desired return

rates) so that large investments may be used to reap long term rising trends in the

market. Also, having a well diversified portfolio prevents the risk of unexpected

events in certain markets that may lead to crashes.
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1.2 Portfolio Optimization and Management

Markowitz stated the Modern Portfolio Theory (Markowitz, 1987), which says

that the risk of an investment can be diminished by an appropriate diversification

of the assets that compose it. This diversification reduces the specific risk, leaving

only the systematic risk.

Specific Risk is the risk associated to a single asset. It happens due to factors

particular to that asset. For instance, a sudden bankruptcy of one company may

plummet the values of the stocks associated to that company - the chance of

this happening would be considered as the specific risk of those assets. Portfolio

Optimization is capable of reducing Specific Risk.

Systematic Risk, on the other hand, is the risk associated with the whole

market. Sudden crashes or bubbles may rise or lower dramatically the values of

all assets in a market, beyond the predicted values. No amount of diversification

is capable of preventing Systematic Risk.

The first challenge to applying the Modern Portfolio Theory is to design a

proper model in which to calculate the optimum portfolio. This model must be

precise enough to reflect the behavior of the market in the real world. However, it

cannot be so complex that it is not possible to analyze it. Over the years, many

different models have been proposed in an attempt to strike a balance between

these two factors.

After the model has been devised, it is necessary to develop an optimization

routine to this model, and decide how to apply the results into the real world.

The optimization method will return a weighting for every available asset, so that

the investor knows how to distribute his capital in order to maximize the expected

return, and minimize the risk of his portfolio.

In short, the problem of Portfolio Optimization can be thought of as a Resource

Management problem. The capital is the limited resource that must be distributed

between the available assets, in order to maximize the objective function.

Portfolio Management is an extension of the Portfolio Optimization problem.

It is defined as the task of achieving a desirable risk/return ratio on a dynamic
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market in a continuous fashion, as opposed to the “one scenario” nature of Portfolio

Optimization.

There are two added difficulties in the Portfolio Management problem. The

first one is that, as the market is dynamic, its proprieties change with time. The

risk and return values and characteristics for each asset are not constant. So

the method used to optimize the portfolio must be able to adapt itself to the

changing characteristics of the market. We find that Genetic Algorithms are quite

appropriate for this aspect of the task.

The second difficulty is the issue of cost. If the optimal portfolio at one scenario

is too different from the optimal portfolios at the scenarios immediately before and

after it, changing back and forth between optimal portfolios might be more costly

than picking a solution which is sub-optimal in some, but positive to all scenarios.

1.3 Traditional Optimization Methods

The model described by Markowitz’s Modern Portfolio Theory has already been

solved in theory. Following that model, it can be proved that the optimal portfolio

is the Market Portfolio, which contains all assets available in the market, weighted

by capitalization.

However, this basic model has too many assumptions which do not hold in

practice. As we remove those assumptions, and add restrictions like cost, trading

limits, imperfect information, etc., the model becomes more and more complex,

and finding an optimal portfolio becomes harder.

More elaborate models of the problem have been solved by numerical opti-

mization methods, like quadratic programming or linear programming (ping Chen

et al., 2002). However, the biggest problem with numerical methods is that their

algorithms do not scale very well, and quickly become complex with the number

of assets.

For instance, optimization techniques for versions of the MPT require the cor-

relation values between all the assets for each iteration. This is computationally

very intensive, and grows exponentially on the size of the data.
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In fact, reports on simulations for most Portfolio Optimization techniques limit

themselves to 10 or 20 assets at a time. The use of search heuristics is a possible

solution to this problem.

1.4 Genetic Algorithms

Genetic Algorithm is a Random Search heuristic which is inspired by biological

evolution. The basic setup of a Genetic Algorithm is as follows:

Each possible solution to a problem is considered an individual. A population

of random individuals is generated, and each solution is tested for its goodness.

The best solutions in the population are mixed together, generating new individ-

uals. The worst solutions are removed from the population.

The heuristic behind Genetic Algorithms is that by mixing the best solutions,

we can direct the population to explore better regions of the search space. Genetic

Algorithms is a mature technique that has been researched for more than 20 years,

with practical applications in many fields.

One of the good characteristics of Genetic Algorithms is that they are able

to adapt to changes to the problem they are trying to solve. If the environment

changes (for example, if the data values change), the algorithm is able to find

a new optimal solution without any changes to its population or parameters, by

executing a few more iterations.

This makes Genetic Algorithm specially fit for problems where they must con-

tinually optimize a solution in an evolving environment. Like the Portfolio Man-

agement problem we have described earlier.

1.5 Proposal

In this work, we study the Portfolio Optimization and the Portfolio Management

problem, and the research field of using the GA heuristic to solve those problems.

There were many works in recent years that aim to use the powers of Genetic

Algorithm to solve the Portfolio Optimization problem. However, each of these
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works seem to approach the problem from a different angle, using GA in different

ways, and different models for the Portfolio and the market.

In this dissertation survey the many methods that were developed, and analyze

the techniques proposed, and the models assembled. From the results of this

analysis, we understand that the current methods for Portfolio Optimization lack

a proper approach to transaction costs, and to Portfolio Management.

We propose the use of the adaptive characteristic of GA to improve a simple

Portfolio Optimizer into a system able to manage a portfolio through multiple

scenarios. Our improvements consist mainly of two new ideas:

1. The insertion of successful individuals from previous scenarios into the cur-

rent generation. And;

2. The use of a secondary goodness metric: The distance between two portfo-

lios, which we use to measure transaction costs.

In this work we explain with details both approaches, and we perform experi-

ment to understand their effectiveness.

1.6 Outline of the Thesis

Chapter 2 explains the basic financial concepts necessary for the development of

this work. In this chapter we discuss our choice for the portfolio model used,

and define the calculations of risk, return, and transaction cost. We offer some

information on other possible models, and some of the traditional methods on

how to approach the portfolio optimization problem. The goal of this chapter is

to introduce all the mathematics necessary for this work to the reader without a

financial background.

Chapter 3 makes a brief introduction to genetic algorithms, and then explains

how they can be used to solve optimization problems. We’ll also discuss the

concept of Multi-Objective evolutionary algorithms, which can be used to solve

problems where there are more than one competing objectives. The goal of this
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chapter is to explain the concept of Genetic Algorithms for Optimization Problems

for the readers without this familiarity.

Chapter 4 exposes previous works from other researches that have a similar

approach as ours. These works have some influence in our current method, and

we discuss the more important ones in detail, pointing out their strengths, and

where they could be improved.

Chapter 5 explains our approach for portfolio management by use of GA. Here

we explain again in details our model, and how it is implemented in the system.

We show what are the parameters of the system, and describe how were values

decided for these parameters. We describe the difference between using Genetic

Algorithms for Optimizing a portfolio, and for Managing a portfolio, and argue

on the superiority of the later method.

Chapter 6 shows the experiments that were performed to validate our proposal.

We have executed a simulation with real world historical data from Japanese and

American markets, and observed good results with the proposed method. The

methodology for the experiments is explained, and the results are shown and

discussed.

Chapter 7 proposes a reflection on the field of GA-based portfolio optimization

based on the results of our work. We explain how the information acquired here

can be useful to the field, both as basis for applications, and as insight for future

experiments.



Chapter 2

Financial Background

Financial Engineering is the application of economical theories to real-world in-

vestment problems. Economic models have been developed describing the behav-

ior of many different kinds of securities under varied conditions. These models

propose elegant solutions that generate optimal strategies for investment in many

problems.

For instance, Markowitz’s Modern Portfolio Theory (Markowitz (1952) and

Markowitz (1987)) (MPT) describes the behavior of investors when many assets

with different risks and returns are available. The main result is that the optimal

strategy is to invest in the market portfolio, which is composed of all available

assets, weighted by capitalization. In order to achieve higher returns or lower

risks, the market portfolio may be combined with a theoretical riskless asset.

From the MPT, the Capital Asset Pricing Model (CAPM) can be derived. The

CAPM is a model that allows the evaluation of assets and portfolios with relation

to the market portfolio.

Also, the MPT and the CAPM rely on the knowledge of market rates of return

and risk for all the assets. That kind of information, however, is not so readily

available. While “risk as deviation” is a well known measure of risk, there are

other models for modelling risk which can also be used. The choice of model

depends on which characteristics of risk the investor finds more important.

Return as well, can be estimated in many different ways. The straightforward

moving averages was used for the elaboration of the MPT. But we could use more

fancy moving averages, like the weighted moving average or the geometric moving

average, or elaborated schemes based on evolutionary computing in order to obtain

8
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a more precise figure on the estimated return.

In this chapter we will introduce the basics of Markowitz’s MPT and CAPM,

and then discuss some risk and return models.

Both the MPT and the CAPM make strong assumptions about the model.

Among those are: the investors have perfect information, they react perfectly to

market changes and risk and return are the only relevant characteristics of an asset.

Also trading costs, upper and lower bounds to trade volume are not included in

the model. By releasing these assumptions, the solutions proposed in their models

become much harder computationally.

2.1 Markowitz Modern Portfolio Theory

A financial asset can be represented in terms of its return, and its risk.

The return of an asset is the relative change of its value over time - it indicates

whether the price of the asset has gone up (positive return), or down (negative

return). Financial applications are usually based on the idea of the Estimated

return of an asset. If the estimated return for a certain point in the future is high,

it is profitable to buy the asset now, to sell it at a higher value later.

The risk of an asset is the chance that the actual value of the return in the

future will be different than the expected return. In the Modern Portfolio Theory,

we use the variance of the rate of return as the measure of risk for one asset.

We model the market by defining n tradeable assets. The rate of return for

each asset is described as rn, and the expected return rate is E[rn]. The error for

each asset is defined as σn.

A portfolio W is a weighted composition with n weights (w1, w2, ...wn). Each

weight wi represents how much of the available capital will be allocated to asset

i. There are usually two restrictions for the values of wi:

1.
∑n

i=1
wi = 1

2. wi ≥ 0
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The second restriction means that short-selling is not allowed. Short-selling

means selling assets that you have borrowed. It can be shown that the Modern

Portfolio Models with and without short-selling are equivalent (Yuh-Dauh-Lyu,

2002), so we’ll add this restriction for the sake of simplicity.

In this model, the return of the portfolio W is given as the weighted sum of

the assets composing it:

rW =
n

∑

i=1

wiri (2.1.1)

And the variance (risk) of the portfolio is calculated by the correlation of the risks

of the composing assets:

σW =
n

∑

i=1

n
∑

j=1

wiwjσij (2.1.2)

Where σii = σ2
i is the variance of ri, and σij is the covariance between ri and rj.

The calculation for the error of the portfolio in equation 2.1.2 can then be

divided in two parts, one containing the variance of the returns, and another

containing the covariance of the returns:

σW =
n

∑

i

w2
i σ

2
i +

∑

i6=j

wiwjσij (2.1.3)

The first part of equation 2.1.3 describes the portfolio risk component com-

posed by the risk of individual assets. It is called the specific risk. If there is no

correlation between the assets in the portfolio (the second part of the equation is

0), we can show that the specific risk can be reduced by diversification (adding

more assets to the portfolio):

Proof: Diversification reduces specific risk. For a portfolio with n assets, assume

that wi = 1/n, and that σij = 0 for every i and j. The risk of the portfolio is

then:

σW =

∑

σ2
i

n2

While the mean of the risks is:

σ̄ =

∑

σi

n
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Make the risk of all assets equal to the highest risk, /sigmamax. Then as n increases

(as we add assets to the portfolio), the portfolio’s risk will decrease towards zero,

as the mean of the risks remains the same:
∑

σ2
max

n2
≤

∑

σmax

n
nσ2

max

n2
≤

nσmax

n
σ2

max

n
≤ σmax

For increasing values of n.

The second part of equation 2.1.3 describes the portfolio risk component com-

posed by the risk shared by the assets. It is called systematic risk. If the variance

is different then zero, then the systematic risk cannot be reduced below the average

by adding more assets:

Proof: Systematic risk cannot be reduced by Diversification. For a portfolio with

n assets, assume that wi = 1/n, σii = s and sigmaij = a for every i and j. Then

the risk of the portfolio becomes:

σW =

∑n

i s2

n2
+

∑

i6=j a

n2

=
ns2

n2
+ n(n − 1)

a

n2

=
s2

n
+ a −

a

n

= a +
s2 − a

n

So that even if we increase n (the number of assets), the risk won’t become less

than the average covariance, a.

2.1.1 Efficient Portfolios

The MPT makes two assumptions about the behavior of investors which can be

used to decide the efficiency (optimality) of a portfolio.
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Figure 2.1: The feasible and efficient sets of portfolios, according to the MPT’s

mean-variance model.

The first one is that they only care about risk and return. This means that,

even if the composing assets are different, two portfolios with the same measures

of risk and return are equal in the MPT.

The second one is that the investors are risk-averse. This means that given

two portfolios with the same mean return, the one with smaller risk/variance will

be considered more efficient.

Based on these two assumptions, we can define an efficient (optimal) portfolio,

according to the MPT model. Consider a two dimensional mapping where the

horizontal axis denotes the risk associated with a given portfolio, and the vertical

axis denotes the mean of its return (see figure 2.1).

Each point inside the shaded area indicates one of the possible portfolio con-

figurations. We can assume that this region, which we will call the feasible set is

solid and convex to the left (Yuh-Dauh-Lyu, 2002). If we pick an arbitrary point,

moving up in the Y axis from that point means that we find another portfolio with

a higher return for the same risk rate. Conversely, if we move left from a given

point, we’ll find a portfolio which has a lower risk for the same mean return.

In other words, portfolios that are located more to the left, or to the top of
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the diagram are considered to be better, in that they provide a higher return for

a lower risk. We say that a given risk/return combination represented in this way

is efficient, if there is no other portfolio that offer a higher return for the same

amount of risk, or less risk for the same return.

We call the set of efficient combinations of risk/return in a scenario the efficient

frontier. In figure 2.1, this combination is the upper left border of the feasible set.

Portfolios whose representation falls on the efficient frontier are said to be efficient

portfolios.

2.1.2 Riskless Asset

Normally, it is not possible to design a portfolio with a better return/risk ratio

than that in the efficient frontier. However, when we add a riskless asset to the

model, this restriction may be lifted.

A riskless asset, as the name implies, is a security which’s deviation of the mean

return is 0. While perfectly riskless assets are a theoretical construct, in practice

we can get similar results with very low risk assets, like government bonds.

The presence of the riskless assets allows for the investor to combine it with a

portfolio at the efficient frontier. According to Markowitz’s 2-fund theorem, the

combination of two portfolios is linear : This mean that if we have a portfolio Wc

composed of two portfolios (Wc = (1− γ)W1 + γW2), the possible return and risk

representations of Wc are rc = (1 − γ)r1 + γr2 and σc = (1 − γ)σ1 + γσ2.

Figure 2.2 describes this relationship more clearly. As can be seen, by combin-

ing the riskless asset and a portfolio in the efficient frontier, it is possible to hold

portfolios outside the feasible set.

In particular, if we find the line that is tangent between the riskless asset

and the feasible set, we have a new efficient frontier. If holding short positions

(borrowing) the riskless asset is allowed, this line may extend beyond the tangent

point, allowing for higher returns with similar risk amounts when compared with

the feasible set.

In this way, finding the efficient frontier becomes the problem of finding the

tangent portfolio between the riskless asset and the feasible set.



14

Return
Mean

Riskless
Asset

��
��
��
��
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Variance

Feasible Set

Efficient Frontier

Figure 2.2: Possible combinations between a riskless asset and an efficient portfolio

2.1.3 Capital Asset Pricing Model

If we imagine that all the investors in a market are rational, and possess the same

information about the risk and return values from the assets, we can draw some

conclusions about the nature of the efficient portfolio.

From the previous subsection we know that the efficient portfolio is the one

portfolio located in the tangent between the efficient frontier and the feasible set.

This line is composed by the points representing different balances between the

efficient portfolio and the riskless asset.

The slope of the line between the riskless asset and a portfolio is given by:

Sr =
rp − rf

σp

(2.1.4)

Where rp and σp are the portfolio’s mean return and risk, respectively, and rf is

the riskless asset rate of return. This values tells us the rate at which the risk will

rise when we increase the return. In other words, it can be thought of as the price

of risk.

This rate is also known as the Sharpe Ratio. It can be used as an analysis tool

to determine how good is a portfolio, since it measures the amount of risk and
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return that can be traded by balancing the portfolio with the riskless asset (Lin

and Gen (2007), Subramanian et al. (2006), Yan and Clack (2006)).

By definition, the positions located in the efficient frontier hold the best risk/return

ratios. Consequently, we can assume that all the investors in the market will want

to hold only some amount of the riskless asset and the efficient portfolio. Since

all assets in the market must be held by somebody, a consequence of the MPT is

that the efficient portfolio is composed by all the assets available in the market,

weighted by their capitalization. We’ll call this portfolio the market portfolio.

Using the this model, we can also identify the contribution of each individual

asset i to the risk of the market portfolio.

βi =
σi,M

σ2
M

(2.1.5)

Where σ2
M is the risk of the market portfolio, and σi,M is the covariance between

asset i and the market portfolio. This beta can be extended to symbolize the risk

relationship between any portfolio and the market portfolio:

βp =
∑

i

wiβi (2.1.6)

Beta is another CAPM indicator that can be used to measure the risk/return

efficiency of a portfolio (Lipinski et al., 2007).

2.2 Financial Engineering

In order to extract effective predictions from models like the MPT, we need nu-

merical methods to extract information from the data. We’ll call the trading and

financial decision systems based on this kind of methods Technical Trading.

In the Portfolio Optimization problem, two important technical measures are

the Return Estimation and the Risk Estimation. The return estimation must

be made based on the past values of the return. A precise calculation of this

estimation will allow the model to make more realistic predictions.

The risk estimation is based on the past variance of the asset, and represents

how reliable is one asset with relation to its estimated return. There are different
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methods of calculating this measure, which carry with them different beliefs about

the nature of the risk.

2.2.1 Return Estimation

Moving averages are often used in technical analysis as a tool to analyze time

series data.

Moving average series can be calculated for any time series. In finance, it

is often applied to estimate future returns or trading volumes. Moving averages

smooth out short-term fluctuations, thus highlighting longer-term trends or cycles.

The threshold between short-term and long-term depends on the application, so

that the size of the moving average must be set on a case-by-case basis.

A simple moving average is the unweighted mean of the previous n data points.

For instance, if rt−1, rt−2, ... rt−n are the values for the returns for the last N

months, the simple moving averages for these returns would be

SMAt =
rt−1 + rt−2 + ... + rt−n

N
(2.2.1)

A good characteristic of moving averages in general is that it is very simple, given

the value of the moving average for a point in time, to calculate the moving average

for the next point in time.

SMAt+1 = SMAt +
rt − rt−n

N
(2.2.2)

A problem with the simple moving average is that it introduces some “lag”

into the the estimation, due to its nature of using past data points. This lag will

be greater as the earlier data points are more divergent from current data.

One alternative to reduce this problem is to add weights to the Moving Aver-

ages. For example, the weighted moving average adds linear weights to the sum,

where more recent values have the highest weight, and older values have smaller

weights:

WMAt =
nrt−1 + (n − 1)rt−2 + ... + 2rt−n−1 + rt−n

n + (n − 1) + ... + 2 + 1
(2.2.3)
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However, this weighting strategy makes calculating the next moving average a bit

more complicated.

Tt+1 = Tt + rt − rt−n (2.2.4)

Numt+1 = Numt + nrt − Tt (2.2.5)

WMAt+1 =
Numt+1

n + (n − 1) + ... + 2 + 1
(2.2.6)

Another possible way to calculate the Moving Averages is the Volume Weighted

Moving Averages. In this version, we weight each return variable based on the

volume at that time. If vi is the volume at time i, we have:

V WMAt =
vt−1rt−1 + vt−2rt−2 + ... + vt−nrt−n

vt−1 + vt−2 + ... + vt−n

(2.2.7)

2.2.2 Risk Estimation

Differently from the Return Estimation, the method chosen for the risk estimation

carries with it some suppositions about the model. By using different methods to

calculate the Risk, we are changing the underlying assumptions of the model.

In this way, the risk method must not be chosen purely according to the numer-

ical complexity of the calculations. The underlying ideas behind the risk definition

must also be carefully considered.

Variance

In the Modern Portfolio Theory, Markowitz uses the variance of the return of

an asset as its risk measure. The variance of a random variable, in this case,

the return over time of an asset, is the measure of how large the differences are

between the values of that variable.

In other words, if the Estimated Return of an asset is its Moving Average,

the Variance risk means how much error we can expect from this estimate. The

variance is defined as:

σ2 = E[(R − E[R])2] (2.2.8)
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Which, in practice, can be defined for a limited data sample as:

σ̄2
r =

1

n − 1

t−1
∑

i=t−n

(ri − r̄) (2.2.9)

Where ri is the value of the return at time i, and r̄ is the average return of the

period (i.e., the moving average).

The way to calculate the Variance-risk of a portfolio is to use the weighted

co-variance between all the assets presents in the portfolio. This is described in

eq. 2.1.2. The co-variance between two assets, r1 and r2 is calculated as follows:

Cov(r1, r2) =

∑

(ri
1 − r̄1)(r

i
2 − r̄2)

N − 1
(2.2.10)

Where r̄1 and r̄2 are the moving averages. This calculation increases in size with

the number of lines in the data, and must be done for every pair of assets in a

portfolio. So, for a portfolio with many assets, and a large historical dataset, the

calculation of the covariances becomes expensive quickly.

Value at Risk

Value at Risk (VaR) is another measure of risk used for financial assets and port-

folios. It gives a measure of how much of the value of the asset might decrease at

a certain probability over a certain time period.

To calculate the VaR, we need to draw a probability distribution function of

the possible return values of the portfolio over the next time period (1 day, 10

days, 1 month, etc.). From this probability distribution, we choose our target

probability, and find out how much value at most may be lost at that probability.

For example, Consider a trading portfolio that is reported to have a 1-day

VaR of US$4 million at the 95% confidence level. This means that, under normal

market conditions, we can expect that, with a probability of 95%, a change in the

value of its portfolio would not result in a decrease of more than $4 million during

1 day, or, in other words, that, with a probability of 5%, the value of its portfolio

will decrease by $4 million or more during 1 day.

To calculate the return distribution, there are many different numerical meth-

ods. Some of the most common are the variance-covariance model, historical
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simulation, and Monte Carlo simulation (Uludag et al., 2007).

The variance-covariance methods starts from the assumption that the portfolio

returns follow some given distribution, like normal, or T-normal. The distribution

and weights of the assets are calculated to find out the best-fitting parameters for

the distribution model. Once the values of the distribution model are found, the

loss for the desired probability is easily taken.

The historical simulation method is more transparent, if a large amount of

historical data is available, but is also more computationally intensive. It involves

running the current portfolio across a set of historical price changes to yield a

distribution of changes in portfolio value, and computing a percentile (the VaR).

The benefits of this method are its simplicity to implement, and the fact that it

does not assume a normal distribution of asset returns.

The Monte Carlo simulation consists of generating a large number of possible

scenarios based on the current data, and some market model. The varied results

from this simulation are ordered, and the lowest 5% (in a 95% VaR example) are

taken as the value at risk. It is then important to choose the model properly.

Monte Carlo simulation is generally used to compute VaR for portfolios con-

taining securities with non-linear returns (e.g. options) since the computational

effort required is non-trivial. For portfolios without these complicated securities,

such as a portfolio of stocks, the variance-covariance method is perfectly suitable

and should probably be used instead.



Chapter 3

Evolutionary Algorithm-based

Optimization

Evolutionary Algorithms (EA) are a group of heuristics for random searches that

are based on inspirations from the the biological evolutionary process. It intend to

uses the same mechanism that is described in the theory of evolution: a population

of individuals, through crossover and mutation of it’s gene pool, is capable of

adapting to changes in the environment.

In EAs, the environment is the problem to be solved, and the population is a

group of solutions, subset of the search space. The best individuals in a popula-

tion (dictated by a problem-specific fitness function) are mixed, generating new

individuals (see figure 3.1). In this way, the search is biased towards the direction

of the best individuals in the current population.

Algorithms inspired in the evolutionary theory were first proposed around

1965, as a numerical optimization technique (Schwefel, 1981). A formulation

more similar to what is known today as genetic algorithms was proposed later

in 1975 (J.H.Holland (1975),Jong (1975)).

While the first uses of Genetic Algorithms were for numerical optimizations,

one of the main good characteristics of GA is its ability to adapt itself to changes

in the problem conditions. The population in the genetic algorithms can easily

change itself to adapt to changes in the fitness function. A good example of this can

be seen in the many approaches to co-evolution, where two evolving populations

compete between them (Rosin and Belew, 1997).

Besides Genetic Algorithms, another technique which also fit under the Evolu-

tionary Algorithm paradigm is Genetic Programming. Both Genetic Algorithms

20
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Figure 3.1: A simple description of the Evolutionary Algorithm framework

and Genetic program have in common the fact of being population based, and the

use of genetic operators (crossover, mutation) in order to mix the solutions and

produce new ones. Genetic programming evolves tree-structured individuals while

Genetic algorithm focuses in array based representation of solutions.

This difference leads to many significant changes in the philosophy behind

crossover and generation of individuals between the two techniques. In this work,

we concentrate ourselves to Genetic Algorithms, although the use of Genetic Pro-

gramming to the portfolio problem might yield interesting results.

Another limitation in the original EAs is related to the fitness function. The

fitness function guides the population towards the goal of the search. However,

when the search has multiple goals, specially when these goals are independent,

or contradictory, it becomes difficult do create a fitness function that can properly

bias the population to both objectives.

Portfolio Management, which we address in this thesis, is an example of such

a problem. It has three goals: return, risk and transaction costs, of which the

first two are contradictory, and the third is independent. To address this problem,

there is the development of Multi Objective GA methods (MOGA).

In this chapter we describe the basic concepts of Genetic Algorithms, and
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Multi Objective Genetic Algorithms that were needed for the development of our

system. The first section describes the genetic algorithm and brakes it down to its

composing parts, concentrating on the choices that have to be made to apply GA

to a given problem. Then in the next session we describe some basic techniques

of Multi Objective Genetic Algorithms, and show our choice for the current work.

3.1 Genetic Algorithms

A Genetic Algorithm is a black box heuristic for a Random Search. It can be

defined by a search space S with its candidate solutions s, a subset of the search

space P (the population), a fitness function f(s), a selection operator, and the

mixing operators m(s) and c(s1, s2), the mutation and crossover, respectively.

Each individual in the Population represents a solution to the problem. How

to represent the solution is an important question in the genetic algorithm. For

instance, if the solution for the problem is a set of real-valued parameters, a

common representation is to turn each parameter into its binary representation,

and one individual would be composed by the concatenated binary strings. Others

would create an individual as an array of real values, each value being considered

a “gene” in the individual. It is not yet known whether the binary or the real

valued representation have any search advantage over the other (Yao, 1999).

A rough sketch of a generic genetic algorithm was drawn in figure 3.1. The

first step is to generate the initial subset P , also called the initial generation,

according to some rule. Then each member of the population is evaluated by f ,

which generates a fitness value for every member. Next, the fitness values are used

by the selection operator, which will remove individuals with worse fitness values

from the population. Finally, the remaining individuals are used by the mixing

operators to generate new individuals, which are used to complete P .

The heuristic behind the genetic algorithm is that by mixing and changing the

solutions with good performance, we can find better solutions than by randomly

searching through the solution space. In this regard, the selection operator is used

to prune bad solutions, the crossover operator generate new solutions that have
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the characteristic of existing good solutions, and the mutation operator has the

role of introducing new information into the system (Vose, 1999).

While Genetic Algorithms have met with good practical results in a variety

of areas, whether they are particularly good for a particular class of problems or

not is a question that has not been properly answered yet. So, most applications

of genetic algorithms require extensive experimentation with Selection, Crossover

and Mutation strategies to tune the evolutionary system to the problem.

3.1.1 Selection Strategies

The selection operators performs the “survival” role in the evolutionary mech-

anism. The goal of this operator is to select from the current population the

individuals which will be used to construct the next population.

This selection is based according to the fitness value of each individual in the

population. Individuals with a higher fitness score must have a higher probability

of being chosen to be recombined than individuals with a lower fitness score. The

difference between the reproduction probability of a low fitness individual and a

high fitness individual in a given selection strategy is called the selection pressure.

If the selection pressure is too high, then there is a risk that the population will

be dominated by a few individuals that are not optimal but have a higher fitness

than the rest of the current population, leading the search to a local optima.

On the other hand, if the selection pressure is too low, the search will move too

randomly through the search space (Yao, 1999).

A simple selection strategy is the Fitness Proportional selection, also known

as Roulette Wheel. The probability for each individual in the population to be

selected is proportional to the relation between its fitness fi and the sum of the

fitness of all individuals in the population. While this method is quite simple, it

can build too much selection pressure if there are a few individuals with a relatively

high fitness in the population.

To address this problem, we have the Rank-based selection. In this selection

method, the individuals in the population are ordered by fitness, and the probabil-

ity of selection is proportional to the individual’s rank. This removes the influence
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of relative fitness values, and allows for a finer control of the selection pressure by.

Both Rank-based and Fitness proportional Selection methods compare the

whole population at once. Tournament Selection, on the other hand, works with

small subsets of the population. A parametric number of elements is chosen at ran-

dom, and them their fitness is compared, and the winner is chosen for reproduction.

The winning criteria of the tournament can be either deterministic (the highest

fitness is always the winner) or probabilistic (winning chance is proportional to

fitness). The tournament selection is appropriate for a parallel implementation,

since it breaks the selection problem into many small independent parts, and can

in this way can speed up the processing of a genetic algorithm.

Finally, Elite selection is not a selection method per se, but a common addition

to other selection policies. The application of an elite policy means that, regardless

of mutation or crossover, one or more of the best individuals from the current

population are copied without changes into the next population. It can be used

to keep the current best solutions when using aggressive crossover and mutation

strategies.

3.1.2 Crossover Strategies

The role of the crossover operator is to perform exploitation of the search space,

by testing new solutions with characteristics of two good individuals (Vose (1999),

Yao (1999)).

Crossover is an operator that is applied to two members of the population

(the parents), to create one (or two) offspring with characteristics from both its

parents. The offspring individuals contain informations from both parents.There

are three basic forms that the crossover operator usually takes.

The k-point crossover is one such form. From the genetic representation k

points are chosen; p1, p2, ...pk. If x and y are the parents’ genetic vectors, the

offspring vector, c, will be composed by alternately copying elements from x and

y, and changing from one parent to the other at each of the k points (see figure

3.2.

The Linear crossover is (also known as Uniform crossover is similar to the
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Figure 3.2: Example of k-points crossover with k = 2

k-points crossover. However, instead of copying blocks of elements from each

parent into the offspring, in the linear crossover each element is tested against a

probability of being copied from either parent (usually 50%).

The Intermediate Crossover is usually found only on real-valued GA. In this

form of crossover, each element is the average from the respective elements in both

parents. Thus, for an offspring c composed from parents x and y we have:

ci = αxi + (1 − α)yi

Where α is an weight between both parents (usually 0.5).

The choice of the crossover function influences what kind of information is

kept from parent to child individual. For instance in the k-point crossover, long

blocks of information is copied from parent to offspring - if two elements who are

represented side by side are related, this relationship will be passed to the next

generation. Linear crossover, on the other hand, assumes that the position of the

genes holds no information.

Sometimes, the crossover function has to be modified to fit with specific re-

quirements of the problem. For instance, in (Aydemir et al., 2006) the crossover

function has severe restrictions on what places in the genome representation can
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be “cut” to perform the k-point crossover. This is because the genome represents

a series of continuous movement by a robotic motor. In this situation, if the

crossover happens at any location it is possible to generate an “invalid” genome.

While crossover is traditionally performed before mutation, if both operations

are independent, there is no statistical difference between doing one or the other

first (Vose, 1999).

3.1.3 Mutation Strategies

The mutation operator introduces new information into the population in the form

of new genes. While the crossover operation performs the exploitation role of the

genetic algorithm, the mutation performs the exploration.

Mutation usually takes place by having a parametrical chance of mutating

each gene in an individual. If the representation is binary, the mutated genes are

flipped. If the representation is real-valued, the mutated genes are perturbed by a

value given by some distribution (for instance a small random value from a normal

distribution).

3.2 Multi Objective Genetic Algorithms

The main decision that must be made when applying a Genetic Algorithm to a

problem is the design of the fitness function. A good fitness function will guarantee

that eventually the optimal desired solution will be reached, and that the algorithm

will not be locked into a local optima of the search space.

However, for many practical problems, there are multiple goals to be achieved,

and this goals are often partially independent. When this is the case, a single

fitness function will not be able to accurately represent the efficiency of the solution

for every objective.

For example, in the Portfolio Problem as discussed in this word, we find po-

tentially three different objectives: The maximization of the estimated return of

the portfolio, the minimization of the risk, and the minimization of transaction

costs.
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Figure 3.3: The Pareto Optimal Set for an hypothetical problem

It is actually very difficult in these problems to find a single solution which will

reach optimal values for every objective. Usually, we have to abandon the concept

of a single “optimal” solution in favor of a series of trade-offs between each goal.

This new definition of optimality is called the Pareto Optimum, and can be

defined as follows. A vector of decision variables x∗ ∈ F is Pareto-optimal if there

does not exist another x ∈ F such that fi(x) ≤ fi(x
∗) for all i = 1, ..., l and

fj(x) < fj(x
∗) for at least one j.

In other words, a Pareto optimal solution is one where the value of at least

one of the objectives is higher than any other solution in the search space. From

this definition we can also derive the concept of a Pareto Optimal Set, which is

the group of all Pareto-optimal solutions to a problem. Figure 3.3 illustrates the

Pareto Optimal Set for a bi-objective problem.
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Genetic Algorithms have been regarded as an appropriate technique to multi-

objective problems. This is because GA is less sensitive to concave or discon-

tinuous search spaces, and Pareto sets (Coello Coello, 2001). There are differ-

ent approaches, though, as to how to use GA with multi-objective problems.

Each method has different characteristics regarding complexity, efficiency, and

fine-tuning requirements. Here we will discuss the most popular ones.

3.2.1 Aggregate Methods

Aggregate methods try to solve the multiple objective scenario by designing a sin-

gle fitness function representative of all the goals in the problem. The most com-

mon example of an Aggregate Method for Multi Objective GA would be weighting.

In the weighting scheme, a fitness function is designed for each goal in the

problem, and the final fitness function is a weighted sum of the problem-specific

functions. This method is extremely simple to implement, and do not require any

changes to the basic logic of the Genetic Algorithm System.

The problem with weighting, and other aggregate methods is twofold. First,

by summing the values of different metrics together into a single fitness function,

it becomes very difficult to generate members of the Pareto Optimal Set when this

set is concave (Das and Dennis, 1997).

Second, it is not intuitive how the weights must be attributed to the different

fitness components. Specially in problems where the different objectives are not

related, or have very different value scales. For instance, in the problem discussed

in this work, The risk metric and the distance metric are not related, and thus

there is not much meaning in trying to sum the two values together.

3.2.2 Objective Sharing Methods

Objective Sharing Methods modify the selection strategy of GA, by having the

different fitness functions, related to the different goals, affect the selection sepa-

rately.

In VEGA (Schaffer, 1985), for instance, the population is separated into a

number of subgroups equal to the number of objectives. Each subgroup undergoes
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a different fitness function, and then all groups are merged for the crossover.

Lexical ordering (Coello Coello, 2001) approaches this differently. Each goal

has its fitness function, but instead of using them all at the same time, each

generation a different fitness function is used. The way to choose which fitness

function to use every generation is an important design decision for this method.

The differences between the two methods can be visualized in figure 3.4.

Objective sharing methods do not show the same problems regarding concave

Pareto sets as agregate methods do. However, it has some issues with speciation.

Speciation means that, due to the nature of separating the population and evolving

each part under a different metric, individuals with extreme values for one of the

objectives will appear more often than individuals with average values for all goals.

This can be a disadvantage when balance between the objectives is critical.

3.2.3 Pareto-based Methods

Pareto-based methods use the concept of dominance between solutions in order

to determine the fitness of individuals. We say that a individual a dominates an

individual b, if for at least one goal a is better than b, and for every other goal, a

is at least as good as b. Two individuals are non-dominant between each other if

each has at least one objective metric that is higher than the other. For example,

the Pareto Set described earlier in this section is composed of individuals that are

non-dominated by any other solution in the population.

Most MOGA methods use the concept of dominance to establish a rank among

the individuals, and generate the fitness based on this rank. Thus, the values for

the goal metrics are not used directly to assign fitness values to the individuals.

Pareto-based techniques have the advantage of being very efficient, and are

reported to generate solutions in all positions along the Pareto frontier. However,

the fitness assigning step is difficult to estimate correctly, and is known to heavily

influence the efficiency of the method. Also, Pareto-based methods require an

extra step called “fitness sharing”. This step is to prevent the populating from

concentrating in a single spot in the Pareto front. The effective implementation

of fitness sharing is still a topic of study (Horn, 1997).
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Related Work

Although the Modern Portfolio Theory was first proposed in the 50ies, and the

CAPM in the 80ies by Markowitz, the first uses of Genetic Algorithms for portfolio

optimization are much more recent.

We trace the earlier works in this subject to 2002 (Jian and K.Y.Szeto, 2002).

These first works approach Portfolio Optimization as simply the problem of trans-

lating to the Genetic Algorithm paradigm the model described to Markowitz.

Later works build upon these models, by trying to add extra constraints that

make the model closer to real life applications, or by making changes to the Evolu-

tionary Algorithmic heuristic that yield better results in this particular problem.

Most interesting recent works are the recent articles by Wei and Clark (Yan

and Clack (2006), Yan and Clack (2007)), where they research the characteristics

of a specific subproblem of the portfolio optimization problem: Hedge Trading.

We believe that working with application niches might indeed turn up interesting

improvements to the heuristics.

So, we consider this to be a research topic still in an early stage of development.

Evidence of this is that almost no works approach the multiscenario portfolio

problem, limiting themselves to the single scenario problem initially proposed by

Markowitz. This encourages us to follow up this line in this work.

4.1 Review of GA based methods

The implementation of the Markowitz model for portfolio optimization can be

neatly divided in several independent blocks. This was demonstrated earlier, when

we described the problem, and can be observed in all of the previous works, where
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the same division takes place.

The basis of the algorithm is the optimization of the portfolio weights in order

to maximize some utility function. While the utility function is most often the

Sharpe Ration, other functions have been proposed in the literature.

Regardless of the utility function chosen, a number of estimation techniques

to analyze the data used in the function are necessary. Return estimation and

Risk estimation are the two obvious functions in this regard, but if other data

(like volume) are considered in the model, they will need their own estimation

methods.

Besides the model for the portfolio optimization, a lot of research has been

focused in the Genetic Operators. The use of MOGA instead of a single fitness

function for risk and return is the most obvious of the changes, but studies on the

most appropriate encoding have also showed interesting results.

We will detail below each of these building blocks for the system, describing the

most used approach, interesting diversions from this consensus, and our opinions

on the research done so far.

4.1.1 Portfolio representation

The most common way to represent a portfolio in a Genetic Algorithm is by using a

vector of real valued variables, one for each weight in the portfolio. Some examples

of this representation technique are Lipinski et al. (2007), Lin and Gen (2007) and

Hochreiter (2007).

The real-valued representation has the advantage of directly representing the

portfolio. So the transformation from the genome to the problem solution is very

straightforward.

There have been works on more indirect representations as well. Werner and

Fogarti (2002) suggests the use of Genetic programming to generate rules that

calculate the values for the portfolio weights, instead of directly optimizing the

weights themselves. They propose that by generating this rules, it improves the

adaptive characteristic of the portfolio. However, the work has not been continued.

Yan and Clack also use GP (Yan and Clack (2006), Yan and Clack (2007)). In
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their work, the genetic programming generates rules for buying/ selling each asset,

in a similar way to that performed in Automated Trading Strategies research. The

weights of the portfolio, in this work, are the same across all assets, and the only

difference is whether the particular asset is held in a short or long position.

4.1.2 Asset selection

Past works face a common problem of executing simulations on a small universe

of assets. Most works use only up to 20 assets at once to compose the portfolio.

Yan and Clack (2006), Yan and Clack (2007), Hochreiter (2007) are examples of

works where all assets are used at the same time to compose the portfolio.

Lipinski et al. (2007), on the other hand, uses a larger universe for the total

assets, but chooses 10 assets at random from this universe to compose the portfolio.

A more interesting idea was proposed by Streichert et al. (2003). In this work,

an index array is used together with the real-valued array to select the assets that

will take part of the portfolio. This index array goes under the evolutive process

in the same way that the real-valued array. It is said that selecting the assets like

this provides better results than purely using all the assets in the portfolio.

In this dissertation, we use this last technique, which details will be discussed

in the next chapter.

4.1.3 Market Model

Most works in this subject use simulations based on historical data in order to

test their results against the model. While the use of historical data allows for

a precise repetition of real-world events, it also has some limitations. The most

important of those is that simulations using past data do not react to the actions

of the portfolio system.

An alternative is presented by Subramanian et al. (2006), which performs its

portfolio selection under an artificial market composed by many agents. When all

the agents that influence the market are represented in the simulation, the effect

of buying or selling large amounts of desired assets can be analyzed.
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However, this approach has the disadvantage of being more artificial. The

number of agents that can be simulated is limited, and the accuracy of the simula-

tion is also limited. So it becomes difficult to understand to what degree a system

that succeeds in an artificial market can also succeed in a real one.

In this work, we follow the general trend of using historical data simulation as

the model for the market.

4.1.4 Return Estimation

The most common method for Return Estimation in the Portfolio Optimization

context is the moving averages (Yan and Clack (2006), Yan and Clack (2007),

Lipinski et al. (2007), Lin and Gen (2007)). The moving averages method can

be simply described as the average of the most recent N prices in the available

historical data.

Werner and Fogarti (2002) uses a more sophisticated approach, with a least

squares optimization method to model the value of the return for each asset in the

portfolio.

Neural networks are another source of prediction for the return values. Kwon et

al. (Kwon and Moon (2004), Kwon et al. (2004)) uses a hybrid approach between

Evolutionary computing and Neural Networks to calculate the return values of

different assets. Evolutionary Computation is used to optimize the weight of the

Neural Network. The inputs are the previous values of the stock price time series,

and the output is the future value.

Azzini and Tettamanzi (2006) also uses neural networks with weights calibrated

by evolutionary computing to calculate the future price of stock, and uses this

values in a portfolio optimization system.

It is not known by how much the use of advanced methods for calculating

the estimated return can improve the results of MPT optimization. Since the

goal is not to reach an specific value, or trade the portfolio in specific trade points,

predicting the exact value of the asset is not as important as predicting the general

trend of the market.
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Using elaborate methods for Return Estimation adds a complexity to the sys-

tem that makes it more difficult to evaluate the effect of adding cost to the model

by itself. So for this work, we will use the more common and accepted method of

moving averages.

4.1.5 Risk Estimation

The standard deviation, as suggested by Markowitz, is the most used measure

of risk (Lin and Gen (2007), Hochreiter (2007)). Like for the expected return,

many works suggest other ways to calculate the risk for a given asset. However,

unlike the expected return, the alternate methods of risk calculation do not aim

at achieving more precise values.

Instead, alternate methods for calculating risk are actually changes in the MPT

model itself, to put extra effort in certain aspects of the assets that compose the

portfolio. For instance, Lipinski et al. (2007) and Subramanian et al. (2006) use

the semi-variance, which reduces the influence of positive variance, and increases

the influence of negative variance. By using this method for risk estimation, these

works reinforce the value of positive risk (the risk that the actual value of an asset

is above the value predicted). Whether this assumption is correct or not is beyond

the scope of our work, and requires a deeper knowledge of economics to correctly

access the answer.

Chen et al. (2002) also suggests the use of other models for risk. In this

particular paper, they introduce the linf function, which is similar to the risk

function used by Markowitz for the portfolio risk, but does not uses the covariance

value between assets. This results in an average risk rate which is lower than the

one reported by works which use the Markowitz model.

4.1.6 Cost modeling

Cost measures are often cited in financial engineering works as necessary, but rarely

they are actually used in the simulations of those works. This is not different for

Portfolio Optimization.
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Streichert et al. (2003) and Fyfe et al. (2005) choose two arbitrary, fixed values

for the cost, and arrive at quite different results due to this. Chen et al. (2002)

uses a function that varies the cost according to the volume traded.

It is difficult to correctly insert a measure of cost into the portfolio model. Stock

dealers may have different policies regarding the costs of financial transactions.

Often, an arbitrary value for cost is chosen, like in Streichert et al. (2003); Fyfe

et al. (2005). Sometimes, a more abstract approach is taken, and the cost value

is let unfixed Chen et al. (2002). Lin et al. (2005) build the cost directly into the

function that generates the return estimate of the portfolio. The cost values are

different for buying and selling.

In all these works, the costs are added to the final results, but not taken directly

into account by the evolutionary process. Also, all the above works are single

scenario, which means that the costs are considered against an initial position

where no assets are held.

In this work, we propose a more complete cost model, where an explicit objec-

tive function for cost is added to the evolutionary model, and the position held in

the previous scenario is taken into account.

4.1.7 Fitness Functions

The most common fitness function for Evolutionary solutions of the Portfolio

Optimization problem is the Sharpe Ratio (Yan and Clack (2006), Yan and Clack

(2007), Subramanian et al. (2006), Lin and Gen (2007), among others). The

Sharpe Ratio is suggested in basic books on finance as a way to compare a portfolio

to the Market Portfolio – the theoretical optimal portfolio. The Sharpe Ratio also

has the advantage of cleanly putting together risk and measure in a single function,

but it is by no means the only fitness function used in the literature.

Hochreiter (2007) and Lin et al. (2005) use a weighted sum between the Risk

measure, and the Return, as the fitness function. If the risk of the portfolio is

σP , and the return is rP , their fitness function would be something like P (x) =

ασP + (1 − α)rP . Alpha is a balancing parameter between the two goals.

This approach has the obvious disadvantage that a new parameter is added



37

to the system. But another serious problem with this function is that Risk and

Estimated return are not two directly comparable values. Adding both directly is

similar to adding the speed of an object with its acceleration.

Streichert et al. (2003) suggests that risk and return should be evaluated sep-

arately, in a Multi Objective GA architecture. In their work, they use the Pareto

front as an elite strategy to keep solutions with both high return and low risk in

the population during the evolution. Yan and Clack (2007) disagrees with this

approach, and says that Pareto-based MOGA is not able to solve the risk-return

optimization, but do not provide evidence to this assertion.

4.1.8 Evolutionary Strategies

Most GA-based Portfolio Optimization systems follow a formula similar to the one

described by Lin and Gen (2007). However, as we stated before, in some works

different evolutionary strategies are pursued.

Yan and Clack (2006) and Yan and Clack (2007) study how to increase the ro-

bustness of the genome during the search. In the first study, the concept of genetic

diversity is used to improve robustness. They use the correlation values between

different solutions in order to increase the difference between the individuals of

the same generation.

In the second study, they change the selection step by adding different scenarios

for evaluation for each generation. This is done with the goal of reducing overfitting

and increasing robustness of the achieved solutions.



Chapter 5

Multi-Objective Portfolio

Management

In this work, we expand over well-known Genetic Algorithm-based Portfolio Op-

timization methods. Our approach is to pick the best ideas among the published

work to build a scenario-based portfolio optimization system. Over this system, we

implement two ideas researched over this work to achieve multi-scenario Portfolio

Management.

The first one is Seeding, based on the idea of migration. Individuals from

previous scenarios are brought in to the current scenario, to breed with the new

population, and tilt the search towards regions in the search space that were

successful in the past.

The second one is Objective Sharing, based on Multi-Objective GA techniques.

We define a new fitness function to measure the distance between the individuals

in the population and the portfolio position taken in the previous scenario. At

each generation, there is a chance that the standard optimization fitness function

will be replaced by this new fitness, directing the population towards solutions

that have smaller distances from the position.

Our goal is to use the self-adapting characteristics of Genetic Algorithms to

develop a portfolio selection strategy that is resistant to changes in the market.

In this chapter, we describe how we intend to achieve such a goal. The model

used to represent our problem is described, along with its assumptions and restric-

tions. Then, based on this model, we describe an optimization and management

system that generates effective portfolio strategies.
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5.1 Portfolio Model

Assume a market with N assets. For each asset n ∈ N , rt
n is the given historical

return at time t for that asset. Also, for each asset, σt
n is the given risk measure

at time t for that asset.

Based on this data, the system must generate investment portfolios that are

optimized in three different measures: to minimize the portfolio’s risk, to maximize

the portfolio’s return, and to minimize the cost between the current portfolio (time

t), and the previously generated portfolio (time t − 1).

5.1.1 Portfolio Representation

The output for the system is a portfolio configuration for each time t. These

portfolios are defined as sets, W t, of N weights, in which wn ∈ W t is the weight

that refers to the proportion of investment that will be allocated to asset n.

We impose two restrictions to the value of the weights w:
∑

n wn = 1 and

0 ≤ wn ≤ 1. The first restriction indicates that the total of the weights cannot

exceed the total of resources, and the second restriction imposes that the values

of the weights must be non-negative.

5.1.2 Return Measure

The return for one asset in the model is given as its logarithmic return value. To

calculate this, we use the closing price of the asset at times t and t− 1 (indicated

by P t
n and P t−1

n ):

rt
n = log

(

P t
n

P t−1
n

)

(5.1.1)

The return of a portfolio is given as the weighted sum of the returns of its

composing assets, and calculated as follows:

rt
W =

N
∑

n=1

wnr
t
n (5.1.2)
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5.1.3 Risk Measure

The risk for one asset in the model is given as the variance of the return of that

asset. The risk up to a given time t is calculated as the variance of all the data

available up to that time. Because of this, it is needed in practice to have some

historical data available prior to the time t from which we want to calculate the

portfolio.

The risk of the portfolio is given as the weighted sum of the risk of its composing

assets:

σt
W =

N
∑

i=1

N
∑

j=1

wiwjσij (5.1.3)

5.1.4 Cost Measure

One of the main novelties we introduce is the addition of transaction costs into

the portfolio model. Transaction costs are added when selling or buying an asset,

so that if an investor changes his position too much to follow the market, the

transaction costs may become higher than the difference in return of the new

position.

In practice, transaction costs depend on the policies of the broker. A flat rate

can be charged per transaction, or it can be proportional to the trade volume.

Different rates can be charged of different classes of assets.

We use, instead, an indirect approach to cost. We assume that the transaction

costs are based on the amount of an asset sold or bought, but do not set a fixed

value to this cost. Instead, the distance between the current portfolio and the

desired portfolio is used as the cost measure. This concept has not yet been used

in GA optimized portfolio approaches.

Following this definition, distance is the amount by which the weights of two

different portfolios differ. We quantify the distance as the Euclidean distance of

the weight vectors:

d(Wa,Wb) =

√

√

√

√

N
∑

n=1

(wa
n − wb

n)2 (5.1.4)
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With higher distance values meaning higher costs to move from one portfolio

position to another.

5.1.5 Assumptions of the model

The model, as presented, makes a number of assumptions that simplify the prob-

lem, and do not hold in practice. We make explicit those assumptions here. Note

that these assumptions are also made by most of the current work in the field. The

removal of each restriction must me progressively addressed as the model evolves

through time. But an understanding of the effects of these restrictions and their

consequences allow us to use the results obtained by the system in the real world.

The effects of Volume in trading are not included. This means that there are

no limits on the minimal or maximal amount of any asset that can be held by the

investor. In practice, the minimal amount of an asset that can be held is usually

limited by the price of a single share of that asset, and there are often limits to

the maximum amount of an asset that can be held by a single individual. Also,

the price for buying or selling assets can be affected by the volume dealt. The

effects of volume trading have not been satisfactorily addressed in other works in

the same field.

By restricting the weights to non-negative values, we remove the possibility

of holding short positions in the portfolio. However, this is not unrealistic, as

it can be shown that models for the MPT with and without short-selling are

equivalent (Yuh-Dauh-Lyu (2002)). We add this restriction to the model for the

sake of simplicity.

The choice of the Euclidean Distance as a measure of cost also carries with

it a few assumptions about the model. According to the definition we use for

the function, many small changes in different weights result in a smaller distance

(cost) than a large change in only one weight.

However, the choice of the Euclidean Distance as a measure of cost has some

drawbacks. The major one is that it introduces the assumption that large trans-

actions of a single asset are less desirable than small transactions of many assets.

This often does not hold in practice. So for future works, a better general function
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for defining the distance between two portfolios needs to be found.

5.2 Evolutionary Optimization

Our Portfolio Optimization system is not very different from the single-scenario

systems that were developed in previous works. We built the system by making

the choices that seemed to meet with most success in the literature, and added

the methods for reducing distance.

We use a simple GA, which generates many different portfolio combinations,

and test them for their performance on scenario based on historical data. The

risk/return ratio of a portfolio, known as “Sharpe Ratio”, is used as the fitness

measure. To calculate it, we estimate the return of the portfolio by using the

“moving averages” method.

In this section we will explain in details each component of the optimization

system that is used to resolve one scenario. The techniques introduced to improve

the Multi-Scenario portfolio optimization are described in the next section.

One of the known difficulties with GA is the large number of parameters that

are used in the system. Table 5.1 lists all the parameters used in our system. These

parameters are further described in this chapter, and the methods for choosing

their values are explained in the next chapter, together with the experiments

performed.

5.2.1 Genome Representation

Each individual’s genome is represented by two arrays. The Index array, I, and

the weights array, W .

The Index array is composed of N boolean elements, where N is the number

of available assets. Each element In represents whether or not the asset n belongs

to the portfolio.

The Weight array is composed of N non-negative, real-valued elements, where

N is the number of available assets. Each element, Wn represents the non-

normalized weight of that array in the portfolio.
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Table 5.1: Parameters Used

Parameter Name Type Meaning

Number of Generations Integer Number of GA interactions

Number of Individuals Integer Number of candidate solutions

Time Length Integer Number of samples for Moving Average

Legacy Size Integer Population Generation parameter

Fill Ratio [0,1] Individual Generation parameter

Elite Size Integer Selection Parameter

Tournament K Integer Selection Parameter

Crossover Ratio [0,1] Probability of crossover

Mutation Ratio Flip [0,1] Probability of mutation in Index Array

Mutation Ratio Perturb [0,1] Probability of mutation in Weight Array

Pos [0,1] Fitness selection probability

To generate a valid portfolio (phenotype) from this representation we need to

normalize the genome, since there is no limit to the values of W . First, we set

to 0 the value of each weight Wn whose corresponding element in the Index array

has a value of “False”. Then we normalize the remaining values, and that will be

the represented portfolio. The procedure is shown in figure 5.1.

A random individual is created by generating random values for both arrays.

For the weight array, we generate a random number between 0 and 1 (inclusive)

for each element.

For the index array, each element has a probability of being “true” equal to

the parameter fill ratio. Else, the element is set to false. This parameter allow us

to limit the size of portfolios for very large datasets.

The two-array setup for the representation isn’t very common in current liter-

ature. More often, a small number of assets (10 or 20) is chosen arbitrarily, and

optimized in a single weight array. In this system, we aim to solve portfolio prob-

lems with many assets available. Since the search space increases exponentially

with the number of assets, we introduced the index array to allow the Evolution-

ary Algorithm to quickly test for the addition or removal of certain assets from

the portfolio.
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True True True True True TrueFalse False False False

Weights
Array

Index
Array

Original Genome

Removing I = false

0.34 2.331.21 5.01 0.66 1.52 0.70 0.90 0.90 0.86

0.34 2.33 0.66 1.52 0.90 0.860 0 00

00 00

Final Portfolio

0.130.140.230.100.050.36

Figure 5.1: Generating a portfolio from its genomic representation.

5.2.2 Return Estimation

We use the traditional technique of Moving Averages to calculate the expected

return for the available assets and the portfolio.

For a given asset n, its expected return value is calculated as:

r′n =

∑T

i=1
rt−i
n

T
(5.2.1)

Where rx
n is the return value of asset n at time x, t is the current time, and T is

a parameter that determines the size of the moving average.

The expected return for a portfolio is given by the expected return of its

composing assets:

r′W =
N

∑

i=1

wir
′
i (5.2.2)

Where N is the total number of assets.

The accuracy of this calculation depends on properly choosing the parameter

T , which determines how many time periods (months, days, etc) to be considered

when calculating the expected return. If T is too large, a global rising or falling

trend will fool the moving average into a value that goes against the current
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moment of the trend. On the other hand, if T is too short, than the result of the

moving average will be too local.

So this parameter, which we call the time length is heavily dependent on the

problem. To decide a good value for it, we estimate the value which brings the

smallest difference between expected return and actual return for t − 1, and use

that value.

Also, instead of the moving average, more complex methods of return esti-

mation could be used. For instance, Geometric, or weighted moving averages, or

some sort of time-series analysis system like the one described in (Nikolaev and

Iba (2001)). In this work, we use a more common method in order to put the

novelties we introduce in the model in the spotlight.

5.2.3 Fitness Measures

Two different fitness measures to optimize the candidate portfolios in the system.

One is the Sharpe Ratio, and the other is the Euclidean distance.

As explained in chapter 2, the Sharpe Ratio indicates the “market price of

risk” of a certain investment. In other words, it is the ratio of by how much the

expected return should increase, if we increase the risk of the target investment,

by leveraging it with the riskless asset.

The Sharpe ratio of a portfolio W is calculated as:

SrW =
r′W − R

σW

(5.2.3)

Where R is the Risk Free Asset. While a perfectly risk free asset only exists in

theory, in practice government bonds with very small variance are often used in

its place (Yan and Clack (2007); Yuh-Dauh-Lyu (2002)).

The higher the value of the Sharpe Ratio, the better the portfolio being eval-

uated. A good target value is the Sharpe Ratio given for the market index, since

it is the theoretical optimal portfolio.

The Euclidean Distance, as described earlier, in equation 5.1.4, is used as

a measure of difference, and consequently cost, between two portfolios. In this
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system, it is only used concurrently with the first fitness measure, since it cannot

lead to an optimized portfolio by itself.

When used as a fitness measure in this system, each candidate portfolio for the

current scenario is compared to the best individual from the previous scenario (not

the previous generation, beware of not confusing the concepts). A lower Euclidean

distance value represents higher fitness.

5.2.4 Evolutionary Strategy

Selection proceeds by a mix of Elite strategy with tournament selection.

First, a number of individuals defined by the parameter Elite Size are copied

to the next generation, without mutation or crossover. The remaining individuals

of the next generation are created by crossover. For each pair of new individuals,

two parents are chosen by tournament selection.

The tournament selection used in this work is deterministic tournament selec-

tion. A parametric number of Tournament K individuals is randomly chosen with

equal probability, and the individual with the highest fitness wins the tournament.

This technique is very fast to implement, and offer a lot of control to the selective

pressure.

After the two parents are chosen, crossover happens with probability equal

to the parameter xover chance. If the crossover does not happens, both parents

are copied to the next generation, but may be subject to mutation (unlike the

individuals chosen by the elite rule).

The crossover technique is a simple linear crossover applied for both arrays.

The offspring receives the index and weight values from either one of the parents

with equal probability, for each asset.

The choice of the linear crossover instead of a k-point crossover follows from

the fact that the position of the assets in the genomic representation of the port-

folio has no intrinsic meaning. The fact that two arbitrary assets are located in

contiguous positions in the array does not mean anything. So a k-point crossover

will create a spatial relationship between the array elements where there is none.

Mutation is applied in all individuals generated by crossover. Each element
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in each generated individual has a chance of being mutated. Each element in the

index vector of the individual has a fixed chance to be flipped (switched from

1 to 0 and vice-versa). This chance is determined by the mutation parameter

mutation flip. Each element in the weight vector has a fixed chance of being

perturbed by +/- 10%, within a normal distribution. This chance is determined

by the mutation parameter mutation perturb.

5.3 Portfolio Management

Portfolio Management is the name we give to the problem of optimizing the port-

folio structure across multiple scenarios. Besides the problems of Single-scenario

optimization, in Portfolio Management we also have to deal with transaction costs

and trading restrictions, which may limit the portfolios we can choose in the cur-

rent scenario based on the position taken in the previous scenario.

A simple portfolio management technique is the recalibration of portfolios. By

recalibration we mean returning to its original composition a portfolio which had

been modified due to fluctuations in the values of assets.

For instance, imagine a portfolio that, at time t, is composed by two assets,

A and B, with weights 0.2 and 0.8, respectively. If A shows a return of 2.0 and

B shows a return of 1.5, the portfolio weights will become 0.25 and 0.75 the next

day, because of the different valorizations. To recalibrate the portfolio, the investor

needs to either sell A or buy B. This simple strategy is not a bad one, because it

can be translated into the “buy low, sell high” common sense rule.

In our method, we approach this problem by giving to the current scenario

genetic information from the previous scenario. This is done by two techniques:

Seeding and Objective Sharing.

5.3.1 Seeding

The first technique we introduce to generate a portfolio strategy consistent over

time is seeding. When creating the new population to optimize the portfolio for

a time t, we will introduce some individuals from the final population from the
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Figure 5.2: Description of the Seeding method

previous scenario (time period t − 1). These new members are copied into the

first generation of the new scenario, and from then on act as if they were normal,

randomly generated individuals (see Figure 5.2).

In practice, this technique generates a bias in the evolutionary search towards

the region of the search space that contained the solution in the previous time

period. Unless the return values changed very drastically, the seeded individuals

will have a fitness value slightly higher than most randomly-generated individuals,

and will reproduce more, leading the population to focus its search on the area of

the previous winner.

Seeding involves the addition of the parameter legacy size to the system. Its

value indicates the number of individuals from the previous scenario that are

copied to the new scenario. As will be shown in the next chapter, we found

that the number of seeded individuals is less important than the existence/lack of

seeders.
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5.3.2 Objective Sharing

The second technique we introduce in the system to realize Portfolio Management

is Objective Sharing. This is a modified version of the lexicographic ordering

(Described in Coello Coello (2001)).

With Objective Sharing, a second objective is introduced to the system: the

Euclidean distance between an individual (current solution) and the best solution

from the previous scenario. The Euclidean distance between two solutions here is

calculated as described in equation 5.1.4.

With this new objective measurement, we have to change the evolutionary

process to take both into account. Every generation, one of two fitness measures

is used to evaluate the population. The probability that one of the two will be

chosen is given by the parameter pos (pos > 1). The main fitness measure, Sharpe

Ratio, is chosen with probability Psr = 1 − (1/pos), and the secondary fitness

measure, Euclidean Distance, is chosen with probability Pd = 1/pos.

Once one of the two objectives is chosen, selection and breeding happens the

same way as described before, and another objective is then chosen for the next

generation. In this way, the population is directed towards both objectives. The

value of pos can be adjusted to determine the relative priority of both objectives.



Chapter 6

Experiments and Results

We performed a series of experiments with market simulations to further under-

stand and validate our proposal. In this chapter we’ll discuss these experiments

and their results.

We report on two kind of experiments. The first are sensibility analysis for

the parameters introduced in our system. Our objective is to understand how the

behavior of the system changes when we apply different values to its parameters,

and if possible to find a strategy for optimally choosing the parameter values.

The results of the sensibility analysis allowed us to better understand the

effects of objective sharing, and showed us that in practice, legacy worked a little

differently than what we expected.

The second are full simulations of the market under our model. We use 10

years of data from two different markets, and compare the performance of our

method with the market index, and a representative of previous approaches to

GA-based portfolio optimization.

The results of the second experiment shows us that our method achieves the

objectives for which is was set. In other words, it is able to generate a good

portfolio strategy over a period of time, while reducing the distance (cost) between

portfolios.

In this chapter, we describe the details of the experiments made, and the results

attained.

50
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6.1 Data Used

We use publicly available real world historical data from stock markets. For each

market, we pick its representative index and the assets composing that index.

These representative indexes are determined by a capitalization weighted average

of all the member assets, in other words, “market portfolios” by definition.

The data markets were chosen for being well known market indexes, and for

containing a large number of composing assets. The large number of assets results

in a more difficult and interesting problem for the portfolio optimization. As seen

in the previous chapter, most works in this field use a much smaller set of assets

for their portfolios.

The return values is taken from the monthly closing price of the index and

composing assets. The closing value is the last value for a specific period. It is an

arbitrary choice, which is often taken in other works.

6.1.1 NASDAQ 100 Index

NASDAQ was the world’s first electronic stock market. Founded in 1971, in the

United States, it has more than 3.000 companies. In number of companies, and

shares traded daily, it is the biggest U.S. stock market.

The NASDAQ-100 is an size-weighted index composed of the 100 largest com-

panies listed on the NASDAQ stock exchange. It includes companies from different

countries, but does not includes financial companies.

For the dataset, we choose a subset of the NASDAQ-100, composed of 89

assets which have been part of the index continuously for the 6 year period from

November 2000 to October 2006. This 72 month period composes our data.

A brief overview of the market behavior in this period can be seen in figure 6.1.

It shows the value of the market index from 1998 to 2007. The main characteristic

in this period is the “dot-com” stock bubble and crash, from late 1998s to early

2001. During this period, the stock quickly raised 3 times its value, and then fell

back all at once.
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Figure 6.1: Performance of the NASDAQ composite Index.

6.1.2 NIKKEI 255 Index

The NIKKEI is the stock market index for the Tokyo Exchange. It has been

calculated since 1950, and is the most watched index on the Asian market. It is

composed of 255 assets from the Japanese economy.

Unlike the NASDAQ, which concentrates on technology companies, the NIKKEI

index is designed to reflect the overall market. So, there is no weighting of partic-

ular industries. Instead, the composing assets are generally price weighted. Fol-

lowing this, the assets composing this index are much less correlated than those

in the NASDAQ index.

In the dataset, 205 out of the total 225 companies are included. The choice

was based on their continued presence in the index for the period from January

1998 to December 2006 (106 months).

This period characterizes the end of the Japanese bubble, and the correspond-

ing bubble burst, which begins in 1999. By 2003, the Nikkei index reaches a record

low, and then starts recovering. The behavior of the index can be seen in figure

6.2.
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Figure 6.2: Performance of the NIKKEI Index.

6.2 Methodology

6.2.1 Parameter Value

We can separate the parameters used in our system in two types. Evolutionary

Algorithm-related parameters, and Technique parameters. The first class describes

parameters that are not unique to the technique we have developed, but are used

frequently in Genetic Algorithm applications. The second class denotes the pa-

rameters that have been added to the methods described in this work. Table 6.1

divides the parameters in these two groups.

The values for the Specific Parameters have been decided based on sensibility

experiments. We executed simple experiments, which will be discussed later in

this chapter, with scenario-based optimization to understand the best values for

these parameters.

The values for the Generic Parameters control the convergence speed and the

influence of randomness in the result, by changing the selective pressure. They

were determined by starting with conservative values and increasing them by hand



54

Table 6.1: Generic Parameters and Specific Parameters

Generic Parameters Specific Parameters

Number of Generations Objective Sharing Probability

Number of Individuals Time Length

Elite Size Legacy Size

Tournament K

Crossover Ratio

Mutation Ratio Flip

Mutation Ratio Perturb

Fill Ratio

Table 6.2: Values for Generic Parameters

Parameter Name NASDAQ dataset NIKKEI dataset

Number of Generations 60 100

Number of Individuals 200 400

Elite Size 11 6

Tournament K 10 10

Crossover Ratio 0.8 0.8

Mutation Ratio Flip 0.05 0.05

Mutation Ratio Perturb 0.05 0.05

Fill Ratio 20% 20%

until an acceptable convergence rate was found.

The values used in the experiments reported here can be seen in table 6.2. The

number of Generations and Number of Individuals are different for each dataset be-

cause of the difference in size between the data (NASDAQ has 100 assets, NIKKEI

has 225).

6.2.2 Effect of randomness in the results

As a heuristic based random search, Genetic Algorithms relies on some non-

deterministic steps. Nominally, the selection, mutation and crossover operators

in this system all operate in a probabilistic fashion. The same thing is valid for
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the Objective sharing method.

So, while a good choice and implementation of the the heuristic will use the

randomness to improve the quality of the results, a poor implementation may “luck

out” some times, and present very bad results in the average. Because of that,

we added to the experiments an analysis of how much random chance affected the

results.

Each of the following listed experiment was repeated 30 times, with different

random number generator seeds. The results in the tables and figures in this

chapter are thus all averages of the best results in each run, and numeric values

are accompanied of the standard deviation of this average. So it’s possible to see

how much randomness affects the validity of the results.

6.2.3 Comparison and validation

To validate the results of our methodology, we have chosen two benchmarks to

compare them against. The first one is the Market Portfolio, and the second one

is a scenario-based Genetic Algorithm.

The Market Portfolio

One consequence from the Modern Portfolio Theory is that the optimal strategy

for the portfolio investor would be to hold the Market Portfolio (i.e., the portfolio

composed of all risky assets, proportional to their value. See section 2.1.3).

In the real world, this means the many Value-weighted Market indexes that

we find. These indexes are composed by all (or the highest weighted) components

of each market, and thus they approximate an efficient portfolio, according to the

Modern Portfolio Theory.

Some critics say that using these indexes is not necessarily the optimal method,

and may lead to trend-following decisions that result in a sub-optimal risk-return

trade off. Some reasons for this are that the indexes do not contain all assets, and

that the Modern Portfolio Theory does not hold completely.

However, in practice there are companies that hold funds based on market

indexes, and people who trade them. So a direct comparison of the value of the
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portfolio generated by our method and the value of the Market Portfolio is a useful

tool to determine whether this method is able to “beat the market”.

In this work, since the needed formulas for the calculations of the exact weights

of the different companies into the Market Portfolio for each index are not avail-

able, the value of the Index will only be used for comparison of Risk and Returns.

The Risk of the Market Portfolio is estimated as the standard deviation of its

returns. For comparison of Trading Costs, only the other methods described in

this section are considered.

Simple GA-Optimization

Besides comparing the results with the market portfolio, we also performed the

experiments with a simple version of a GA Portfolio Optimization system without

the techniques described in this text.

This competing technique, which we will call “simple GA”, was designed to help

us understand how the previous works would act in a multi-scenario situation. We

suspected that since they were searching for the optimal portfolio independently of

the previous or following scenarios, the distance between each optimized portfolio

would be rather large.

The design of Simple GA follows the description of section 5.2. In the exper-

iments the same parameter values as the proposed method are used. The values

returned by this method are used in the comparison of the full length experiment.

6.3 Parameter Sensitivity Analysis

When designing new techniques, it is important to understand the effects of these

techniques under many different conditions. If the techniques introduce new pa-

rameters, it is necessary to extensively experiment with the possible values of these

parameters in order to understand how their changes affect the system.

The first experiments we describe in this text, then, are the sensitivity anal-

ysis for the parameters we have introduced. We perform experiments for Pos,

time length and legacy size parameters. For each parameter, we ran a series of
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experiments to compare the results for varied values.

The best values found in each experiment in this session were used for the

“performance” experiments in next session. They were, specifically, 2 and 5 for

Pos, 1 for legacy size, 11 for time length in the NASDAQ dataset and 6 for the

NIKKEI dataset.

More detailed information on the methodology and results of the experiment

follows.

6.3.1 Objective Sharing Parameter analysis

With Objective Sharing technique, we introduce the parameter pos to the System.

Its value determines the rate at which one of the two goals will be chosen for every

generation.

Intuitively, we expect that a lower pos value will result in a portfolio strategy

with both smaller distances and returns, because of the increased importance of

the distance fitness measure in the evolutionary process. As the value of this

parameter is raised, we should find different degrees of compromise between the

two measures.

Ideally, the investor should experiment with raising and lowering this value

until an acceptable solution is found.

The actual results of experiment with this parameter can be seen on Table 6.3.

The results reflect our intuitive expectations. The values in the table illustrate the

results when applying different values for Pos on the NASDAQ dataset. Results

for the NIKKEI dataset were similar.

When Pos is 2, we have the largest loss and the smallest distance as compared

with the results of not using Objective Sharing (denoted as “none” in the table.

As we raise the value of Pos, we get smaller gains of Sharpe Ratio for larger

losses in distance. We can see the trade-off between Sharpe Ratio and average

Distance, as Pos increases.

From these results, we can see that changing from not using Objective Sharing

to a value of 2 will result in a rather great increase of returns for a small increase

in the distance measure. After that, increasing the value of the parameter pos will
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Table 6.3: Sharpe Ratio and Distance as a function of Pos parameter.

Pos Sharpe Ratio Distance

None 0.55 0.909

2 0.397 0.294

3 0.450 0.309

4 0.497 0.374

5 0.521 0.427

6 0.535 0.661

7 0.542 0.792

increase the distance for smaller increases in returns. This kind of information

allows the analyst to tune the algorithm according to his particular cost structure,

by balancing the two goals.

6.3.2 Time Length parameter analysis

The Time Length parameter indicates how many months prior to the current sce-

nario will be taken into consideration in the moving average formula for calculating

the expected return.

We tested a range from 3 to 30 months in both the NASDAQ and NIKKEI

datasets, running the Simple GA algorithm to decide the best length for this

parameter.

The results can be seen at figures 6.3, for the NASDAQ dataset, and 6.4 for

the NIKKEI dataset. The values in the figures are the average total profit out of

30 runs of the system (with different random seeds).

In the NASDAQ dataset, we have two peaks, at the points of 11 and 18 months.

In the NIKKEI dataset, we have a peak at 6 months, and then the results quickly

lower. We have observed that the time length value is a problem-dependent pa-

rameter. From these results, we decided on the parameter values of 11 and 6 for

the NASDAQ and NIKKEI datasets for the experiments in this work.

The proper value for the time length parameter needs to be chosen carefully.

There are local optima and the result’s quality drops sharply for badly chosen
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Figure 6.3: Total return as a function of time length for NASDAQ data.

Figure 6.4: Total return as a function of time length for NIKKEI data.
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parameters. Based on our experiments, the method we found best for choosing

the time length parameter is to first find the best time length of a subset of the

known data, and then use this value to manage the portfolio for a time period.

6.3.3 Legacy Size parameter analysis

The Population Seeding technique introduces a new parameter to the Genetic

Algorithm, the Legacy Size, which determines how many individuals from the

previous genetic search should be included in the new scenario.

As the number of assets available to a portfolio increases, the search space for

the optimal portfolio also increases exponentially, making the problem harder. The

Population Seeding technique is a heuristic which says that “the best legacy size

solutions of the last scenario are probably good enough to be used again”. In other

words, it supposes that the environment from one scenario to the next does not

change that much. The first population in the new scenario will begin its search

where the last population of the previous scenario was found to be successful.

To verify this hypothesis, we tested a Legacy Size from 0 to 30% of the popu-

lation size for both NIKKEI and NASDAQ datasets, and the results can be seen

in figures 6.5 and 6.6.

For the NASDAQ dataset, we can see that the lowest value for the Sharpe

ratio happens when the legacy parameter is 0. The results rise sharply for small

values of this parameter, then we see a small drop for values above 5.

For the NIKKEI dataset, we also observe the lowest Sharpe Ratio when the

value of the legacy parameter is zero. The Sharpe Ratio drop for higher values

however is smaller when compared to the NASDAQ dataset.

These results show us that our initial hypothesis isn’t entirely correct. For

both the NIKKEI data and the NASDAQ data, there is a significant difference

between Legacy Size = 0 and Legacy Size > 0. The average cumulative profit and

Sharpe ratio is much lower when Seeding is not used. However, when seeding is

used, the effect of the legacy parameter value over the results quickly stabilizes.

These results suggest that Seeding has the following effect in the algorithm:

the seeded individual will have a fitness value higher than that of the randomly
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Figure 6.5: Effect of Legacy Size on the NASDAQ dataset.

Figure 6.6: Effect of Legacy Size on the NIKKEI dataset.
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generated individuals, and then soon dominate the population, directing it towards

its region in search space. Since the seeded individual quickly dominates all the

randomly generated ones, additional seeded individuals will not have as much of

an effect as the first one.

6.4 Full Length Returns experiment

To validate and further investigate our methodology, we have simulated the results

of the portfolio strategies generated by it. In this experiment, we let the genetic

algorithm generate portfolio strategies for the whole 6-year period available in

our dataset, and compared the obtained results with the market index and the

standard GA Portfolio optimization technique.

We choose 5 different combinations of the specific parameters proposed in this

research, decided according to the results described in the previous section.

Seeded GA means that we only use seeding, and not Objective Sharing. The

legacy size parameter is set to 1.

SOx GA adds the Objective Sharing technique, with parameter pos equal to x.

Seeding is not used. Like described in the previous section, the values of 2 and 5

were the smallest and highest values that showed a significant difference in results

from other systems.

Seeded SOx GA includes both modifications to the system at the same time.

The results of the experiments are summed up on tables 6.4 and 6.5, for the

NASDAQ and NIKKEI datasets, respectively.

“INDEX” is the value for the Financial Market Index corresponding to that

dataset. “SO2” and “SO5” refer to the Objective Sharing heuristic with the value

of the pos parameter set to 2 and 5, respectively. “Seeded” refers to the Population

Seeding heuristic.

Cumulative return, and Sharpe ratio are measures of the “efficiency” of the

portfolio strategy. They should be compared with the values given for the index.

Cumulative return is how much the portfolio’s value increased with relation to its

initial value. Sharpe Ratio indicates the risk - for similar cumulative returns, a
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Table 6.4: Results of Full Length Experiment - NASDAQ Dataset

Dataset NASDAQ

Method Sharpe Ratio Distance Cum. Return

Index 0.239 n/a 1.721

Simple GA 0.486 (0.0006) 1.477 (0.004) 2.82 (0.02)

Seeded GA 0.55 (0.0009) 0.909 (0.012) 3.14 (0.01)

SO2 GA 0.425 (0.0011) 0.429 (0.002) 2.85 (0.023)

Seeded SO2 GA 0.397 (0.002) 0.294 (0.003) 2.59 (0.01)

SO5 GA 0.492 (0.0007) 0.818 (0.0009) 2.89 (0.001)

Seeded SO5 GA 0.521 (0.0008) 0.42 (0.0039) 3.12 (0.001)

Table 6.5: Results of Full Length Experiment - NIKKEI Dataset

Dataset NIKKEI

Method Sharpe Ratio Distance Cum. Return

Index 0.216 n/a 1.562

Simple GA 0.168 (0.001) 8.51 (0.5) 1.439 (0.02)

Seeded GA 0.181 (0.001) 8.21 (0.49) 1.49 (0.01)

SO2 GA 0.154 (0.0017) 1.32 (0.06) 1.376 (0.002)

Seeded SO2 GA 0.125 (0.002) 1.19 (0.07) 1.28 (0.015)

SO5 GA 0.174 (0.0009) 2.55 (0.09) 1.446 (0.006)

Seeded SO5 GA 0.156 (0.0015) 2.48 (0.11) 1.38 (0.01)
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higher Sharpe Ratio indicates a smaller amount of risk.

Distance is the average distance between portfolio positions through the strat-

egy. It is a linear measure of the cost associated with that strategy. Higher value

means that the portfolio position changes more during the period, and thus there

will be a higher associated cost. The final cost will depend on the volume of trade,

and policies of the trading company.

Comparing the GA methods, we notice that their performances relative with

one another were consistent with our expectations in both datasets. However, their

performance relative to the Index were quite different in each dataset. We’ll first

examine the independent performance, and then address the index performance.

Seeded GA dominated Simple GA in both datasets, with higher Sharpe Ratio

and Cumulative Returns, and lower average distance. This shows that while we

introduced the seeding technique to reduce distance, it has also managed to bias

the search towards a better region of the search space.

The results for Objective Sharing were as expected. SO2 had a smaller Sharpe

Ratio when compared with Simple GA, in exchange for a much smaller Average

Distance. Interestingly, the Cumulative Return in the NASDAQ dataset remained

near the same, which means that sometimes the SO algorithm may trade only risk

for distance, instead of return.

When we combined the two methods, mixed results were obtained. In the

NASDAQ dataset, Seeded SOx dominated the SOx methods, while the opposite

happened in the NIKKEI dataset.

We suppose that the difference between the two behaviors can be explained

because of the crash behavior of the NIKKEI assets. With the sudden changes

on the direction of the market, information from previous successful portfolios

might cause more harm than good. More study is needed to fully understand this

phenomenon.

Figures 6.7, 6.8, 6.9 and 6.10 give us a better image of metrics in tables 6.4

and 6.5. We compare the methods with best overall results with simple GA and

the index values.

Figures 6.7 and 6.8 show the results for the NASDAQ dataset. The NASDAQ
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Figure 6.7: Cumulative returns for the NASDAQ dataset

Figure 6.8: Distance values for the NASDAQ dataset
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Figure 6.9: Cumulative returns for the NIKKEI dataset

Figure 6.10: Distance values for the NIKKEI dataset
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index was stable during most of the period, which was soon after the dot-com

bubble. The market showed an overall raising trend.

The first image shows the cumulative return for the GA methods and the Index.

The Evolutionary techniques are able to pick good assets and build portfolios with

larger returns, while maintaining similar risk ratios as the Market Index.

The second figure shows the difference between the distances in the simple GA

method, and the method we propose. While the peaks are in similar places, our

method shows consistently lower portfolio distances between the scenarios.

Figures 6.9 and 6.10 show the results for the NIKKEI dataset. The Nikkei index

was going through a crash behavior during the period. The market was quickly

losing value, until it reached a critical low for a while, then quickly regained its

normal value.

Like for the NASDAQ images, the first image shows the cumulative return for

the GA methods and the Index. Here, however, the GA methods are not able to

consistently beat the index, instead showing a similar/worse performance. In the

sharp drop in month 2 both methods make a wrong decision, and have to play

catch up with the index. Looking at the second figure, we see that Simple GA

show extreme changes during the first drop, while SO5 manages to recover using

a much simpler change in the portfolio.

6.5 Experiment Result Analysis

The results we obtained in the experiments described in this chapter are very

encouraging. Genetic Algorithm based Portfolio Optimization managed to beat

the market index consistently.

In the NASDAQ dataset, where the best quantitative results were obtained,

we see that while the normal GA method beats the index by a certain margin,

the margin for the improved method is much larger. However, in the NIKKEI

Dataset, where the GA methods can’t do more than follow the index, we find

that the normal and improved GA methods show similar returns. This indicates

to us that the Nikkei dataset is particularly difficult for GA methods in general,
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because in all other tests the Improved GA beat the non-improved method by a

large margin.

Another analysis that we can perform between the normal and improved GA

methods is by looking at the distance figures. In figures 6.10 and 6.8 we can notice a

characteristic of this reduced distance. The portfolios management strategy shows

much larger distances when the market changes its direction, in comparison to the

changes that happen when only the intensity of the direction changes.

In other words, when the market starts falling after rising, or rising after falling,

we observe the largest changes in the evolved portfolios, while even if the rate of

falling or rising changes dramatically, the change in the portfolio will be much

less. We can attribute this behavior to the adaptive characteristics of evolutionary

algorithms.

Finally, as a last observation, we have observed no significant change in pro-

cessing time for any of the combinations during the experiment. As can be seen

from the heuristics descriptions, neither of the two are computationally intensive.

So the genetic algorithm system afford a higher degree of complexity for a better

result.



Chapter 7

Conclusion

This work discusses the problem of Portfolio Management. The Portfolio Man-

agement Problem consists of optimizing a distribution of financial resources over

many available assets (like bonds or stocks). The goals of this distribution is

twofold: One, to maximize the return realized by the portfolio, and two, to reduce

the individual risk of the composing assets.

We explained the basic portfolio theory, as described by Markowitz. According

to this theory, as the number of assets in the portfolio rises, the contribution of

each asset towards the portfolio risk diminishes. Following this rationale, the most

efficient portfolio is the Market Portfolio, which contains all the available assets,

weighted by their capitalization. When real-life constraints are added, the problem

of calculating this efficient portfolio becomes intractable by numerical methods.

We review the use of Genetic Algorithms, a heuristic for random search, to

solve this problem. This has been a popular approach in recent years, with a large

number of works published in the topic. From this review we can understand that

a common point among many current works is the lack of cost measuring. Many

works in GA-based portfolio optimization are single-scenario, which means that

they do not take into account what happens before or after the time window of the

optimization. Also, costs are not taken into account when choosing the portfolio

weights. Since stock trading can be seen as a positive-sum game before costs are

added, these results that do not take cost into account will be unrealisticly good.

To address this problem, two techniques are described to draw a connection

between the portfolio being optimized with the position in previous scenarios.

We call these techniques Seeding and Objective Sharing. We execute a series of

69
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simulated experiments with a common GA modified by these techniques, and we

conclude that adding a cost model as a objective function to the GA allows for

lower differences among the portfolios in different scenarios (lower costs) with the

same return.

Having validated our technique by means of experiments, we hold that the

use of a distance metric as fitness measure, in addition to a possible direct cost

measure, is essential to allow the genetic algorithm to correctly and efficiently take

cost into account. In order to effectively realize portfolio management over time,

some sort of implementation of a distance metric similar to what we propose in

this dissertation is needed.

The results of this work were presented in two published papers to interna-

tional conferences (JCIS07, and CEC2007), and the feedback provided was very

encouraging. We believe that this work will be seen as a reference for approaching

cost modeling as an evolutionary objective.

7.1 Future Directions

Our results are encouraging, and suggests that Evolutionary Computation is an

approach that deserves further attention for the Portfolio Management problem.

7.1.1 Cost Model

Regarding the distance measure, and its use as a fitness function, in this work

we developed the Euclidean Distance and realized that this function, although

succeeds in reducing the average distance to the management solution, also adds

some restrictions to the model that do not correspond to real-world applications.

So a very important follow up to this work is the research of more appropriate dis-

tance functions. One possible example would be the use of a modified Manhattan

distance function.

Also regarding the distance measure, in this work we use only the fitness as and

abstract concept of distance. This has earned us good quantitative results, since we

are able to measuring the diminishing distances, but the results we have achieved
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are not directly comparable with traditional methods. In order to effect this

important comparison, the addition of traditional cost models to this evolutionary

cost model is required.

7.1.2 Representation

One well known way to improve the efficiency of a Evolutionary Algorithm is to

change the representation. A good representation will result in a smoother search

space, which increases convergence and reduces the risk of falling into local optima.

In this work we used Real Valued Array as the genomic representation of a

portfolio. This is the representation which is traditionally used in similar works.

We intend now to test a new tree-like representation. This tree representation

would be similar to the Genetic Programming tree, where the leafs represent weight

values for assets, and the nodes are connectors.

Due to the subtree-is-a-tree property of trees, we can use this representation

to combine two successful portfolio in a way that is not possible in the current

representation. We can also give fitness values for subtrees, and use these sub-

fitness values to guide the crossover process.

Due to these characteristics, we believe that a tree representation is an inter-

esting follow up in the Portfolio Optimization research.
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