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SUMMARY We have fabricated a prototype of interface de-
vices between SFQ and CMOS circuits using HTS quasi-particle
injection devices. By the injection of quasi-particles, the bridge
area becomes resistive and high voltage appears at the drain elec-
trode. As a test of device operation, we applied the signal of a
function generator to the gate electrode and observed that the de-
vice successfully repeated on/o� operation. We also succeeded in
explaining the device characteristics by considering the thermal
e�ects.
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1. Introduction

In the near future, superconductor single ux quantum
(SFQ) computer, which is faster in operation and lower
in power dissipation than the complementary metal ox-
ide semiconductor (CMOS) computer, will be realized.
Therefore, interface devices that can transmit digital
data from SFQ to CMOS will become necessary.

So far, a few articles about interface circuits are
reported [1]-[3]. The system can be divided in 2 com-
ponents: one consists of Josephson junctions that are
connected in series so that a few tens mV of voltage
would be generated, and the other is a CMOS di�er-
ential ampli�er that can amplify the voltage to CMOS
level. This kind of system is reliable and high-speed,
but the circuits are complicated and the size of the sys-
tem is rather large.

In this paper, we propose a new interface system
that adopts quasi-particle injection devices. This sys-
tem is very small and simple.

2. Operation Principle

The schematic of the device and its peripheral circuits
are shown in Fig. 1. Bias current Id is previously
applied to the drain electrode. When the Josephson
junction that is directly connected to the gate elec-
trode turns on, small voltage (�1 mV) is applied to
the gate and consequently injection of quasi-particles
to the YBa2Cu3O7�x (YBCO) bridge occurs. Then the
bridge area becomes resistive and at the drain electrode
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Fig. 1 The schematic of the device and its peripheral circuits.

Fig. 2 The fabrication process.

high voltage appears which is large enough for CMOS
circuits.

3. Fabrication

The fabrication process is shown in Fig. 2. 1) YBCO
�lm was deposited on SrTiO3 (STO) substrate by
pulsed laser deposition (PLD) method. The thickness
of the YBCO �lm was about 100 nm. Then, Au �lm
was deposited in-situ, also by PLD. After that, an an-
nealing in 1 atm O2 at about 500

oC was done to reduce
the contact resistance between Au and YBCO. 2) The
pattern of the bridge was formed by lithography and
Ar ion milling. 3) Au �lm was deposited again by sput-
tering. 4) Au pattern was formed by lithography and
wet etching. We used KI+I2 solution to remove Au.

The length and the width of the bridge were
100 �m and 5 �m, respectively. The width of the Au
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Fig. 3 Id{Vds characteristics at 7 K.

line (injection electrode) was 10 �m.

4. Measurement

4.1 Id{Vds characteristics

Id{Vds characteristics of this device is shown in Fig. 3.
When Id exceed the critical current Ic, the bridge be-
comes resistive and large voltage appears at the drain
electrode. Physical explanation of this peculiar charac-
teristics is written in section 5.1.

4.2 Current gain

Ic{Iinj characteristics is shown in Fig. 4. The current

gain j �Ic
�Iinj

j is about 1�1.5.

Usual quasi-particle injection devices have barrier
layer between the injector and the bridge, and that kind
of devices have such large current gain as 5 or more
[4], [5]. However, in order to make the contact resis-
tance as small as possible, we made no barrier layer.
Therefore the current gain remained small.

4.3 On/O� Operation

Using a function generator, we have tested if on/o� op-
eration is possible. The measurement system and the
results are shown in Fig. 5-(a), (b). When su�cient
quasi-particles were injected, the bridge has become re-
sistive and large Vds (about 9 V) appeared. However,
the voltage of injector Vgs also rose to as high as 2 V. In
order to operate this device with the voltage generated
by SFQ circuits, Vgs must be kept lower than 1 mV.

5. Discussion

5.1 Device Temperature

In order to explain the peculiar Id{Vds characteristics

Ic (mA)

I inj (mA)

@60K

Fig. 4 Ic{Iinj characteristics. The current gain is about 1.5 at
its maximum.
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Fig. 5 (a) Measurement system. (b) On/o� operation of the
device. Id was �xed to 5.5 mA. When quasi-particles were in-
jected, large voltage as high as 9 V appeared at the drain elec-
trode.
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Fig. 6 Simpli�ed thermal system.

shown in Fig. 3, we evaluated the device temperature.
We used a hemispherical thermal model like Fig. 6

to simplify the calculation. When power P is consumed
at the bridge, the heat ux q at position x is given as
follows:

q =
P

2�x2
: (1)

We can also obtain the value of the heat ux from
Fourier's law

q = ��
dT

dx
; (2)

where � is the thermal conductivity of STO substrate
and T is the temperature. From these 2 equations, we
obtainZ bath

bridge

dT =

Z bath

bridge

�
P

2�x2�
dx

T0 � T =
P

2��

�
1

x

�bath
bridge

: (3)

If the distance from the bridge to the thermal bath
is long enough (substrate thickness!1), (3) becomes

T = T0 +
P

2��r
: (4)

From this equation, we obtain T{P characteristics.
Then we tried to obtain T{P characteristics from

the measurement results. To do so, we need resistance{
power (R{P ) and resistance{temperature (R{T ) char-
acteristics. R{P characteristics can be calculated us-
ing Id{Vds characteristics (Fig. 7-(a)); R=Vds/Id and
P=Vds�Id. Fig. 7-(b) is R{T characteristics of the
bridge. Here, it is di�cult to determine R{T charac-
teristics when the device is in operation below Tc; they
depend on the current density that ows in the bridge.
The R{T curve takes its path somewhere in the gray
area in Fig. (b). Now, by combining these two graphs,
we can obtain T{P characteristics (Fig. 7-(c)). T{P
curve below Tc is also uncertain because of the reason
mentioned above.

Next, we compared T{P characteristics obtained
by two ways; by calculation and by measurement. To
make equation (4) into a graph, we determined the ther-
mal conductivity � of the substrate so that the result
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Fig. 7 (a) R{P characteristics calculated using Id{Vds char-
acteristics. (b) R{T characteristics of the bridge. (c) T{P char-
acteristics obtained from (a) and (b). (d) T{P characteristics
obtained from the equation (4).
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would �t Fig. 7-(c) and we obtained �=4.5 W/m�K.
According to a previous report, the thermal conductiv-
ity of SrTiO3 is about 5 W/m�K [6]. Therefore this
value seems to be plausible. The T{P graph when
�=4.5 W/m�K is shown in Fig. 7-(d). This graph
matches Fig. 7-(c) to a large extent.

Thus, we conclude that the Id{Vds characteristics
can be explained by thermal e�ect.

5.2 For Improvements

As shown in Fig. 5-(b), Vgs required to turn the bridge
on is too high: it should be less than 1 mV, but 2 V is
needed so far. The reason is that a part of source area
near the bridge becomes resistive. In order to overcome
this drawback, structure modi�cation and downsizing is
necessary. For example, if the YBCO thickness of the
source area was made a few times as thick as that of
the bridge area, Vgs would be decreased drastically.

Downsizing is important not only for decreasing
Vgs, but also for faster device operation, because the re-
sponse time of this device is assumed to be determined
by the speed of thermal conduction.

6. Conclusion

We have fabricated HTS quasi-particle injection devices
aiming at interface devices between SFQ and CMOS
circuits. Using the output of a function generator as
Iinj, on/o� operation was successfully performed, but
the voltage needed to turn the bridge on was too high
for actual use. The characteristics of the device were
explained by taking the thermal e�ect into considera-
tion.
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