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INTRODUCTION 
It is well known that recruitments of many marine organisms are affected by 

oceanographic environments and largely fluctuate. For example, some part of 

recruitments of Japanese sardine (Sardinops melanostictus) and Japanese mackerel 

(Scomber japonicas) are known to be related to SST (sea surface temperature) in their 

nursery areas (Noto and Yasuda, 1999; Yatsu et al., 2005). There are many studies on 

relationships between ocean environments and recruitments. These studies focused on 

finding environmental factors which correlate with recruitment and discuss the 

mechanism by which the environmental factors affect recruitments. Although most of 

these studies set their goal are improvement of fisheries managements, there are few 

cases in which managers incorporate environmental index in setting catch quota to 

predict recruitment. In Japan, Acceptable Biological Catch (ABC) are determined by 

computer simulation that do not include environmental factor. Recruitment is modeled 

as a resample from past recruitments or derived from stock-recruitment relationship 

with random variation.  

Longtime field surveys are needed to reveal relationships between 

environment and recruitment. On the other hand, we can easily discuss how 

recruitment prediction improves the management performance by the model analysis. 
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From point of view of cost-benefit, values of these studies should be evaluated by 

models in advance. 

 Some studies evaluated improvements of fisheries managements by 

recruitment predictions. The results were inconsistent. De Oliveira and Butterworth 

(2005) showed benefit of recruitment prediction by using environmental indices in 

anchovy fishery in Bay of Biscay. Agnew et al. (2002) showed recruitment prediction is 

useful for management of squid stocks. On the other hand, Basson (1999) showed 

recruitment prediction is not useful for management of cod stock. The past studies 

suggested that the effects of recruitment prediction seem to be different by species. It 

should be profitable to discuss the condition in which recruitment prediction is useful. 

 These studies concerned confined catch control rules such as constant catch 

rate strategies in which a certain portion of biomass is exploited independently of stock 

biomass. However, decreasing fishing mortality with decreased stock biomass is 

reasonable way of fisheries managements. Recently, fisheries management based on 

catch control rule (CR) becomes popular. CR determines fishing mortality as a function 

of condition factors such as stock biomass. By using CR, we can consider how we 

should decrease fishing mortality rate with decline of stock biomass. In management 
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procedure (MP) approach (Butterworth, 2007) which is consistent with precautionary 

approach (FAO, 1996), managers compare wide range of catch control rules(CRs) by 

simulations and select the best CR to be carried out. In MP approach, managers can 

tackle uncertainty of recruitment by using a CR which is robust to the uncertainty. 

Past studies may overestimate the effect of recruitment prediction because they 

considered less flexible strategies and ignored possibility of selecting robust CRs. 

 In this study, I evaluated the effect of recruitment prediction based on MP 

approach and explored key life history parameters which determine the effect of 

recruitment prediction. I used Japanese common squid (Todarodes pacificus), Japanese 

sardine (Sardinops melanostictus) and Walleye pollock (Theragra chalcogramma) as 

examples of an annual fish whose longevity is one-year, short lived pelagic fish, and 

long-lived demersal fish, respectively. They all are commercially important fish for 

Japanese fishery and annual stock assessment reports are published by fisheries 

research agency ( in Marine fisheries stock assessment and evaluation for Japanese 

waters, http://abchan.job.affrc.go.jp/index.html). I used stock assessment reports 

published in 2007 whose fiscal year is 2006/2007. 
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MATERIALS and METHODS 
I used the population dynamics models in the stock assessment reports by 

Fisheries Research Agency. Parameters in models were derived from the stock 

assessment reports (Table 1). There are two common squid stocks, four pollock stocks 

and two sardine stocks in Japan. The parameters are different by stocks. I used the 

parameter of the biggest population of the each species (Autumn birthed stock of 

common squid and Pacific stocks of sardine and pollock).
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Table 1. List of parameters. B/H in SRR column means Beverton and Holt Stock-Recruitment relationships. Equations for these SSR 
are N , a SSB / 1 b SSB ) for B/H SRR and N , a SSB e SSB  for Ricker SRR respectively. W , s , and Q  
indicate weight, selectivity ,and maturity at age ,respectively. M indicates natural mortality. σ  indicates variation of SRR 
in equ.5,7. 

 
 

 

 Japanese common squid Japanese sardine Walleye pollock 

W  (g) 280 (26,64,87,107,122,140) (41,126,233,393,482,534,604,660,756) 
s  N/A 1 for all age (0.040,0.032,0.085,0.209,0.358,0.466,0.706,1,1)
M 0.6 0.4 for all age (0.4,0.35,0.3,0.25,0.25,0.25,0.25,0.25,0.25) 
Q  N/A (0,0.5,1,1,1,1) (0,0,0,0.2,0.8,0.9,1,1,1) 

σ  0.32 1.07 0.52 
SRR B/H B/H Ricker 

Parameter in SRR:a 0.42 (million/ton) 18 (thousand/ton) 20 (thousand/ton) 
Parameter in SRR: b 7.3 10  (/100ton) 1.0 10  (/1000ton) 3.8 10  (/ton) 
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Population dynamics models 
・sardine and pollock 

 Age structured population models were used. It is assumed that fishing occurs 

in the middle of the year and spawning occurs in the beginning of the year. Basic 

population dynamics were modeled as follows: 

N , N , e M C , e
M

    (1) 

where N ,  and C ,  are numbers at age and caught numbers at age in year y 

respectively and M is natural mortality. 

 C , min CQ ,

W  
, N , e M/    (2) 

CQ ,  is Catch Quota at age in year y which is calculated from catch Control Rules 

below. C ,  cannot exceed the number of individuals in the middle of the year. 

SSB ∑ N , Q W    (3) 

SSB  is spawning stock biomass in f year y and Q  is mutuality at age. Number of 

recruitments was modeled as follows:  

N , f SSB e      (4) 

ε~N 0, σ      (5) 

where f() is stock-recruitment relationship (SRR, Figure 1 and Table 1) such as 

Beverton-Holt and Ricker. e  is process error term estimated from actual data, whose 
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logarithm is normally distributed with mean 0 and standard deviation σ . 

  

Figure 1 Stock-recruitment relationships for Japanese common 
squid (a), Japanese sardine (b) and Walleye pollock 
(c). Solid lines represent the estimated 
Stock-recruitment curves. 
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・Japanese common squid 

 Model for Japanese common squid is different from those for other stocks 

because it is annual stock without age structure. It is assumed that fishing occurs also 

in the middle of the year but spawning occurs in the end of the year. The population 

dynamics of common squid was modeled as follows: 

N f SSB e      (6) 

 ε~N 0, σ       (7) 

where N  is number of individuals in year y and calculated as a function of 

spawning stock biomass of the previous year (SSB ). SSB of squid is modeled as 

follows, 

SSB N e MW C We M/      (8) 

 

 The density dependent effects in sardine and pollock’s SRRs were weak (Fig.1 

(b) (c)). Thus, SSB of sardine and pollock increased to unrealistic level under low 

fishing mortality. Because most part of data of both stocks is from low population 

abundance level era, the estimated SRR may fail to express density dependence effect. 

Therefore I restricted SSB not to exceed historical maximum quantity since 1976 for 

sardine and 1981 for pollock(15million tons for sardine and 350 thousand tons for 
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pollock). 

 

Recruitment prediction using environmental index  

The parameter ε in equs.4 and 6 indicates the deviation of recruitment from SRR. I 

assumed that some part of ε can be explained by environmental index. I divided ε 

into two parts, the part which can be explained by environmental index and the part 

which cannot be explained by the index. The relationship between the environmental 

index and deviations of recruitment from SRR is modeled after De Oliveira et al. 

(2005), 

ε Rσ Env √1 R σ ε   ~ N 0, σ       (9) 

ε ~N 0,1       (10) 

Env ~N 0,1        (11) 

R  is correlation coefficient between ε  and Env . The first term of right side of 

equation (9) is the recruitment deviation from SRR which can be explained by 

environmental index and the second term is the deviation which cannot be explained. 

R  below is the amount of variations of ε explained by Env . As showed above (in equ 

(4) and (6)), recruitment can be divided into SRR and deviations from SRR. I assumed 

managers predict recruitment using SRR and ε which is the predictable deviation of 
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recruitment from SRR by using environmental index Env . The recruitment deviation 

from SRR which can be predicted by managers is, 

ε  Rσ Env          12  

The larger R2 is, the more accurately recruitment can be predicted. Five values of R2 

were trialed (R2=0, 0.25, 0.5, 0.75, 1). I assumed that managers know true SRR, 

recruitment variation (σ ) and the amount of variation which can be explained by 

environmental index (R). Thus, recruitment predictions for each species were modeled 

as follows: 

for common squid, 

N f SSB e      (13) 

for sardine and Pollock, 

N , f SSB e       (14) 

where N  and N ,  are predicted number of recruitments (note that common squid is 

an annual stock) and SSB  is estimated spawning stock biomass. 

 

Stock biomass estimation of non-recruitment ages for sardine and 
pollock 

Stock biomass estimation is used for decision making in Control Rules. Stock 
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biomass estimation of newly recruited cohort was modeled in the previous section. 

Stock biomass estimation of cohorts that already recruited previous year for sardine 

and pollock was modeled as follows. Abundance of sardine and pollock are estimated by 

VPA (Virtual Population Analysis).  The estimation error of VPA has specific character. 

The abundance of young cohort is highly uncertain, because there is little information 

available. The estimation error of a cohort decreases with time, because the data from 

fisheries and research monitoring become available. I assumed estimation bias of N ,  

from N ,  decreases as the cohort get older by α  each year. This assumption is 

modeled as follows: 

N , 1 γ N ,       γ 1     (15) 

N , 1 α γ N ,      for i=1,2,3…    (16) 

γ  is estimation bias resulted from recruitment prediction. γ  which is less than 0 

means recruitment is underestimated in recruitment prediction. On the other hand, 

γ  larger than 0 means recruitment is overestimated in recruitment prediction. An 

overestimated (underestimated) cohort when it recruited continues to be 

overestimated (underestimated) but the degree of overestimation (underestimation) 

decreases. The degree of estimation bias decreases is represented as α. α can be 
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interpreted as the effect of fisheries data and monitoring after recruitment such as 

acoustic surveys. The more intensively stocks are monitored after recruitment, the less 

α is. I trialed three α (1, 0.75, 0.5). When α 1, the accuracy of stock biomass 

estimation does not improve after recruitment, and completely depend on the accuracy 

of recruitment prediction. On the other hand, when α 0.5, the estimation bias is 

halved each year and the accuracy of stock biomass estimation for old ages are good 

regardless of the accuracy of recruitment prediction. Results using α 0.75 will be 

shown in figures as intermediate case and results for other α were summarized in 

Table 2. 

 

Catch Control Rules (CRs)  

I used CRs which 

consist of three lines 

(Katsukawa, 2004, Figure 2) . 

These 3L-CRs is used in 

Japanese fisheries 

managements as basic rule 

in calculating ABC which is 

Figure 2 The three line control rule. Fishing mortality
coefficient Fy is a function of estimated biomass 
B . B  is the biomass level below which no 

fishing is allowed. B  is the biomass level 
above which fishing pressure is constant 
(F F ). 
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a reference of TAC (Fisheries Agency of Japan and Fisheries Research Agency 2008, 

http://abchan.job.affrc.go.jp/digests19/rule/rule19.pdf). These CRs were determined by 

the following three parameters: (i) lower threshold biomass level below which no fishing 

is allowed (Blt); (ii) higher threshold biomass level above which fishing mortality is kept 

constant (Bht); and (iii) the value of the fishing mortality coefficient that is applied if 

biomass is higher than Bht(Flimit). The fishing mortality coefficient F was determined by the 

estimated standing stock biomass level B .  

If B B  then F 0

If B B B  then F F B B
B B

If B B  then F F

     (17) 

F , F s         (18) 

CQ , N , e
M F , W       (19) 

s  is selectivity at age. Catch quota at age CQ ,  is calculated by multiplying expected 

biomass in the middle of the year (N , e M/ W ) and catch rate determined by the CR 

(eF , ). s  for pollock is derived from the stock assessment report. s  for sardine in 

stock assessment report changes largely each year and selectivity for young fish is 

unrealistically high compare to the old fish. This is thought to be because there are few 

old fish after stock collapse in early 1990’s. Because s  for young ages in the stock 
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assessment report may be overestimated and mislead results, I set identical selectivity 

for all ages (1 for all a). This assumption can be justified because most sardine catch are 

from purse seine fishery which is not size-selective fishery. I also tried s  in which 

mature fish are selectively caught as a rational assumption because catching matured 

and big fish is biologically and economically appropriate. I showed only the results of no 

selectivity (1 for all ages) because the results of both scenarios were quite similar. 

The estimated SSB which is used in SRR in recruitment prediction and estimated 

biomass which is used in Control Rules are expressed as follows:  

for common squid, 

SSB N e MW C e M/      (20) 

B N W       (21) 

for sardine and pollock, 

    SSB ∑ N , Q W     (22) 

B ∑ N , W     (23) 

 

Evaluation of CRs 

I tested wide range of CRs by changing the above three parameters (Blt, Bht, 

Flimit). The simulated time was 100 years, and I used the results of the last 50 years to 

eliminate the effects of initial biomass level. The iteration for each CR was 100 times. I 
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used mean of average yield and 

minimum SSB for 100 iterations 

as the management 

performance of each CR. There 

are many goals in fisheries 

management and some of them 

are incompatible. In this work, 

for simplification, I used 

maximizing catch and 

conserving stocks as two major 

goals. Average yield represents 

maximization of benefit from fisheries and minimum SSB represents conservation of 

stocks, respectively. Figure 3 shows a scatter plot of yield and minimum SSB for 

sardine with R2=0.5 which means half of recruitment deviation from SRR is 

predictable by environmental index. CRs which record high average yield and 

minimum SSB can be defined “good” CR (upper right in Fig.3). I defined a CR to be 

potentially optimal if there was no other CR that marked a higher yield and higher 

Figure 3  An example of scatterplots of average
catch and minimum SSB. This figure is
for Japanese sardine when . .
Every point represents management
performance for each CR. The solid line
represents potentially optimal CRs when

. 
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minimum SSB at the same time (solid line in Fig.3). I evaluated the effect of 

recruitment prediction by looking how much the line which connect potentially optimal 

CRs was moved toward upper right with better recruitment prediction accuracy (with 

larger R2). 

 The effect of recruitment prediction was quantified by the index below: 

opt_manage max     R    (22) 

opt_manage max     R    (23) 

Imp ,
_
_

    (24) 

where i and j are R  values and i > j. Imp ,  indicates the degree of management 

improvement when recruitment prediction accuracy was improved from R  to 

R . Large opt_manage is achieved when average yield and minimum SSB are well 

balanced because doubling average yield is justified only when minimum SSB are kept 

over half of original size. I used i=1 and j=0 respectively in results below. The larger 

Imp ,  is, the more management performance was improved with better recruitment 

prediction. Imp , 1 means there was no effect of improved recruitment prediction.
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RESULTS 
The effects of recruitment prediction are different between 3 species. Results 

are summarized in Figure 4 and Table 2. In Japanese common squid, management 

performance was dramatically improved (Fig.4a, Imp , =3.24). In Walleye pollock, there 

was little improvement with better recruitment prediction (Fig.4c, Imp , 1.15). There 

was intermediate improvement in Japanese sardine (Fig.4b, Imp , 2.77). 

Figure 4  Summary of results for Japanese common squid (a), Japanese sardine (b) and
Walleye pollock (c) respectively. Each line represents the potentially
optimal CRs in that recruitment prediction accuracy (R ). 
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Table 2  
Imp ,  for each simulation settings. Values in italic text are for simulation settings 

used in Figure 4. The second and third rows of sardine are the results of simulation 
using sardine model with squid’s and pollock’s recruitment variation respectively. 
There are no options for α in squid because it does not have age structure. 
 
 
 
 
 
 
 
 
 
 
 
The effect of  (the rate by which stock estimation bias decrease) 

 The effects of recruitment prediction were less in α 0.5 simulation than in 

α 0.75 one for both species (Imp , 1.49 for sardine and 0.98 for pollock). On the 

other hand, that in α 1 were larger than in α 0.75 for both species (Imp , 5.12 

for sardine and 1.79 for pollock).  

 

The effect of  

 There are two feasible life history parameters which make the difference of 

the effect of recruitment prediction between stocks. One is longevity and the other is 

magnitude of recruitment variation. To distinguish the effect of magnitude of 

 

α 

NA 1 0.75 0.5 

common squid 3.24 - - - 

Japanese 

sardine 

σ 1.07 - 5.12 2.77 1.49 

σ 0.32

(squid) 
- 1.55 1.26 1.06 

σ 0.52

(pollock) 
- 2.15 1.42 1.15 

Walleye pollock - 1.79 1.15 0.98 
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recruitment variation from that of longevity, I ran simulations of Japanese sardine 

models with different σ , one is with common squid’s σ  and the other is with 

walleye pollock’s σ . The first row of sardine in Table 2 represents Imp ,  with 

sardine’s original σ  and second and third row represent Imp ,  with squid’s and 

pollock’s σ  respectively. The larger σ  was, the larger Imp ,  of each simulation 

settings was. Comparing the Imp ,  for common squid and that for sardine model with 

the same σ  as squid, Imp ,  for squid was larger than that for sardine (3.24 and 

1.26 respectively). Imp ,  for sardine model with pollock’s σ  was larger than that 

for pollock.  
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DISCUSSION 
Key life histories which determine effectiveness of recruitment 
predictions 

 Japanese common squid whose management performance was dramatically 

improved is annual stock. This result is reasonable because all of the Japanese 

common squid population are newly recruited individuals. On the other hand, there 

was little improvement for walleye pollock which is long lived and late matured fish 

and main target are old fish. Japanese sardine has intermediate life history and the 

improvement was also intermediate.   

The results of same stock’s model with different recruitment variation 

magnitude showed that the performance improvement by recruitment prediction is 

greater for the larger recruitment variation. Then results of different stocks’ model 

with same recruitment variation showed that the performance improvement by 

recruitment prediction is greater for shorter longevity. These results suggest that short 

lived and highly recruitment fluctuated species have large potential of improved 

management performance with better recruitment prediction accuracy. These results 

are consistent with past case studies and I integrated different species’ results in a 

same simulation manner and enabled sound comparison.  
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Comparison between recruitment prediction and monitoring after 
recruitment 

Stock size estimation error can be decreased not only by recruitment 

prediction, but also monitoring after recruitment. I assumed estimation error 

generated in the recruitment prediction decrease as the cohort gets old. The rate by 

which stock estimation bias decreases is . Small  may be achieved if the stock is 

monitored extensively after recruitment for example by acoustic surveys. Thus, in our 

simulations, estimation accuracies for older ages depend on both recruitment 

prediction accuracy and . If there is a good monitoring system and α is small (e.g. 

0.5), estimation accuracies for older ages are good even if that for recruitment is bad. 

On the other hand, estimation accuracies for older ages directly reflect that for 

recruitment when α 1.  

In general, it is not necessary to exploit young cohorts, because weight and 

price of fish individual increase with age. If selectivity is concentrated on old cohorts, 

the accuracy of stock size estimation for old cohorts becomes important. In such case, 

small value of  is preferable rather than recruitment prediction. When α 0.5, 

estimation for old ages are precise regardless of recruitment prediction accuracy. 

Therefore, there was little improvement in the performance of fisheries management 
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by good recruitment prediction (Imp ,  were 1.49 and 0.98 for sardine and pollock 

respectively). When α 1, there was no improvement in estimation accuracy by aging. 

In this case, errors in the recruitment prediction remains whole life, thus performance 

of fisheries management largely depends on recruitment prediction and was improved 

dramatically with better recruitment prediction accuracy (Imp ,  were 5.12 and 1.79 

for sardine and pollock respectively).  

These results suggest that fisheries management can be improved by 

enhancing monitoring after recruitment. For long lived species like pollock, monitoring 

after recruitment seems to be more important than recruitment prediction.  For 

species with moderate longevity, such as sardine, monitoring after recruitment is good 

alternative to the recruitment forecast. Managers should compare cost-benefit and 

feasibility of recruitment prediction and monitoring after recruitment. 

   

Quantitative evaluation of effects of recruitment prediction 

Appropriate management performance measures depend on the management 

objectives. In general, the goal of fisheries management is maximizing fisheries 

production while minimizing biological risk of overfishing. I used average catch and 

minimum SSB for simplicity as measures of management goal. In real fisheries 
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management, we have to consider many other management performance measures 

such as yearly catch variation and risk of stock collapse.  

 In this work, I defined CR which maximizes the product of average catch and 

minimum SSB was the optimal. That is because I considered that balancing average 

yield and minimum SSB would be preferred in real management. If this is not the case, 

the manager has to use other criterion which is suitable for object of the fisheries 

management. There may be other quantitative index such as index using not products 

but distance from the origin in scatter plots. The index using distance from origin in 

scatter plots use to be maximized by CR which achieve high average yield or minimum 

SSB sacrificing the other. 

 

Proposal to fisheries managements 

In Japan, many economically important species, like chub mackerel and 

Japanese sardine, have been heavily overexploited.  There are many rooms to 

improve management performances by decreasing fishing mortality. Before 

considering to use recruitment prediction, manager should stop overfishing and use 

potentially optimal CRs. 

Researches for recruitment prediction need much time and money. Brander 
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(2003) pointed out three prerequisites of environmental index for recruitment 

prediction: (i) the effect should be significant, (ii) there should be a credible 

explanation of the process by which the environmental factor acts, (iii) the 

environmental information must be available in a timely and cost-effective form. It 

may be difficult to find such indexes. Furthermore, it is very uncertain how much the 

accuracy of recruitment prediction would be improved. In comparison with this, 

changing CR needs less cost and time. 

Both Japanese sardine and chub mackerel have nearly collapsed after 

successive year of recruitment failure and successive high fishing pressures. There is 

no strict catch control rule in Japan and fishing mortality of sardine increased as stock 

biomass decreased (Fig. 5). Thus, age compositions for these fish are very truncated to 

young fish and most catch consists of 

immature 0 or 1 age fish (Fig. 6). 

Consequently the amounts of 

recruitment have serious impact on 

the fisheries and recruitment 

prediction accuracies usually become 

Figure 5 Fishing coefficients and stock
biomass of sardine during
1977~2006. Fishing coefficients are
average of those of all ages. 
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controversial issues. However, Fig. 7 

shows that management 

performance of Japanese sardine 

can be dramatically improved by 

adopting appropriate CR even if 

manager cannot predict recruitment 

precisely (R2=0) and the accuracy of 

prediction cannot be improved. This 

indicates that the necessity of 

recruitment prediction is overstated 

in the current controversy.  

Considering there being no promising 

environmental index for recruitment prediction and high fishing pressure resulting in 

recruitment and spawning overfishing, managers and fishing industries should 

decrease fishing pressure and mainly catch old fish before discussing recruitment 

predictions.  

  

Figure 6 Catch at age of sardine in recent years.

Figure 7 Management performances of CRs
when R2=0 (small circles) and that of recent
years (2002~2006, red square). 
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CONCLUSIONS 

This study showed that recruitment prediction is potentially useful 

forfisheries management especially for the stock with short longevity and large 

recruitment fluctuation. I also found that developing a good monitoring system after 

recruitment can also improve management performance. 

 Many fish stock in the Japanese EEZ are heavily over exploited. There are 

many rooms to improve fisheries production just by reducing fishing mortality. At the 

first step, fishing mortality should be declined to the appropriate level.  If the further 

improvement in management performance is preferable, we should consider to use 

recruitment prediction. There are many alternatives, such as monitoring after 

recruitment. We have to estimate which is the most effective 
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