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Abstract

Particle aggregation and growth have drawn immense attention in recent years for a
various reasons, for example aerosol pollution, dust protection. Various experiments and
simulations are used to model its dynamic process and aggregation/growth mechanism,
but these studies mostly limited in the certain particle type and cannot describe the
multi-type particle coexistence system. In the general atmosphere/water pollution, the
inter-aggregation between the different type particles widely occurs in this coexistence
system. Based on this viewpoint, this paper developed the traditional models to simulate
this phenomenon by adding the type constraint and used the fractal dimension to
describe the aggregation structure. The simulation results shows that type constraint has
less influence on the aggregation structure and its fractal dimension in the coexistence
system. This can be explained that type constraint can be seen as the stickiness

possibility.
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Chapter 1

Introduction

Particle aggregating growth process plays the important role in the natural
environmental systems, scientific and engineering fields, such as coatings, electronic
inks, photonic crystals, drug delivery, and biosensors, polymer polymerization,

secondary oil recovery, etc.

In the past decades, a large number of simulation models and experiments have been
devoted to understand the dynamic growth of the aggregate structure and the
aggregation mechanism. In this chapter, we will introduce the importance of particle

aggregation, some main models and the objective of this research.
1.1 Importance of Particle Aggregation Growth

Particle aggregation processes have long been observed and used in many areas of
both natural and engineered systems. This aggregation process is particularly widely
seen in applications related to chemical, electrical and environmental engineering. For
example, it is a common process used in water and wastewater treatment plants [1].
Particles found in water come from many different sources, and the sizes of these
particles range from submicron to more than 1 cm for some oceanic aggregates (Jackson
and Lochmann, 1933) [2]. Several mechanisms cause these particles to constantly
collide with each other and form aggregates. Not only do they influence the rheological
properties of suspensions, but they play important roles in handlings of solid particle
such as the liquid—solid separation, the coating of particles on a surface and the
formation of the crystalline assemblies. It also affects the behavior of particles in natural

systems. The prediction and the control of aggregate size in fluid having various static



and dynamic properties are required for a lot of processes in which nano- and

micro-particles are treated [3].

Industry has become progressively more interested in controlling the microscopic
properties of particles, such as composition, shape, surface roughness, surface
characteristics, and porosity. It has been estimated that 70% of all industrial processes
involve dealing with fine particles at some point in the process (Bushell 1998) [4].
Characterization of these particles helps us to understand and predict or control their
behavior in many processes. In industry, the properties of particles determine whether or
not a dust is a respiration hazard, whether granular materials will mix or segregate when
agitated, and whether material in a hopper will flow in a controllable fashion, behave
like a liquid, or not flow at all. In most industrial applications, the shape, structure, and
strength of aggregation play an important role, since many characteristics of the
suspensions (such as the electrical, optical, magnetic, and adsorptive properties) are

mostly dependent upon the morphology, size distribution, and strength of the aggregates

[5].

Although particle aggregation growth is so important in the scientific and engineering
fields, the aggregation mechanism is often rather complex and vary from one system to
another due to different physical or chemical origins. Until, the aggregation mechanism

is far away from complete understanding.
1.2 The objective of this research

Because of the important roles of the particle aggregating growth process in natural,
scientific and engineering systems, such as coatings, dust protection, water pollution,
and so on, many studies of this area, including experiments and simulations have been

considered to get an insight on growth process and mechanism.

The earliest simulation model of the aggregate growth process was gotten by Vold

using the computer simulation in 1963 [6] which model has a three layers’ structure. In



1966, Sutherland criticized this random characteristic in the particle coagulating process
of the Vold aggregation model and believed that the main mechanism of the aggregation
growth is not the only particle collisions but also the clusters aggregation [9]. In the
above research, the particles and clusters follow the linear movement but did not include
the Brownian motion which is inconsistent with the actual situation in the natural
systems. Witten and Sander had made the modification about this [8]. After these early
simulations and experiments, there are also many special experiments have been done

and various models have been proposed.

Although the reasons for aggregation/growth are complex and vary from one system
to another due to different physical and chemical reasons, it is now generally accepted

that there are two limiting regimes of aggregation growth:

1) Diffusion-Limited Aggregation (DLA), in which every collision between particles

leads to the formation of a permanent aggregation structure, and

2) Reaction-Limited Aggregation (RLA), in which only a small fraction of particle

collisions leads to the formation of an aggregation structure.

A fast aggregation process, in which particles stick to each other upon aggregation as
a result of diffusion, results in a loosen, ramified structure. On the other hand, a slow
aggregation process, in which more than one collision is required for particles to form

permanent aggregations, yields a more dense structure.

So as not to miss underlying essential mechanisms in the process of particle
aggregation and dynamic growth, morphological features are at first to be simulated by

a set of simple models.

These two models, DLA model and RLA model are so simple and universe that they
can easily give some explanations for some complex aggregation process. In fact, there
exists the weak or strong interactions between particles when particles have the

possibility to attract each other and stick together. For particles which carry some



electrical charge (ions) the forces are typically very strong and thus there is a gain in
energy when they build aggregates. So aggregates are a preferred state compared to
spread ions. Usually such aggregates are well ordered, they form crystals. The ordering
force is the shape and charge of the ions, you will (almost) always get the same shape
with a distinct set of ions (NaCl typically forms a cube). And with crystals formed by
charged particles the forces may work on comparable long distances. In ideal situations
the crystals are very compact and regularly shaped. This situation can be explained by
RLA model and energy gain can be understood as stickiness possibility in RLA model.
Without an electrical charge the forces are much weaker. So, it may happen that
particles stick together for a while but at distinct opportunities they travel around again.
Without the ordering force of the electrical field of charged particles, the aggregates
have no distinct shape. Each aggregate is unique. Such a building is also named a cluster.
Often the aggregates are quite fluffy, not compact, but maybe tree like. This situation

can be explained by DLA.

Based on the description above, we can find that the explanations for aggregation
growth from DLA and RLA are limited and simple because they simplify many

necessary considerations.

In the water or atmosphere environmental system, it is rather common that many
kinds of particles are to aggregate and growth. The aggregation mechanism in this
coexistence system may be more complex than one of single-type system due to various
physical and chemical reasons. For example, there are many different types of pollutant
particles contained in the waste water, such as various kinds of metal particles, latex
particles, organic and inorganic colloids, cohesive sediment, and so on. Utilizing the
developed model to simulate such multi-type particle aggregation and dynamic growth
process can help us to get insights on the growth behavior and mechanism. This plays
important roles in understanding and improving the more effective and economical

treatment techniques.



But the present studies and simulations mostly limited in the certain particle type and
there have so far been few studies on the aggregation dynamics in this coexistence
system. Based on the results of these two models, the new extended models will be
developed to solve the aggregation growth of many kinds of particles, in which the
‘type’ constrain condition will be added to each particle to control the particles sticking

behavior when they collide.

The objective of this paper is to study its aggregation growth behavior. The highly
disordered structure of particle aggregation and growth is quantitatively characterized

by fractal dimension.



Chapter 2

Aggregation Growth Model

In this chapter, the development of aggregation growth model is reviewed. With the
deeply researching about the fractal growth, a variety of dynamic growth models had

been founded, which basically can be divided into three kinds:
1. Diffusion-Limited Aggregation model (DLA model);
2. Ballistic Aggregation model (BA model);
3. Reaction-Limited Aggregation model (RLA model).

Each of these three models has two different forms: monomer aggregation and cluster
aggregation. For the DLA model, the monomer aggregation is named Witten-Stander
model, while the cluster aggregation is named Diffusion-Limited Cluster Aggregation
model. For the BA model, the monomer aggregation is named Vold model, while the
cluster aggregation is named Sutherland model. For the RLA model, the monomer
aggregation is named Eden model, while the cluster aggregation is named

Reaction-Limited Cluster Aggregation model [9].

In the Diffusion-Limited Aggregation model and Reaction-Limited Aggregation, the
particles perform random walk due to Brownian motion; these two models can be useful
for the study of fractal structure growth, such as colloid collision and deposition,
flocculation growth, and so on. While in the Ballistic Aggregation model, the particle
will follow the random ballistic (linear) trajectory and stick to the surface of the
structure when it comes close to a previously added particle in the growing aggregate.
This aggregation results in the formation of a fanlike structure if the initial seed is a

structureless point. This simplified BA model can be useful for the study of surface



growth processed, such as physical vapor deposition on a cold substrate

vacuum.
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Fig. 2.1 The three basic fractal growth models

Figure 2.1 shows the above three kinds of models’ diagram in the two-dimensional

plane. These diagrams are obtained by computer simulation by P. Meakin [7]. The

fractal dimension values (D) listed on the diagrams are obtained in the

three-dimensional space.

2.1 Diffusion-Limited Aggregation

2.1.1 Diffusion

Diffusion is a random motion. Although the motion of individual particles is totally

random with respect to the direction, it may happen that particles walk somewhat far

relative to a starting point. But, in contrary to a normal flow, where all particles under

investigation move more or less into the same direction, the average of walked distance

of all pafticles within a random walk (Brownian motion) is zero. While one particle



moves into this direction, another moves into another direction.

In diffusion there might be a net transport of material, when the starting situation is
not a uniform distribution. As you might imagine, when you open a container with dye
within an aquarium, after a while you will find the dye spread around all available water.
When you do this experiment, you will see, that it takes a lot of time until you have a
uniform color. This is typical for the underlying random mechanism. The dye particles
move forth, back, back, forth, back, forth, forth, forth, back.... and this way it takes its
time. This slowliness is typical for diffusion. Diffusion is not only a phenomenon in

fluid systems, but also in solid phases. It just takes much more time.
2.1.2 DLA Model Theory

Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a
random walk due to Brownian motion and stick together to form aggregates. This
theory was proposed by two physicists T.A. Witten and L.M. Sander [8] in 1981 who
try to use it to explain the observed fractal aggregation of the dust particles. This theory
can be applicable to aggregation in any system where diffusion is the primary means of
transport in the system. Diffusion-limited aggregation can be observed in many systems

such as electrodeposition, Hele-Shaw flow, mineral deposits and dielectric breakdown.

Basically, a DLA is a model of irreversible growth process whereby individual
particles stick to one another to form clusters or aggregates. It was found to be very
useful for a wide range of growth processes in which diffusion (some kind of random
motions) is the important limiting step and rearrangement of the material within a

cluster is not allowed. The DLA is one of the most important models of fractal growth.

The growth rule is remarkably simple. We start with an immobile seed particle fixed
in a central lattice site of the plane. A walker is then launched from a random position
far away the seed and is allowed to diffuse. The released particle moves following a

Brownian trajectory. If it touches the seed, it is immobilized instantly and becomes part



of the aggregate. Next we launch similar walkers one-by-one and each of them stops
upon hitting the cluster. After launching a few hundred particles, a cluster with intricate

branch structures results [8].

The structure of this aggregate has the characteristics: dendritic and complex
structure with the changeless scaling that occurs in the diffusion limited products. In 3

D space, the fractal dimension of this aggregate is about 2.50.

2.1.3 Model simulation

The simulation procedure for the DLA is quite straightforward: Imagine a computer
screen is the 'ground' for the fractal cluster to grow and the screen is made of tiny grids
called pixels. Only one particle can occupy a pixel. Starting with a single-seed, fixed
particle at the center of the screen, a second moving particle is 'created' randomly at
some distance from the origin and move randomly on the pixel grids until it reaches a
grid adjacent to the seed and becomes part of growing cluster. A third moving particle is
then generated like the second particle and allows wandering randomly. The particle
will stick if it finds itself adjacent to any stuck particles. The procedure is repeated

many times and the end result, instead a lump as one may expect, is (surprise) a fractal.

Diagram (Figure 2.2) below shows a typical Witten-Sander (WS) cluster model
grown on two dimensional square lattices (grids) which consists of 3000 particles (or

pixels as are generated on the computer screen).
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Fig.2.2 DLA aggregate consists of 3000 particles

The aggregate has randomized crossover, open structure and obvious self-similarity
that can be seen from the above diagram. The characteristics of the aggregate indicate
that the aggregate structure has shielding effect. This shielding effect is very obvious
that the top of the branches have the most chances to effectively capture the diffusing

particles.

In the Figure 2.2, in order to show the shielding effect clearly, show the previous
1500 particles in the aggregate as small circles which have deep color that form the
internal organization of the aggregate; and show the latter 1500 particles as small point.
Because of the shielding effect, these latter 1500 particles are basically located on the

periphery position of the aggregate and only a few particles can enter the inside [9].
2.1.4 Application

The aggregation process leading to the DLA cluster is widespread in nature.
Branched structures reminiscent of DLA have been observed in viscous fingering,

electrodeposition, dielectric breakdown, dendritic and snowflake growth, chemical
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dissolution, thin film crystallization, geological phenomena such as disequilibrium
silicate mineral textures, and even biological phenomena such as bacterial growth,

neuronal growth, and fingering of HCl across the mucus lining of the stomach.

2.2 Reaction-Limited Aggregation

The aggregation phenomenon is usually classified in two regimes: diffusion-limited
aggregation (DLA) and reaction-limited aggregation (RLA). DLA occurs when collision
efficiency of two clusters is relatively high or close to unity, while RLA prevails at very
low collision efficiencies. Because of differences in hydrodynamics of particle/cluster
interactions, the kinetics of aggregation is dissimilar in the two regimes. DLA follows
power-law growth kinetics (Figure 2.3a) while RLA kinetics conforms to an

exponential growth law (Figure 2.3b) [10].

e
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Fig. 2.3 Representative aggregate growth curves (a) diffusion-limited aggregation -

power law growth, and (b) reaction-limited aggregation - exponential growth

The Reaction-Limited Aggregation model is also known as Chemically-Limited
Aggregation model, which includes two basic types: Eden model for monomer growth
and RLCA model for cluster growth (Fig. 2.1). The phenomena and process of the
silicon dioxide aggregation on the water solution can explain the basic characteristic of

this reaction-limited aggregation model.
2.2.1 Model theory

Reaction-limited cluster aggregation models were first introduced by Jullien and

Kolb [11, 12].

In reaction-limited aggregation model, particles also perform Brownian motion, but a
small repulsive energy barrier must be crossed before the particles can contact each
other and become irreversibly joined. This means that on average many encounters
between clusters must take place before a bonding event occurs and the clusters are able
to explore all possible bonding possibilities (or at least a representative sample of them)
before a new bond is formed. That is when one particle collide with other particles or
clusters, if they can overcome the energy barrier between the two approaching particles
they will stick together and form the new cluster, if not they will walk apart respectively
and take the next collision. So one particle must take many times of collision with other
particles to overcome the energy barrier before it sticks with other particle or cluster.
The potential energy diagram was shown in the Figure 2.4 [13]. This idea provides the
basis for most models for reaction-limited aggregation. While it is possible to simulate
RLA using the diffusion-limited aggregation with a very small stickiness possibility (o),

this is not a practical procedure for carrying out large scale simulations near to the ¢ —

0 limit.
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Fig. 2.4 Interparticle potential energy diagram showing the high repulsive energy
barrier when no coagulation takes place, the low barrier for reaction limited

aggregation, and the lack of a barrier for diffusion limited aggregation

2.2.2 Comparison of DLA and RLA model

Coagulation of latex particles is most often carried out in the diffusion limited
aggregation regime where the time for coagulation to take place is on the millisecond
timescale. This process produces aggregates of low density, irregular shape, and a broad

particle size distribution. When the coagulation is carried out in the reaction limited
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aggregation regime, a coagulation time of about 1-120 seconds, the system can be
controlled by mixing to yield dense, spheroidal aggregates with a very narrow particle
size distribution (shown as Fig. 2.5). Controlled coagulation in the RLA regime yields
much narrower particle size distributions than are achievable with DLA. Figure 2.5 is a
comparison of representative distributions both having an average size of about 200 um
in diameter [13]. Note the large amount of oversized and undersized particles in the
DLA curve compared to the RLA curve. Aggregate morphology also differs

significantly.

70

Aggregate Diameter (um)

Fig. 2.5 RLA produces a much narrower aggregate size distribution

than DLA

In this experiment, the latexes used in this study were produced by redox initiated
seeded emulsion polymerization run under monomer-starved conditions to ensure that
the composition remained constant throughout preparation. The surfactant was 1%

sodium dodecyl sulfate based on monomer included butyl acrylate (BA) and methyl
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methacrylate (MMA). All latexes were coagulated at 10% polymer solids with CaClI2

solution at pH=4.

Conventional coagulation involves adding a coagulant (e.g., Ca®* ions) to the latex in
excess of the critical coagulation concentration (CCC). This causes coagulation of the
latex particles in a matter of milliseconds and is termed diffusion limited aggregation
(DLA). In DLA latex particles form aggregates as quickly as they can diffuse together
and collide [14]. Each collision results in the particles “sticking” together. If slightly
less coagulant than the CCC is used, then the coagulation rate is slowed to the timescale
of seconds instead of milliseconds and mixing can be used to control aggregate size and
shape. This is termed reaction limited aggregation (RLA) and the latex particles may
collide several times before “sticking” together. The result is a denser, more uniform
aggregate than is formed in the DLA process. RLA usually occurs in the region between
5-20% volume solids and is quite unexpected and unique. Below about 5% solids there
is incomplete coalescence and above about 20% solids the viscosity during coagulation

becomes prohibitively high [13].

The differences between DLA and RLA can best be explained using the DLVO theory
of particle interaction energies [15, 16]. In DLVO theory, the total interparticle potential

energy for two particles approaching one another, Vi , is expressed as

7

tot

— Vvdw + Vele @.1)

where Vg is the van der Waals attractive energy and Ve is the electrical repulsive
energy. Vyaw is a function of the polymer composition (i.e., its Hamaker constant) and
the interparticle distance. Ve is a function of the interparticle distance and the particle
size and its surface potential, usually approximated by the zeta potential. By carefully
adjusting the amount of coagulant in the process, the zeta potential is affected and
consequently the potential energy barrier height, Vimax, is thereby adjusted to yield a

slow, controlled coagulation rate. Figure 2.8 shows the interparticle potential energy
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curves for a 100 nm diameter latex with no coagulant (=55 mv), enough coagulant to be
in the RLA regime (-30 mv), and enough coagulant to exceed the CCC and reach the
DLA regime (—18 mv). In this example, for RLA, Vyay is 11 kT, whereas it is 0 kT for

the DLA regime and 57 kT for the system without any added coagulant.
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Chapter 3

Fractal

In the previous chapters, we introduced some dynamic growth models about particle
aggregation. Computer simulations for such models, which are in close relation to many
practical process (such as solidification of alloys, secondary oil recovery etc), play an
important role for us to understand aggregation growth processes and aggregation
structure. However, the general mathematics cannot give a quantitative description for
aggregation structures due to its extra complexity and fractal concept is introduced to
describe the aggregation structure. In this chapter, we will introduce the concept of the
fractal geometry and the fractal dimension. In addition, we will also introduce some

numerical methods for how to calculate the fractal dimension.
3.1 Introduction of the fractal geometry

During the last 30 years it has widely been recognized that many structures possess a
rather special kind of geometrical complexity. The particular geometrical properties of
these structures have been shown to be related to fractal, in which objects have
non-integer dimensions. In general, a fractal is "a rough or fragmented geometrical
shape that can be subdivided into parts, each of which is (at least approximately) a
reduced-size copy of the whole [17]." In this definition, fractal has self-similar
characteristics. However, this definition has undergone many refinements, but the
precise definition for fractal is not submitted until now. Benoit Mandelbrot first defined
that fractal is a set with fractional (no-integer) Hausdorff dimension. However, this
definition has a lot of drawbacks (for example, it says nothing about self-similarity even
though the most commonly known fractals are indeed self—sifnilar). The present

common definition can be understood as the following set [18]:
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1) It has a fine structure at arbitrarily small scales;

2) It is too irregular to be easily described in traditional Euclidean geometric

language;
3) It is self-similar (at least approximately or stochastically);

4) It has a Hausdorff dimension which is greater than its topological dimension

(although this requirement is not met by space-filling curves such as the Hilbert curve);
5) It has a simple and recursive definition.

Self-similarity is the most important feature of fractals. In general, fractal must
satisfy the scale invariance if it is self-similar. Descriptive formulated self-similarity
means that if you enlarge a part or section of a similar fractal this enlargement
‘resembles’ the original fractal. Or: In different ‘zones’ the basic structure of the total
object is preserved, these fractals are scale invariance. One could call this characteristics

or self-similar fractals the ‘structure preservation’. In mathematic, this is called dilation

symimetry.

Most of the mathematical fractals are self-similar. Usually, they can be described by
iterative algorithms, the resulting fractal (after infinity iterations) has structures on all
scales. Nature or physical fractals are self-similar just within a few scales. One of the
simplest self-similar objects is the Cantor set, whose iterative construction at successive
‘generations’ is shown in Fig 3.1. If we enlarge the box of generation 3 by a factor of
three, we obtain a set of intervals that is identical to the generation 2 object. In general,
at generation k we can enlarge part of the object by a factor of three and obtain the
object of generation (k-1). For the Cantor set, the enlarged part overlaps the original
object exactly; we call such an exactly self-similar object a deterministic fractal.
However, many objects existing in nature are random. Despite this randomness, such
natural objects may be self-similar in a statistical sense. One classic example is the

coastline of a continent. If we study two maps with different magnifications
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representing a typical coastline, they look similar. There is no way to distinguish
between them, if we are not already familiar with the particular coastline. In fact, we
cannot even determine which map has the higher magnification. Unlike the case of
deterministic fractals, the two maps at two different magnifications do not overlap, but
nonetheless, their statistical properties are the same. Objects with inherent randomness

that are self-similar only in a statistical sense are called random fractals or statistical

fractals.
{a) k=0
(b) k=1
(<) k=32
) = e { o WO

Fig. 3.1 Construction of the Cantor set
3.2 Fractal dimension

How big is a fractal? When are two fractals similar to on another in some sense?
What experimental measurements might we make to tell if two different fractals may be
metrically equivalent? There are various numbers associated with fractals which can be
used to compare them. They are generally referred to as fractal dimensions. They are
attempts to quantify a subjective feeling which we have about how densely the fractal
occupies the metric space in which it lies. Fractal dimensions provide an objective

means for comparing fractals.

In brief, in fractal geometry, the fractal dimension, D, is a statistical quantity that
gives an indication of how completely a fractal appears to fill space, as one zooms down
to finer and finer scales. There are many specific definitions of fractal dimension and
none of them should be treated as the universal one. From the theoretical point of view

the most important are the Hausdorff dimension, the packing dimension and, more
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generally, the Renyi dimensions. On the other hand the box-counting dimension and
correlation dimension are widely used in practice, partly due to their ease of

implementation.

Although for some classical fractals all these dimensions do coincide, in general they
are not equivalent. For example, what is the dimension of the Koch snowflake? It has
topological dimension one, but it is by no means a curve-- the length of the curve
between any two points on it is infinite. No small piece of it is line-like, but neither is it
like a piece of the plane or any other. In some sense, we could say that it is too big to be
thought of as a one-dimensional object, but too thin to be a two-dimensional object,
leading to the question of whether its dimension might best be described in some sense
by number between one and two. This is just one simple way of motivating the idea of

fractal dimension.

3.3 Calculation of the fractal dimension

There are two main approaches to generate a fractal structure. One is growing from a
unit object, and the other is to construct the subsequent divisions of an original structure,
like the Sierpinski triangle (Fig.3.2). Here we follow the second approach to define the

dimension of fractal structures.

Fig. 3.2 Sierpinski triangle

If we take an object with linear size equal to 1 residing in Euclidean dimension, and
reduce its linear size to be L in each spatial direction, it takes N(L) number of self

similar objects to cover the original object (Fig. 3.3).

If we take an object residing in Euclidean dimension D and reduce its linear size by
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l/r in each spatial direction, its measure (length, area, or volume) would increase to
N=r" times the original. This is pictured in the next figure. We consider N=r", take the
log of both sides, and get log(N) = D log(r). If we solve for D: D = log(N)/log(r) The
point: examined this way, D need not be an integer, as it is in Euclidean geometry. It
could be a fraction, as it is in fractal geometry. This generalized treatment of dimension
is named after the German mathematician, Felix Hausdorff. It has proved useful for

describing natural objects and for evaluating trajectories of dynamic systems.

D=1 D=2 D=3
r=]
L=1
N=1
N=1
N=1
r=2 -
) g —"
N=2 S
N=8
t=3
L=1/3 —+
N=3
N=9 N=27

Fig. 3.3 Another way to define dimension

However, the dimension defined by the equation 3.1 is still equal to its topological or

Euclidean dimension.

P log N(L)
log(1/L) e

By applying the above equation to fractal structure, we can get the dimension of
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fractal structure (which is more or less the Hausdorff dimension) as a non-whole

number as expected.

D = lim 08 V(&)
-0 log(l / g) (3.2)

where N(g) is the number of self-similar structures of linear size € needed to cover the

whole structure.

Closely related to the Hausdorff dimension is the box-counting dimension, sometimes
known as the packing dimension, which considers, if the space were divided up into a
grid of boxes of size &, how does the number of boxes scale that would contain part of

the attractor?

To calculate this dimension for a fractal Dy, imagine this fractal lying on an
evenly-spaced grid, and count how many boxes are required to cover the set. The

box-counting dimension is calculated by seeing how this number changes as we make
the grid finer. Suppose that N(g) is the number of boxes of side length € required to

cover the set. Then the box-counting dimension is defined as:

g0 log(l/g) (3.3)

If the limit does not existthen one must talk about the upper box dimension and the
lower box dimension which correspond to the upper limit and lower limit respectively
in the expression above. In other words, the box-counting dimension is well defined
only if the upper and lower box dimensions are equal. Both are strongly related to the
more popular Hausdorff dimension. Only in very specialized applications is it important

to distinguish between the three [19].

-922.



Chapter 4
Computer simulation of the cluster dynamic

growth

As there are lots of models in the field of investigation of fractals, computation is a
way to compare the nature with the models. In this chapter, we will simulate the cluster
dynamic growth process in the DLA and RLA models. These simulations process are
carried out using the MatLab program. The purpose of the simulation is to capture the
characteristics of the simulation aggregate’ structure and understand deeply the
traditional aggregation models. Then the extended models Multi-Types DLA and
Multi-Types RLA will be introduced and be used to perform the simulation process. In
the simulation process, we will get some relational simulation results and make the

discussion.

4.1 Diffusion-Limited Aggregation model

DLA is one common computation model and applied widely in many fields. For DLA
model, one approach is to simulate the random walk of the particles and their
aggregation. This model has been found to be relevant to a large variety of processes
including fluid-fluid displacement in porous media, dielectric breakdown,
electrodeposition and possibly growth processes. The DLA model illustrates that simple
growth and aggregation models could lead to valuable insights into important physical

and chemical processes.
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4.1.1 Methodology of the DLLA model simulation program

This simulation region is set in a two dimensional squared lattice, L by L with L? sites.
The simulation procedure will imagine the computer screen as the ‘ground’ for the
fractal cluster to grow and the site is called pixel that makes of the screen. Only one

particle can occupy a pixel. The particle will be shown as a point in the squared lattice.

Starting with a single particle, we fix this particle at the center of the squared lattice
as the stationary seed. A second moving particle is ‘created’ in a random position where
not particle sites at some distance from the stationary seed. There are eight sites encircle
this particle, marked from 1 to 8 (shown in the Fig. 4.1). Then the particle will judge
whether there are particles encircle it. If yes, this particle will immobilize instantly and
stick with that particle to become part of the growing aggregate; if not, it will perform
the random walk (Brownian motion). It can walk pass only one pixel grid on each step
of walking. For example, in each step, this particle can only walk to one of the eight
sites randomly. After each step of walking, this particle will judge whether there are
particles encircle it. If yes, this particle will immobilize instantly and become part of the
growing aggregate; if not, it will go on the random walking until it reaches a grid
adjacent the growing aggregate. In the particle random walking course, if the particle
walks out of the squared lattice, it will escape and disappear (shown as in the Fig. 4.2).
A third moving particle is then generated like the second particle and allows wandering
randomly. The particle will stick it finds itself adjacent to any stuck particles. The
procedure is repeated many times until all the particles complete the whole process.

This procedure is shown in the Figure 4.3.
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Fig. 4.1 Particle Brownian motion in DLA model

As the increasing the number of the simulation particle, the size of the simulated
aggregate will also increase. So the scale of the squared lattice should be adapted to the

simulation particle number.

walker

escape

Fig. 4.2 Particle escapes from the simulation region
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Fix a stationary seed

X

Create a particle randomly

A
Judges is there particle in this position

If yes If not, occupy this position

A 4
Judges are there particles encircle it |«

N

If yes, If not,
Immobilizes and becomes Performs the Brownian
part of the growing cluster motion

A 4

Judge is the particle out
of the squared lattice

N

If yes, it will If not
escape

A
Complete this circle

Fig. 4.3 The procedure of the particle aggregation

4.1.2 Computer simulation result

Figure 4.4 shows a simulating result of the DLA model. This simulation is performed
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in a in a two dimensional squared lattice of 200 by 200.

140 - o

40+

Fig. 4.4 Simulation result of the DLA model

The total number of the simulation particle is 20000, but because of the random walk,
most of them have escape form the simulation region. The resulted aggregate only
contains 1049 particles, which fractal dimension is 1.5353 calculated by the
box-counting method. This aggregate shows the obvious self-similarity, open and

intricate branch structure and the obvious shielding effect.

4.1.3 Calculation method of the fractal dimension

Here we apply the box counting method to calculate the two-dimensional fractal
dimension, D. In this study, box dimension is determined by counting the number (N) of
particles around the center particle, as a function of distance away from the seed particle.

This function and relationship are shown as the Figure 4.5 and Equation 4.1 [51].

S e



_ D
Ney=r @)
where Ny is the sum of all primary particles contained within a circle of radius r; s is
the distance away form the seed particle; D is the box dimension of the aggregate

structure.

Fig. 4.5 Variation of contained particle number as a function of

increasing radius

Take the log of both sides, and D can be found as the slope of the plot of (log N(r))
versus (log r). So the fractal dimension can be obtained by Equation 4.2. The range of

the radius ‘r’ is limited by the size of the aggregate.

lg(N
D = lim £ )
r—0 lg(r) 4.2)
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4.2 Reaction-Limited Aggregation model

4.2.1 Methodology of the RLA model simulation program

Because of the substantial repulsive force remains between particles in the RLA
model that induces the particles or clusters must overcome an energy barrier before the
aggregating clusters can contact each other and become irreversibly joined. This means
that one particle or cluster must collide with other particles or clusters for many times
before it can stick and become part of the growing aggregate. This idea provides the
basis of the RLA model. So it is possible to simulate reaction-limited aggregation using

the diffusion-limited aggregation with a sticking probability (o).

The practical simulation procedure of the RLA is similar to that of the DLA, but
‘creates’ a random number (ran) before each collision to control the aggregation
mechanism and the stickiness possibility (o) can be regarded as the energy barrier. Then
compare the random number (ran) with the sticking probability (o), if it meets the
condition: ran > o, the particle will stick to the growing cluster, otherwise, the particle

should go on the Brownian motion (shown in the Figure 4.6).

— Particle sticks to the growing cluster

No

— (Go on Brownian motion

Fig. 4.6 Stickiness control condition

4.2.2 Computer simulation result

Figure 4.6 shows a simulating result of the RLA model. This simulation is also
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performed in a in a two dimensional squared lattice of 200 by 200.

180 |-

100 -

ol

Fig. 4.6 Simulation result of the RLA model

This simulation is performed by 30000 particles with stickiness possibility of 0.10
and result in the aggregate contains 1766 particles with the fractal dimension of 1.6334.
The fractal dimension is also calculated using the box-counting method. In contrast to
the simulation result of the DLA model, the aggregate formed in the RLA model is more
dense (see Fig. 4.4), that means the monomer particles have more chances to move into

the inside of the growing aggregate.
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Chapter 5

Extended Simulation Model

In natural systems or industrial systems, it is very common that many types of
particles are to aggregate and grow. These different types of particles may have different
reaction probability and stickiness possibility. So the aggregation mechanism may be
more complex than that in single-type system because of various physical and chemical
reasons. Researching the particles aggregation and clusters dynamic growth in these
practical systems is very necessary and important. For example, in the wastewater, there
are many different types of pollutant particles. How to make these pollutant particles
deposit more quickly and effectively, how to get the much denser and drier silt are two
important targets in the wastewater treatment plant. Computer simulation of particles
aggregation in such similar systems conditions can help to understand and improve the
treatment techniques. But the present studies and simulations mostly limited in the
certain particle type and cannot describe the multi-types particles system. So the
traditional DLA and RLA model are not suitable in this system condition. In this chapter,
the extended models: multi-types DLA and multi-types RLA models are extended to
describe and investigate such multi-types particles aggregation growth behavior and

mechanism.

5.1 Multi-types DLA

The Multi-types DLA model can base on the diffusion limited aggregation but adds a
‘type’ constraint condition to each particle to control the particles sticking behavior

when they collide. If it meets the conditions the two approaching particles will stick
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together once they collide; if not, there is only collision but not stickiness.

We also set different colors for different types of particles to distinguish them. That

was shown in the Table 5.1.

Table 5.1 The particle type’ marks and restrictive conditions

SN Particle Type Type color Restrictive Condition
1 A Blue Can not stick to A type particles
2 B Red Can not stick to B type particles
3 C Green Can not stick to C type particles
4 D Purple Can not stick to D type particles
5 E Black Can not stick to E type particles

In the simulation procedure, the type of the seed particle is random. Both of the
position and type of the created walker particles are also random. Here the occurrence
probability of each particle types is equal. The probability also can be adapted to the

concentration of each particle type in the practical natural or industrial systems.

The restrictive condition of the particle stickiness can be adapted to different practical
condition of the natural and industrial systems. This simulating procedure only sets a
simple restrictive condition: the same type of particles can not stick together. That
means for the particles with different type once they collide they will stick together and
form points for new clusters. The process of restrictive condition controlling particle

stickiness is shown in the Figure 5.1.
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Fig. 5.1 The diagram of restrictive condition controlling the particle

stickiness

The simulation procedure of the multi-types DLA model is based on that of
traditional DLA model in which particles also perform the random walking (Brownian
motion) until they stick to other particles or clusters and form points of the new clusters.
But once the collision occurs, it should judge whether the particle meets the restrictive
condition. If yes, a bond will occur; if not, it will go on the Brownian motion. For
example, in the Figure 5.1, if particle of type ‘A’ collide with other type ‘A’ particles,
they cannot stick together. So this particle has to go on Brownian motion until it sticks

to another particle of other types.
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Fig. 5.2 Simulation result of the Multi-types DLA model

Figure 5.2 shows a simulation result of the Multi-types DLA model within a squared
lattice of 250 by 250. This simulation is performed by 30000 particles and results in a
branch structure aggregate containing 1341 particles. The fractal dimension of this

aggregate is 1.5661. This aggregate also has obvious shielding effect.
5.2 Multi-types RLA

As the same as the rule in multi-types DLA model, a ‘type’ property also added to
each particle to control how particle stick together when they collide in this multi-types
RLA model. The particle type property, type color, type restrictive condition and other

conditions are the same as that in the multi-types DLA model shown in the above table.

But it is different from the above models, for the stationary seed, it is not only one

particle but a cluster, which contains five particles of five types. These fiver particles are
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arranged together in a line and fixed in the center of the squared lattice as a cluster seed
to which following particles stick. This setting can make sure the stickiness probability

of each type particle is equal.

180 |-

160 |-

120

100

Fig. 5.3 Simulation result of the Multi-types RLA model

Figure 5.3 shows a simulation result of the Multi-types RLA model within a squared
lattice of 200 by 200. This simulation is performed by 40000 particles with stickiness
possibility of 0.10 and results in a branch structure aggregate containing 1858 particles.

The fractal dimension of this aggregate is 1.6342.
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Chapter 6

Simulation results and discussion

In this chapter, the simulation results and data of each model will be shown and
discussed. The comparisons of the result between different models also will be made
and analyzed. A method of selecting the calculated values with higher reliability and

veracity in this simulation and calculation process will be also explained.
6.1 Simulation results of DLA model

Because the simulation particles are released randomly and perform the random
walking, we need to investigate the influence of the simulation time on the aggregate
structure and fractal dimension of the aggregate. Figure 6.1 shows the simulation results
of different simulation times: fifteen times and thirty times in the DLA model. The
simulation particle number and fractal dimension are shown in the Table 6.1. The
diagram indicates that the average fractal dimension value of fifteen times’ simulation is
similar to that of thirty times. Hence, all the simulation programs will be performed for

15 times to obtain the average value of the fractal dimension.
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DLA: Particle Number - Fractal Dimension —— 15 times
—a— 30 times

1.45

Fractal Dimension
C.

1.4
1.35

1.3
10 12 14 15 16 18 20 30 40 50 60

Particle Number /thousand

Fig. 6.1 Relationship between simulation times and fractal dimension
in DLA mode

Table 6.1 Fractal dimension value of different simulation times in DLA

model
Simulation Fractal Dimension

Particle

Number Simulating 15 times | Simulating 30 times
10000 1.4774 1.4899
12000 1.4477 1.4524
14000 1.4779 1.4655
15000 1.5113 1.508
16000 1.5079 1.5083
18000 1.5065 1.5169
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20000 1.515 1.5093
30000 1.5258 1.5249
40000 1.5481 1.5474
50000 1.5519 1.5522
60000 1.5567 1.5548

The curve in the Figure 6.1 presents the stationary trend increasing the simulation
particle number; this implies that the fractal dimension will almost retain a constant
when simulation particle number increases along. This also indicates the obvious

shielding effect of the branched aggregate in the DLA model.

6.2 Simulation results of RLA model

6.2.1 Relation between stickiness possibility and fractal dimension

In order to investigate the influence of stickiness possibility on the fractal dimension
of the aggregate, the program will be performed with different stickiness possibility
from 0.1 to 1.0. The total released simulation particles are twenty thousand in the
simulation program. Figure 6.2 shows the relationship between the stickiness possibility
and fractal dimension in RLA model. Each of the fractal dimension value with different

stickiness possibility is shown in the Table 6.2.

From Figure 6.2, fractal dimension of RLA aggregate structure has somewhat change
with increasing the stickiness possibility. The bigger stickiness possibility leads to the
bigger fractal dimension generally. But this change is so small. This may be because of
the less simulation particles and bigger stickiness possibility. This situation will be

investigated in the future simulation work.
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RLA: Stickiness Possibility - Factal Dimension
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Figure 6.2 Relation between stickiness possibility and fractal

dimension in RLA model

Table 6.2 Fractal dimension value of aggregate resulted in different

stickiness possibilities

stickiness possibility | Fractal Dimension

0.1 1.5061
0.2 1.4674
0.3 1.4603
0.4 1.4995
0.5 1.4877
0.6 1.4796
0.7 1.504
0.8 1.5036
0.9 1.5039

1 1.5042

When the stickiness possibility is equal to one, RLA model will change to DLA
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model. From this aspect, the aggregation structure will become more and more ramified

and open with the stickiness possibility increasing.

6.2.2 Relation between simulation particle number and fractal

dimension

In order to investigate the relationship between the simulation particle number and
the fractal dimension, the simulation program of RLA model will be performed with
different released simulation particles. Figure 6.3 shows the simulation result with the

stickiness possibility of 0.5.

RLA: Paticle Nnmber - Fractal Dimension

e

1}
*

1. 45 /

Fractal Dimension
:IL on (<]
3
L 3
p

10 12 14 16 18 20 40 60
Released Simulation Particle Number / thousand

Fig. 6.3 The relation between fractal dimension and released

simulation particle number in RLA model

The fractal dimension values of the aggregate structures are shown in the Table 6.3.
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Table 6.3 Fractal dimension of aggregate structure resulted from

different released particle number

Particle Number ) .
/thousand Fractal Dimension
10 1.4242
12 1.4854
14 1.491
16 1.4866
18 1.48
20 1.4805
40 1.4879
60 1.5616

From the Figure 6.3, the value of fractal dimension has less change when the number
of released simulation particle is less than forty thousand. But is has a obvious increase
when the number of released particles increases from forty thousand to sixty thousand.
This will be a valuable property that can be used in some industrial fields. This will be

investigated further in the future work.
6.3 Comparing the result of DLA and RLA

Firstly, let us see the two images of the simulated aggregate structure of DLA model
and RLA mode. The simulation results of the DLA model and RLA model, with the

same number of released simulation particles are shown in the Figure 6.6.
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Fig. 6.4 Simulated aggregate structure in the DLA model resulted from

30000 released simulation particles

For the image in the Figure 6.4, the simulation region is set in a two dimensional

squared lattice of 250 by 250; the total number of released simulation particles is 30000.

100 \ 1 v
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Fig. 6.5 Simulated aggregate structure in the RLA model resulted from 30000

released simulation particles with the stickiness possibility of 0.5

For the above image, the simulation region is set in a two dimensional squared
lattice of 250 by 250; the stickiness possibility of simulation particles is 50% and the

total number of released simulation particles is 30000.

From the above two figures, it seems that the density of the aggregate structure
formed in the RLA model is bigger than that formed in the DLA model. Bur the Figure
6.6 shows that most of the fractal dimensions calculated by the box-counting method of
DLA model are little bigger than that of the RLA model. This indicates that the

aggregate form in DLA model is more dense.

Particle Number-Fractal Dimension —— DLA
s— RLA
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Fig. 6.6 Fractal dimension of DLA and RLA model changes with the
total released particle number

(the stickiness possibility in RLA model is 0.5)
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The numbers of particles contained in different radiuses’ circles, which centre is set in
the position of the seed particle, are shown in the Table 6.4. All of these aggregates are

simulated by 20000 released particles.

Table 6.4 The number of particles contained in different radiuses’

circles

RLA

Radius | DLA Different Stickiness Possibility

0102|0304 /05|06|07]|08]|09]1.0

2 9 18 16 13 12 12 11 10 10 10 10
4 25 49 39 35 29 30 28 26 25 25 23
8 72 147 | 113 | 94 85 81 80 77 70 69 64

16 207 | 399 | 326 | 293 | 257 | 247 | 235 | 218 | 213 | 208 | 188

32 594 | 631 | 699 | 704 | 705 | 678 | 639 | 624 | 626 | 610 | 604

From the Table 6.4, for every stickiness possibility, the number of particle contained
in the same radius of circle in the RLA model is bigger than that in the DLA model.
This means that the aggregate structure formed in the RLA model is much denser than
the aggregate structure formed in the DLA model. This agrees with that the image

shows.
Why does the fractal dimension reflect different result?

1) This seems to present that the total number of released particles is not enough to

eliminate the random effect.
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2) When calculating the fractal dimension using the box-counting method, in order
to adopt the more credible fractal dimension value, some different calculated
values will be selected based on the correlation coefficient. The value with the

biggest correlation coefficient will be chosen, which may be a smaller one.

This will be investigated in the future research work.
6.4 Simulation results of the Multi-types DLA model

In order to investigate the relationship between the limiting condition and the fractal
dimension of the aggregate structure in the extended DLA model: Multi-types DLA
model, a simple limiting condition — the particle of the same type can not stick together

is set in the simulation program.

Figure 6.7 shows the relationship between the total released particle number and

fractal dimension of the Type DLA model.

Type DLA: Particle Number - Fractal Dimension / Five types

1.7
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—
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Fractal Dimension

1.35 |

1.3
10 12 14 16 18 20 40 60

Particle Number /thousand

Fig. 6.7 Relationship between the released particle number and fractal

dimension of the Type DLA model
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From the Figure 6.7, the value of fractal dimension has only somewhat changed. It
means that this limiting condition has not remarkable influences on the fractal
dimension of the aggregate structure in the Type DLA model. The data of Figure 6.7 are
filled in the Table 6.5.

Table 6.5 Fractal dimension values of the aggregates formed by

different amounts of released particles in Type DLA

Particle Number | Fractal Dimension
10 1.4652
12 1.4772
14 1.4715
16 1.5139
18 1.492
20 1.4767
40 1.5127
60 1.5369

In order to extend a more useful and effective simulation model, the limiting
condition should base on the actual and special condition of the practical field that this
extended model can be applied to. Fox example, if want to extend a model to apply in
the wastewater treatment, the detail and data about the chemical, physical and biologic
condition should be carefully collected and analyzed. Then make the limiting condition

in the extended model. This will be investigated in the future work.
6.5 Simulation results of the Multi-types RLA model

The limiting condition and particle type number are the same as that in the
Multi-types DLA model. Figure 6.8 shows the relation between the total released

particle number and fractal dimension of the Type RLA model.
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Typed RLA: Particle Number - Fractal Dimension /Five types
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Fig. 6.8 Relationship between the released particle number and fractal

dimension of the Type RLA model

From the Figure 6.8, the fractal dimension of the aggregate increase with increasing

the number of released simulation particle. The data are shown in the Table 6.6.

Table 6.6 Fractal dimension values of the aggregates formed by

different amounts of released particles in Type RLA

Particle Number | Fractal Dimension

10 1.4192
12 1.4287
14 1.4638
16 1.4832
18 1.49

20 1.4956
40 1.5621
60 1.537
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Figure 6.9 shows the relationship between the stickiness possibility and fractal
dimension in the Type RLA model. The stickiness possibility also differ form 0.1 to 1.0
and the total released simulation particles are twenty thousand in the simulation
program. Each of the fractal dimension value with different stickiness possibility is

shown in the Table 6.7.

From Figure 6.9, the fractal dimension of different stickiness possibility in Type RLA

is shifted bigger around 1.5 and this change is irregular.

Type RLA: Stickiness Ratio - Fractal Dimension /Five types
1.6

1.55 |
1.5
.45

1.4

Fractal Dimension

1. 35

1.3
A G ¢ T SUES - R L G R R 1T SR W et R R 1

Stickiness possibility
Fig. 6.9 Relationship between the stickiness possibility and fractal
dimension in the Type RLA model

Table 6.7 Fractal dimension value of different stickiness possibility in

the Type RLA model

Particle Number | Fractal Dimension

0.1 1.5743
0.2 1.5239
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0.3 1.5611
0.4 1.4629
0.5 1.479
0.6 1.5506
0.7 1.504
0.8 1.5439
0.9 1.5464

1 1.517

6.6 Comparing the results of traditional models and extended

models

Figure 6.10 shows the relationship between the released particle number and the
fractal dimensions in DLA model, RLA model, Type DLA model and Type RLA model.
From this figure, the curves of different models have somewhat different, but present
the similar increasing trend. The type RLA has the much more obvious increasing trend.
This can be well explained as the simulation conditions. The type constraint in the Type

DLA and Type RLA model can be seen as the stickiness possibility.
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Fig. 6.10 Relationship between the released particle number and the
fractal dimensions in DLA model, RLA model, Type DLA model and
Type RLA model

6.7 Ensuring the reliability and veracity of the data

How to adopt the data with higher reliability and veracity is the common focus in

scientific works.

When calculate the fractal dimension of the aggregate using the box-counting method,

we will face on the focus of how to ensure the data’s reliability and veracity.

The calculation method of fractal dimension is explained here. For example, in the
DLA model, if the number of released simulation is smaller than 30000, we need to
calculate five values of the particle number (PN) contained in five circles with the
radius of 2, 4, 8, 16 and 32. If there are 60000 released particles, we can calculate seven

values of the particle number contained in seven circles. The detailed data are shown in
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the Table 6.8.

Table 6.8 Detailed values of one time of simulation with 60000 released

particles in the DLA model

. . Particle Number Fractal Dimension
Circle Radius (PN)
D1 D2 D3 D4
2 10
4 21
1.4925
8 67 1.5315
1.5548
16 216 1.4962
32 636
64 1973
128 3861

In this case, we need to select a best fractal dimension value D from the four fractal
dimension values (D, D2, D3 and D) calculated by the anterior four, five, six, seven

values of the particle number PN using the least multiply method.

How to select one value from the D;, D;, D3 and D4 which has the highest reliability

and veracity?

Here we can use the value of the correlation coefficient of some values of PN as the

selection standard rule. The value of the correlation coefficient (CC) in the simulation is

shown in the Table 6.9.

Table 6.9 Correlation qufﬁcient values
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Correlation Coefficient
Circle Particle Number
Radius (PN) cCy CGC, CCs CC,
2 10
4 21
0.9979998
8 67 0.998572
0.9989844
16 216 0.9978659
32 636
64 1973
128 3861

From the Table 6.9, the biggest one is CCs. It means that the anterior five values of
PN have the best linear relation. Based on the value of correlation coefficient, we can

select the value of D3 as the fractal dimension of the aggregate in this time of

simulation.
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Chapter 7

Conclusion

The present study of the theory and knowledge of colloid particle collision, aggregate

dynamic growth, fractal theory and fractal simulation model let the author understand

and have the interest in researching the aggregates’ growth process and which fractal

property and founding the model to simulate such cluster dynamic growth process.

In the previous research, the author simulated the particle aggregating process using

the traditional models and the extended models and got the relational result. Analyzing

and discussing these results leads to the following conclusions:

1)

2)

3)

4)

In the DLA model, there are somewhat change of fractal dimension with
increasing the released simulation particle number. When the number of the
released simulation particle is more than forty thousand, the fractal dimension
will shift smaller around 1.55. This indicates the obvious shielding effect of the

aggregate formed in the DLA model.

In the RLA model, the bigger stickiness possibility will lead to the bigger fractal
dimension generally. But this change is so small that may because of the less
released simulation particle in the program and the bigger interval of the

stickiness possibility.

In the RLA model, the fractal dimension has somewhat change when the number
of the released simulation particle differs from twelve thousand to forty thousand.
But when the number is bigger than forty thousand the fractal dimension will

increase obviously.

Comparing the simulation result of the DLA model with the RLA model, both of

the image of simulated aggregate structure and the numbers of particle contained
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in different radiuses of circle indicate that the density of the aggregate formed in
the RLA model is bigger than that in the DLA model using the same number of
released simulation particle. But the fractal dimension calculated using the
box-counting method shows the contrary result. The possible reason of such
difference has been discussed in the above chapter and this situation will be

investigated in the future work.

5) In the extended Type DLA model, the limiting condition that control the particle
stickiness in this program seems not especial influence on the fractal dimension.
To develop this extended model, the limiting condition should base on the special

condition of the practical field that this extended model can be applied to.

6) Comparing the relationship between the released particle number and the fractal
dimension in DLA model, RLA model and Type DLA model, the relationship
curve of the Type RLA has much more obvious increasing trend. The type
constraint in the extended model can be seen as the stickiness possibility that

leads to the Type RLA has duple limits of stickiness possibility.

This approach to deal with models seems to be too simple to simulate the complex
physical or chemical interactions in the aggregation/growth process, but practical
enough to get essential features of the dynamic growth as the first step. Future
developments on these models will consider these factors with fine granularities of

physicochemical mechanisms and larger systems to get an insight on the scalability.

Complementing the former investigations and simulation results, this study provide
an enough overview to integrate the available simulation models taking into account of
more natural, industrial and scientific fields, such as the chemical, electrical and
environmental engineering fields and so on. It is also helpful to extend the suitable
models applied in some special fields such as the colloid collision system, wastewater

treatment plant and so on.
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Chapter 8

Directionality of the Future Research

The research that has been done during the master course is one part of the final
research of environment simulation. The research purpose during the master course is to
develop basic simulation codes on the aggregate growth which is one of key processed
of contamination and decontamination. The future research plan in the earlier period of

the doctor course is shown below.

1) Select a set of experimental data from the specific application systems. such as the
colloid diffusion and deposition, water pollution and so on. These data should include
the aggregate structure characteristics and the physical and chemical properties, such as
the solution temperature, particle type, particle concentration, particle size. interparticle

forces, chemical reactions properties, and so omn.

2) Compare these selected experimental data with the simulation results and evaluate
the models developed in his research through qualitative reasoning as pattern formation

as well as parametric studies in terms of underlying mechanisms.

3) Articulate the research agenda on how to control aggregate growth by taking
advantage of available simulation models and data, paying attentions on the aggregate
structure characteristics such as the fractal dimension, aggregate structure shape and so

on.

4) Develop an inverse problem solving approach to bridge given experimental data in

terms of available models and adaptive reasoning.

5) Propose a set of practical methods to control aggregation growth with respect to
typical environmental conditions such as temperature, colloid characteristics. surfaces

and so on.
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