地表面の粗度変化を考慮した風速の鉛直分布

Wind profile considering the change of ground roughness

学籍番号	076823
氏 名	石野 正規 (Ishino, Masaki)
指導教官	神田 順 教授

研究背景・目的

地表面付近の風速は地表面粗度の影響を受け鉛直方向に変化し、この分布を評価する手法としてべき指数則(式(1))を採用しており建築物荷重指針で5区分された粗度カテゴリーより選択することで平均風速鉛直分布特性を評価し、風荷重予測を行っている。 Uz=Uzr(Z/Zr)^α (1)

Uz: 高さ Z での平均風速 α: べき指数 UZr: 基準高さ Zr での平均風速

実在市街地において、風向ごとの風速鉛直 分布を定量的に評価・判断をすることで、過 剰に安全側に設定することや、脆弱な個所を 減らすことができる。そこで、地表面粗度を 定量的に扱うことでべき指数を評価する研究 がなされ、亀井・丸田は風上の平面密度(以 後、R)によりべき指数の近似式を提案し、 糸井¹⁾・菅野らは高さのばらつき(以後、V) を考慮した近似式を提案した。しかし、これ らの研究は、地表面が一様なものとしており 実在市街地を模しているといえない。

そこで、本研究では GIS による空間データ を利用し地表面粗度を定量的に把握し、地表 面の粗度変化による平均風速鉛直分布評価に 重点を置き論文展開を行うものとする。

2. 東京大学柏キャンパスにおける実観測

東京大学敷地内の高さ10mから40mの風向 風速計より、高さ10mで風速が5m/sを超え るものから最小二乗法によりべき指数を算 出した。それを風向ごとの累積分布におけ る50パーセンタイル値を表1に示す。また、 卓越風向の粗度状況を以下に示すと、東(E): 開けた土地に工場が点在。南(S):住宅密集 地 北西 (NW): 宅地、高速道路など。台風 時における乱れの強さは濱田 (2002) によっ て、10m, 20m, 40m でそれぞれ 0.25, 0.23, 0.18 としており、2006/01/01 ~ 09/30 で高さ 40m における風向ごとの乱れの強さは表 2 に示し た通りである。

表1 風向ごとのべき指数(α)

Angle	Ν	NNE	NE	ENE	E	ESE	SE	SSE
α	0.29	0.27	0.31 ~ 0.36	$0.2 \sim 0.26$	0.15~0.17	0.19	0.16	0.14
Angle	S	SSW	SW	WSW	W	WNW	NW	NNW
α	0.23	0.34	0.4	$0.29 \sim 0.39$	$0.24 \sim 0.33$	0.33	0.3	0.31

表2 風向ごとの乱れの強さ(lu)

Angle	N	NNE	NE	ENE	E	ESE	SE	SSE
P4(40m)	0.2	0.18	0.24	0.22	0.18	0.18	0.18	0.22
Angle	S	SSW	SW	WSW	W	WNW	NW	NNW
P4(40m)	0.19	0.2	0.26	0.23	0.18	0.18	0.16	0.2

3.GIS による 粗度分析

柏市・流山市を250mから1kmのメッシュ に分け、地表面粗度を表すパラメータとして、 以下にあげる粗度パラメータについて解析を 行った。本データには階層データしか存在し ないため、建物の平均階層高を3.5mとし、 階層データが存在しないものは行動調査が可 能な範囲で行い、それ以外は7mとした。

平面密度:	$R_m = \Sigma a_i / A$	(2)
平均高さ:	E[H]= $\Sigma (z_1 \times a_1)/(\Sigma a_1)$	(3)
高さの変動係数	$: \mathbb{V} = ((\Sigma (z_i - \mathbb{E}[H])^2 \times a_i) / \Sigma a_i)^{0.5}$	(4)

標高データがないので、考慮していないが 起伏差はあまり見受けられないので問題ない と考える。これにより以下の知見を得た。

メッシュサイズを大きくすることで、密度 的なバラツキが平均化されてしまいモデル化 の再現性が低くなると考えられる。また解析 したメッシュデータを CFD 解析に使用する 際、障害物高さに対し χ^2 検定を行った結果 より対数正規分布に基づく乱数を与えること とした。

4. CFD 解析

ー様な一次元粗度に対して平面密度と高 さの変動係数を変化させたものを10ケー ス、粗度変化を考慮したもので密から疎を 11ケース、疎から密を11ケースの解析を行っ た。図1に、全ケースにおける平面密度と変 動係数の関係を示す。

数値解析には数値解析汎用ソフト PHOENICSを用いる。本研究ではk-εモデル、 差分法は中心差分法と風上差分法の組み合わ せで二次元解析を行った。解析領域は400D × 90Hである。計算格子数は風方向と鉛直方 向に対しさまざまな場合を検討し、1600 × 75メッシュで大熊ら²⁾(1986)の風洞実験結 果と良い対応をした。

図1 全解析ケースの平面密度Rと変動係数Vの関係

4.1 一様な一次元粗度

高さの変動係数が0のもの、すなわち高さ が一定なものに対し、平面密度を変化させた 時の結果は図2のようになり、R \leq 0.2の範 囲でもよい対応を示すことを確認した。

高さの変動係数を 0.1 から 0.6 まで変化さ せた時の、べき指数の変化と、境界層発達の 考察を行った結果、高さの変動係数によるべ き指数への影響は小さく、平面密度による影響が大きいことがわかった。変動係数のばらつきを考慮した平面密度によるべき指数を図3に示す。既往の実験結果と良い対応を示している。境界層高さも変動係数による影響は小さいことがわかり、吹走距離との関係を図4に示す。吹走距離をべき指数が安定する値だとすると400D(=4km)で十分であることがわかった。一様な粗度としてGISより南方向はR=0.23となるが、図3よりべき指数を求めると0.43となり実観測(表1)との対応が良くないといえる。

4.2 粗度変化を考慮した一次元不規則粗度

実際の市街地は疎密の連続であり一様だ と仮定することに問題がある。そこで、柏 キャンパス南方向4kmを例にとり平面密 度と変動係数を算出すると、風上2kmで R=0.2, V=0.3、風下2kmでR=0.06, V=0.3であっ た。ここで、一様粗度と、粗度変化の違いを 図5に示す。地表面粗度変化後の平均風速鉛 直分布が影響を受ける範囲を、4.1でもとめ た境界層高さをもとに、風上の粗度影響を受 ける範囲と風下の粗度影響を受ける範囲とに 分けて考察した。各々から求められるべき指 数を α H, α L とする(図6)。地表面粗度変 化を考慮することで以下の知見を得た。

図7より、地表面粗度変化後の平面密度に より α_L は決定される。 α_H は高さの変動係 数 V が 0.0,0.3 の場合と 0.6 の場合で異なる 結果となった。密から疎の場合、V=0.0,0.3 で α_H は変化直後から減少し x=350D で α_L に近づき、V=0.6 で α_H は変化しない。一方、 疎から密の場合、V=0.0,0.3 で α_H は変化せ ず、V=0.6 で α_H は増加し x=350D で α_L に近 づいていることがわかった。

このような現象が起こる原因を、風上の粗 度が風下まで一様に続くと仮定した時におけ る x=350D の鉛直分布と、粗度変化を考慮し た時の x=350D を比較した結果、図8に示す 現象が起きていることがわかった。密から疎 の場合、風下でV=0.0,0.3の時、地表面付近 の風速回復による影響が上空にまで及ぶ。

疎から密の場合は風下で V=0.6 の時、風速 の減速による影響が上空にまで及んでいるこ とがわかった。

また、南方向を模擬したモデルにおけるべき指数は $\alpha_{\text{H}}=0.28$, $\alpha_{\text{L}}=0.26$ となり実観測 データと良い対応を示した。

4.3 乱れの強さ

一様な粗度上における乱れの強さに関し

て、高さ 20m, 30m, 40m について考察した。その結果と建築物荷重指針の値をプロットしたものを図9に示す。

高さが高くなるにつれ、乱れの強さが小さ くなっていることが確認できる。荷重指針の 定める値より大きな値をとる結果となった。 図 10 に粗度変化後の乱れの強さについて、 風上の粗度が続いたと仮定した時の乱れの強 さとの変化率を示す。その結果、密から疎へ 変化したときには約 40% 低下し、疎から密へ 変化したときには約 30% 増加していることが わかった。また、南方向を模擬したモデルで は、20m, 30m, 40m の 順 に 0.22, 0.18, 0.16 と なり、濱田 (2002) によって求められた乱れ の強さは風向ごとではないが,値として十分 な結果が出たといえる。

5. 平均風速鉛直分布の評価

地表面粗度が変化した時の、鉛直分布特性 であるべき指数と、乱れの強さに関する設計 時における評価フローを提案する。

粗度変化後の粗度によりできる境界層以下 では風下の平面密度より算出されるべき指数 とし、乱れの強さは風上の乱れ強さに対し、 重みづけをすることで算出できる。

粗度変化後 1km 以内で、地表面粗度の変化 後より発達すると想定される境界層高さを超 える範囲においてには風下の高さの変動係数 により与えるべき指数が異なる。図 11 に、 変動係数の違いによるα Hの与え方を示す。

6. まとめ・今後の課題

本研究では、地表面粗度を一様なものとす る場合と、地表面粗度変化を考慮した場合に ついて平均風速鉛直分布の発達に違いがみら れた。また地表面の粗度変化を考慮すること で実観測データと対応もよく、風向ごとの風 速の鉛直分布特性を評価する際、本研究の有 用性を確認することができた。

今後の課題として、3次元解析・高精度の 差分スキームによる解析が必要であると考え る。

-	+*	+1	
参	考文	献)	
1)	×. ++•	法书	「限用 (4) 能到 (4) 注)

- 1)糸井 達哉「限界状態設計法に基づく建築物外装材の設計風荷重 評価」,博士論文,2003
 2)大熊 武司 「市街地を対象とした乱流境界層の風洞実験による
 -) 人熊 武司 「田街地を対象とした乱流境界層の風洞実験による 基礎的研究」, 風工学シンポジウム,1986