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ABSTRACT

Our laboratory is promoting a project for digitally archiving tangible and intangible
cultural heritage objects, and traditional Japanese dance is one of the subjects we are
working on currently.

To archive traditional Japanese dances, we first acquire the dance motion using an
optical motion capture system, where a human dancer needs to put on markers all over
his or her body, and the geometry-and-appearance is taken separately. The main draw-
back of this system is that the motion and the geometry-and-appearance cannot be ob-
tained simultaneously. To overcome this problem, we have developed a system that can
obtain both information simultaneously.

The proposed system includes two main stages: 3D shape reconstruction and human
motion tracking.

A sequence of 3D volumetric representations of a human body is reconstructed from
multiple video streams, and the reconstructed data are further refined with the voxel
coloring method. The texture images or appearance, are also acquired at the same time.

To estimate the motion of the human body, we proposed to utilize a deformable
human body model that is composed of a kinematic skeleton model and a surface skin
model. For each patch of the surface, the system finds the correspondence in the ob-
served data and estimates the pose and the joint angles of the body iteratively. The sur-
face deforms naturally by following the motion of the bones, thus the correspondences
are robustly found, especially around the joints.

The proposed techniques are verified in simulation as well as in a real world setting
and are proved to track a variety of whole body motions reliably. By combining the
textured 3D data and the motion obtained from tracking, the motion and the geometry-
and-appearance are archived successfully.
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Chapter 1

Introduction

Tracking the human body, also called motion capture or posture estimation, is a
problem of estimating the parameters of the human body model (such as joint angles)
as the position and configuration of the tracked body change over time.

A reliable motion capture system would be valuable in many applications. One class
of applications is those where the extracted body model parameters are used directly,
for example, to interact with a virtual world, drive an animated avatar in a video game,
or for computer graphics character animation.

Another class of applications uses extracted parameters to classify and recognize
people, gestures, or motions, such as surveillance systems, intelligent environments,
or advanced user interfaces (sign language translation, gesture-driven control, gait, or
pose recognition). Finally, the motion parameters can be used for motion analysis in
applications such as personalized sports training, choreography, or clinical studies of
orthopedic patients.

The goal of this study of human body tracking is twofold:

• To preserve the traditional Japanese dance as a part of archiving our intangible
cultural heritage archiving

• To contribute to the preservation of traditional dances by developing a dancing
humanoid robot that can imitate human dances finally

This study is confined to the first goal and includes the following topics in the field
of computer vision: 3D shape reconstruction, and motion tracking shown as areas 2 and
3 in Fig. 1.1.
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Figure 1.1: The target of the study

In this chapter, we discuss the background and purpose of this study, and related
works. We also present a brief overview of our system.

1.1 Background

Cultural heritage is transmitted from generation to generation. It provides people
with a sense of identity and continuity, and develops cultural diversity and human cre-
ativity. Many facets of cultural heritage in the world contribute to our knowledge of hu-
man culture and life in past times. However, due to their age, environment, or political
reasons, many of them are in danger of being destroyed. In particular, many important
intangible cultural properties such as traditional dances throughout the world are los-
ing lost because of the lack of the successors. Therefore, actions, such as recovering
technologies, are being taken to protect these properties.

Recently, there has been an attempt to preserve these properties by the use of com-
puter vision technology. Digital archiving technology is one of the effective ways to
record these properties forever and to possibly recreate them in the future. There are
arguments that we could just use video systems to archive this goal. However, video
data often lack the information needed for a full appreciation of the subject.

Our digital archiving projects of cultural properties including tangible [11] and in-
tangible ones such as folk dances was initiated and expanded to include imitation by a
humanoid robot. [19] [20].
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One typical method for digitizing human motions is to use a commercial motion
capturing system. However, such a motion capturing system provides only low-level
movement information, with limits to the clothes and space. Further more, texture in-
formation, such as the texture of a kimono in the case of folk dances, cannot be observed
and acquired at the same time.

With these considerations in mind, we track the human body using multi-view cam-
eras instead. We assume that the body model of the tracked person is known and placed
close to the true position in the beginning of the tracking process. Then we estimate the
model parameters in time to reflect the motion of the person.

The purpose of our research is to develop a technique that can acquire the informa-
tion about geometry-and-appearance and the human body motion simultaneously. Two
main procedures undertaken in this study are to obtain the human body shape data with
color and to track motions.

1.2 Related Works

Human motion tracking systems can be classified as ”with-markers” and ”without-
markers”. Of with-markers systems, there are mechanical, electromagnetic, or optical
systems.

These systems typically require the person to wear special markers, body suits or
gloves. In an optical system, the person wears optical markers on the body to whose
3D locations a kinematics skeleton is fitted. As human skeleton is a highly articulated
structure, and twists and rotations make the movement fully three-dimensional. But
because of the occlusion problem, it leads to inconsistent and unreliable tracking of the
human body.

The disadvantages of marker-based tracking systems include:

• Identification of standard bony landmarks can be unreliable.

• The soft tissue overlying bony landmarks can move, giving rise to noisy data.

• The marker itself can wobble due to its own inertia.

In the past few years, marker-less systems using only cameras have received much
more attention.

Algorithms have been developed that take input from one or multiple cameras work-
ing in 2D image plane. This approach can be catalogued with or without explicit shape
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models. However, the cases of tracking without models cannot estimate joint angles, so
that topic is omitted here.

Methods with models rely on the pre-designed models or require a significant amount
of a priori knowledge to generate the model. Assembled simple shape primitives, such
as cylinders or ellipsoids, are mostly employed. A common trend has been to use novel
3-D models, which has led to more robust results.

Rehg and Kanade [24] have developed a system for tracking a 3D articulated model
of a hand based on a layered template representation of self-occlusions.

Kakadiaris and Metaxas [13] [14] have developed a system for 3D human body
model acquisition and tracking using three cameras placed in a mutually orthogonal
configuration. The person under observation is requested to perform a set of movements
according to a protocol that incrementally reveals the structure of the human body. Once
the model has been acquired, the tracking is performed using the physics-based frame-
work. Based on the expected body position, the difference between the predicted and
actual images is used to calculate forces that are applied to the model. The dynamics
are modeled using the extended Kalman filter. The tracking result, a new body pose, is
a result of the applied forces acting on the physics-based model. The problem of occlu-
sions is solved by choosing from the available cameras those that provide visibility of
the part and observability of its motion, for every body part at every frame.

Gavrila and Davis [7] used a human body model with 17 DOF and composed of
tapered super-quadrics to track (multiple) people in 3D. They use a constant accel-
eration kinematics model to predict positions of body parts in the next frame. Their
locations are then adjusted using the undirected normalized chamfer distance between
image contours and contours of the projected model (in multiple images). The search
is decomposed in stages: they first adjust positions of the head and the torso, then arms
and legs.

Deutscher et al. [5] developed a system using Kalman filter to handle high dimen-
sional configuration space of human motion capture. It uses a continuation principle,
based on annealing, to gradually introduce the influence of narrow peaks in the fitness
function. Two image features are used in combination: edges and foreground silhou-
ettes. Good tracking results are achieved using this approach.

Delamarre and Faugeras [4] describe an algorithm that computes human body con-
tours based on optical flow and intensity. Then, forces are applied that attempt to align
the outline of the model to the contours extracted from the data. This procedure is
repeated until a good agreement is achieved.
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Hunter et al. [10] developed an algorithm based on the Expectation Maximization
(EM) procedure that assigns foreground pixels to body parts and then updates body part
positions to explain the data. An extra processing step, based on virtual work static
equilibrium conditions, integrates object kinematic structure into the EM procedure,
guaranteeing that the resulting posture is kinematically valid.

Wren et al. [30] introduce a statistical description of the whole scene making use
of color, driven by 2Dblob features from multiple cameras that are probabilistically
integrated into a 3D human body model. Also, the system includes a feedback from the
3D body model to the 2D feature tracking by setting the appropriate prior probabilities
using the extended Kalman filter.

However, in the algorithms that work with data in 2-D image planes, the 3D body
model is repeatedly projected onto the image planes to be compared against the ex-
tracted image features. Another problem in working with the image plane data is that
different body parts appear in different sizes and may be occluded depending on the
relative position of the body to the camera and on the body pose.

Recently, sequences of shape-from-silhouette models have been considered as input
data for human motion estimation. Ellipsoidal body models, kinematic skeletons, or a
pre-defined kinematics model with triangular mesh surface representation are adopted
to be fitted to the volumetric data.

The first attempt at using voxel data obtained from multiple cameras to estimate
body pose was reported by Cheung et al. [3]. A simple six-part body model is fitted
to the 3D voxel reconstruction. The tracking is performed by assigning the voxels in
the new frame to the closest body part from the previous frame and by recomputing the
new position of the body part based on the voxels assigned to it. This simple approach
did not guarantee that two adjacent body parts would not drift apart. Also it could lose
track easily for moderately fast motions.

Cheung et al. [2] improved it to use colored surface points (CSPs) to segment the
volumetric body data into rigidly moving body parts, based on the results of the previous
frames, and took advantage of the constraint of equal motion of parts at their coupling
joints to estimate joints positions of an actor.

R. Kehl et al. [15] presented an approach for full body pose tracking using stochastic
sampling. They adopted a deformable body model, using volumetric reconstruction data
to fit the model. The color information is needed in their system to improve the speed
and robustness of the tracking.
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1.3 System Overview

In this study, we present a marker-less human body tracking system. The whole
system process is shown in Fig. 1.2．

Image
acquisition

3D 
reconstruction

Motion
Tracking

Deformable
model

Image
acquisition

3D 
reconstruction

Motion
Tracking

Deformable
model

Figure 1.2: The system flowchart

First, human body motion is acquired from multiple synchronized video cameras.
Instead of the approach of working directly with the image data, we use 3D shape

data of the human body at each frame as input to the model tracking.
This is carried out with a 3D shape reconstruction process. Silhouette images are

acquired after background segmentation process of the input images; a human body
shape is reconstructed using a visual hull method. Furthermore, taking advantage of
the color information of the voxel data, a voxel coloring method is adopted to obtain
a relatively precise reconstruction data set, which leads to a more robust result of the
tracking stage. At the same time, we obtain texture information of a relatively precise
3D human body reconstruction shape with tracking.

Then we generate an articulated human body model for tracking. We adopt a two-
layered articulated human body model with kinematic skeletal structure inside and de-
formable surface mesh outside, which makes the model act naturally and leads to more
robust tracking results than the general segment model.

At the final stage, we fit the human body model to the reconstructed data, to estimate
the pose and the joint angles of a human body.

In the following chapters, details of each process are described.
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The remainder of this thesis is organized as follows.
In Chapter 2, related works about 3D shape reconstruction and motion tracking are

introduced.
In Chapter 3, algorithm for computing 3D shape reconstructions is presented.
Chapter 4, focuses on the human body model and describes our tracking method.
In Chapter 5, experiments are shown and results are examined.
Finally, in Chapter 6, summary and future works are presented.
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Chapter 2

3D Shape Reconstruction

In computer vision, a persistent problem is the creation of a 3D model of a shape
from the given 2D images of the shape. Applications include robot navigation, vir-
tual reality, games, and special effects for motion pictures. To analyze and archive folk
dances, we use 3D shape reconstruction to reconstruct human body shape from static
2D images and then track human body motion from time sequences using these recon-
structed shape data.

One of the traditional shape reconstruction methods called multi-view stereo is
based on image matching [18] [32], using either intensity-based methods or feature-
based methods. The method computes correspondences across images and then re-
covers 3D structure by triangulation and surface fitting. Some of the disadvantages
of this approach are that (1) views must often be close together (i.e., small baseline)
to make correspondence techniques effective; (2) correspondences must be maintained
over many views spanning large changes in viewpoint; (3) A parameterized surface
model is needed to fit to the 3D points in order to obtain the final dense surface re-
construction for sparse features; and (4) There are no explicit solutions in handling of
occlusion differences between views.

Shape from silhouette (SFS) is an alternative approach of 3D shape reconstruction.
Based on computations in three-dimensional shape space, it uses silhouettes from mul-
tiple input images to construct the volume that is consistent in such images. This allows
widely-separated views, avoids the disadvantages of stereo methods but require cali-
brated input images.

Because of the above advantages of SFS, and the fact that a relatively large space is
needed for our target to track the human body motion, we choose the second method to
compute the shape reconstruction using multiple cameras.

8



There are many advantages to estimating 3D shape using SFS, such as the fact
that silhouettes are readily and easily obtainable and the implementation is generally
straightforward. On the other hand, the volume only approximates the true 3D shape
depending on the number of views. In particular, dependence only on silhouette images
fails to capture the concave patches that are not observable in any silhouette. Thus,
we consider using color information to improve the reconstruction results. A color-
consistency carving method called voxel coloring [26] is used to output a better 3D
shape.

The voxel coloring method, like other shape from silhouette methods, operates in
an initialized 3D volume space, which should be the superset of the object to be recon-
structed. The selection of the init volume is crucial to save the computation; mostly, a
visual hull method is used to do this.

The camera images are first segmented using the algorithm described in [9], which
eliminates shadows and produces good quality silhouettes. We will explain it later in
Section. 2.2.

We use volumetric representation for the reconstructed 3D shape data, which is the
input of the tracking step.

A texture mapping method is also used to acquire the color information of the human
body shape.

2.1 Overview

The whole process is shown in Fig. 2.1. There are 5 topics described in this chapter
as follows:

• Background subtraction
As the initial input data, silhouette images are generated by the color images
captured from cameras using background subtraction.

• Visual hull reconstruction
Given the silhouette images retrieved from the former step, the visual hull, which
is the maximal solid volume, is reconstructed. The visual hull is produced by the
intersection of the input silhouette cones. The resulting intersection volume is a
conservative bound on the object’s shape.

• Voxel Coloring reconstruction
The Voxel Coloring method assigns color information to voxels (points) in a 3D

9



volume, and checks the voxel color to see if it is consistent with all the input color
images that can see the voxel. Thus, a more precise reconstructed data can be
acquired.

• Mesh simplification
Mesh representation is used for the reconstructed 3D shape and simplification is
to save the computation later in the tracking.

• Texture mapping
In this step, all original color images captured from cameras are combined to-
gether to produce the final textured model.

3D Shape ReconstructionBackground Subtraction Visual Hull Reconstruction Voxel Coloring Reconstruction
Texture Mapping AppearanceImages Captured from Ceiling Cameras

Mesh Representation Geometry
Figure 2.1: Reconstruction Process

The details are described in the following sections.

2.2 Background Subtraction

The basic scheme of background subtraction is to subtract the image from a refer-
ence image that models the background scene.

Basically, the basic steps of algorithm are as follows:

• Background modeling, to construct a reference image representing the background

10



• Threshold selection, to determine the threshold in the subtraction operation

• Subtraction operation

The simplest background model assumes that the brightness of each background
pixel varies independently, according to normal distribution. The background charac-
teristics can be calculated by accumulating several dozens of frames, as well as their
squares. That means, for a pixeli located in (x, y), finding sum valuesSi and a sum of
squares of the valuesSqi. Then arithmetic mean is calculated as

mi =
Si

N
(2.1)

whereN is the number of the frames collected, and standard deviation as

σi = sqrt(
Si

N
− (

Sqi

N
)2) (2.2)

Then a pixel in a certain frame is regarded as foreground if condition

‖mi − pi‖ ≥ Cσi (2.3)

is met, whereC is a certain constant.
To obtain the background model, any objects should be put away from the camera for

a few seconds, so that a whole image from the camera represents subsequent background
observation.

However, the above technique cannot get rid of the influence of the shadows [9]. To
improve this, we do the following:

First, generate a statistics model for every pixel in the images.
As shown in Fig. 2.2, for a pixeli, let Ei represent the pixel’s expected RGB color

in the reference image; letI i denote the pixel’s RGB color value in the image to subtract
from the background. To measure the distortion ofI i from Ei, two componentsCD and
α are decomposed as:

CDi = ‖I i − αi Ei‖ (2.4)

αi = arg min(I i − αi Ei)
2 (2.5)

Analysis ofCD andα operates the background subtraction.
To decide the statistics model of pixeli, we capture the reference background image

over a number of static background frames as the simplest method mentioned above.
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Figure 2.2: Color model in the three-dimensional RGB color space

A pixel is modeled as〈Ei , si , ai , bi〉, whereEi is the expected color value, andsi is the
standard deviation of color value shows as

Ei =
[
µR(i), µG(i), µB(i)

]
(2.6)

si = [σR(i), σG(i), σB(i)] (2.7)

whereµ(i), µR(i), µR(i) are the arithmetic means, andσR(i), σR(i), σR(i) are the standard
deviation of pixeli overN frame of the background frames, calculated as 2.1 and 2.2.

ai is the variation of the brightness distortion andbi is the variation of the birghtness
distortion of pixeli, given by

ai = RMS(ain) =

√
ΣN

n=1(αin − 1)2

N
(2.8)

bi = RMS(CDin) =

√
ΣN

n=1(CDin)2

N
(2.9)

As mentioned above, the different pixels yield different distributions ofαi andCDi,
to normalizeαi andCDi as
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α̂i =
αi − 1

ai
(2.10)

ĈDi =
CDi

bi
(2.11)

is necessary.
Based on these definitions, a pixel is classified as



F : ĈDi ≥ τCD, else
B : α̂i ≤ τα1 and α̂i ≥ τα2, else

S : α̂i ≤ 0 else
H : otherwise

(2.12)

whereτCD, τα1 andτα2 are selected threshold values used to determine the similarities of
the chromaticity and brightness between the background image and the current image,
which can be selected by a statistical learning procedure automatically at the detection
rate ofr.

Fig. 2.3 shows the segmentation result for a frame captured from four different
views.

Figure 2.3: The result of background subtraction

2.3 Visual Hull Reconstruction

A silhouette image is a binary image, with the value at a point indicating whether
or not the visual ray from the optical center through that image point intersects an ob-
ject surface in the shape. Thus each pixel is either a silhouette point or a background
point. The binary images can be obtained by segmentation algorithms like background
subtraction. Combined with calibration information for each camera, each point in a
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Figure 2.4: Object(orange color) and its visual hull(green color) by the silhouettes

silhouette defines a ray in shape space that intersects the object at some unknown depth
along this ray. The union of these visual rays for all points in the silhouette defines a
generalized cone within which the 3D object must lie.

Given a set of calibrated and silhouette-segmented images, the visual hull is the
maximal solid volume that is consistent with each silhouette. The visual hull is given
by the intersection of the input silhouette cones. The resulting intersection volume is a
conservative bound on the object’s shape (Shown in Fig. 2.4)

With the known camera parameter, we project all voxels to the input silhouette im-
ages, so we can get the locations of each voxel on silhouette images. Voxels that project
outside the object’s silhouette in one of the images cannot belong to the visual hull.

Octree [23] is one of the best known approaches to implement the visual hull. The
volume of interest is first represented by one cube, which is progressively subdivided
into eight subcubes. Once it is determined that a subcube is entirely inside or entirely
outside the 3D reconstruction, its subdivision is stopped. Cubes are organized in a tree,
and once all the leaves stop dividing, the tree gives an efficient representation of the 3D
shape.

Octree subdivides the initial cube volume into eight subcubes progressively (Fig.
2.6). It is easy to manage the voxel size by defining subdivision depth, and it is good to
perform a distributed computation to speed up the subdivision.

As a result, a volumetric shape composed of small voxels that is similar to the orig-
inal 3D object is reconstructed. The precision of the reconstruction depends on the size
of a voxel: the smaller a voxel is, the higher the precision we can get.
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2.4 Voxel Coloring Reconstruction

Build visual 
hull

Get surface 
voxels

Project the surface 
voxels to their 
visible images

Check for each  
surface voxel if it is 

color-consistent
end

All surface
voxels are

color-consistent

elseCarve the non -
color-consistent 

voxels

1 2 3

4

Figure 2.5: Procedure of Voxel coloring

The basic idea of voxel coloring reconstruction is to decide if the voxel of an object
is photo-consistent.

photo-consistency, introduced by Seitz [26], is used to distinguish surface points
from other points in a shape. The photo-consistency of all visible surface points with
respect to each image is defined. A point on a scene surface is photo-consistent with a
set of images if, for each image in which that point is visible, the image irradiance of that
point is equal to the intensity at the corresponding image pixel. Usually a Lambertian
reflectance model is considered to calculate photo-consistency.

Voxel coloring algorithms begin with a reconstruction volume of initially opaque
voxels that encompasses the shape to be reconstructed. As the algorithm runs, opaque
voxels are tested for photo-consistency, and those that are found to be inconsistent are
carved. The algorithm stops when all the remaining opaque voxels are photo-consistent.
When these final voxels are assigned the colors they project to in the input images, they
form a model that closely resembles the shape.

First a one-pass procedure is introduced and extended to general camera configura-
tions. Then a multi-pass procedure is developed that evaluates each voxel in the current
plane of voxels using the subset of cameras and voxels that are in front of that plane.
[16] describes this implementation as Space Carving.

The process flow of voxel coloring reconstruction is shown in Fig. 2.5. Because the
visual hull is a convex hull of the real object, there must be some voxels on its surface
that do not belong to the real object. So, we have to repeat the operations marked 1,2,3,4
in Fig. 2.5 until all surface voxels are photo-consistent. This resembles a ”peeling”
process.
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As explained above, there are two important factors that greatly affect a lot to the
result of voxel coloring reconstruction:

• A good method that can access the voxels in the correct order, from the surface to
the centroid of a given 3D volume.

• An efficient method that values the ”photo-consistency.”

The first factor indicates that volume data structure and its scanning algorithm have
to be optimized easily for ”peeling” the visual hull. The second one indicates that color
information is not only the RGB value of every pixel. It has to be devised to let a non-
surface voxel shows larger variance. How we choose the two factors is introduced in
the following subsections.

Volume Data Structure

Octree data structure, as we introduced above, because of its efficiency in speed and
space, is widely used in the visual hull reconstruction. It also provides a way to refine
the reconstruction result hierarchically.

As shown in Fig. 2.6(A), during the subdivision, when a parent voxel is divided into
eight small child voxels, a link from the parent voxel to a child voxel can be created. To
access to a terminal child voxel, we can simply follow this link progressively to the end.

For voxel coloring implementation, octree handles the images as a z-buffer plane. It
projects all the voxels to an image, and sorts the voxels that are projected to the same
pixel by their z-value. The z-value is calculated as the distance from a voxel to the
camera screen.

For each pixel, following the sorted order, a list of voxels that are projected on this
pixel can be created. The first element of the list is a surface voxel. If this voxel is
carved, then the second element becomes the new surface voxel. For octree structure,
there are only links between the voxels with different division levels.

Despite Octree’s advantage, we found it much harder to control all voxels in the
terminal division level.

Another data structure often used is a voxel array. It divides the initial space volume
into small voxels with the same size directly, and puts them into an array in the order of
each voxel’s position. We can access a voxel by specifying the index of the voxel on the
array. Fig. 2.6(B) shows the array data structure and the calculation of the voxel index.
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Not on surface
On surface

Not on surface On Surface
Figure 2.7: Determining the Surface Voxels

By combining the advantages of these two data structures, we decide to use octree
data structure in the process of visual hull reconstruction, then load all the voxels to an
array. Considering our method of peeling the visual hull, we adopted the voxel array for
voxel coloring reconstruction, which can examines photo-consistency of voxels easily.
Here we give a brief introduction to our implementation.

We improved the implementation of finding the surface voxels. As can be seen
in Fig. 2.7, a voxel that is completely surrounded by its neighbor voxels cannot be a
surface voxel. For a 3D voxel, there are 6 surrounding voxels that are shown in the right
part of Fig. 2.7. So we determine whether a voxel is on the surface by checking its 6
neighbor voxels’ existences instead of projecting all voxels to the color images. This
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method saves much computation.

Calculate photo-consistency

Seitz and Dyer [26] give the original description of Voxel Coloring. In their formu-
lation, the set of pixels in imagej from voxel i that is visible is computed. The union of
all views defines the color of that voxel:

Πi =

m⋃

j=0

πi
j

wherem is the number of images from which the voxel can be seen. To determine
if the voxel is photo-consistent, the likelihood ratio test of this set is computed and
thresholded. Therefore, if

(m− 1)σΠi ≤ τ

the voxel is labeled consistent. (whereτ is the threshold parameter)
However, thresholded variance has its difficulty associated with photo-consistency

measurement. A histogram-based photo-consistency method has been proposed [27].
Instead of pooling all of the pixels from all of the views of a given voxel, as was done
in [26], this method use a series of tests on image pairs.

Found the setpiij of pixels from imagej that are visible from a voxeli. We test the
consistency of the voxel by comparing all pairs of such sets:

∀k,lπ
i
k ≈ πi

l (k , l) (2.13)

whereπi
k andπi

l are non-empty.
A voxel is announced consistent if all of the histograms of all views of the voxel

intersect:

∀k,lHist
(
πi

k

)
∩ Hist

(
πi

l

)
, Φ (k , l) (2.14)

Pairs of histograms intersect if at least one pair of corresponding bins has a non-zero
count. Therefore, a single pair of views can cause a voxel to be declared inconsistent if
the colors they see at the voxel do not overlap.
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We implemented this histogram method over RGB color space and found that 8 bins
per channel of RGB (total 512 bins (8x8x8)) are adequate for acceptable reconstruc-
tions.

We have run a comparison between the visual hull method and voxel coloring method.
For this comparison, we have used 16 images of the object taken from different direc-
tions. Fig. 2.8 and Fig. 2.9 show two example images from this dataset.

Visual Hull Voxel Coloring

Figure 2.8: Reconstruction result 1
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Visual Hull Voxel Coloring

Figure 2.9: Reconstruction result 2

2.5 Mesh representation

We use mesh representation to the reconstruction shape by applying the Marching-
cubes algorithm [17].

The Marching-cubes algorithm is used in volume rendering to construct an isosur-
face from a 3D field of values. The 2D analog would be to take an image, and for
each pixel, set it to black if the value is below some threshold, and set it to white if it’s
above the threshold. Then smooth the jagged black outlines by skinning them with lines.
Marching-cubes algorithm tests the corner of each cube (or voxel) in the scalar field as
being either above or below a given threshold. This yields a collection of boxes with
classified corners. Since there are eight corners with one of two states, there are 256
different possible combinations for each cube. Then, each cube can be replaced with
a surface that meets the classification of the cube. The result of the marching cubes
algorithm is a smooth surface that approximates the isosurface that is constant along a
given threshold.

Lorensen [17] reduces the original 256 combinations of cell state down to a total
of 15 combinations, considering cell combinations that duplicate under the following
conditions:
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• Rotation by any degree over any of the 3 primary axes

• Mirroring the shape across any of the 3 primary axes

• Inverting the state of all corners and flipping the normals of the relating polygons

Kenmochi [31] improves the algorithm to take account of 23 combinations consid-
ering rotation only. We take this method to generate the mesh representation.

Furthermore, to reduce calculation cost later in the body tracking, this representation
is simplified by applying a mesh simplification method [8]. It introduces a very efficient
data structure that can be used to represent a triangle mesh at multiple levels of detail,
also allowing progressive refinement and transmission. The basic idea of this technique
is to construct multi-resolution representation by iteratively performing edge collapses
and storing the simplified mesh along with the inverse of all performed edge collapses
(vertex splits).

We show this as in Fig. 2.10.

Figure 2.10: Mesh Representation of Body Volume

2.6 Texture mapping

Once we have the reconstructed the 3D human body shape, since the camera pa-
rameter is already known, we just combine the color images of each camera together
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to produce a final textured model. There is one issue to solve at this stage: we have to
decide, for each vertex on the mesh, which image to use if more than one is available.

The image is selected using the following criteria:

• If the mesh vertex visible from the camera, then the corresponding image is a
candidate image for that vertex.

• For each candidate image, we can compute the angle between the vertex normal
and the viewing direction, and choose the one image whose angle is the smallest.

And we use z-buffer algorithm to deal with the visibility problem (Shown in Fig.
2.11). For the hidden surface, the texture of the corresponding camera is omitted.

Z-bufferCamera Image 3D model Simple Texturing Occlusion Sensitive

Texturing

Figure 2.11: Texture mapping using z-buffering

With OPENGL rendering, the results of our multi-view texture mapping are shown
in Fig. 2.12.
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Figure 2.12: Reconstruction results with texture
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Chapter 3

Articulated Human Body Model

In designing a robust motion tracking system that produces kinematically valid mo-
tion estimates, the choice of a human body model is critical. The basic requirements of
the proposed human body model are as following:

• The model must represent the human motion correctly.

• The model is made as simple as possible but estimates robustly.

Regarding the first concept, our robotics group uses motion capturing system VI-
CON [28] to track human body motion. We design a compatible model that can change
to the model used in the robotics group.

Regarding the second concept, to save computation, our model consists of a simple
structure under constraints, and deformable mesh representation is adopted. We con-
struct our articulated human body model composed of a kinematic skeletal model and
a surface mesh model, which leads to a better tracking result than the simple segment
model. We will show this in Chapter 5.

3.1 Kinematic Skeleton Model

The kinematic skeleton model is represented by skeletal links in hierarchical struc-
ture are shown in Fig. 3.1. We set the base of the model (Root) between the upper and
lower body and define links with no joints like chests and hips. The depth is up to six.
We define the relationship as that, between two neighbor levels, the link in higher level
is the parent of the link in lower level, the link in lower level is the child of the link in
the higher level, and the leaf link has no children.

24



Neck

Left Shoulder

Right Shoulder

Left Hip

Right Upper Arm

Left Upper Arm

Left Upper Leg

Root

Lower Torso

Left Chest

Right Chest

Right Hip

Upper Torso

Right Upper Leg

Left Lower Leg

Right Lower Arm

Left Lower Arm

Right Lower Leg

Left Foot

Right Foot

0 1 2 3 4 5

Hierarchy Order

Neck

Left Shoulder

Right Shoulder

Left Hip

Right Upper Arm

Left Upper Arm

Left Upper Leg

Root

Lower Torso

Left Chest

Right Chest

Right Hip

Upper Torso

Right Upper Leg

Left Lower Leg

Right Lower Arm

Left Lower Arm

Right Lower Leg

Left Foot

Right Foot

0 1 2 3 4 5

Neck

Left Shoulder

Right Shoulder

Left Hip

Right Upper Arm

Left Upper Arm

Left Upper Leg

Root

Lower Torso

Left Chest

Right Chest

Right Hip

Upper Torso

Right Upper Leg

Left Lower Leg

Right Lower Arm

Left Lower Arm

Right Lower Leg

Left Foot

Right Foot

0 1 2 3 4 5

Hierarchy Order

Figure 3.1: Hierarchial Structure of Skeleton Model

A connection between links indicates a joint, and 14 joints with accumulated 29
degrees of freedom (DOF) are modeled as shown in Fig. 3.2: a 3-DOF joint for the
torso, a 3-DOF joint for each shoulder and hip, a 2 DOF for the collarbone, a 2 DOF for
each foot, a 2-DOF joint for the neck and a 1-DOF joint for each of the knees and the
elbows.

In addition to 29 DOF for joints, the skeleton model has an extra 6 DOF, 3 DOF
for translation and 3 DOF for rotation, which determines the pose of the entire human
body.

Our kinematic skeleton model is defined in a file containing the configuration be-
tween skeletal links. In order to find a transformation from each link to the origin, we
adopt Denavit Hartenberg [12] representation to describe the kinematics of the links
connected together by various joints.

To perform the kinematic analysis, we attach a coordinate frameoi xiyizi denoted
by Σi to link i. This means when jointi is actuated, linki and its attached frameΣi

experience a resulting motion.Σ0 is referred to the initial link, the base of the articulated
model.
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Figure 3.2: Kinematic Skeleton Model

Suppose transformation matrixA i expresses the position and orientation ofΣi with
respect to the neighbored coordinate frameΣi−1.

Ai =



cosθi − sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi − cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1


(3.1)

where the four quantitiesθi, ai, di, αi are parameters associated with linki and joint i.
θi, ai, di, αi are

• Rotation aroundzi−1 with angleθi

• Translation alongzi−1 with displacementdi

• Translation alongxi−1 with displacementai

• Rotation aroundx with angleαi
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Furthermore, transformation matrix ofA j with respet toA i is denoted byT i
j.

T i
j = A i+1A i+2 · · ·A j−1A j i f i < j (3.2)

An example of an arm is taken to further explain the kinematics of the body model
(Fig. 3.3). Table 3.1 shows these link parameters in Fig. 3.3. With these parameters
transformation matrixA1 of coordinate frameΣ1 to Σ0 is

l1x0
Θ1z0
y0Σ0 Θ2

y1z1
x1 Σ1
Θ3

y2z2
x2Σ2

z3 Θ4z4
x3x4 l2Σ4 Σ3 y3y4

ShoulderElbowHand

Figure 3.3: Example of Joint of an Arm
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Table 3.1: Link parameter
Joint θ d α a

1 θ0 0 −π/2 0
2 θ1 0 π/2 0
3 θ2 0 π/2 l0
4 θ3 0 0 l3

A1 =



cosθ1 − sinθ1 cos
(
−π2

)
sinθ1 sin

(
−π2

)
l1 cosθ1

sinθ1 cosθ1 cos
(
−π2

)
− cosθ1 sin

(
−π2

)
l1 sinθ1

0 sin
(
−π2

)
cos

(
−π2

)
0

0 0 0 1


(3.3)

=



cosθ1 0 − sinθ1 l1 cosθ1

sinθ1 0 cosθ1 l1 sinθ1

0 −1 0 0
0 0 0 1


(3.4)

The position and orientation of each joint are determined uniquely by such a matrix.
For instance, to calculate the position of elbow joint, the transformation matrixT

should be:

T = A1A2A3

=



C1 0 −S1 l1C1

S1 0 C1 l1S1

0 −1 0 0
0 0 0 1





C2 0 S2 0
S2 0 −C2 0
0 1 0 0
0 0 0 1





C3 0 −S3 l2C3

S3 0 C3 l2S3

0 −1 0 0
0 0 0 1



The position of the elbow joint inΣ0 is calculated by multiplyingT to origin (0,0,0,1)T

in Σ3.
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3.2 Surface Mesh Model

To allow the model to undergo realistic physical deformations, it is necessary to
consider the skin surface bound to the skeleton.

In this study, the surface model of a human body is constructed by the reconstruction
of a real human body. The subject adopts an initialization pose standing upright with its
arms and legs spread in the pose shown in Fig. 3.4.

mesh view edge view with skeleton inside

Figure 3.4: initial pose of the human body model

The kinematic skeleton model and the surface mesh model overlap, and each vertex
in the surface model is linked to the corresponding bones. When a bone rotates about a
joint, all the linked vertices move to a new location. To determine this new location of
all the relative links, weighted interior division is adopted.

The calculation process is as follows:

1. For each vertexi, calculate the shortest path lengthxi to the linkl using the dijkstra
algorithm [6].

The dijkstra algorithm, also called dijkstra shortest path algorithm, is an algorithm
that solves the single-source shortest path problem for a directed graph with non-
negative edge weights.
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The input of the algorithm consists of a weighted directed graphG and a source
vertexs in G. We will denoteV the set of all vertices in the graphG. Each edge
of the graph is an ordered pair of vertices (u, v) representing a connection from
vertexu to vertexv. The set of all edges is denotedE. w(u, v) is the non-negative
cost of moving from vertexu to vertexv . The cost of an edge can be thought of as
the distance between those two vertices. The cost of a path between two vertices
is the sum of costs of the edges in that path. For a given pair of verticessandt in
V, the algorithm finds the path froms to t with the lowest cost (i.e., the shortest
path).

Notice that the path should not penetrate any mesh (Fig. 3.5).

mesh i

link l
shortest path length x link l

shortest path length x

mesh i
Figure 3.5: Weight interior divison of skin attechment

2. Determine the weight of vertexi to the link l using the exponential function as
Weightil = ae−bxi .

3. NormalizeWeightil to satisfy that for all the links,ΣlWeightil = 1.

The normalized weight will be used later to estimate the joint angle. The calcula-
tion of the weight is done only once at the beginning to construct the articulated body
model. This technique allows surface vertices to be influenced by not just one link, and
avoids unnatural deformations appearing near the joints. Thus the mesh model deforms
smoothly around each joint (Fig. 3.6).

As described above, the human body model is generated following these steps:

1. Generate the kinematic skeletal model: set the joint location, link the parent and
child joint, and define the DOF constraint of each joint.
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One side View Deformed View

Figure 3.6: Surface Mesh Model

2. Generate surface mesh model: capture the images of a human body with the
initial pose from cameras; reconstruct the human body shape and represent it
with meshes.

3. Align the skeletal model and surface mesh model: make sure they are at the same
position and that the surface mesh overlaps the bone entirely

4. Generate correspondence of the skeletal and mesh models to complete the articu-
lated human body model
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Chapter 4

Human Body Motion Tracking

The pose and joint angle of a reconstructed human body volume are estimated by
fitting the reconstructed data with the articulated body model in 3D space. The goal is to
minimize the distance between the surface of the 3D model and the 3D reconstruction.

With regard to localization techniques between a rigid 3D geometric model and
3D range data, Besl et al. proposed the iterative closest point (ICP) algorithm, which
iteratively searches for the corresponding model vertex to each 3D range point. Then
the optimal correspondence, i.e., the pose of the model, is calculated by solving the least
squares method using all the correspondences [1].

However, ICP is sensitive to outliers, so Wheeler et al. proposed a 3D template
matching (3DTM) technique that utilizes M-estimator from robust statistics to exclude
the effect of outliers [29]. This technique has been used, for example, to track a manip-
ulated object in 3D space [22].

[21] extended 3DTM to handle an articulated object model so that the joint angles
as well as the pose of a hand can be robustly estimated by applying an articulated hand
model to a reconstructed hand volume.

We extend this work to the human body case, which has a more complicated shape
and joint structure. The tracking framework will be described in the subsequent sec-
tions.

4.1 Objective Function

Once the reconstructed 3D volumetric shape has been computed, we need to locate
the correspondences between the reconstructed data points and points on the human
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body model.
Our objective function could be the minimum of the sum of the distances of model

vertices to the corresponding reconstruction voxels.
Generally, for one pointmi on the model, we define the closest pointdi to pointmi

on the reconstruction data the corresponding point of pointmi.
Given the large number of model vertices, however, a subsetM of tracking vertices

mi is sampled. For eachmi on the current model configurationpi, the corresponding
point of the reconstructed datavi is sought.

Mathematically, the objective function is:

F(pi) =
∑

M

‖mi − vi‖2 (4.1)

Figure 4.1: Illustration of the objective function in the case of one arm

Fig. 4.1 illustrates the objective function with corresponding points. Solid blue
lines indicate the assignment of tracking vertices on the model to their closest points on
reconstructed data.

Correspondence Search

Computing nearest neighbor correspondences efficiently between the human body
model points and reconstructed shape points will aid our search for the correct pose
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estimation. A quick local search is desired and Kd-tree is adopted.
K-d (k-dimensional) tree is a generalization of binary-search trees in two or more

dimensions. The k-d tree is created by recursively splitting a data set down the middle
of its dimension of greatest variance (Fig. 4.2). The splitting continues until the number
of data points in each leaf node is less than the threshold. The result is a tree of depth
O(logn) wheren is the number of points stored in the k-d tree.

78
134
562 1 875432 6 X1

X2 1 2
3 4

X1 > 4X2 > 4.8 X2 > 4
1 3 4 2

no yes
no yes no yes

Figure 4.2: Kd-tree construction and search in 2D space. Points are divided in the above
order. The leaf node has the coordinates of points, while the others have the information
of the axis and the value where the data points are divided

In most cases, calculating only the distances between the k-d tree nodes is enough
to locate corresponding points. But considering some special cases, such as, the initial
position estimate is too far or, perhaps, the current pose estimate is closer to an object
other than the desired object, then the 3-dimensional k-d tree may not be sufficient (Fig.
4.3(a)).

Thus, an extension of using surface normal similarity, in which the surface normal
of the model point should be similar to the normal of its matching image point, is con-
sidered (Fig. 4.3(b)). The ideal dissimilarity measure for comparing two unit vectors
(normals) is the angle between the two vectors.
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Figure 4.3: An example of nearest distance correspondence (a) and nearest distance+

normal correspondence (b)

4.2 3DTM

We introduce the 3DTM algorithm in this section.
The point r i in the reconstructed volume corresponding to a pointmi in the body

model can be represented with two parameters,t, a translation vector, andR, a rotation
matrix as Eq.(4.2).

r i = Rmi + t + β (4.2)

whereβ is random 3D noise. Ifβ follows a Gaussian distribution,< R, t > can be
estimated by minimizing Eq.(4.3) by solving the least squares method.

f (R, t) =
∑

i

‖Rmi + t − r i‖2 (4.3)

whereR is represented using a unit 4-vector called a quaternion. Appendix B shows the
detail about quaternion representation.

But the real error distribution usually doesn’t follow a Gaussian distribution, and
the effect of outliers makes the localization process unstable. Therefore, Wheeler pro-
posed a technique to apply M-estimator to estimate the real error distribution [29]. M-
estimator is a generalized form of the least squares method and is formulated as Eq.(4.4).

E(p) =
∑

i

ρ(zi) (4.4)
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wherep = (tT, qT)T is the position and the rotation of the rigid object model andq is a
4 D.O.F. quaternion vector which is equivalent toR. ρ(zi) is an arbitrary function of the
errorzi(= β2).

p which minimizesE(p) can be solved from Eq.(4.5).

δE
δp

=
∑

i

δρ(zi)
δzi

δzi

δp
(4.5)

Here, we introducew(z) as a weight function which represents an error term as
Eq.(4.6).

w(z) =
1
z
δρ

δz
(4.6)

With Eq.(4.6), Eq.(4.5) can be rewritten as Eq.(4.7). If we ignore the fact thatw(z)
is a function ofz, this is a form of weighted least squares.

δE
δp

=
∑

i

w(zi)zi
δzi

δp
(4.7)

In this study, Lorentzian distribution is chosen as a probability distribution of error
to exclude the effect of outliers, and the weight function is defined as follows:

w(z) =

(
1 +

1
2

( z
σ

)2
)−1

(4.8)

Eq.(4.7) can be solved by conjugate gradient search algorithm, andp, which mini-
mizes the error, is obtained.

4.3 Extension to an Articulated Model

In section 4.2,E(p) is described as Eq.(4.9).

E(p) =
∑

i

ρ
(∥∥∥Rmi + t − r j

∥∥∥2
)

(4.9)

To handle an articulated model, the above equation is rewritten as Eq.(4.10).
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E(p, θ) =
∑

i

ρ
(∥∥∥Rmi(θ) + t − r j

∥∥∥2
)

(4.10)

 mi(θ)
1

 =
∏

l

Tl(θl) ·
 mi

1

 (4.11)

whereTl(θl) is a 4× 4 homogeneous matrix which takesl-th joint angle and converts
a point in the coordinate frame of a child link to that of the parent link and

∏
l means

from the root of the model to the current link.
Eq.(4.11) shows the case of which not utilizes deformable mesh model. As for the

deformable mesh model, the weight of meshes to each link calculated in Section 3.2 is
considered and Eq.(4.11) can be rewritten as Eq.(4.12).

 mi(θ)
1

 =

Sl∑

l=1

wl

∏

j∈Sl

T j(θ j) ·
 mi

1

 (4.12)

wherewl is the mesh weight to the linkl, andSl is the set of links.

4.4 Estimation Order

The process of estimating the position and joint angle of the human body in our
system is called ”Ordered fitting”. Here, ”ordered” means it will fit the links in the
order of the hierarchy level shown as the number at the bottom of Fig. 3.1. The base of
the model is noted as level 0, and the last child is as leveln. Heren=6.

The ordered fitting process can be separated into 2 steps as following: position fitting
and joint angle fitting (Fig.4.4).

1. Position Fitting
In the position fitting step, translation and rotation are performed on the body
model to move the model towards the given posture data, in other words, to locate
the position of the link with level 0. Meshes around the links in level 1, and links
without 0 DOF as right chest, left chest, right hip and left hip are used to calculate
the similarity between model and data.

2. Joint Angle Fitting
In joint angle fitting step, the joint angle of each link is fitted to the given data. It
process in the order of level 1, level 2, ... to level 6. Links in the same hierarchy
level are processed simultaneously in separated fitting steps.
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Translate & rotate 
Links in level 1

Iteration operation I

Position Fitting

・・・

Fitting links 
in level 1

Iteration operation II

Fitting links 
in terminal 

level

Iteration operation II

・・・

Joint Angle Fitting

Figure 4.4: Ordered Fitting Process

The estimation process of both the position fitting and joint angle fitting can be
written as follows.

1. repeat

2. p = p′, θ = θ′

3. CalculateE(p, θ)

4. Calculate gradient∂E(p,θ)
∂p

5. Estimate newp′ which minimizesE(p′, θ)

6. CalculateE(p′, θ)

7. Calculate gradient∂E(p′,θ)

∂θ

8. Estimate newθ′ which minimizesE(p′, θ′)

9. until |E(p′, θ′) − E(p, θ)| < ε
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(1) (2)

(3) (4)

(1) (2)

(3) (4)

Figure 4.5: Fitting Procedure: (1) shows the initial pose of the model and (wire frame)
recostruted data (surface); (2) shows the position fitting of the whole model; (3) shows
the joint angle fitting (4) show the result of the whole fitting process

The example of estimation procedure is shown as in Fig. 4.5.
For the complex kinematic structure of the human body, some heuristics methods

are implemented to improve the estimation results.

Improvement

For an articulated model with more than one link, especially the case of human body
model, to estimate the joint angle of eachlinki, determination of which meshes to use is
crucial.

Using all the meshes of the model will cause the problem shown in Fig. 4.6 (a).
Notice that the meshes reach to balance.

So we adopt only the nearest meshes tolinki, to solve this problem shown in 4.6 (b).
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link i

link i

Human body model

Measured 3D data

link ilink i

link ilink i

Human body model

Measured 3D data

Figure 4.6: meshes contributed to the link

Sometimes the meshes around a single link are too few to calculate the similarity, as
the cases like body twist. So we decide that when fitting a linkl, all meshes aroundl’s
children links are also used asl’s nearest meshes to evaluate the angle of linkl. We call
it ”P-C relation”.

The effect of this relation is shown in Fig. 4.7. The first line shows the top view
of the fitting results in upper body twist with and without ”P-C” relation. The red wire
frame shows the body model and the gray volume shows the reconstructed data. The
second line shows the front view of the fitting results in kinematic skeleton model.

Figure 4.7: Result using parent-child relation
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Chapter 5

Experiment

In the previous chapters we saw how to reconstruct a human body shape, how to
generate a human body model, and how the tracking works.

The features of our system are:

• Applied voxel coloring algorithm for 3D human body reconstruction.

• Human body structure with attached skin of deformable mesh.

• Model hierarchy ordered posture estimation for motion tracking.

As we expect that the advantages of those methods can bring a precision motion
tracking result, an examination experiment is described in this chapter, presenting the
results of the tracking system both in simulation and real word environments

5.1 Deformable Mesh Model vs. Segment Model

This section gives a comparison to show the merits of a deformable mesh model
compared with segment model.

Segment model is the model constructed with segments; each segment has a trans-
formation matrix to the origin just as the kinematic skeleton model. A joint locates
between every two segments, and segments are linked together to generate the whole
model. Usually, the segment model is generated using primitive shapes like cylinders or
sphere. In our study, we generate the segment model by cutting the deformable model at
its initial pose, to make sure that each segment in segment model translates and rotates
the same as the corresponding link in kinematic skeleton model.
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First, we evaluate it using a simple chain model with 2 joints (6 DOF), and the 3D
voxel data to observed is generated from the model with Gaussian noise.

We have a check of the segment models with different lengths to generate the most
suitable segment model (Fig. 5.1). We set the model position at (40, 30, 30) with
rotation (30, 0, 0) and observed data is at (0, 0, 0) with rotation (0, 0, 0).

From Fig. 5.1, we can see that when the segment length is almost the same as the
link length in the deformable mesh, it shows better estimation result than other segment
models.

(1)short segment model

(2)long segment model

(2)suitable segment model

Figure 5.1: Fitting results of segment model with different lengths
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Then we evaluate the estimation results of the deformable mesh model and the seg-
ment model in the joint angle errors and distances errors between the model and the
observed data.
error ang is defined as

err ang= |e ang− t ang| (5.1)

where eang is the estimated angle and tang is the set true angle of the model.
error dis is defined as

err dis =

∑N
n=1 |e pos− t pos|

N
(5.2)

where epos represents the model meshes, tpos represents the corresponding data meshes,
andN is the number of the model meshes.

(1)deformable mesh model

(2)segment model

Figure 5.2: Fitting results of Deformable mesh model and Segment model: simulated
chain model

The fitting results of deformable mesh and segment model are shown as Fig. 5.2.

43



Both the models and observed data is set at the same position, and the joint angle of the
observed data is set with (50,0,0,50,0,0) degree and data is generated withσ = 0.1.

Fig. 5.3 shows that with different Gaussian noise, deformable mesh model shows
robust fitting results both of the error in distance and joint angle.

0369
1215182124

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2Gaussian noise σAngle error in translatio
n[degree] deformable modelsement model

00.511.522.533.544.555.566.57
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2Guassian noiseσMesh error in translation

[mm] deformable modelsegment model

Figure 5.3: Comparasion between Deformable mesh model and Segment model
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The same robust fitting result of the human body model is shown in Fig. 5.4. The
segment model of the human body is generated by cutting the deformable human body
model. It has the same kinematic structure as the skeletal model of the articulated human
body model. Notice that because of the lack of meshes around the hips, the twist of the
leg in the segment model shows a poor fitting result.

Figure 5.4: Fitting results of Deformable mesh model and Segment model: real constr-
cuted data of the human body

5.2 Tracking Evaluation

5.2.1 Simulation

The simulation experiments have been performed by using our designed 3D human
body model as described in Chapter 3.
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First, we show the convergence performance of our algorithm by fitting the body
model to the body data generated from the same body model directly. We call such data
”standard data”.

Then, we reconstruct the human body shape of the model with virtual cameras and
the reconstructed shape data is shown.

Finally, we evaluate the tracking performance between the standard data and the
reconstructed data.

Convergence Performance

As described in Section 4.4, the estimation of the positon and joint angle of the given
data is processed iteratively. Convergence performance is evaluated by the calculation
of estimation error under different iterations shown in Fig. 5.5.
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Figure 5.5: Estimation error of interations

As shown above, increasing the iterations can lead to better estimation results. Con-
sidering saving the computation time, and the results change little when the iterations is
up to 10, so we set the iteration max number to 10 in this system.
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3D shape reconstuction

The images taken from virtual cameras are arranged as shown in Fig. 5.6. All the
cameras are on the top of the subjects.

Figure 5.6: virtual camera configuration

We show the reconstructed human body shape using visual hull and voxel coloring
algorithm as following:

As shown in Fig. 5.7, there is difference though little can be seen for the human
body shape in a normal pose and position.

one image
from virtual camera visual hull

reconstruction
voxel coloring
reconstruction

Figure 5.7: Reconstruction result 1
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Tracking

The rough initial pose can be estimated by a random sample approach or an example
based learning approach. In this study, we assume that the rough initial pose of the first
time frame is given. When the pose of the first frame is known, the pose in the subse-
quent frames can be estimated by applying the proposed fitting algorithm by setting the
previous frame’s pose as the initial pose of the current frame.

(a) original pose (c) last frame(a) original pose (c) last frame

Figure 5.8: The generated data sequence

As shown in Fig. 5.8, the observed data sets are generated by 15 degrees difference
every frame in the joint angle of the arms. The joint angle of the initial frame is set as
(0,0,0), shown as (a) in Fig. 5.8, and the last frame is shown as (c) in Fig. 5.8.

Besides the recognition error in joint angles and surface patch distances, we compare
the translation error and rotation error between standard data and reconstructed data as
shown in Fig. 5.9.
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Figure 5.9: Estimation error

5.2.2 Real Environment

Our experiment results in the real environment are shown in the following sections.

Human Body Shape Reconstruction

Eight clustering PCs are set up to control the 8 synchronized cameras (SONY DXC-
9000, 3CCD color video camera). The images are taken 30 frames/sec and arranged
around the ceiling as Fig. 5.10.

To generate the 3D shape of the human body, we need camera calibration (Appendix
A) to determine the relationship between what appears on the image plane and where it
is located in the 3D world. The calibration cube in use is shown in Fig. 5.11.
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Figure 5.10: experiment space for image capture

Figure 5.11: calibration box

Using the thresholdτ = 0.97, background segmentation results are shown in Fig.
5.12. And the reconstruction results are shown as Fig. 5.13.
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Figure 5.12: Segmentation results for 8 views

Figure 5.13: Reconstruction and texture mapping of the human body shape

Human body tracking

We show results for images of different body poses and motions.
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• Fig. 5.14 and Fig. 5.15 are some results of tracking for the standing body while
moving the upper/lower body.
Note that we can track the pose of body parts coming close to each other. Kehl
[15] shows that in their system, color information used to deal with such a pose
leads to correct estimation. However, in our algorithm, there is no need to allocate
color information to the body parts.

• Fig. 5.16 shows tracking results of upper-body twist, which is rarely mentioned
in tracking systems because of its difficulty to estimate. Using the P-C relation
link structure, it shows satisfying tracking results.

• Fig. 5.17 presents tracking results while the user is walking around whereas in
Fig. 5.18, the user is jumping. Note the large motions and the presence of self-
occlusions.
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Figure 5.14: Tracking results of reconstruction data: upper body
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Figure 5.15: Tracking results of reconstruction data: Lower body
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Figure 5.16: Tracking results of reconstruction data: upper body twisting
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Figure 5.17: Tracking results of reconstruction data: walking
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Figure 5.18: Tracking results of reconstruction data: jumping
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Chapter 6

Conclusion

summary

We have presented a human body tracking system by using a deformable mesh
model. There are two main steps in our research:

• 3D shape reconstruction
During this step, we reconstruct the human body shape based on the shape-from-
silhouette methods. Relatively precise reconstruction data can be obtained by
adopting voxel coloring.

The advantages of this approach are:

– Robust estimation result
Compared with tracking in 2D space, in which parts of the body are easily
occluded depending on the relative position of the body to the camera and
on the body pose, different views in 3D space could eliminate this problem.
By using the photo-consistency, we can acquire more precise reconstructed
data. Both of these lead to a robust tracking result.

– Simpler analysis
Tracking in 3D space is close to the feelings of human beings. Therefore, it
is easy to locate the initial position and pose for the model in 3D space than
in the 2D images. And the tracking results can be easily understood.

• Human body tracking using the deformable mesh model
We propose the two-layered model, which acts correctly in kinematics and trans-
forms naturally around the joint.
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The advantages of this approach are:

– Easy to control
A deformable mesh surface model linked to the kinematics skeletal model is
described of articulated human body. The constraints ensure physically valid
body configurations are inherent to the model, resulting in a non-redundant
set of parameters.

– Robust in tracking
Compared with the segment model, of which the meshes around the joint
can not be used in tracking for its unnatural transformation or lack of the
meshes around the joint, deformable mesh model leads to a better tracking
result for its meshes around joints.

Future Work

For the future work, the following developments can be considered:

• Initialization of the human body model
In our current system, how to determine the initial pose of the human body model
has not been mentioned. However, tracking will fail if the model and the data
are of completely different poses. Example-based learning is a solution to this
problem [25]. We consider implementing this in the future.

• Improvement of the tracking results
The captured data of the human body in this system is wearing close-fitting clothes.
However, considering the case of Japanese traditional dances, clothes like the ki-
mono present a problem to be solved. A kimono usually has wide sleeves, and the
lower-body cannot be apart. The reconstruction shape is considerably different
from the model, and the correct correspondence point cannot be allocated.

We consider combining the results of marker-less motion capture system with the
result of this system to refine the tracking result and to improve the accuracy of
our method.

• Model generalization
The tracking system in this study is only tested on one person. To generalize this
system to different human body, to adjust the joint locations and scale the model
meshes automatically is considered as a future work.
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• Dance imitation by the humanoid robot
We also consider using the motion obtained from tracking results of this system
as the input to realize humanoid robot dances.
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Appendix A

Camera Parameter

The 3D geometric objects are located in the world coordinate system and the camera
is also located in the same world, viewing the objects. Seen from the camera, the coor-
dinates of objects are expressed in the camera coordinate system. They are illustrated
in Figure A.1

The camera is located atC and this point is named “focal point”.Zc represents the
viewing direction. The transformation between world and camera coordinates can be
described with the set of rotation and translation,〈R, t〉. Since they represent the camera
position and orientation, they are called “camera extrinsic parameters”. Let a 3D point
in the world coordinate bexw = (xw, yw, zw). Then, the coordinate of the point in the
camera coordinate system,xc = (xc, yc, zc), is expressed as follows:

 xc

1

 =

 R t
0T 1


 xw

1

 (A.1)

The 2D image can be obtained by projecting the camera-centered view onto the
image plane (in Figure A.1). The pointc at which the viewing direction and the image
plane intersect, is named the “principal point”, and the distance between that pointc

and the optical pointC is called the “focal length”. Let a projected point on the image
plane beU, then the projection equation can be written as follows:

u = P

 xc

1

 (A.2)

= P

 R t
0T 1


 xw

1

 (A.3)
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Figure A.1: The world coordinate system and the camera coordinate system

where u =



u
v

w

 , U =


u
w
v
w

 (A.4)

P is a 3× 4 projection matrix and contains various parameters. They are called “camera
intrinsic parameters”, and details are shown below.

P =



ku −kucotθ u0

0 kv/ sinθ v0

0 0 1





f 0 0 0
0 f 0 0
0 0 1 0

 (A.5)

They consist of the focal length, principal point, aspect ratio, and skew.
And only considering the transformation between a 3D scene pointX = (X,Y,Z)T,
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into a 2D image pointx = (u, v,1)T, the above equation can be represented as:

sx = PX (A.6)

P =



p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 (A.7)

In practice, besides the camera intrinsic and extrinsic parameters, lens distortions
also affect the obtained 2D image. Lens distortions can be estimated by various camera
calibration methods and they should be removed before any image processing.

Using the intersection points on the cube, the correponding points of the 2D image
and the 3D are located. To solve the 12 unknown parameters, 6 points are enough. Least
squares method



X1 Y1 Z1 1 0 0 0 0 −X1Xc1 −Y1Xc1 −Z1Xc1

0 0 0 0 X1 Y1 Z1 1 −X1Xc1 −Y1Xc1 −Z1Xc1
...

Xn Yn Zn 1 0 0 0 0 −XnXcn −YnXcn −ZnXcn

0 0 0 0 Xn Yn Zn 1 −XnXcn −YnXcn −ZnXcn





c11

c12
...

c32

c33



=



Xc1

Yc1
...

Xcn

Ycn


(A.8)

Ac = r (A.9)

with least square method,

P = (AT A)−1ATr (A.10)

Matrix P is calculated.
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Appendix B

Quaternion Representation

In this Appendix, we explain the quaternion for the representation of the object
rotation in detail.

In general, it is convenient to represent the rotation matrix and the translation vector
as〈R, t〉.

However, representing a rotation as the matrix form,R, causes a great difficulty in
the computation of the optimal rotation. While a rotation in 3D space has only three
degrees of freedom, a rotation matrix has nine degrees. This restricts the values ofR in
a non-linear way as follows:

RRT = I (B.1)

|R| = 1 (B.2)

R must always satisfy these constraints to represent a rotation and this makes difficult
to take advantage of the linear matrix form of rotation.

The generally accepted alternative for the representation of rotation is the use of
quaternion. A quaternion is a 4-vector, consisting of a 3-vector (u, v,w)T and a scalars,
that is,q = (u, v,w, s)T and it can represent an arbitrary rotation in the 3D space. It has
several useful characteristics.

• The constraint of rotation is easily maintained by standard vector normalization.

• The inverse rotation is obtained by simply negating first 3 components of the
quaternion vector.

• It can avoid the gimbal lock problem. Roughly speaking, the continuous change
of the elements always lead to the smooth change of rotation, and vice versa.
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• The intermediate rotation between two quaternions can be calculated linearly.

• With the quaternion representation, the rotation between two sets of correspond-
ing 3D points can be solved in closed form.

Thus, the following vector is used to express the positon and the rotation of the
model:

p = (qT tT)T (B.3)

wherep is a 7-vector,q is a quaternion representingthe rotation of the rigid model, andt
is a 3-vector representing the model’s position. If necessary, the form of rotation matrix
is also used and the rotation matrix corresponding toq is denoted byR(q).
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