報 究 谏

研究速载

乱流境界層を対象とした LES のための流入変動風の生成法に関する研究

一流入変動風生成時のパワースペクトル、クロススペクトルの再現精度が計算結果に及ぼす影響一

Influence of Degree of Correspondence of Power and Cross-Spectra for Inflow Turbulence Generation of Turbulent Boundary Layer on LES Computation

灯**·村 上 周 三***·土 谷 学* 宏 二*・持 田 近 藤 Koji KONDO, Akashi MOCHIDA, Shuzo MURAKAMI, Manabu TSUCHIYA

1. はじめに

筆者らは,乱流境界層のLES計算の流入境界に与える 風速変動(流入変動風)の生成を目的として、風洞床面上 で発達した平板乱流境界層の特性に関する基礎データを採 取し, 平板乱流境界層内のパワースペクトル, クロススペ クトル (ルートコヒーレンスとフェイズ)のモデルを提案 した¹⁾、本研究では、提案したモデルを基にパワースペク トル、クロススペクトルの再現精度を種々変化させて流入 変動風を生成し、それを用いた LES 計算によって流入変 動風の再現精度が計算結果に及ぼす影響を検討した.

2.計算条件

対象としたのは、Fig.1に示すような風洞床面上に発達 した平板乱流境界層である注1).流入変動風の生成は、モ ンテカルロシミュレーションに基づいて行った²⁾. Table. 1 に各ケースの流入変動風生成時に再現したスペクトル成分 の再現精度を示す注2).

計算ケース	パワースペクトル	クロススペクトル
ケース1	<i>u</i> ₁ , <i>u</i> ₂ , <i>u</i> ₃ 成分	再現せず
ケース2	u ₁ , u ₂ , u ₃ 成分	u ₁ -u ₁ , u ₂ -u ₂ , u ₃ -u ₃ 成分
ケース3	<i>u</i> ₁ , <i>u</i> ₂ , <i>u</i> ₃ 成分	u ₁ -u ₁ , u ₂ -u ₂ , u ₃ -u ₃ u ₁ -u ₃ 成分

Table.1 流入変動風生成時に再現したスペクトル成分

3.計算結果

3.1 パワースペクトル

生成した流入変動風および LES 計算結果から求めたパ ワースペクトルを流入変動風生成の目標値(同図○)と比

*鹿島技術研究所

***東京大学生産技術研究所 第5部

Fig.1 計算対象の平板乱流境界層と計算領域の概要

較して示す. Fig. 2: (a) が流入変動風の生成結果を,同 図(i):(b)がLESの流入境界に与える事前処理として u,成分に流入量一定操作²⁾を施した結果を^{注3)},同図(ii): (b) が u1成分と同一点で生成した u3成分から LES のスタ ガード格子点の速度を3次精度の空間補間で求めた結果 を, さらに同図: (c) が中心断面の流入直後 x1 = 0.11, x₃ = 0.2 における LES の結果を,同図:(d)が下流域 x₁ = 4.57, $x_3 = 0.2$ における LES の結果を示したものである. Fig. 2: (a) に示した流入変動風の生成結果は, 目標値 (図中〇) と良く一致している. u₁成分に流入量一定操作 を施した場合(Fig. 2(i):(b)),いずれのケースもパワ ースペクトルにほとんど変化は見られない.一方, u3成分 に空間補間を施した場合(Fig. 2(ii):(b)),流入変動風 の生成時に空間相関(クロススペクトル)を再現していな いケース1では、全周波数域に渡って同じ比率でパワーが 低下している.これに対して,生成時に из-и 成分の空間 相関を再現したケース2,3では、低周波数域におけるパ ワーの低下は見られず、高周波数域における低下のみとな っている.このように、空間補間時のパワーの低減に関し ても,空間相関の再現精度が影響を及ぼすことが分かる.

LES 計算の流入直後の $x_1 = 0.11$ におけるパワースペク トルを見ると、 u_1 、 u_3 成分(u_2 成分も同様)ともn=2付 近から高周波数域で急激にパワーが低下している.これは, LES 計算で導入されている grid filter の効果と対応するも のと考えられる.格子幅 Δx_1 と平均速度< u_1 >から求めら れる Nyquist の cut off 周波数は $n_{max} = \langle u_1 \rangle / 2\Delta x_1 = 6.7$ で

57

^{**}新潟工科大学

研 究

あり, LESの grid filter は, これよりもかなり低周波数域 で生じていることが分かる^{注4)}. $x_1 = 0.11$ での u_1 成分のパ ワースペクトルは、高周波数域の filter 効果を除けば、い ずれのケースも流入変動風からの変化は小さい. これに対 して、u₃成分は空間補間後(Fig. 2 (ii): (b))から、さ らにパワーが低下している. これは, divergence-free を満 たさない流入変動風を流入境界に与えたため, LES 計算の 中で連続式を満足する過程で, 主に и 成分に対して速度 の修正が行われたことが主な原因と考えられる2).一方, $x_1 = 4.57$ のパワースペクトルを見ると、ケース1の場合、 u₁, u₃成分とも低周波数域のパワーが大幅に低減してしま い,流入境界における目標値とは、スペクトル形状.パワ -ともかけ離れてしまっていることが分かる.これは、ケ ース1では、変動風が空間相関を全く満たさないものであ るため, LES 計算で Navier-Stokes 方程式を満たす過程で, 各格子点における速度の時間変動の特性が大幅に歪められ てしまったためと考えられる.これに対して、同一成分間 の空間相関を満足させたケース2,3では, $x_1 = 0.11$ で見 られたパワーの低下がx1=4.57では回復し、目標値とほ ぼ一致している.このことから,流入変動風を用いた LES 計算で乱流の統計的性質を再現するためには, 空間相関の 再現が大変重要であることが分かる. u1成分と u3成分間 の相関の再現精度が、LES 計算結果に与える影響をケース 2,3の比較で見てみると、両者のパワースペクトルには、 ほとんど差が見られない.

3.2 空間相関

u₁成分とu₃成分間の相関の再現精度が、LES計算結果 に与える影響をさらに検証するために,流入直後 (x1= 0.11) と下流域 ($x_1 = 4.57$) における $\tau = 0$ の空間相関係 数をケース2,3で比較してFig.3に示す.Fig.3:(a)~ (c) は、基準点 $(x_2 = 0, x_3 = 0.2)$ に対する空間相関係 数である. また, Fig. 3: (d) は同一点における u₁成分と u3成分の空間相関係数であり、実験ではほぼ-0.4で一定 となっている. $x_1 = 0.11$ の空間相関を見ると, u_1 成分と u_x 成分間の相関を再現していないケース2の場合, u_1-u_1 成 分, u3-u3成分では, 流入変動風からの変化は少なく, ほ ぼ目標値を満足しているが, u1-u3成分, u1-u3成分(同一 点)に関しては、ほぼゼロである.これに対して、40成分 と u3成分間の相関を再現したケース3では, u1-u1成分, *u*₃-*u*₃成分, *u*₁-*u*₃成分に関しては,ほぼ目標値を満足して いるが、u1-u3成分(同一点)に関しては、目標値に比べ て相関が小さくなっている.これは,流入境界に与えた流 入変動風が, 乱流境界層の統計的性質は満足しているもの の, 瞬時々々の物理構造を再現していないため, 流入直後 の領域では、乱流の物理構造がまだ十分再現できていない

ためと推定される. $x_1 = 4.57$ では, LESの filter 効果によ り и1-и1 成分, и3-и3 成分の空間相関の分布が若干変化する が、ケース2、3とも u1-u3 成分、 u1-u3 成分(同一点)の空 間相関がほぼ再現できている.

3.3 平均風速・変動風速の鉛直分布

空間相関の再現精度が LES 計算の乱流統計量に及ぼす 影響を見るためにケース2,3の平均風速 < ū,),変動風速

 $\langle (\bar{u}_1')^2 \rangle^{1/2}, \langle (\bar{u}_2')^2 \rangle^{1/2}, \langle (\bar{u}_3')^2 \rangle^{1/2}, およびレイノルズ応$ カー $\langle \overline{u_1}, \overline{u_3} \rangle$ の主流 x_1 方向の変化を比較して Fig. 4に示 す. ここに示す LES の結果は, Grid Scale (GS) 成分であ る.比較のために流入変動風生成の目標値(Fig. 4Δ)およ びその内 LES の GS 成分に対応する値(Fig. 4〇:以下, 目標値のGS成分)を示す^{注5)}. 平均風速 < ū1 > は, ケース 2,3とも流入直後のx1=0.11で床面近傍の速度が回復し 目標値をわずかに上回るが, x1 = 2.29 から下流ではほと んど変化せず、ほぼ目標値と一致している.変動風速 $\langle (\bar{u}, ')^2 \rangle^{1/2}$ は、ケース2、3とも流入直後の $x_1 = 0.11$ では、 目標値のGS成分と一致しているが、高さx3 ≤ 0.2の範囲 では, x₁ = 2.29 で一旦変動風速が低下した後,下流域で は再度増加している.変動風速 < $(\bar{u}_2)^2$ ^{1/2}, < $(\bar{u}_3)^2$ ^{1/2} は、ケース2、3とも流入直後のx1=0.11で目標値を下回 るが、下流に行くに従って増加しており、x1=4.57では ほぼ目標値と対応している. レイノルズ応力-〈 $\bar{u_1}$, $\bar{u_3}$, は、ケース2の場合、流入変動風の生成時に u1成分と u3 成分間の相関を再現していないためほぼゼロであるが、ケ ース3では, u1成分とu3成分間の相関を再現しているた め, $x_1 = 0.11$ でも値を持っている.しかし,流入境界で 再現した目標値の GS 成分に比べて値がかなり小さい.こ れは、LES 計算中の filter 効果に加えて、流入変動風が乱 流境界層の瞬時々々の物理構造を再現していないためと考 えられる.しかし, $x_1 = 2.29$ では,ケース2,3のレイノ ルズ応力は、ほぼ同じ値となっており、 $x_1 = 6.86$ では、 高さ x3<0.1の範囲でほぼ目標値の GS 成分のレベルまで回 復している.

4.まとめ

風洞床面上で発達した平板乱流境界層に関して,空間相 関の再現精度を種々変化させて流入変動風を生成し,それ を用いた LES 計算を行った.その結果,流入変動風の生 成時に空間相関を再現しない場合(ケース1),下流に行 くに従って流入境界に与えた流入変動風のパワースペクト ルが大幅に変わってしまい,乱流境界層の統計的性質を再 現できなかった.これに対して,同一成分間の空間相関を 再現した場合(ケース2)は, $x_1 = 4 \sim 5$ 付近でほぼ目標 値と対応する流れとなった.さらに u_1 成分と u_3 成分間の 相関まで再現した場合(ケース3)の計算も試みたが,こ れを再現しない場合との差は,流入境界付近を除けば,あ まり見られなかった.

(1998年11月10日受理)

1) 風洞床面には、スパイヤー、ラフネスブロックは、設置し

研究 一部 一部 第1000 (1000) (1000

 LES の計算領域幅は、主流(x₁)方向をL₁=8.57、スパン (x₂)方向をL₂=1.77、高さ(x₃)方向をL₃=2.0とした. 格子幅は、x₁、x₂方向をΔx₁=Δx₂=0.057の等間隔格子、 x₃方向は、床面第1セルをΔx₃=0.029として、境界層高 さx₃=1.0までをストレッチ率1.03で分割し、x₃=1.0~ 2.0は、Δx₃=0.057の等間隔格子とした.総格子点数は、

研

究

谏

150 $(x_1) \times 31$ $(x_2) \times 42$ $(x_3) = 195,300$. 計算格子はス タガード格子. 流入境界には流入量一定操作²⁾ を施した流 入変動風を与え, 側方境界は周期境界条件とした. 流出境 界は対流型境界条件³⁾ とし, 対流速度は流入面の平均速度 とした. 床面境界は Werner-Wengle⁴⁾ の linear-power law 型 の wall function. 上空境界は u_1 , u_2 成分が $\partial u_1/\partial x_3 =$ $\partial u_2/\partial x_3 = 0$, u_3 成分は計算対象の平板乱流境界層が発達過 程にあるため¹¹, (1) 式で求められる u_3 を与えた.

 δ^* :排除厚さ, U_h :境界層外の平均風速

圧力解法はHSMACとし,離散スキームは空間微分に2次 精度の中心差分,時間微分は,移流項に2次精度のAdams-Bashforth,拡散項にCrank-Nicolsonを用いた.SGSモデル は,標準Smagorinskyモデル(Cs = 0.1)を用い,流入変 動風生成とLES計算の時間間隔は $\Delta t = 0.00829$ とした.計 算値は,無次元時間約68の平均値を示した.

- 3) 筆者らは、流入変動風に対する事前処理として divergencefree 操作と流入量一定操作を提案した²⁾.しかし、本研究 は、流入変動風生成時の空間相関の再現精度が LES 計算結 果に与える影響の調査を目的としており、divergence-free 操作が有する filter 効果を排除するため、流入量一定操作 のみを行った.
- 4) 本研究で用いたコードにより,流れ方向に周期境界条件を 用いた Channel 流の LES 計算を行ったところ,この場合も $\Delta x_1 \geq < u_1 >$ から求められる Nyquist 周波数の 1/3 程度の周 波数から減衰する filter 効果が見られた.従って,この filter 効果は,生成した流入変動風に起因するものではない と考えられる.
- 5) LES計算結果のパワースペクトルに見られる高周波数域の

cut off 周波数は,格子 幅 Δx_1 に対応する Nyquist 周波数 n = 6.7やLES 計算中の中心差 分による filter 効果²⁾ (filter 幅が格子幅 Δx_i に対応する Top-hat filter)に比べてかなり低

い. この cut off 周波数は,床面近傍と上空では若干異なる が,高さによる差が少ないこと,cut off 周波数が明確に定 義できないことから,全ての高さに対してn = 2.3とした. 目標値の GS 成分は,目標のパワースペクトル (レイノル ズ応力ではクロススペクトル) に $n \le 2.3$ の low pass filter を 掛けて求めた.

参考文献

- 近藤宏二,持田灯,村上周三,土谷学:乱流境界層を対象 とした LES のための流入変動風の生成 風洞実験に基づく 平板乱流境界層のモデル化と生成,生産研究, Vol. 50, No. 1, pp. 41-48, 1998.1.
- 近藤宏二,持田灯,村上周三:LESのための流入変動風の 生成に関する研究-流入変動風を用いた等方性乱流のLES 解析-,日本建築学会構造系論文集,pp.33-40,1997.11.
- 載毅,小林敏雄:一様流に流される渦の流出境界条件の検
 討,日本機械学会論文集(B編)58巻546号,pp.17-24,
 1992.2.
- 4) H. Werner, H. Wengle: Large Eddy Simulation of Turbulent Flow over and around a Cube in Plane Channel, Proc. of 8 th Sym. on Turbulent Shear Flows, p. 551, 1991.