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Abstract 

 

Self-assembled 3-mercaptopropyltrimethoxysilane (MPTMS, (CH3O)3SiCH2CH2CH2SH) 

layers on hydroxyl-terminated silicon oxide (SiO2) were prepared at MPTMS concentrations 

ranging from 5×10-3 M to 4×10-2 M. The surface structure and morphology of MPTMS layers were 

characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, scanning 

electron microscopy (SEM), and atomic force microscopy (AFM). We found that the MPTMS 

layers on SiO2 consisted of dispersed domains 20-200 nm in diameter, instead of continuous, flat 

monolayers. With increasing MPTMS concentration, the domain shape changed from flat to steep. 

Flat domains were composed of well-ordered monolayers with thiol headgroups uniformly 

distributed on the uppermost surface, whereas steep domains were composed of disordered 

polymers with randomly distributed thiol headgroups on the uppermost surface. These results 

indicate that MPTMS molecules show good self-assembly at an MPTMS concentration of 5×10-3 M, 

but not above this concentration. The effect of MPTMS concentration on the structure and 

morphology of MPTMS layers might be due to the competition between self-polymerization and 

surface dehydration reactions, which depends on the trace quantity of water in the solvent and on 
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the SiO2 surface. Our research further indicates that MPTMS and water concentrations are the 

controlling parameters for preparing well-ordered, self-assembled MPTMS monolayers on SiO2. 

 

PACS: 68.35.Bs; 82.65.My; 81.65.Ya 

 

Keywords: Surface modification; Silicon oxide; Self-assembled monolayers; Atomic force 

microscopy; X-ray photoelectron spectroscopy 

 

1. Introduction 

 

Long-chain alkyltrichlorosilanes and alkyltrimethoxysilanes, such as octadecyltrichlorosilane 

(OTS, C18H37SiCl3), are known to form closely packed, well-ordered, self-assembled monolayers 

(SAMs) on hydroxyl-terminated SiO2 surfaces. In the 1990’s, these compounds received much 

attention in the field of materials science because they offer unique opportunities for increasing the 

fundamental understanding of self-organization, structure-property relationships, and interfacial 

phenomena [1]. Recently, the characteristics of these SAMs, i.e., chemical composition, chain 

orientation, film thickness, and surface coverage characteristics, have been extensively investigated 

by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning 

tunneling microscopy (STM), ellipsometry, Fourier transform infrared spectroscopy (FT-IR), and 

contact angle measurements [2-7]. Parameters, such as concentration, solvent properties, 

temperature, and reaction time play important roles in SAMs formation [2-4]. Furthermore, it was 

found that some SAMs have disordered heterogeneous domain structures [5-7]. 

Most of the previous research on SAMs, however, has mainly been focused on SAMs without 

terminal functional groups. Very little research has been done on SAMs with terminal functional 

groups, such as H2N-, HO-, HS-, HSO3-, Cl-, and Br-, because the introduction of a polar terminal 

functional group causes the formation of more disordered monolayers [8-11]. Even in such research, 
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the surface structure and morphology of SAMs were studied independently, and their relation has 

rarely been described. Understanding the structure and morphology of SAMs with terminal 

functional groups is important because these SAMs are useful in scientific and technological fields, 

such as analytical chemistry [12], biochemistry [13], crystallography [14], electronics [15], and 

optics [16].  

In this work, we studied the surface structure and morphology of self-assembled 

3-mercaptopropyltrimethoxysilane (MPTMS, (CH3O)3SiCH2CH2CH2SH) layers on 

hydroxyl-terminated SiO2 surfaces formed by MPTMS at various MPTMS concentrations in 

benzene. We selected MPTMS because it is terminated with thiol. Organosulfur compounds, such as 

alkanethiol and dialkyl disulfide etc., have a strong affinity for transition metal surfaces, which 

form SAMs on metals [17-20] and semiconductors [21-23]. The MPTMS layers with a 

thiol-terminated uppermost surface can serve as an important coupling agent between transition 

metals and silicon oxides [24-26]. Therefore, they are promising for controlling wetting, corrosion 

inhibition, protein adsorption, catalysis, electronics, and biosensors. In this paper, therefore, we 

discuss the effect of MPTMS concentration on the surface structure and morphology of MPTMS 

layers formed on SiO2, and suggest that to prepare well-ordered, self-assembled MPTMS 

monolayers, it is important to precisely control the MPTMS and water concentrations in solvents. 

 

2. Experimental 

 

2.1. Materials 

 

P-type, <100> oriented silicon wafers were provided by Shin-Etsu Chemical Co., Ltd. and 

MPTMS (purity: 85%) was purchased from Aldrich Chemicals. Hydrofluoric acid (HF), hydrogen 

peroxide (H2O2), and concentrated sulfuric acid (H2SO4) were purchased from Wako Pure 

Chemicals Industries, Ltd. and used for substrate treatment. Water was deionized by using a 
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Millipore-W system equipped with cation and anion exchange columns. Anhydrous grade benzene, 

chloroform, and methanol were purchased from Wako Pure Chemicals Industries, Ltd. and used as 

received. The quantity of H2O in all the solvents was less than 30 ppm. 

 

2.2. Substrate preparation 

 

Silicon wafers were cut into 1×1 cm pieces, sonicated in ethanol for 10 min, and rinsed with 

deionized (DI) water. To remove the natural oxide layer, the substrates were dipped into a 1% HF 

solution for 3 minutes, followed by rinsing with DI water. Finally, 5-10 nm thick SiO2 films were 

deposited on these substrates by using radio frequency (RF) magnetron sputtering. These substrates 

with sputtered SiO2 thin films were used as the substrates for the formation of self-assembled 

MPTMS layers. 

 

2.3. Formation of self-assembled MPTMS layers 

 

First, we hydroxylated SiO2 surfaces by soaking the substrates in 1N HNO3 for 24 hours. Then, 

the substrates were rinsed and further hydroxylated by immersing them in a 30:70 (v/v) mixture of 

H2O2 and H2SO4 at 60-80 °C for 30 min. The resulting SiO2 surface was considered to have about 5 

OH groups per nm2 [27, 28]. The substrates were dried under an nitrogen (N2) stream and further 

dried by heating in an oven at 100 °C for 30 min. 

MPTMS solutions at concentrations ranging from 5×10-3 M to 4×10-2 M in benzene were 

prepared in an N2 atmosphere. The substrates with SiO2 thin films were immersed into MPTMS 

solutions at room temperature for 30 minutes in an N2 atmosphere. The substrates were taken out 

and then successively washed with benzene, chloroform, methanol, DI water, and finally dried in an 

N2 stream. For comparison, samples were also prepared with the same treatment procedure, but 

without adding MPTMS. We refer to these samples as bare SiO2 in this paper. 
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2.4. Analysis 

 

X-ray photoelectron spectroscopy (XPS) and angle-resolved X-ray photoelectron spectroscopy 

(ARXPS) were measured with a RIGAKU XPS-7000 spectrometer using an Mg Kα (1253.6 eV) 

source at a power level of 200 W. Each sample was analyzed at a photoelectron take-off angle of 

90°, except for the angle-resolved measurements, which were analyzed with take-off angles ranging 

from 10° to 90°. The take-off angle is defined as the angle between the analyzer and the substrate 

surface. The binding energy (BE) scale was calibrated to 284.8 eV (-CH2-CH2-SiO3
3-) for the main 

C(1s) (C-C, C-H and C-Si) feature [29]. 

The water contact angle on SiO2 treated with MPTMS was measured at room temperature at 

three different positions on each sample by using a contact angle analyzer (KYOWA, FACE 

CA-DT·A). 

The surface morphology was characterized with SEM and AFM measurements. SEM 

measurements were made with a field emission scanning electron microscope (FE-SEM) (HITACHI 

S-900). Before loading into the observation chamber, we coated all of the samples with Pt by ion 

sputtering to compensate for the charging effect of sample surfaces. AFM measurements were made 

with a Nanoscope IIIa (Digital Instruments) equipped with a MultiMode microscope operated in the 

tapping mode, in air, and at room temperature. 

 

3. Results and discussion 

 

3.1. Structure of self-assembled MPTMS layers 

 

The relative elemental compositions of MPTMS-treated SiO2 surfaces measured with XPS are 

listed in Table 1. The elemental fraction of sulfur and carbon on SiO2 surfaces increased after the 
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treatment with MPTMS, which indicates that MPTMS was introduced to SiO2 surfaces. As the 

MPTMS concentration increased from 5×10-3 M to 4×10-2 M, the C/S atomic ratio, which was 

expected to be 3:1 from the MPTMS molecular composition, decreased from 20:1 to 6:1. This 

excess carbon above the expected ratio of 3:1 might be due to contamination of organic chemicals, 

such as solvents or impurities in the air. 

Figure 1 shows high-resolution XPS spectra of C(1s) for SiO2 substrates before and after 

treatment with 5.0×10-3 M and 4.0×10-2 M MPTMS, which indicate the existence of MPTMS on 

SiO2 surfaces. The C(1s) XPS spectrum of bare SiO2 substrate shows only one band at 284.8 eV, 

whereas those of the SiO2 substrates treated with 5.0×10-3 M and 4.0×10-2 M MPTMS show two 

contribution bands, centered at 284.8 and 286.4 eV, respectively. The band at 284.8 eV corresponds 

to hydrocarbon and carbon bonded to silicon (C-C, C-H, and C-Si, 284.8 eV peak), and the band at 

286.4 eV corresponds to carbon bonded to oxygen and sulfur (C-O and C-S, 286.4 eV peak) [16]. 

The appearance of a new band of C(1s) at 286.4 eV demonstrates the reaction of MPTMS with SiO2 

surfaces after the treatment with MPTMS. Furthermore, for all the samples, the dominant 

component (C-C, C-H, and C-Si) occupied about 75% of the overall carbon, which is larger than the 

66% expected from the MPTMS molecular composition. We attribute this excess hydrocarbon to 

contamination, which agrees with the previous discussion about the C/S atomic ratio on SiO2 after 

the treatment with MPTMS. 

We investigated the chemical state of sulfur in MPTMS layers on SiO2 by using ARXPS. 

High-resolution XPS spectra of S(2p) for SiO2 substrates treated with 5.0×10-3 M and 4.0×10-2 M 

MPTMS are shown in Fig. 2. The ARXPS profiles were obtained at take-off angles varying from 

10° to 90°. All the data can be fitted with a single Gaussian curve, which indicates that sulfur only 

exists in a single chemical state in MPTMS layers formed by both 5.0×10-3 M and 4.0×10-2 M 

MPTMS. In other words, the interaction between thiols and surface silanols is negligible. For SAMs 

on SiO2 formed by amine-functionalized 3-aminopropyltrimethoxysilane (APTES, 

(CH3CH2O)3SiCH2CH2CH2NH2), however, different results have been reported [8-11]. The N(1s) 
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XPS signal shows two components assigned to free amine, and to hydrogen-bonded and protonated 

amine, respectively. Kallury et al. reported that either surface water or surface silanols promote the 

amine-surface interaction and orient the amino moieties towards the SiO2 surface [9]. The strong 

interaction between functional groups and surface silanols interferes with the formation of 

well-oriented SAMs. Therefore, self-assembled MPTMS layers appear to have better orientation 

than APTES layers on SiO2, owing to the weaker interaction between thiols and surface silanols 

than between amines and surface silanols. 

To evaluate the orientation of MPTMS molecules in MPTMS layers on SiO2, the variation of 

S/C atomic ratio was derived from ARXPS analysis, which is shown in Fig. 3. As the take-off angle 

decreased, the S/C atomic ratio increased for samples treated with 5.0×10-3 M MPTMS, but was 

almost constant for samples treated with 4.0×10-2 M MPTMS. This demonstrates that at the 

MPTMS concentration of 5.0×10-3 M, MPTMS forms well-ordered layers with thiol headgroups 

uniformly distributed on the uppermost surface. At the MPTMS concentration of 4.0×10-2 M, 

however, MPTMS forms disordered layers with randomly distributed thiol headgroups, i.e., 

MPTMS polymers, as discussed later. 

Figure 4 shows the variation of water contact angle on SiO2 treated with MPTMS at MPTMS 

concentrations ranging from 0 to 8.0×10-2 M. The contact angle for bare SiO2 was 46°. For other 

samples treated with MPTMS, at MPTMS concentrations ranging from 5.0×10-3 M to 8.0×10-2 M, 

the contact angle increased from 71° to 104°. Heise et al. reported that the contact angles of SAMs 

formed by using methyl- and amine-terminated alkylsiloxanes on SiO2 were 68° and 103°, 

respectively [30]. We consider that our measured contact angle of 71° is due to well-ordered 

structures with thiol headgroups distributed on the uppermost surface, whereas our measured 

contact angle of 104° is due to disordered structures with randomly orientated thiol groups 

distributed on the uppermost surface. This is consistent with our investigations made with ARXPS. 

Therefore, both ARXPS and contact angle measurements demonstrate that using MPTMS at the low 

concentration of 5.0×10-3 M is effective for forming well-ordered layers with thiol headgroups on 
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the uppermost surface. At higher MPTMS concentrations than this, however, MPTMS molecules 

lose the self-assembly. 

 

3.2. Morphology of self-assembled MPTMS layers 

 

The surface morphology of assembled MPTMS layers formed on SiO2 substrates was 

investigated with FE-SEM and AFM. Figure 5 shows FE-SEM images of bare SiO2 surface (Fig. 

5a) and SiO2 surfaces treated with MPTMS at MPTMS concentrations of 5×10-3 M, 2×10-2 M, and 

4×10-2 M (Fig. 5b, 5c and 5d), respectively. In comparison with the smooth, bare SiO2 surface (Fig. 

5a), the surface roughness increased with increasing MPTMS concentration, which can be seen 

from the increase of image contrast in Figs. 5b to 5d. For samples treated with 5.0×10-3 M MPTMS 

(Fig. 5b), only a few, small irregularities with sizes below several tens of nanometers were 

observable. For samples treated with 4.0×10-2 M MPTMS (Fig. 5d), however, many large 

irregularities appeared, with sizes ranging from several tens to several hundreds of nanometers. It is 

conceivable that such irregularities are MPTMS polymers rather than MPTMS monolayers. These 

results support the fact that the increase of MPTMS polymers on SiO2 surfaces leads to an increase 

of disordered orientation of MPTMS layers. 

SEM images only provide two-dimensional information about MPTMS layers, but for proper 

analysis of sizes and shape of irregularities, three-dimensional information of such irregularities is 

needed. Therefore, as shown in Fig. 6, we used AFM to determine three-dimensional surface 

morphologies. The top panels show AFM images of surfaces of bare SiO2 (Fig. 6a), and SiO2 after 

the treatment with MPTMS (Fig. 6b, 6c and 6d). The bottom panels show contours of cross-sections 

along the diagonal from the top left to the bottom right of each image shown in the corresponding 

top panel. In contrast to the smooth surface of bare SiO2, MPTMS layers formed at MPTMS 

concentrations ranging from 5.0×10-3 M to 4.0×10-2 M consisted of dispersed domains, with sizes 

ranging from 20 to 200 nm in diameter, and shape varying from flat for samples treated with 
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5.0×10-3 M MPTMS (Fig. 6b), to steep for samples treated with 4.0×10-2 M MPTMS (Fig. 6d). 

The height of these domains can be seen from the contours of the MPTMS layer cross-sections 

along the diagonal, as shown in the bottom panels in Fig. 6. For samples treated with 5.0×10-3 M 

(Fig. 6b), there were many domains less than 1 nm high, and a few domains 2-3 nm high. Samples 

treated with 2.0×10-2 M MPTMS (Fig. 6c) had domains that were typically 2-3 nm high, while 

those treated with 4.0×10-2 M MPTMS (Fig. 6d) had domains mostly higher than 5 nm. The 

domains less than 1 nm high are self-assembled MPTMS monolayers because the thickness of one 

monolayer of MPTMS is about 0.7 nm [8, 26], whereas the domains 2-3 nm high or larger are 

disordered MPTMS polymers. For samples treated with 5.0×10-3 M MPTMS (Fig. 6b), although the 

SiO2 surface was covered with a mixture of monolayers and polymers, the percentage of 

monolayers was much larger than polymers. For samples treated with 4.0×10-2 M MPTMS (Fig. 6d), 

however, most domains were much higher than one monolayer thickness of MPTMS, and were 

therefore considered as MPTMS polymers. Although a few domains with thickness close to 

MPTMS monolayers can be seen, the SiO2 surface was almost completely covered with MPTMS 

polymers. 

The effect of MPTMS concentration on the structure and morphology of MPTMS layers on 

SiO2 substrates is summarized in Fig. 7. For MPTMS concentrations ranging from 5×10-3 M to 

4×10-2 M, the MPTMS layers on SiO2 consist of dispersed domains 20-200 nm in diameter rather 

than continuous, flat monolayers. At an MPTMS concentration of 5×10-3 M, the domains are flat 

and composed of well-ordered monolayers with thiol headgroups uniformly distributed on the 

uppermost surface (Fig. 7a). As the MPTMS concentration increases, the domains are rougher and 

composed of less well-ordered monolayers and more disordered polymers with randomly 

distributed thiol headgroups on the uppermost surface (Fig. 7b). At an MPTMS concentration of 

4×10-2 M, however, the domains are steep and composed of disordered polymers (Fig. 7c). This 

indicates that MPTMS molecules show good self-assembly at the MPTMS concentration of 5×10-3 

M, but not above this concentration. 
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The effect of MPTMS concentration on the structure and morphology of MPTMS layers on 

SiO2 can be explained by the reaction mechanism of alkyltrimethoxysilanes with surface silanols, 

which is shown in Fig. 8. Alkylsiloxane hydrolysis either in solvents or on SiO2 surfaces, which is 

followed by subsequent dehydration on SiO2 surfaces, is the mechanism of SAMs formation [4, 8]. 

Hydrolysis in solvents favors self-polymerization, whereas hydrolysis on SiO2 surfaces causes the 

formation of SAMs. Thus, trace quantities of water in solvents or on SiO2 surfaces dominate the 

self-polymerization and dehydration reactions with surface silanols. Insufficient water either in 

solvents or on SiO2 surfaces impedes the hydrolysis reaction, and decelerates the subsequent surface 

dehydration reaction. On the contrary, excess water in solvents accelerates self-polymerization over 

the surface dehydration reaction. 

McGovern et al. suggested that a water concentration of 1.5 ppm in solvents is optimum for 

forming closely packed OTS monolayers [4]. In our experiments, however, the water concentration 

in benzene was less than 30 ppm, and therefore probably higher than the suggested optimum 

concentration. The hydrolysis reaction in the solvent might occur more easily than on the SiO2 

surface. Therefore, our experimental results can be explained by the following mechanism. At low 

MPTMS concentrations (Fig. 8a), hydrolyzed MPTMS molecules diffuse to the SiO2 surface to 

form smooth, well-ordered SAMs, rather than polymerize with each other in the solution. At high 

MPTMS concentrations (Fig. 8b), before they can diffuse to the SiO2 surface, more MPTMS 

molecules are hydrolyzed by water in the solution and polymerize there, rather than forming SAMs 

on the SiO2 surface. The sub-micrometer-sized polymer particles diffuse to and react with the SiO2 

surface, which leads to the formation of rough polymer layers. 

The domain formation for self-assembled OTS and APTES layers on SiO2 has also been 

clarified [7, 8]. Styrkas et al. found that self-assembled OTS on SiO2 forms rough layers composed 

of isolated domains and pinholes [7]. Vandenberg et al. found there are irregularities 200 nm in 

diameter and 20 nm high on SiO2 modified with APTES [8]. We believe that all of these results are 

related to alkylsiloxane concentrations and to trace quantities of water in solvents and on substrate 
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surfaces. 

These results show that to prepare closely packed, well-ordered MPTMS monolayers on SiO2, 

both low MPTMS concentration and optimum water quantity are required. This principle is also 

applicable to the formation of other SAMs formed by alkyltrichlorosilane and alkyltrimethoxysilane 

derivatives with or without terminal functional groups. 

 

4. Conclusions 

 

Self-assembled 3-mercaptopropyltrimethoxysilane (MPTMS, (CH3O)3SiCH2CH2CH2SH) 

layers on hydroxylated SiO2 surfaces were prepared at MPTMS concentrations ranging from 5×10-3 

M to 4×10-2 M. The surface structure and morphology of MPTMS layers were characterized by 

using XPS, contact angle measurements, SEM, and AFM. Both the structure and the morphology of 

MPTMS layers on SiO2 surfaces depend on the MPTMS concentration. As MPTMS concentrations 

varied from 5×10-3 M to 4×10-2 M, MPTMS layers on SiO2 surfaces consisted of dispersed domains 

20-200 nm in diameter rather than continuous, flat monolayers. At an MPTMS concentration of 

5×10-3 M, the domains were flat and composed of well-ordered monolayers with thiol headgroups 

uniformly distributed on the uppermost surface. At an MPTMS concentration of 4×10-2 M, however, 

the domains were steep and composed of disordered polymers with randomly distributed thiol 

headgroups on the uppermost surface. This indicates that MPTMS molecules show good 

self-assembly at the MPTMS concentration of 5×10-3 M, but not above this concentration. 

The effect of MPTMS concentration on the structure and morphology of MPTMS layers on 

SiO2 is due to two competitive reactions, which depend on the trace quantity of water in the solvent 

and on the SiO2 surface. One is the self-polymerization reaction of hydrolyzed MPTMS molecules, 

which forms sub-micrometer-sized particles condensing onto the SiO2 surface. The other is the 

dehydration reaction of hydrolyzed MPTMS molecules with surface silanols, which forms 

well-ordered MPTMS monolayers on the SiO2 surface. Our research suggests that both the MPTMS 
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and water concentrations are controlling factors for the preparation of SAMs, and must be precisely 

controlled to obtain well-ordered, self-assembled MPTMS layers. 
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Figure Captions 

 

Fig. 1. XPS spectra of C(1s) for (a) bare SiO2 substrate and SiO2 substrates treated with (b) 5.0×10-3 

M and (c) 4.0×10-2 M MPTMS. 

Fig. 2. XPS spectra of S(2p) vs. take-off angle for SiO2 substrates treated with (a) 5.0×10-3 M and 

(b) 4×10-2 M MPTMS. 

Fig. 3. S/C atomic ratio measured with ARXPS for SiO2 substrates treated with (a) 5×10-3 M and 

(b) 4×10-2 M MPTMS at take-off angles of 10°, 50°, and 90°. 

Fig. 4. Water contact angle on SiO2 substrates treated with MPTMS at MPTMS concentrations 

ranging from 0 to 8.0×10-2 M. 

Fig. 5. Surface SEM images of (a) bare SiO2 substrate and SiO2 substrates treated with (b) 5×10-3 M, 

(c) 2×10-2 M, and (d) 4×10-2 M MPTMS. 

Fig. 6. Surface AFM images of (a) bare SiO2 substrate and SiO2 substrates treated with (b) 5×10-3 

M, (c) 2×10-2 M, and (d) 4×10-2 M MPTMS. The lower panels show cross-sectional contours 

along the diagonal from the top left to the bottom right of each AFM image shown above. 

Note that the scale of the vertical axis in all of the lower panels ranges from - 5 to + 5 nm, 

except for that in panel d, which ranges from - 20 to + 20 nm. 

Fig. 7. Schematic diagram of the structure and morphology of MPTMS layers formed on SiO2 at 

MPTMS concentrations of (a) 5×10-3 M, (b) 2×10-2 M, and (c) 4×10-2 M. 

Fig. 8. Competitive reactions in the formation of self-assembled MPTMS layers on the SiO2 

surface: (a) surface dehydration on the SiO2 surface; (b) self-polymerization in the solvent. 
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Table 1. Relative elemental compositions of SiO2 surfaces after the treatment with MPTMS at 

MPTMS concentrations ranging from 5.0×10-3 M to 4.0×10-2 M, determined from XPS analysis. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
  

MPTMS Concentration (M) Si (%) S (%) O (%) C (%) 

0 27.4 0 68.7 3.9 

5.0×10-3 25.7 0.6 62.0 11.7 

1.0×10-2 24.4 1.4 59.7 14.5 

2.0×10-2 22.4 2.9 52.8 21.9 

4.0×10-2 18.7 5.2 43.3 32.8 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
 

 
 


