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The initial growth stage of titanium nitride (TiN) deposited by reactive 

magnetron dc sputtering onto (111)-oriented Si substrates was investigated by 

using high-resolution transmission electron microscopy (HRTEM). During the 

initial growth stage, a continuous amorphous layer was observed when the 

deposited film was less than 1 nm thick. Crystal nucleation occurred from the 

amorphous layer when the film grew to about 2 nm thick. No preferred 

orientation was found for the initial crystal nuclei. The growth of the crystal 

grains depended on the N2 partial pressure, PN2. Increasing PN2 from 0.047 to 

0.47 Pa enhanced lateral grain-growth and coalescence between grains. For PN2 

= 0.47 Pa, planar grains with large lateral dimension were found formed by 

grain-growth and coalescence, inducing a (200) film orientation. For films 

formed at PN2 = 0.47 Pa, an amorphous interlayer 1.5-1.8 nm thick formed 

between TiN layer and Si substrate, and was indicated to be primarily SiNx by 

XPS and HRTEM. This interlayer was less than 0.5 nm thick in films formed at 

PN2 = 0.047 Pa. 

 

PACS numbers:  

1. 68.55.Ac. 

2. 68.55.Jk. 

3. 81.15.Cd. 
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I. INTRODUCTION 

Titanium nitride (TiN) thin films are widely used for a variety of structural and electronic 

applications. Previous research on TiN thin films focused on the textural evolution of TiN 

films hundreds of nanometers thick, which have anisotropic properties (e.g., elasticity and 

diffusion resistance). For example, a strongly (111) textured TiN under-layer induces a 

strongly (111) textured Al upper-layer that has a longer electromigration life compared with 

other textured Al metal lines. 1-3 The textural evolution mechanisms have been explained from 

the viewpoints of thermodynamics and kinetics. 4-8 Recently, efforts were made to 

quantitatively model the homogeneous TiN growth process, such as two-dimensional island 

coarsening and decay processes on (111) or (200) single crystal TiN surfaces. 9-11 

As the packing density of the ultra large-scale integrated (ULSI) devices increases and the 

characteristic feature size decreases to nanometer-size regime, the thickness of diffusion 

barriers (e.g., TiN and TaN) used for metal interconnect (e.g., Al and Cu) is expected to be 

reduced to less than 10 nm.12 For such thin films, besides the film texture, factors such as 

grain-size and growth mode play even more important roles in film performances. For 

example, Patsalas et al 13 found that a quasi-2D growth on GaN results in a much lower TiN 

film resistivity compared with a 3D growth on Si, in the film thickness range of 4 ~ 14 nm. To 

control structural and material properties of such thin films, a detailed understanding of their 

initial growth mechanisms is needed. 

However, except for the large volume of investigations on homogeneous TiN growth, little 

effort has been made to clarify the initial stage of the non-epitaxial heterogeneous growth of 

TiN. 8, 13, 14 which is important for designing film-growth processes for practical applications. 

Transmission electron microscopy (TEM) is a direct and effective method to determine film 

morphology. In this work, high-resolution transmission electron microscopy (HRTEM) and 

nano-beam diffraction (NBD) techniques were used to investigate, in detail, the initial growth 
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stage of TiN on (111) Si, from sub-nanometer to nanometer-order thickness. To our surprise, 

the film was initially formed as a continuous amorphous layer. As the film grew, 

crystallization occurred from the amorphous layer with no preferred orientation. The 

grain-growth process was affected by the N2 partial pressure, PN2. Increasing PN2 enhanced 

the lateral grain growth and coalescence, resulting in a larger lateral grain-size and inducing 

restructuring of the grains to thermodynamically favored (200) orientation. 

 

II. EXPERIMENT 

TiN thin films were reactive sputter-deposited with a Ti target in an N2/Ar atmosphere by 

using a magnetron sputtering system equipped with dc and rf power sources. The system is 

described in detail elsewhere, 8 and only the main features are described here. The sputter 

chamber had a base pressure of 5×10-6 Pa. The target was a 2-inch-diameter, 99.99% pure Ti 

disc. Before being loaded, the wafers were treated chemically in a mixture of concentrated 

sulphuric acid and H2O2, and then dipped into a 1% HF solution to remove the contaminants 

and the native SiO2 layer on the surface. Before deposition onto substrates, the target was 

pre-sputtered for 5 min under the same conditions as for TiN deposition. TiN deposition was 

done without substrate heating. No bias voltage was applied to the substrates and the substrate 

self bias potentials induced from the plasma were –23.0 V at PN2 = 0.047 Pa and -29.3 V at 

PN2 = 0.47 Pa, respectively. The sputtering gases, N2 and Ar, were controlled with 

independent mass-flow controllers, and mixed before they were introduced into the sputter 

chamber. The total pressure, P, in the sputtering chamber was maintained at P = 0.93 Pa and 

the total flow rate, F, was maintained at F = 20 sccm. The substrate-to-target distance was 50 

mm, and the discharge power to the Ti target was dc 69 W. To avoid film oxidation in air and 

to immobilize the deposits on the surface against irradiation of the electron beam during 

observation by transmission electron microscopy (TEM), for samples used for TEM 
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observation a 10 nm SiO2 layer was deposited immediately after TiN deposition. 

To determine the deposition rates, the film thickness was measured with a stylus 

profilometer (KLA-Tencor P-10). The thickness of initial growth samples was calculated from 

the deposition rate and time, which we refer to in this paper as “lc”. 

The texture of 50 nm thick films was evaluated with x-ray diffraction (XRD) (Rigaku 

RINT2400) by using CuKα radiation. The microstructure of nano-scale films was evaluated 

from both plan-view and cross-sectional HRTEM images, selected area electron diffraction 

(SAED) and NBD analysis by using an FETEM (JEOL, JEM2010F) operated at 200 kV. The 

film composition was determined with in situ Auger electron spectroscopy (AES). Ex-situ 

depth profiling of elemental composition for 20 nm thick TiN films was done by using x-ray 

photoelectron spectroscopy (XPS) (PHI 1600) with an Mg Kα source and a 3 keV argon-ion 

beam source for sputter etching. 

 

III. EXPERIMENTAL RESULTS 

A. Deposition conditions for investigating initial growth stage 

We determined the deposition conditions needed to obtain stoichiometric TiN films with 

good crystallinity, by varying PN2 from 0.015 Pa ≤ PN2 ≤ 0.47 Pa. Increasing PN2 from 0.015 

to 0.47 Pa caused the preferred orientation of the films to change from TiN (111) to TiN (200). 

8 AES results indicate that the Ti/N ratio was 1:1 in this pressure range. We grew films at PN2 

= 0.047 Pa (Condition I) and PN2 = 0.47 Pa (Condition II) (see Table I) to investigate the 

initial growth stage. Under Conditions I and II the films had complete (111) and (200) 

preferred orientations, respectively, at film thickness of 50 nm. The growth rates were 

determined to be 0.19 and 0.063 nm/s under these two conditions (see Table I). 

 

B. Formation of initial continuous amorphous layers and thickness-dependent crystal 
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nucleation 

Figs. 1 and 2 show plan-view HRTEM images together with corresponding SAED patterns 

and cross-sectional HRTEM images of TiN films deposited under Condition I (Figs. 1a-c and 

2a-c), and under Condition II (Figs. 1d-f and 2d-f). Fig. 1a shows a film deposited for 4 s 

under Condition I, resulting in an lc of 0.8 nm. Fig. 1d shows a film deposited for 10.5 s under 

Condition II, resulting in an lc of 0.7 nm.  The absence of crystal grains in the plan-view 

images and the absence of crystalline diffraction peaks in corresponding SAED patterns 

indicate that the films were amorphous. The cross-sectional images shown in Figs. 2a and 2d 

also indicate that the films were continuous and amorphous. 

Figs. 1b, 1e, 2b, and 2e show that crystal grains existed inside the 2-nm-thick films 

deposited for 10 s under Condition I and for 30 s under Condition II, and were identified from 

their lattice constants as TiN crystal grains. As shown by the SAED patterns, the 2-nm-thick 

films deposited under both conditions had no preferred orientation. 

The SAED patterns and HRTEM images shown in Figs. 1c, 1f, 2c, and 2f indicate that the 

films deposited for 30 s under Condition I and for 60 s under Condition II became typical 

polycrystalline films with mixed crystal orientations. 

To further confirm the transition from amorphous to crystalline structures in the films, 

NBD measurements, made with a probe size of about 0.7 nm, were used to identify the crystal 

structure in the film. Fig. 3a shows a NBD pattern obtained from inside a film deposited for 4 

s under Condition I, which indicates a hollow pattern resulting from an amorphous film. The 

faint patterns superimposed on the hollow pattern were due to the silicon substrate, because 

the edge of the probe slightly overlapped at the film/substrate interface. Figs. 3b and 3c show 

NBD patterns obtained from Si substrates and from the crystallized film deposited for 10 s 

under Condition I, respectively. In Fig. 3c, the diffraction spots correspond to B1 NaCl-type 

TiN crystals with TiN (111), (200), and (220) planes. The faint patterns superimposed on the 
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main patterns were also due to the silicon substrate. 

The thickness of the film measured from the cross-sectional HRTEM images deposited for 

4 s under Condition I and for 10.5 s under Condition II were 1.6 and 1.3 nm, respectively, 

which is about twice as thick as the calculated film thickness, lc. This may be due to the lower 

density of the initial amorphous layer compared with its crystal phase. On the other hand, 

films deposited for 10 s under Condition I and for 30 s under Condition II were 2.0 nm thick, 

almost the same as the lc of 1.9 nm. 

    

C. Grain growth and coalescence process 

Fig. 4 shows histograms of the frequency of occurrence of TiN grains versus various lateral 

grain sizes. For each operating condition, the histogram was obtained from the measurement 

of the size of more than 100 randomly-sampled grains from plan-view TEM images. Fig. 4a 

shows the grain size for films deposited under Condition I, which indicates that as the 

deposition time increased from 10 s (lc = 2 nm) to 30 s (lc = 6 nm), the average lateral grain 

size increased from 3.0 to 4.2 nm. Fig. 4b shows the grain size for films deposited under 

Condition II, which indicates that as the deposition time increased from 32 s (lc = 2 nm) to 60 

s (lc = 4 nm), the average grain size increased from 3.7 to 4.8 nm. To correlate the grain 

growth to film thickness for Conditions I and II, Fig. 5 shows a correlation of the lateral grain 

size with the film thickness, and indicates that the lateral grain size of the film deposited 

under Condition II were larger than that deposited under Condition I. For Condition II, the 

grain lateral size was still larger than the grain height up to a film thickness of 4 nm. 

In the 4-nm film deposited under Condition II, about 15% of the grains had a coalesced 

shape and relatively large lateral size (7-10 nm). All these grains with relatively large lateral 

size were (200) oriented. In Fig. 1f, several grains with a coalesced shape and large lateral 

size are indicated by arrows and numbered, and lattice imaging shows that these grains were 
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(200) oriented. Fig. 6 shows enlarged images of these grains, together with four grains from 

Fig. 1c that were formed during 30-s deposition under Condition I. 

    

D. Interlayer formation under high N2 partial pressure 

For films deposited under Condition II (see Figs. 2d-f), a 1.5-1.8 nm thick amorphous 

interlayer formed between the deposits and the Si substrate, and changed little with film 

growth, whereas for films deposited under Condition I, the amorphous interlayer thickness 

was less than 0.5 nm (see Figs. 2a-c). The independence of the interlayer thickness on film 

thickness means that the amorphous interlayer was formed during the initial deposition stage. 

To investigate compositions of the initial layer and layer/substrate interface, ex situ XPS 

depth profiling was made for Ti 2p, N 1s, Si 2p, and O 1s peaks. Fig. 7 shows the depth 

profiles for 20-nm thick TiN layers deposited under Conditions I and II. The depths were 

calculated from the etching time and etching rate. Ti and N compositions maintained a 

stoichiometric ratio in the films for both conditions I and II. This is identical to the results of 

in situ AES analysis, which indicated that the Ti/N ratio was 1:1 for 50 nm TiN deposited 

under Conditions I and II. However, for Condition II, N became rich at the TiN/Si interface. 

Considering that TiN film had a stoichiometric composition, the excess N at the TiN/Si 

interface could have been caused by the N from the amorphous interlayer. The compositions 

of the interlayer were mainly SiNx. 

The O content was constant throughout the TiN films and only a few atomic percent. There 

was no increase in O content at the TiN/Si interfaces. The O was mainly from the background 

gasses. Because the base pressure and working pressure were the same at Conditions I and II, 

the reason for the thick amorphous interlayer formed under Condition II was not due to the O 

concentration. 

The TEM results also indicate that the amorphous interlayer formed under Condition II 
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consisted mainly of SiNx with minor Ti concentration. Figs. 2d-f show that the contrast of the 

interlayer was much brighter than that of the TiN layer, and closer to that of Si. This indicates 

that the interlayer was mainly composed of Si and N, and little Ti, because the relatively 

heavy Ti atoms efficiently scatter electrons, and would therefore darken the contrast of the 

layer if it contained high concentrations of Ti. 

    

IV. DISCUSSION 

A. Amorphous layer formation and crystal nucleation processes 

The above results indicate that the initial growth of TiN on Si at room temperature 

undergoes a thickness-dependent crystal nucleation from the initial continuous amorphous 

layer. We qualitatively explain this phenomenon below. 

At the beginning of film deposition, the deposition species of mostly Ti and N atoms and 

ions are arriving at the bare Si surface. Since the stoichiometric TiN can be formed for 0.015 

Pa ≤ PN2 ≤ 0.47 Pa, excess N-species probably arrives at Si surface compared with Ti-species 

for both Conditions I (PN2 = 0.047 Pa) and II (PN2 = 0.47 Pa). Especially under Condition II, 

the excess N species arriving at Si surface react with Si to from SiNX amorphous layer on it 

before continuous TiNX layer is formed. The main species contributing to SiNX layer 

formation would probably be ions such as N2
+ and N+ since it is known that the reaction of N 

atoms with Si surfaces saturates at 1-2 ML thickness while the reaction of N ions proceeds 

further. 16 

Then TiNX deposits are formed on Si surfaces with thin (< 0.5 nm) and thick (1.5- 1.8 nm) 

SiNX layers under Conditions I and II, respectively. When the film thickness is small, the 

contribution of deposit-surface interface to the overall Gibbs free energy of the film should be 

large. The interaction between TiNX deposits and amorphous SiNX may have hindered the 

crystallization of TiNX deposits. 
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As the film grows, the influence of the interfacial interaction weakens, and crystal 

nucleation can initiate at the upper surface of the film under the impact of the incident 

atoms/ions. The released crystal binding energy might promote further crystallization in the 

nanometer amorphous layer, and a transition from an amorphous to polycrystalline film 

occurs. To further understand this mechanism, studies of the deposition under various 

conditions, such as high substrate temperature or substrate biasing, are needed.  

 

B. Grain growth process 

Next, we discuss the reasons for the grains being relatively broad under Condition II, and 

the effects on film textural evolution. 

During film deposition, the energy flux onto the film or substrate is contributed by the 

sputtered Ti and N atoms, reflected neutral species such as Ar and N, ions such as Ar+, N2
+, 

and N+, and electrons. The impinge flux of the species except Ti is much larger than that of Ti 

when stoichiometric TiN is deposited. This means that the energy flux onto the film or 

substrate may be less affected by the sputtered Ti flux. Since the deposition rate under 

Condition II was 1/3 of that under Condition I, the total irradiation energy per deposited atom 

should increase under condition II. This conjecture is identical with the results for reactive 

sputter deposition of AlN, 15 that the total irradiation energy per deposited atom increases 

significantly with increasing N2 ratio. Moreover, in our sputter system, the decreased substrate 

self-bias potential (-23.0 V under Condition I to -29.3 V under Condition II) under Condition 

II may enhance the ion irradiation onto the film or substrate. The higher irradiation energy to 

the film has two effects on the initial film growth. 

1) Higher irradiation energy increases the mobility of the adatoms on the surface of the 

grains, causing adatoms to diffuse to the edges. 

2) When the grains grow large enough to contact each other, the higher irradiation energy 
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enhances coalescence and restructuring of grains. 

Both the effects favor the lateral grain-growth. The grains with anisotropic planar shapes 

have a larger top area than side area, and tend to change into (200)-oriented grains to 

minimize the surface energy. This change can be realized by restructuring of the grains with a 

large lateral size under energetic bombardment of the incident atoms/ions, especially during 

coalescence. 

For thick films (1.6-µm-thick), L. Hultman et al 2 found that the (200) textured TiN on SiO2 

consists mainly of (200) oriented columns from the TiN/substrate interface with constant 

diameter. This means that the (200) preferred orientation was formed during the initial stage 

of deposition. Our results showed that in the initial nucleation stage, the nuclei had a random 

orientation under Condition II, although the 50 nm thick film had a complete (200) texture. 8 

The enhanced lateral grain-growth and coalescence induced restructuring of the grains into 

the (200) orientation, and resulted in the formation of (200) oriented columns, as observed by 

Hultman et al. 

On the other hand, when the films were deposited under Condition I, compared with 

growth under Condition II, due to the lower atomic mobility and less coalescence, the grains 

had a lower lateral growth rate. (111) texture was formed at the film thickness of 50 nm by 

competition grain-growth. 8 

 

V. CONCLUSIONS 

We used high-resolution transmission electron microscopy (HRTEM) and nano-beam 

diffraction (NBD) techniques to investigate the initial growth stage of TiN thin films on (111) 

Si deposited by reactive magnetron dc sputtering. Initial TiN layers formed on (111) Si were 

continuous and amorphous at film thickness less than 1 nm. As the film thickness increased to 

about 2 nm, crystal nucleation occurred from the amorphous layer. The grain-growth process 
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was affected by the N2 partial pressure, PN2. Increasing PN2 from 0.047 to 0.47 Pa enhanced 

lateral grain growth and coalescence between grains. The planar shape of the grains with large 

lateral size and enhanced coalescence at higher PN2 induced restructuring of grains to 

thermodynamically favored (200) orientation. Compared with film deposited at a PN2 of 0.047 

Pa, for films deposited at PN2 = 0.47 Pa a distinct amorphous interlayer (1.5-1.8 nm thick) 

exists between TiN layer and Si substrate. XPS and HRTEM analysis indicated this interlayer 

to be mainly SiNx. 
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Table I TiN deposition conditions 

                    

  Condition I Condition II 
Discharge power (W) dc 69 
Working pressure (Pa) 0.93 
N2 partial pressure (Pa) 0.047 0.47 

Deposition rate (nm/s) 0.19 0.063 
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FIGURE CAPTIONS 

Fig. 1 Plan-view TEM images and corresponding SAED patterns of TiN deposited under 

Condition I for deposition times of (a) 4 s, (b) 10 s, and (c) 30 s, and under Condition II for 

deposition times of (d) 10.5 s, (e) 32 s, and (f) 60 s.  

Fig. 2 Cross-sectional TEM images of TiN deposited onto (111) Si substrates under Condition 

I for deposition times of (a) 4 s, (b) 10 s, and (c) 30 s, and under Condition II for deposition 

times of (d) 10.5 s, (e) 32 s, and (f) 60 s. 

Fig. 3 NBD patterns of cross-sectional samples of (a) film formed under Condition I for a 

deposition time of 4 s, (b) Si substrate, and (c) film formed under Condition I for a 

deposition time of 10 s. 

Fig. 4 Frequency histograms of TiN lateral grain dimension for samples deposited under (a) 

Condition I and under (b) Condition II. 

Fig. 5 Lateral grain growth vs. film thickness. 

Fig. 6 Enlarged plan-view HRTEM images of grains taken from Fig. 1c, (a)-(d), and Fig. 1f, 

(e)-(h), corresponding to the marked grains 1-4 in Figs. 1c and f, respectively. 

Fig. 7 XPS depth profiles of 20-nm thick TiN layers deposited under Conditions I (a) and II 

(b).  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 

 

 


