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解 説

Accurate Schemes for the Numerical Simulation of lncompressible Flows

非圧縮性流れ数値解析のための高精度スキーム

Ay9dtti Oo DEMUREN*,Robcrt V WILSON**,Mark CARPENTER***and Toshio KOBAYASHI*

アヨデジ オ ー デ ムレン ・ロバー ト ヴ イ ウ イルソン ・マーク カ ーペンター ・小 林  敏  雄

Accurate numerical schemes are proposed for solving incompressible Navier-Stokes equa-

tions for 2D or 3D fluid flow problems. These are based on low-storage Runge-Kutta schemes

for temporal discretization and fourth and sixth order compact schemes for spatial discretiza-

tion. The incompressibility requirement is satisfied by solving a Poisson equation for pressure,

with the same compact scheme used for discretization to ensure consistent global accuracy.

The accuracy of the present procedure is demonstrated by application to several pertinent

benchmark problems.

1.  INTRODUCTION

For direct numerical simulation (DNS) of fluid flow problems,

it is generally accepted that higher-order accurate methods must

be used to minimize dissipation and dispersion errors. As the

flow Reynolds number increases so do the ranges of temporal

and spatial scales which must be resolved. Thus, the number of

grid points-per-wavelength (PPW) required by the numerical

scheme for approximation of the flow equations to within

acceptable tolerances of dissipation and dispersion errors effec-

tively limits the smallest scales that can be computed accurately,

and thereby also the maximum Reynolds number. Spectral meth-

ods require the fewest PPW namely two, and are therefore ideal

for computations of flows with periodic boundary conditions.

For more general flow problems finite-difference methods are

desirable. Lele [1] has analyzed the resolution qualities of sever-

al finite-difference schemes. In general, resolution increased,

i.e., fewer PPW, the larger the computational grid stencil, and

implicit compact schemes had better resolution than regular

explicit schemes of the same order of accuracy and computa-

tional stencil. Further, high resolution properties could be

improved by optimization of coefficients, but at the expense of
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the formal order of'accuracy. Haras and Ta'asan [2] suggested

that schemes should be optimized for global accuracy rather

than resolution efficiency. Hu et al. [3] have also shown that, in

applications of interest to computational acoustics, temporal res-

olution could be improved by optimization of the coefficients of

any multi-stage, Runge-Kutta, time-advancing approximation

scheme.

In large eddy simulation (LES) of turbulent flows, the goal is

not to resolve all the scales in the flow, but only the larger scales.

Effects of the unresolved smaller scales are approximated with

sub-grid scale (SGS) models. Therefore, second-order, central-

difference schemes are often used [4, 5]. A further justification

is that effects of truncation elrors may be comparable to uncer-

tainties inherent in the SGS models. However, questions remain

as to how large the "larger" scales are, and how many PPW are

required to resolve the smallest scale in the range. It is obvious

that if LES is to be used in computational acoustics, dispersion

effors are unacceptable [6]. Dynamic SGS models also presume

accurate resolution of the flow on the grid and test scales.

Higher-order-accurate (greater than second-order) methods guar-

antee much better convergence towards grid independence,

along with better wave-number resolution. In addition, implicit

(compact) finite-difference schemes require naffower computa-

tional grid stencils, have better fine-scale resolution and yield

better global accuracy than explicit finite-difference schemes

with the same formal order of accuracy. Therefore, the present
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study focuses on thc use of higher¨ord∝ (fOurth and sixth)cOm¨

pact schemes for the siinulation of incompressible fluid■ ow

problems.

The lack of an evolution cquation for the pressure presents

particular difflculty in the computation of incon■pressiblc flows,

which is absentin compre,siblc■ ows.An auxiliary equation has

t o  b c  d e r i v e d  f o r  t h e  p r e s s u r e  w h i c h  i s  t h e n  s o l v e d  t o  s a t i s f y  t h e

divergence―free velocity―fleld condition required for incompress―

ibility.In thc present study,the Poisson equation for prcssure

will be discretizcd with the same compact finite¨ difference

scheme as used in the Navier― Stokes equations.Extension to

ilTegular grids in physical space silnply requires ttansfomation

of the equations onto a regular rid in COmputational space.The

mctrics of the transforrnation must be computed with the same

compact flnite―difFerence scheme to guarantee a consistent level

of accuracy.Further details can be found in Wilson et al.[7].

2.ANALYS:S

2.l Governing Differential Equations

The partial differcntial cquations goveming the incompress―

ible■ uid flow are the Navier― Stokes cquations which can be

written in Cartesian tensor fornl,for dilnensionless variables as:

等+%許一轟十七」缶…………①
wherc, “ j are the Cartesian vclocity components in the

Caltesian coordinate directions χ j,P is thc pressure and Rθ D is

the Reynolds numbcr based on thc equivalent diameter D′ .

These equations must be solved in cottuctiOn with the continu―

ity equation:

論〓0…………………………。②
which expresscs the diVergence「 free vclocity condition. In

2D,j orブ〓1,2 and in 3D,'orブ=1,2,3.Einstein's summation

rule for repeated indices is presumed.

2.2 Discretization

The Navier―Stokes equations(1)are discretized temporally

with exPlicit RungeK̈utta(RK)schemes,and spatially with

implicit compact flnite difference schemes. The discretizcd

equation has the fom:

生 産 研 究

″F=―%δガ“F―卜更とτ
δχィ“F

i.e.,the sum of convection and diffusion(CD)terlnS.

In Eq.(3),れ reprcsents thc timc stcp and ν stands for the ν滋

stage of the RK scheme,with the corrcsponding coefflcient ν
7.

L and att arc compact irst and second dcrivative operators,
respectively.

The momentum equation is advanced from time levcl,4,to n

+1,using Q subStages.Thc temporal deHvative in the momen¨

tuln cquation is discretized using a third¨or fourth―order exPliCit

RK scheme:

等～ちが1〓イー計=fF…………④
whcrc αμ rcprescnts thett ve10City component at the乙ヵSub¨

stage ly=O iS equ市alent to theれ議time level,ノ〓c tO the n十

1清time level)。     ,

LOW¨StOrage is accomplished by continuously overwriting the

storagc location for the timc derivatives and unknown variables

at each sub―stage:

fF←ανfF~1・………………………………………。(5)

“F+1←開F+b″産rF.………………………………(6)

Table l givcs values of the coemcients,α
″

and b″ for some

low―storage,3-stage―third―ordcr[8]and 5-stage― fourth örder[9]

schemes.

The flrst derivative terrns which appear in the goveming equa―

tions arc approximated using fourth― and sixth―ordcr compact

inite difference schemes dcscribed by Lele[1].HighCr accuracy

derives from the implicit trcatlnent of derivatives,via:

″φl■+φ年十αψl+1=づ:メφ,+1~ψ‐⇒十岩{ψ′+2φ′J…0

(Or in matr破form:Aψ
′〓B.φ Or φ

′=AずB″φ),where

勘 =L/(凡 ―f),鳩iS ie number of grid Pomts,φちКpКSents

the nrst derivat市e of the gencric variable φj with rcspect to x,

Ъble l COefflcients ofthe Rungc K̈utta schemes.

ィ
+1=ィ

3-stage, 3rd-order 5-stage, 4th-order

ν

with
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and α,α,b are thc cocfficients of the compact scheme which

deterllnine the accuracyo SiFnilar expressions are used for deriva―

tives with respect to the y and z directions.For the fourth¨order

scheme:,α = f/イ, α=3/2, and b=θ , and for the sixth―order

schemc:α =f/3,α =fイ/9,and b=1/9,Thc LHS of Eq。 (7)con―

tains the unk■own derivatives at grid points i and j tt l while the

R H S  c o n t a i h s  t h e  k n o w n  f u n c t i o n a l  v a l u e s  φj  a t  t h e  g r i d  p o i n t s  i

±l and i±2.Ar iS a tridiagonal tt x Nχ matriX and Bxis a tridi―

agonal matrix for the fourth―order scheme and pcntadiagonal

matrlx for the slxth―order scheme.

Silnilarly,second derivatives,which are present in the vis―

cous tcrms of the momentum equation and the Laplacian

operator of the Poisson equation for pressurc are approxillnated

using fourth änd sixth―order compact flnite differences:

αφ角」1+φ
″
J+αφち年1

=酢レJ‖~蹄j十島]
十

赫
レ ,規―統 十島 J…

… I鋤

( o r  i n  m a t r i x  f o r m : A″φ
″= F t tφ O r  φ

″= A 1 3泣φ) . F o r  t h e

fourth―order schcme:α =f/1θ,α=6/5,and b=θ ,and for the

sixth―ordcr scheme:α =2/ff,α =」2/ff,and b=J/ff.A coln―

parison of thc leading truncation errors of explicit central

difference and implicit compact approxiinations is given in

Table 2.We see rcductions by a factor of 4 for the fourth¨ order

scheme and 9 for the sixth― order scheme in comparison to

cxplicit central diffcrence schemcs of the same order,and corre¨

sponding reductions by factors of 2 and 4 for the flrst and second

derivative approximations,respcctively.

Equations(7)and(8),written at all grid points,give tridiago―

nal systcins of algebraic equations that can be solved cfflciently

by factoring thc LHS into lowュluppcr(LU)systems Once at the

beginning of the simulationo Since thc LU factors arc geometric

functions which do not changc with the flow,they can be reused

when derivatives are rcquired. Special boundary schemes are

required at non―periodic boundaries[1,7].

2.3 The Continuity Equation and the Poisson Equation

Table 2 Comparison of thc lcading truncation errors of exPliCit

and implicit central difference approxllnations.

Scheme First derivative Second derivative

fourth-order central (―イ/5!)(△″′)‐φ
‐`

(-3/6!)(牛ノ)'φ

fourth-order compact (―f/5!)(ムじ′)‐φ
‐`

(■.6/6!)(とじ′)'φ

sixth-order central (-36/烈)(と,Vぴ (…72/8!)(ArJ.)υφ
・`

sixth-order compact (イ/7!)(△χ′)υφ
′`

(ヨ67/θ!)(ArJ.)uφ
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for Pressure

Application of the divergence operator d", to the discretized

momentum equation (4) gives:

' t  t -  I  t t L t - ' ' , ) ) = a ' , 4 ! - 6 " , 6 * , P *  
" ' ( g )

; .  * \u  
* i lu ' t "  

'  
,  ) l  ^ .  ,

The term, 6*,u!* 1, represents the discretized continuity equa-

tion at the M + I sub-stage and is set to zero to enforce the

divergence-free condition. The term,6*,u!, represents the diver-

gence of the velocity field at the previous substage M. ln

practice, this term is retained to "kill off'any accumulation from

previous substages due to lack of convergence, etc. The term,

6r,HY, is the source term of the Poisson equation and represents

gradients of the convection and diffusion terms which are known

from the previous sub-stage. The term, 6,i6*iPM, represents the

discretized Laplacian operator on the pressure.

The Last term in Eq. (9) represents a discretized Laplacian

operator composed of two applications of the first derivative

operator, 4,. It is well known that using two first derivative

operators to represent the Laplacian operator on non-staggered

grids can lead to an "odd-even" decoupling of the solution. To

alleviate this problem, the Laplacian operator is discretized

using a single second derivative operator:

I u I
6**  P* =4,1 HY +#- l  . . . (10). . . . t  , [  b *  N  ]

where 6*,{ represents the discrete Laplacian of pressure which

is discretized with the compact second derivative operator given

by Eq. (8).

Equation (10) can be written in the form of a system of equa-

tions as:

l r r l
AP= lo ; ; u * * *A iB r lP - f  . .  . . ( 11 )

Equation (11) results in a "cross" type stencil at the i,Tnode

in which all points along lines passing through the central node

contribute to the stencil. For uniform grids, we can use the com-

mutative property of the A matrices to derive:

lonu *, * A,.n ofP = A*A **F . . . (lz)

which has a "grid" type stencil that is more compact and much

cheaper to solve. See Wilson et al. [7] for details.

Equation (11) or (12) must be solved to convergence at every

substage of every time step, to ensure a divergence-free velocity

field. Without this, the order of accuracy of the RK scheme can-
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not be assured. Although the matrices are sparse, direct (sparse)

methods of solution were found to be competitive only for fairly

coarse-grid 2D problems. Multigrid iterative methods were by

far the most efficient for large systems; in comparison to ADI,

conjugate-gradient, GMRES, etc.

3. RESULTS AND DISCUSSION

The performance of the numerical formulation is tested, along

with those of some popular schemes, by application to a variety

of benchmark problems.

3.1 l-D Convection of a Gaussian

The first problem to be solved is the l-D convection of a

Gaussian profile:

!+ , *=0. . . .  . . ( i3 )

subiect ro: u[x, 0 j = 0.5"*o [- 141i" 1r1l'
|  \ u /  |

- 2 0 < x < 4 5 0 ; A r = 1 , c = 1

This could test the time advancement scheme and the numeri-

cal approximation to the first derivative. Three spatial schemes

are used. The exact solution coresponds to the convection of the

initial profile at the constant wave speed, c. The third-order RK

scheme was used to advance the equation in time for all spatial

schemes. In addition, the CFL number was kept small so that

resulting errors are due solely to the spatial formulation. Figure

1 shows computed solutions at t = 400 after the profile has con-

vected to .tr = 400. There is little discernible difference between

the exact solution and the solution with the fourth-order compact

scheme. However, the solutions with the second-order central

difference and the third-order upwind approximations show

0.50

0。40

0.30

0。20

0 . 1 0

0.00

- 0。10

-0.20

370 380     390     400 410

Fig. I Solution to the I-D convection equation at t = in physical
space for various finite difference approximations of the
first derivative term.
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greatly reduced peak values and largc,dispersivc waves trailing

the Gaussian pro■ le. The errors fronl the second¨ ordcr central

difference scheme are the most severeo E)istortion in the shape of

thc profilc indicates dissipation and/or dispersion errors in the

solution.

To differentiate betwccn dispcrsivc and dissipative errors the

solutions are transformecl into wavenumbcr space using a

Fourier transfornl rnethod and compared with the exact solution

in Fig。2.The graph displays the resulting complex]Fourier coef―

■cient in polar fott with thc amplitude displayed in Fig。 2a and

the phase angle in Fig。 2b.These show that both the second―

ordcr central difference and fourth― order compact schcmes

predict the correct amplitude for all modes,and hencc are not

dissipative.On the other hand,the amplitude of the solution

computed with the third¨ order upwind schcmc is reduced or dis¨

sipated,cspecially at higher wavcnumbers.Figure 2b shows that

only the fourth―order compact scheme prcdicts the correct phase

angle for all wave―numbcrs.The phase angle frorn the second―

and third―order solutions are only correctly prcdicted for the

very lowest wavenumbcrs(kく θ.2 for the second―order solution,

and kく θ.J for the third―ordcr solution).Large dispersion errors

are evident at high wavcnumbers.
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Fig.Z Solution to the l-D convection equation at t = 400 in
wavenumber space for various finite difference approxima-
tions of the first derivative term, (a) amplitude and (b)

phase angle.
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3.21 D̈ Convection of a Spherical Wave

The second problern is the solution of the l―E)convection

equation in a spherical coordinate system.The goveming equa―

tion takcs the fornl:

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(14)

subiect  to :  u(x ,  0)  =  0 ;  u(5 , t  )  =  , in  
[+) ,

5 < x < 4 5 0 ; A r = l

The exact solution is a damped sine wave due to the presence

of the ulx term in the governing equation when it is expressed in

Cartesian coordinates. Fig. 3 compares exact and computed

results at t = 400, for the region, 200 < x < 220. The upwind

solution with 8 PPW shows severely reduced amplitude and a

phase shift relative to the exact solution. Even those with 16

PPW and 32 PPW are not very accurate. It takes roughly 64

PPW (not shown) to reproduce the exact solution with the third-

order upwind scheme, whereas the fourth-order compact scheme

is able to reproduce the exact solution with 8 PPW.

3.3 2-D Convection Equation

Multidimensional effects of the numerical formulation are

0.4

コ  0.0

-0.4

-0.8

x

Fig. 3 a Exact solution to the spherical wave problem at t = 400.
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explored by solving the problem of the convection of an inverted

cone around a circle. This problem is govemed by the 2-D con-

vection equation:

$+ r , fu* r " * -o . .  . . (1b)
dt " ox 'oY

where c" = -i and c, = )c, are the convection speeds in the x

and y directions, respectively. The initial conditions are that of

an inverted sharp cone centered at x, y = -0.5, 0. The exact solu-

tion corresponds to the cone being convected counterclockwise

in a circular path of radius, ro = 0.5 with a period of 2n.

Distortion of the shape of the cone is an indication of dispersion

and/or dissipation elrors.

Figure 4 shows computed results after one revolution of the

cone using (a) third-order upwind approximation and (b) fourth-

order compact approximation to the first derivatives on a 32 x 32

grid with uniform spacing. This grid defines the shape of the

cone with a maximum of 8 points in each coordinate direction.

The exact shape of the cone is included to the right of the com-

puted solution at x, y = 0.5, 0 for comparison purposes. The

｀4 5

｀
4 J

/ . o

Fig 4 Numerical solution of the roating cone problem after one

revolution on a 32 x 32 grid (a) third-order upwind

scheme, (b) fourth-order compact scheme' Numerical solu-

tion is shown to the left, exact solution to the right'

205       210

x

Fig. 3 b Numerical solution of the 1-D spherical wave problem at

t = 400 for the region, 200 < x <220.
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x 3rd-order  upwind,  8 ppw
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third-order solution (Fig 4a) shows that the sharp point of the

cone is greatly diffused and that dispersion errors are evident

trailing the cone. A grid of 128 x 128 (or 32 points defining the

shape of the cone) must be used with the third-order upwind

approximation before the shape of the cone is faithfully repro-

duced. The fourth-order compact solution (Fig ab) shows that

the shape of the cone is not distorted as it is convected around

the circle on the 32 x 32 grid. Indeed, the only noticeable error is

a very small "grid to grid" oscillation. Figure 5 shows results for

the same problem after one revolution, obtained by Orszag [10]

using (a) second-order Arakawa finite-difference, (b) fourth-

order Arakawa finite-difference, and (c) spectral schemes on a

32 x 32 grid. The finite difference solutions show etrors similar

to the third-order solutions in Fig. 4. The spectral method, which

provides exact differentiation for all wavenumbers representable

on the 32 x 32 grid, convects the cone without distortion, but

some background waviness is also seen. The higher accuracy

and resolution characteristics are achieved by the implicit treat-

ment of derivatives. Even though the stencil size of the compact

scheme is finite, implicit treatment of derivatives makes the

scheme global, much like spectral methods.

3.4 Euler/Navier-Stokes Equations

In previous sections, the effect of numerical approximation on

the accuracv of the convection terms was documented. In this

Fig 5 Numerical solution of the rotating cone problem after one
revolution on a32 x 32 grid from Orszag [10], (a) second-
order Arakawa scheme, (b) fourth-order Arakawa scheme,
and (c) spectral methods.

cro
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section,the accuracy of the enforccmcnt of the continuity equa―

tion thl・ough the solution of the Poisson equation fOr pressure is

documented by solving the 2¨ ]D Euler/Navier―Stokes equations.

Sincc the Navier S̈tokes equations contain viscous tcrms,the

numerical approximation to the second derivative is also tested.

Thc test problems choscn foF Validation contain many fcatures

of the 3-D jets which are simulated in the curent study.In this

respect,the test problems are not merely acadcmic cxcrcises.

The benchmark problems solved are;(j)a tCmporally¨ devclop二

ing plane mixing layer(2-D Stuart's problem),and(j′ )2¨D

VlSCOuS WaVe decay.

3.4.l Tempora‖ y…Developing Plane Mixing Layer

An exact solution for thc teinporally d̈ev61oping llixing layer

was irst published by Stuart[11],fOr the case with a disturbance

of neutral lnodc.Thc initial conditions for the 2-]D Stuart's prob―

lem co∬ espond to a steady hyperbolic tangent function for the

strealnwise velocity component with a pe五 odic array of vo■ ex

coК s in the lnixing rcgion which cause the solution to vary in

tilneo The wavclength of the disturbancc corresponds to the neu¨

tral mode such that the disturbance is convccted in the

strcamwise direction with no change in amplitude.The exact

solution for the streanlwise and transverse velocity components,

u and v is given by:

中川 ィ十
編

, ( * , y , r ) = t  +
A s in  l x  -c t )

C  c o s h ( y ) + A  c o s ( x - c t )  . " . . ( 1 6 )

where A -_{cq is a parameter which controls the strength of

the perturbation and c is the convective speed of the mixing

layer. The flow is periodic in the streamwise direction with

length, L" = 21t,0 < x ( 2n. The flow is infinite in the transverse

direction but in this study is truncated at a finite distance, -LrSy

< lr, such that the zero-traction freestream boundary condition is

applicable. Tests show that L, = 10 is sufficiently large.

Computed and exact solutions are compared in Fig. 6a with

parameters, c = I, A = U2. A uniform, cartesian grid is used for

the simulations in this section. Unless otherwise specified, the

third-order RK schenre is used for time advancement and time

steps are sufficiently small so that spatial errors are dominant.

Figure 6b shows the numerical solution at t = 20a (ten flow

through times) on a relatively coarse grid of 13 (streamwise) x

41 (transverse) using the fourth-order compact approximation of

convection terms and pressure. Even though the grid is relatively

coarse (13 streamwise points per wavelength and roughly 8

points in the mixing region at y - 0) , there is little discernible
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Fig 6 Solution of the Stuart's problem, (a) Exact solution and

fourth-order compact scheme on a 13 x 41 grid at t = 20n.

a

(b) numerical solution using

difference between the exact and numerical solutions after ten

flow through times. Grid convergence rates are confirmed in

terms of L2-norms of the error in u and v in Table 4' The order,

N, is computed using the solution error from three grids of spac-

ing, h,2h, and 4h:

降鱚 ― ― ― 切
where Qo, Qro, Qoo ate the errors on the h' 2h,and 4h gtids,

respectively. Equation (17) assumes that the leading ffuncation

error term is dominant (Dernuren and Wilson ll2l).

To address the effect of computing the pressure with a lower-

order formulation, .the 2-D Stuart's problem was solved using

second-order central, fourth'order compact and sixth-order com-

pact approximations of the convection terms but a second-order

central difference solution of the pressure. These results, pre-

sented in Table 5, show that the lower-order solution of pressure

results in the overall convergence of the error being second-

Thble 4 Solution errors for 2-D Stuart's problem at t = 0.1'

Fourth-order compact Sixth-order compact

Grid

(ni X ni)

L2Nom

U

L2Nolm

V

L2Norm

U

L2Norm

V

13x41 0。18x10‐・ 0.24x10‐D 0,97x10 0。1l x 10‐'

25x81 0.80x10‐J 0。1l x 10‐・ 0。12x10‐D 0。14x10‐D

49x161 0.57x10‐u 0,74x10‐υ 0。25x10‐° 0.45x10‐u

Order (N)

Table 5 Errors with different discretization of convection, but sec-

ond-order for pressure.

Second-order central Fourth-order compact Sixth-order compact

Grid

O i X  n i )

L2Nom

U

1 2  N o m L2Nonn

U

L2NoFlln

V
ｍＮ。

Ｕ
Ｄ

・

L 2 N o r l n

V

Order"

order, even if the convection terms receive a higher-order treat-

ment. All terms must be discretized using higher-order

approximations to achieve higher-order elTor convergence rates.

Thus, formulations presented in the literature, such as by Najjar

v(θ
メ°Ct)
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and Tafti [13], which use higher-order differences for the con-

vection and diffusion terms but second-order differences for the

Poisson equation for pressure would only be globally second-

order accurate.

Temporal accuracy of the overall RK schemes is confirmed by

performing computations for the 2-D Stuart's problem on the 49

by 161 grid-with three different time steps. The results are

shown in Table 6. The velocity field is specified from the exact

solution and the vorticity is computed as a passive scalar.

3.4.2 Viscous Wave Decay

The numerical treatment of viscous terms is validated by solv-

ing the 2-D viscous wave decay problem which is governed by

the Navier-Stokes equations. The domain for this problem is

periodic in both the x and y directions where periodic boundary

conditions are applied. The exact solution is given by:

/ \ / \ . t t - [ L \
u l x , Y , t  l = -  c o s t . r ,  s l n  ( Y J e  \ R e /

/ t . t \ / t - l L \
v l x , y , /  ) =  s t n  t - r J c o s  ( y J e  \ R e /

where Re = 20, L*= L, = 1. The exact solution consists of

sinusoidal waves in the x and y directions which decay in time.

Table 7 shows the L2 norm of the error at t = 0.025 using the

fourth- and sixth-order compact approximations for convection

and diffusion terms and the solution of pressure. The results are

compared to the fourth-order, Essentially Non-Oscillatory

(ENO) scheme from Weinan and Shu [14]. The error converges

at fourth- and sixth-order rates thus validating the numerical

treatment of the viscous terms and again validating the convec-

tion terms and the solution of pressure. The error of the ENO

Table 6 Solution errors for 2-D Stuart's Problem at t = 1.0, with
different RK schemes.

3‐3 RK schcmo 5‐4 RK schellle

Grid

( n i  X  n i )

l lme

Step
L2Nom of

Vortidty Error
L2Norm of

Vorticity Enor
49x161 0。12806x10~ 0。69910x10‐ °

49x161 0.025 0。17157x10‐ D 0.63575x10‐・

49x161 0,0125 0。66280x10‐ ・ 0.63328x10‐

Order oつ

生 産 研 究

schemc converges at a fourth¨ ordcr rate,but is more than two

orders of magnitude greater than the fourth¨ order compact

results,The errortrnagnitude of thc sixth―order compact forlnula―

tion on the 128 χ 128 grid has rcached the round öff error level

(～fθ
~お

)of the cray supercomputer9 indicaling that extrelnely

accurate results are obtained on average―sized grids.

4.CONCLUDING REMARKS

■ hgher order accurate numerical procedurc has been devel―

oped for solving incompressible Navier― Stokes equations for 2D

or 3E)fluid■ow problems.

The impoltance of using a consistent ol・der of discretizatiOn in

the solution of thc Poisson equation for pressure is demonstrat¨

ed.To guarantee a given global order of accuracy,the ttamc

compact finite― difference discretization used fOr the velocity

derivatives should be used for the derivatives in the Poisson

equation,as well as in metric terms which arise when dealing

with curvilinear physical grids.

Temporal and spatial accuracy of the method is demonstrated

by application to several pertinent benchmark problems.

(ⅣIanuscript rcccived,October 17,1997)
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Thble 7 Solution errors for 2-D viscous wave decay.

Grid

Cni X■)
4th oa

compact

6th oa

compact

3rd(4thl oa

ENO/

16x16 0。14x10‐ 0 0,10x10‐ ′

32:x32 0,77x10‐8 0.15 x 10-e 0。53x10‐ 3

64x64 0,47x10‐9 0.27x10‐ 11 0。32x10‐ °

128童 128 0。71x10‐ 10 0.1l x 10‐12 0。20x10‐ 7

Order的


