谏

報

多光子共鳴イオン化法による水素分子の検出

Detection of Hydrogen Molecules by Using Resonance-enhanced Multiphoton Ionization

馬 込 保*·福 谷 克 之*·岡 野

Tamotsu MAGOME, Katsuyuki FUKUTANI and Tatsuo OKANO

1. はじめに

固体表面は, 固体内部に比較して, 切断された結合が多 数存在するため、多種多様な反応の舞台となる。このよう な多様な反応の機構を解明するためには反応を個々の素過 程に分解して考察する必要がある. 我々は、このような素 過程の解析のプロトタイプとして, 水素分子の固体表面で の挙動に注目している.

水素分子の表面での挙動は、分子と表面の相互作用ポテ ンシャルで決まる. 吸着状態付近のポテンシャルは. 従来 の表面分析手法で調べられているが、分子の動的挙動を示 す表面から遠い位置までのポテンシャルはあまり調べられ ていない. このようなポテンシャルは、例えば、脱離反応 においては、脱離水素分子の内部状態にその様子を反映し ている. このため, 脱離した気体分子の内部状態の測定は 分子の挙動を解明する上で極めて有効な手法となる。 内部 状態の高感度の弁別は多光子共鳴イオン化法(Resonanceenhanced multiphoton ionization: REMPI) により可能となる. 我々は表面と水素分子の相互作用の解明を目的として. REMPI 装置の開発を行い、気体水素分子(H_o)の回転状 態分布の測定を行ったので報告する.

2. 実 験 原 理

断熱近似の範囲では、水素分子の状態は、核の振動、同 転状態,及び電子状態によって定まる.この核の振動,回 転状態は, それぞれ, 量子数 v, J (≥ 0) によって表現す ることができる. また電子状態は、エネルギーが小さいも のから順に, X, A, B, …と表現されている. 断熱近似 では、核の振動、回転状態は与えられた電子状態がつくり だすポテンシャル内での運動として記述できる. したがっ て,このようなポテンシャルは断熱ポテンシャルと呼ばれ.

電子状態と同様に X, A, B, …と表現される. 図1に水 素分子の主な断熱ポテンシャルを示す. また、X、A、B、 …はある断熱ポテンシャル内での水素分子の内部状態の総 称としても利用される. これらの内部状態のエネルギー (E) は次式で表される.

$$E = T + \omega_{e} \left(v + \frac{1}{2} \right) - \omega_{e} x_{e} \left(v + \frac{1}{2} \right)^{2} + \omega_{e} y_{e} \left(v + \frac{1}{2} \right)^{3}$$

$$+ \left| B_{e} - \alpha_{e} \left(v + \frac{1}{2} \right) \right| J \left(J + 1 \right) - \frac{a B_{e}^{3}}{\omega_{e}^{2}} J^{2} \left(J + 1 \right)^{2} \left[meV \right]$$

$$\cdots \cdots \cdots (1)$$

第1項が電子のエネルギーであり、第2~3項が核の振 動によるエネルギーであり、第4、5項が主に回転による エネルギーである. これらのうち X, E, F状態のポテン シャル定数を表1に示す.

本実験で採用した REMPI法は, E, F ← X (2+1) $REMPI^{2}$ と呼ばれている。第1段階として2光子吸収で、

図 1 水素分子 (H_2) の主な断熱ポテンシャル $^{1)}$

^{*}東京大学生産技術研究所 第1部

表 1	水素分子 (H_{\circ}) の主な断熱ポテンシャルのポテンシャル定数 3	()
1	1431/73 1 (113)/42 II BEN MAN A A A A A A A A A A A A A A A A A	

	Т	ω _e	$\omega_{e}x_{e}$	$\omega_{\rm e} y_{\rm e}$	B_{e}	α_{e}
X	0	545.0	14.629	0.03596	7.54	0.371
E	12406.3	321.0	16.18	4.052	0.225	
F	12830.0	124.0		4.05	0.225	

X 状態から E, F 状態へ共鳴遷移させ、第2段階で1光子吸収でイオン化する方法である. X, E, F 状態のエネルギーが式(1), 表1に示されるとおりであるため、励起状態へ遷移するために必要な光の波長が振動・回転状態ごとに異なる. したがって、イオン化する光の波長を選ぶことにより水素分子の振動・回転準位を弁別してイオン化することが可能になる.

3. 実 験 方 法

実験装置は、励起光の発生部分とイオン測定部の2つからなる。図2に励起光発生部の模式図を示す。まず、Nd:YAGレーザー励起の色素レーザーの出力(波長~600 nm)から1つめのBBO結晶を用いて第2高調波を発生させる。続いて第2高調波の偏光面を90°回転させ、基本波の偏光面と合わせた後、2つ目のBBO結晶を用いて

図2 多光子共鳴イオン化システムの励起光発生部の概略図

和周波 (波長 $\sim 200 \, \mathrm{nm}$) を発生させる.この紫外光をダイクロイックミラーで基本波,第2高調波から選別した後,超高真空内に導入する.

図3に超高真空槽の概略を示す. 導入する紫外光は, 超高真空槽内で集光するようレンズで絞った. 集光されたレーザー光の波長が共鳴波長と一致する時, 焦点付近で水素分子が共鳴イオン化される. 生じたイオンを押し出し, 引き込みの両電極でマイクロチャンネルプレート (Micro channel plate: MCP) に誘導し, 電流信号として検出した. 1パルスで生じる電流信号は, 励起光, 水素原子イオン,

図3 多光子共鳴イオン化システムのイオン測定部の概略図

水素分子イオンに起因するものからなる.これらの電流は,この順序で発生する.励起光の強度が強い場合は,MCPが飽和するので,後続するイオンの電流信号が,イオンの生成量に比例しなくなる.このような場合は,励起光に対するMCPの感度を減少させる必要がある.本実験では,BEHLKE社製の高圧トランジスタスイッチ HTS-30 Option3を使用し,励起光のMCP到着後,MCPへの印可電圧を高くすることによってこれを実現した.

実験は、イオン生成量の励起光波長依存性、励起光強度 依存性、水素分圧依存性の測定を行い、1) 共鳴イオン化 が生じるか、2) 回転状態が弁別できるか、3) 回転状態分 布が測定できるか、4) 測定限界はどのくらいか、を考察 した。

4. 実験結果

図4にイオン生成量の励起光波長依存性を示す.励起光波長が201.73 nm と 201.845 nm のところで,イオン生成量が著しく増大することがわかった.前述の式(1)を用いて計算すると,この2つのピークはそれぞれ水素分子の内部状態が,v=0, J=0とv=0, J=1に対応するピークであることがわかる.ピーク面積を積分し,J=0とJ=1の強度比を求めると,4.84となる.ボルツマン分布を仮定し,回転温度を計算すると,274.7 K となり,実験室内の温度 283.15 K と誤差 3%で一致することがわかった.これらのピークのうち,J=1に対応するピークの励起光強度依存性を図5に示す.両対数表示をして傾きを求めると,3.0 になることがわかった.今回利用した REMPI 法では水素分子が 3 光子を同時に吸収し,イオン化する 3 光子過程

図4 水素分子イオン(H₂*)の生成量の励起光波長依存性

図5 水素分子イオン(H₂⁺)の生成量の励起光強度依存性

である。したがって、イオンの生成量が励起光強度の3乗に比例することが期待され、図5は確かにこの事実が成り立つことを示している。図6にイオン生成量の水素分圧依存性を示す。イオン生成量は水素分圧(分子数)に比例しており、この方法の測定限界は、光の強度が $68\mu J/P$ の場合、 1×10^{-6} Pa以下であることを示している。

5. ま と め

共鳴イオン化法測定システムの構築を行った.この方法 を気体水素分子に利用することにより回転量子準位を弁別 して測定することが可能になった.測定感度の見積りを行

図 6 水素分子イオン(H₂⁺)の生成量の水素分圧依存性

ったところ、単原子層以下の微量な水素分子に対しても十分感度があり、表面研究へも応用可能であることがわかった

(1998年1月23日受理)

参考文献

- 1) T. E. Sharp, A. D. 2, 119 (1971).
- E. E. Marinero, C. T. Rettner, and N. Zare, Phys. Rev. Lett. 48, 1323 (1982).
- 3) G. Herzberg, Molecular Spectra and Molecular Structure I, 2 nd Ed, (KRIEGER, FLORIDA, 1950) p 530.