修士論文

不特定多数の人物を対象とした 顔変形を含む3次元頭部姿勢の実時間推定

User-Independent Techniques for Real-Time Estimation of Non-Rigid 3D Head Motion

概 要

本論文では,ヒューマン・コンピュータ・インタラクション技術への応用を目的 として,不特定多数のユーザに対して顔変形および3次元頭部姿勢の実時間推定 を実現する手法を提案する.顔変形モデルを用いた姿勢推定をユーザ毎の事前準 備を伴うことなく実行するための枠組みとして,本論文では二つの異なる手法を 提案する.

第1の手法では,ユーザ頭部の変形モデルの構築と頭部姿勢の実時間推定を同時に実行する.本手法では,複眼カメラによって得られるユーザ頭部の3次元形状を元に,ユーザ独自の変形モデルを実時間で構築する.姿勢推定の中で得られる変形データに対して増分的な主成分分析を実行することで,変形モデルの逐次的な更新を行う.これにより,事前の学習を伴わずに頭部変形モデルを構築し,推定と並行してモデルの精度を随時向上させる機構を実現している.

第2の手法では,単眼カメラでの推定を実現するために,事前に構築した汎用 的な顔形状モデルを用いる.顔形状の個人内変動(変形)と個人間変動(個人差) を分離して表現したパラメータ分離モデルの元で,二つの異なる処理を統合する ことで実時間頭部姿勢推定を実現する.一つはパーティクルフィルタを利用した 姿勢,変形の時系列推定であり,もう一つはバンドル調整の枠組みを利用した個 人差調整である.二つの手法を統合することで,各パラメータの性質の違いに対 してそれぞれ適切なアプローチによる推定を実現することができる.これにより, 不特定多数のユーザに対して事前準備や手動の初期化を伴うことなく,顔変形を 含む3次元頭部姿勢推定を単眼カメラで実現する.

本論文では,精度・安定性の高い複眼推定手法と設置コストが低く柔軟な応用 が可能な単眼推定手法により,多様な目的と設置状況への対応が可能な,真に実 用に適した頭部姿勢推定技術を提案している.さらに,各々の手法に関する評価 実験を行い,その結果についても報告する.

目 次

第1章	序論	1
1.1	研究の背景	1
1.2	研究の目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.3	本論文の構成	3
第2章	関連研究	4
2.1	実時間頭部姿勢推定	4
2.2	変形モデルの複数人対応	6
	2.2.1 個人毎の顔形状モデル作成	7
	2.2.2 汎用的顔形状モデルの利用	8
2.3	本研究のアプローチ	10
第3章	顔変形モデルの自動構築を伴う頭部姿勢推定	12
3.1	はじめに..............................	12
3.2	顔形状モデルの自動構築	13
	3.2.1 顔形状モデル	14
	3.2.2 形状モデルの初期化	15
	3.2.3 頭部姿勢の推定結果を用いた特徴点位置の再計算	16
	3.2.4 CCIPCA による顔形状モデルの自動構築	20
3.3	頭部変形モデルを用いた頭部姿勢推定	22
	3.3.1 パーティクルフィルタを用いた頭部姿勢と顔形状の推定	22
	3.3.2 Halfway Partitioned Sampling	25
3.4	評価実験...................................	25
第4章	パラメータ分離モデルを用いた単眼による頭部姿勢推定	30
4.1	はじめに.............................	30
4.2	頭部変形モデルの構築	32

i

	4.2.1	モデル構築に用いるテンソル解析	32
	4.2.2	N-mode SVD による形状パラメータの分離	36
4.3	バンド	ル調整の枠組みによる個人差パラメータ推定	40
	4.3.1	バンドル調整の問題設定	41
	4.3.2	バンドル調整の逐次実行	44
4.4	顏形状	推定を伴う頭部姿勢推定	47
	4.4.1	顔検出と顔形状・姿勢の自動初期化	47
	4.4.2	パーティクルフィルタにおける多重線形モデルの利用	49
	4.4.3	2次元特徴点座標の再計算	50
4.5	評価実	験	52
第5音	紶論		61
카이무			01
5.1	半 妍艽	\mathcal{O}	61
5.2	今後の	課題	62
謝 辞			65
参考文献	就		66
発表文馨	就		71

ii

図目次

1.1	操作補助への応用.............................	2
1.2	コミュニケーション支援への応用	2
2.1	Active Appearance Models [27]	5
2.2	メッシュモデルの例 [31]	5
2.3	特徴点モデルの例 [43]	5
2.4	因子分解法による非剛体の顔形状推定 [5]	8
2.5	パラメータ分離顔形状モデルの例 [8]	9
3.1	頭部姿勢推定システムの流れ	13
3.2	顔形状モデル構築の流れ	14
3.3	3次元顔形状モデルの概略	15
3.4	顔形状の初期化	16
3.5	特徴点の推定位置と正確な位置	17
3.6	パーティクルフィルタにおける推定の流れ	23
3.7	実験で利用したカメラ	26
3.8	頭部姿勢推定システムの概観	26
3.9	頭部姿勢推定の結果画像・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
3.10	頭部剛体/変形モデルを用いた頭部姿勢推定の結果	29
4.1	単眼システムの概要	31
4.2	3 階のテンソルの展開	33
4.3	Singular Value Decomposition	34
4.4	モデル化の対象となる顔変形の例	36
4.5	モデル構築に用いるデータテンソル..............	37
4.6	パラメータ分離モデルにより生成される顔形状の例	39
4.7	バンドル調整の概要	41

4.8	姿勢推定の処理の流れ	47
4.9	顔モデルと頭部姿勢の初期化	48
4.10	頭部姿勢推定の結果画像(実験 A)	55
4.11	推定された顔特徴点座標(頭部座標系)の平均誤差(実験 A)	56
4.12	頭部姿勢推定の結果(実験 A)	57
4.13	頭部姿勢推定の結果(実験 B)	58
4.14	頭部姿勢推定の結果(実験 C)	60

表目次

4.1	頭部姿勢の推定誤差(実験 A)		 	•		•	•	•		•	•	•		•	•		54
4.2	頭部姿勢の推定誤差(実験 B)		 			•	•	•		•	•	•	•	•		•	56
4.3	頭部姿勢の推定誤差(実験C)	•	 	•	 •	•	•		•	•	•	•		•	•	•	59

第1章 序論

1.1 研究の背景

近年,高速なインターネット基盤の発達やデバイスの小型化,多様化に伴い,コ ンピュータとそれが構築するネットワークは様々な形で人間の日常生活の中に浸 透しつつある.こうした中で,人とコンピュータの柔軟なインタラクションを実 現するための新たなインタフェース技術への要求はますます高まっている.ビジ ネスやコミュニケーションのプラットフォームとしての情報空間の存在感がもは や無視できないほどに大きくなっている現在,人と情報空間とのインタラクショ ン技術を見直すことは,特定のアプリケーションにおける機能改善以上の重要な 意味を持ち得る.

現在のPCではデスクトップメタファにもとづくGUI(Graphical User Interface) が主流となっているが、これは2次元のディスプレイとマウス・キーボード、とい う入力デバイスに最適化されたインタフェースになっている部分がある.アプリ ケーションのレベルでは、現在も日々新たなUIの提案が行われているが、入力デ バイスの制限から脱することは難しい.特にゲームやモバイル機器などにおいて は、加速度センサやカメラなどを入力に用いるデバイスが増えてきているが、現 在実用化されているセンサではまだまだ低レベルな情報しか取得できないことも あり、本質的なインタフェースの刷新には至っていない.高度な情報のセンシン グを安価な装置で実現するための基礎技術が未だ不足していることが、新たなイ ンタフェース技術の可能性を探る上でのボトルネックになっている側面も大きい と考えられる.こうした文脈において、高度なセンシング技術を現実的な応用が 可能な形で実現させることへの期待は大きい.

図 1.1: 操作補助への応用

図 1.2: コミュニケーション支援への応用

1.2 研究の目的

本研究ではこうしたセンシング技術の中でも特に,ユーザの顔に関する情報に 注目する.顔は人の意識や感情に関して多くの情報を有しているほか,ディスプレ イなど多くのデバイスは人と対置されるため,デバイス自身に注目する人の顔は 実用上観測しやすい対象でもある.したがって,図1.1,図1.2に示すように,柔 軟なインタラクションを考える上で応用の可能性が大きい.

本研究では特に,人の3次元頭部姿勢と顔変形を実時間で計測するためのシス テム構築をその目的とする.現在,携帯電話やデジタルカメラなど,2次元の顔検 出とそれを応用した技術は既に多くの場面で実用化されてきている.一方,3次元 の頭部姿勢や詳細な表情認識に関しては未だ決定的な技術は存在せず,現在も活 発な研究・開発が続けられている.

実用性という観点から見ると、いかにユーザに負担をかけないセンシングを実 現するかが重要になる.頭部姿勢や変形を高精度で測定するための一つのアプロー チとして、ユーザの側で磁気センサや特殊なマーカを装着するという手法が考え られる.こうした手法は特殊なアプリケーションの操作を目的とした場合は有効 だが、日常生活の中で利用する場合を考えると現実的ではない.また、デバイス 側で赤外線カメラや3D スキャナなどの特殊なセンサを利用するアプローチも考え られるが、こうした手法は実現コストが高くなり、また応用の範囲が限定される という欠点がある.

そこで本研究では,通常のカメラ画像を元に3次元頭部姿勢と顔変形を計測す る手法を提案する.真に実用に適した3次元頭部姿勢推定システムを構築するた めに,特に次の2点に主眼を置く.

- 不特定多数のユーザに対して自動的に推定を開始できる
- 発話や表情変化に伴う顔変形が起こった場合でも,安定して推定を継続で
 きる

この2点を満たす頭部姿勢推定システムとして,二つの異なるアプローチに基づく手法を提案する.

1.3 本論文の構成

不特定多数のユーザを対象として変形を含む姿勢推定を行う際には,個人ごと に異なる変形を捉えるためのモデルをいかに用意するかが重要になる.

第3章で述べる第1の手法では,複数台のカメラを用いてユーザ頭部の3次元形 状を直接計測することでこれを実現する.一般的に,変形モデルを構築するため には長い時間をかけて取得した大量のデータに対して統計的な解析を行う必要が ある.それに対し本手法では,変形データの取得及びモデル構築を姿勢推定と並 行して実行することにより,事前の準備無しにユーザ独自の変形モデルを獲得し, それを利用した変形推定を可能にしている.

一方,第4章で述べる二つめの手法では単眼カメラでの推定を実現するために, 事前に構築した顔形状モデルを利用する.複数人のデータを含む,情報量の多い 事前知識を実時間システムの中で効率よく扱うために,顔形状の個人内変動と個 人間変動を分離して記述したモデルを構築する.このようなモデルに対して,複 数フレームの観測に基づく個人差の調整を実時間推定と並行して実行する.

以下,まず第2章では関連研究についてまとめる.次に第3章と第4章で個々の 手法の詳細について述べ,最後に第5章において各々の特徴を整理し,今後の課 題や応用について述べる.

第2章 関連研究

2.1 実時間頭部姿勢推定

まず本節では,コンピュータビジョンを利用した実時間頭部姿勢推定に関する 関連研究について紹介する.ここでは,顔のモデル化手法と推定手法の二つの観 点から関連研究を整理する.

モデル化手法の観点から見ると,頭部姿勢推定手法は大きく二つに分類するこ とができる.顔全体の見えを2次元の画像パターンとして捉えるアピアランスベー スの手法と,3次元の詳細な顔形状モデルを利用するモデルベースの手法である. さらに,モデルベースの手法は利用するモデルの種類に応じてメッシュモデルに 基づく手法と特徴点モデルに基づく手法に分けて考えることができる.本節では それぞれのアプローチに関して,代表的な例及びその長所・短所を整理するとと もに,本研究のベースとなる先行研究の位置付けを整理する.

アピアランスベースの形状モデルの代表的な例としては, Cootes らによって提 案された AAM (Active Appearance Models)[6]が挙げられる.AAM は,顔領域 のテクスチャと形状をそれぞれ図 2.1 のような線形基底で表現したモデルになって いる.Matthews らは AAM を利用して顔向きによる見えの違いをモデル化し,実 時間の頭部姿勢推定を実現している[27].また,顔を空間内の2次元平面として扱 う手法[17]や楕円として扱う手法[4],円柱として扱う手法[20]など,顔全体の見 えのモデルを3次元空間内で利用する手法も古くから数多く提案されている.こ うしたアピアランスベースの手法は画像中の細かい差異に対して比較的安定であ るなどのメリットがあるが,顔形状の厳密なモデル化は困難であり,詳細な頭部 姿勢の推定を行うのには向いていない.

これに対して,顔の3次元形状モデルに基づく推定を行うモデルベースの手法として,まずは図2.2のような顔全体のメッシュモデルを利用する手法が挙げられる [12, 13, 36, 31]. Xiao らは3次元メッシュモデルを AAM に対する拘束条件として

 \blacksquare 2.1: Active Appearance Models [27]

図 2.2: メッシュモデルの例 [31]

図 2.3: 特徴点モデルの例 [43]

利用することで,より厳密な3次元頭部姿勢と変形を推定する手法を提案している[36].また,Vacchettiらの手法[31]では,バンドル調整の枠組みを利用してこのような3次元メッシュモデルを用いた剛体オブジェクトの追跡を実現している.

一方,よりシンプルな3次元顔形状モデルとして,図2.3のように3次元の特徴 点集合として表現されたモデルを用いる手法も多い[14,15,26,28,42,43].Geeら の手法[14]では,目や鼻など顔の各器官の3次元位置関係を手作業で測定するこ とで得られる顔形状モデルを用いて,RANSAC(RANdom SAmpling Consensus) に基づく姿勢推定を行っている.Matsumotoらの手法[26]では,ステレオカメラ により得られる3次元特徴点モデルを利用して,入力画像に対するモデルのフィッ ティングによる姿勢推定を実現している.

こうした顔の3次元形状モデルに基づく手法は,より詳細な頭部姿勢推定を行うことが可能となる.前者のメッシュモデルは最も詳細な顔形状の表現が可能であり,感情認識など高度な応用を考える上でも有用であるが,その分モデル自体の情報量も多く,実時間システムで扱うには計算コストや安定性の面での工夫が必要になる.それに対して後者の特徴点モデルは必要最低限の情報量で顔形状を表現でき,また計算上も収束しやすく安定した推定が可能になるというメリットがある.

本研究のベースとなる岡らの手法 [43] では,こうした特徴点ベースの顔形状モ デルを用いた頭部姿勢推定を提案している.初期化時に自動構築するユーザ独自 の3次元剛体顔形状モデルを用いて,パーティクルフィルタを用いた頭部姿勢推 定を行う.これにより,部分遮蔽や照明変動,そしてユーザの突発的な動作に対 しても頑健なシステム構築を可能にしている.

2.2 変形モデルの複数人対応

前節で紹介した手法の中には,人間の顔を剛体とみなしたモデルを利用して頭 部姿勢を推定するものが多く見られる[14,26,31,43].しかし,人間の顔は発話や 表情変化などのために変形する場合があるため,それを剛体とみなすのはあまり 現実的な仮定ではない.実際,頭部剛体モデルを利用した手法では,顔の変形が 起こった場合に精度の劣化や追跡の失敗が生じることが大きな問題となっている. この問題を解決するためには,顔形状の変化を表現することができる変形モデ ルを用いる必要がある.本節では,こうした顔形状の変形モデルの利用に関して, 必ずしも実時間のシステム構築を目的としていない顔形状推定技術も含めて関連 研究を紹介する.

不特定多数のユーザを対象として変形モデルを利用するためには,大きく分け て次の二つのアプローチが考えられる.

• ユーザ毎にそれぞれ独自の変形モデルを作成する

• 個人間の差異も含んだ汎用的な顔形状モデルを利用する

本節ではこの二つの観点から関連研究を整理する.

2.2.1 個人毎の顔形状モデル作成

変形モデルを作成するための手法としてもっとも一般的なのは,ユーザ毎に事前 の学習により専用の変形モデルを作成する手法[3,15,27,28,42]であると言える.

前述の Matthews らの手法 [27] では,実時間の姿勢推定を行う際,対象となる ユーザに対する専用のモデルを利用している.Gokturk らの手法 [15] では,事前 にステレオカメラを用いた表情変化の追跡を行い,獲得されたデータに対して主 成分分析を行うことで変形モデルを作成する.これを利用することで,単眼のカ メラ入力に対して変形を含む姿勢推定を実現している.Zhu らの手法 [42] では同 様の3次元変形モデルを元に,2次元の特徴点軌跡から姿勢と変形を実時間で復元 する手法を提案している.こうした手法は,モデルの精度に関しては最も理想的 な状態を得られるが,実際の応用を考える上で,ユーザ毎に長い時間をかけて事 前に変形モデルを準備するのは現実的ではない.

これを解決するための手法としては,入力画像に対して姿勢・変形の推定と顔形状のモデリングを同時に行うことが考えられる.これに関する一つのアプローチとして,Structure from Motion の枠組みを変形を含む対象に適用することで事前の準備無しに顔形状の変形を推定する手法が提案されている.Bregler らは Tomasi-Kanade の因子分解法を非剛体の形状推定に拡張する手法を提案しており[5],2次元の追跡結果からの形状復元を変形に関する事前の知識無しで実現している.この非剛体因子分解法はその後も様々な拡張がなされており,顔形状推定を目的とした研究例も報告されている[9,10,37].しかし,3次元モデルを利用した実時間頭部姿勢推定においてこうした手法を応用している例は無い.

図 2.4: 因子分解法による非剛体の顔形状推定 [5]

2.2.2 汎用的顔形状モデルの利用

一方,事前に複数人の変形データを含む顔形状モデルを用意する,というアプ ローチにもいくつかの研究例が存在する.

その一つの方法として,個人差に基づく変動も同じ変形と捉え,単一の形状パラ メータで全ての変動を表現するモデルを作成する手法がある.AAM に関しては, Matthews らの文献 [27] でも学習対象を複数人のデータに拡大した Generic AAM に関する議論が為されており,Gross らはこの Generic AAM に関してフィッティ ング性能を改善するための新たなアルゴリズムを提案している[16].しかし,計算 コストの高さや収束の難しさはこのような単一パラメータのモデルが本質的に持 つ問題であり,実時間システムにおいて安定した推定を実現するには困難が伴う.

そこで,汎用的な顔形状モデルを作成する上で必要となる次の二つの要素をそれ ぞれ個別のパラメータで表現するモデルを用いた手法がいくつか提案されている.

- 眉の上下や口の開閉といった,個人内の変形に対応する要素
- 目の位置や鼻の高さといった,個人差に対応する要素

Dornaika らの手法 [12, 13] では, Candide[2] と呼ばれる3次元メッシュモデルが 用いられている.Candide はもともと3DCG アニメーションのために作成された モデルであり,顔変形は規格として定められた基底の線形和として表現され,変形 を表す Action Units と個人差を表す Shape Units が明示的に分離されている.文 献[12] ではパーティクルフィルタの枠組みを応用した単眼姿勢推定を,さらに文献 [13] ではステレオカメラを併用した追跡の安定化手法を提案している.このとき, 追跡を行う上で対象となるユーザに関して変動し得るのは変形を表すパラメータ

図 2.5: パラメータ分離顔形状モデルの例 [8]

のみであり, Dornaika らはユーザ毎に個人差パラメータは固定として変形の推定 を行っている.しかし,個人差パラメータの具体的な値に関してはユーザごと事 前に決定する必要があり,また追跡の中でこれを調整する仕組みも備えていない.

DeCarlo らの手法 [7,8] でも同様に,手作業でパラメータの分離が行われた図 2.5 のような3次元メッシュモデルを利用している.文献 [7] では,画像のエッジ情報 から個人差も含めたパラメータ全体を,そしてオプティカルフローの情報からは変 形パラメータのみを調整する手法を提案している.さらに文献 [8] では上記の手法 にオプティカルフローの推定残差を最小化するパラメータ調整を組み合わせ,よ り精度の高い推定を実現している.彼らはこの二つのパラメータの振舞いの違い をより高度な形で利用しているが,この手法は計算コストが高く,実時間の推定 システムには応用されていない.

一方, Vlasic らは N-mode SVD に基づく多重線形顔形状モデルを提案している [34].上記のような手作業でパラメータを分離したモデルとは異なり,より統計的 な性質に基づくパラメータの分離が可能になる.形状推定を行う際には,彼らも パラメータの性質の違いに注目しており,個人差に相当する,同一ユーザに対し て一定の値を取るパラメータに関しては,入力画像列全体に対してパラメータの 最適化を行っている.しかし,この計算は撮影した動画の後処理を前提としてい るため,実時間の処理にそのまま適用することはできない.

2.3 本研究のアプローチ

これまでに紹介したように,不特定多数のユーザを対象とする実時間頭部姿勢 推定システムにおいて,変形を含む顔形状モデルを扱うのは現在でも難しい課題 となっている.それに対し本研究では,特徴点ベースの顔形状モデルを用いた頭 部姿勢推定システム[43]を元に,任意のユーザに対して顔変形を含む姿勢推定を 実現する手法を提案する.本研究で述べる二つの手法に関して,それぞれ従来手 法に対する位置づけを整理する.

顔変形モデルの自動構築を伴う頭部姿勢推定

まず,第3章で述べる手法では,2.2.1節で述べた研究例と同様に,追跡対象と なるユーザに対して独自の変形モデルを作成するアプローチを取る.

しかし,本研究ではこれらの例とは異なり,ステレオカメラを用いた追跡の中 で得られるユーザの顔形状情報を利用して,追跡と並行して増分的に変形モデル を構築する.毎フレームごとにモデルの更新を行い,次フレームの姿勢推定には 更新されたモデルを利用するため,顔変形と姿勢の推定精度を逐次的に向上させ ることができる.したがって,従来手法のように変形を推定するためのユーザ毎 の事前準備は必要なく,また非剛体Structure from Motion手法では実現できない 実時間のシステム構築,および逐次的なモデル更新の追跡へのフィードバックを 実現している.

パラメータ分離モデルを用いた単眼カメラによる頭部姿勢推定

第4章で述べる手法では,2.2.2節で述べた研究例と同様に,事前に作成した汎用的な顔形状モデルを利用する.

本研究では,顔形状の個人内変動(変形パラメータ)と個人間変動(個人差パラ メータ)を分離して表現したモデルを用いる.しかし,モデルに対するパラメー タ推定手法は従来手法とは異なり,時間依存の姿勢・変形パラメータ推定にはパー ティクルフィルタを,時間非依存の個人差パラメータを含めた全体の推定にはバン ドル調整を利用する.3次元モデル空間内での頑健な時系列推定と複数フレームの 観測を利用した個人差の調整をパラメータ分離モデルの元で統合することにより, 実時間システムとして,安定かつ精度の高い姿勢・変形推定を可能にしている.

第3章 顔変形モデルの自動構築を伴 う頭部姿勢推定

3.1 はじめに

本章では,頭部変形モデルの構築と頭部姿勢の実時間推定を同時に実行するた めの手法を提案する.

本手法では,事前の準備なしに自動構築された頭部剛体モデルを用いて,頭部 姿勢の実時間推定を開始する.それと同時に,姿勢推定の結果を手がかりとして 頭部の各特徴点の正確な動きを実時間で計測する.こうして計測した特徴点の動 きを分析することにより,姿勢推定を継続しながらも,新たな頭部変形モデルを 構築する.さらに,更新された変形モデルを次フレームからの推定に利用するこ とで,姿勢推定とそれに基づく特徴点の再計測の精度を逐次的に向上させること が可能になる.

本研究の主要な貢献としては次の3点が挙げられる.

1. 特別な事前準備なしに顔変形を伴う頭部姿勢運動を実時間で追跡する.

2. 頭部変形モデルを連続的に更新する.

3. 頭部姿勢と顔形状の推定性能を逐次的に向上させる.

本手法で構築した頭部変形モデルによる頭部姿勢推定性能の向上について評価実 験を通して明らかにする.

本章で述べる頭部姿勢推定システムの流れは図3.1のようになる.ユーザの顔形 状モデルを構築する Model construction step と,入力画像フレームから頭部姿勢 と顔変形を推定する Pose estimation step により構成されている.

本節以降,第3.2節と第3.3節では,それぞれ Model construction stepと Pose estimation step について説明する.最後に第3.4節で本手法に関する実験結果を示す.

図 3.1: 頭部姿勢推定システムの流れ

なお,本論文では校正済みのカメラを2台用いる場合について説明するが,こ の台数は理論的な拡張なしに増設することが可能である.

3.2 顔形状モデルの自動構築

本節では,ユーザの顔形状モデルを獲得するための手法について説明する.こ れは図 3.1 の Model construction step での処理に対応する.

さらに詳細なモデル構築の流れを,図3.2に示す.まず,初期化部(Initialization step)では暫定的に剛体の顔形状モデルを自動的に構築する.初期化が完了すると,次の3つの段階を繰り返すことで連続的なモデルの更新を行う.最初の段階(Pose estimation step)では,入力画像から実時間で頭部姿勢 p_t と顔変形 a_t を推定する.この推定手法の詳細に関しては第3.3節で述べる.第2段階(Feature-point recalculation step)では,第1段階で推定された p_t と a_t を元に正確な特徴点位置を再計算する.こうして新たに得られた特徴点座標を利用して,最後に第3段階(Deformation analysis step)で主成分分析による顔形状モデルの更新を行う.

これらの処理を経て更新された顔形状モデルは次フレームでの頭部姿勢推定,す なわち, Pose estimation step で使用する.これにより,顔形状モデルを随時更新 するとともに,頭部姿勢と顔変形の推定性能を逐次的に向上させるような機構を 実現する.

図 3.2: 顔形状モデル構築の流れ

3.2.1 顔形状モデル

本手法では,図3.3 に示すような K 個の特徴点で構成される顔形状モデルを用 いる.本論文では K = 10 で固定されており,各点は両目の両端と口の両端,両鼻 孔,そして両眉の内側の端点に対応する(図3.4 における"+"マーク).各々の特 徴点は2つの要素により構成されている.1つはフレームtにおける特徴点の3次 元座標であり,ユーザ頭部に固定されたモデル座標系内での座標として表現され る.もう1つは特徴点のテンプレート画像であり,左右2台のカメラに対して1枚 ずつ保有している.以下, M_t を K 個の特徴点の3次元座標で構成された3K次 元形状ベクトルとする.また, T_L は左カメラに対する K 個のテンプレートの集合 を表すものとし,同様に T_R を右カメラに対するテンプレート集合とする.本論文 における頭部姿勢は,頭部姿勢はカメラ位置を基準とした世界座標系からモデル 座標系への並進及び回転として定義される.

形状ベクトル M_t は,次のように基底形状ベクトルの線形和で表現される.

$$\boldsymbol{M}_t = \boldsymbol{M} + \boldsymbol{\mathcal{M}} \boldsymbol{a}_t \tag{3.1}$$

このとき,Mは平均形状ベクトル,MはB個の基底形状ベクトルを並べた $3K \times B$ の基底形状行列, a_t はMのB次元係数ベクトルである.すなわち, a_t の各要素が顔変形のパラメータとなる.これにより少数のパラメータで顔形状の変化を表現することを可能とするとともに,Bの大きさを制限することで頭部変形モデル

図 3.3: 3 次元顔形状モデルの概略

が不自然に変形するのを抑制する効果も与える.本論文では B は経験的に 5 で固定しており,本手法で用いる顔モデルに対しては十分な累積寄与率が得られることを確認している.なお, \overline{M} と \mathcal{M} を逐次的に計算する方法については 3.2.4 節で説明する.

3.2.2 形状モデルの初期化

まず,本節で初期化部(*Initialization step*)について説明する.初期化部では, 暫定的な顔形状モデルとして,ユーザ頭部の3次元剛体モデルを自動的かつ高速 に構築する.ここでは,オムロン社で開発されたOKAOビジョンライブラリを利 用することで,入力画像から自動的に顔および6個の顔特徴点(図3.4中,赤で示 した特徴点に対応)を検出する[21].さらに残りの(K-6)個の特徴点(図3.4中, 縁の点に対応)については,既知の特徴点位置に対して事前知識に基づき定めた 探索範囲の中から,追跡に適した画像特徴を持つ点を検出する[30].具体的には, 探索範囲内の各画素に対して,式(3.2)に示すような行列 Dを計算する.

$$\boldsymbol{D} = \begin{pmatrix} \sum_{\text{ROI}} \frac{\partial I^2}{\partial x} & \sum_{\text{ROI}} \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \\ \sum_{\text{ROI}} \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} & \sum_{\text{ROI}} \frac{\partial I^2}{\partial y} \end{pmatrix}$$
(3.2)

図 3.4: 顔形状の初期化

ここで, Dの各要素はその画素を中心とした窓領域(Regions Of Interest; ROIs) における画素値 I の微分係数の和を示す.この行列 D の最小固有値が設定した閾 値を超えている点の中から,他の特徴点との距離が十分離れている点を追跡のた めの特徴点として採用する.

まず,以上の処理を基準となる左カメラからの入力画像に適用して K 個の特徴 点を検出する.次に,これらの特徴点に対応する点(図3.4中,黄色で示した点) を右カメラからの入力画像中で探索するために,エピポーラ線上でテンプレート マッチングにもとづく探索を行う.こうして得られた2次元の特徴点位置座標を 元に,各特徴点の3次元位置座標を計算する.そして,頭部に固定されたモデル 座標系を定義するとともに,モデル座標系内での顔の3次元形状 M を決定する. 最後に,この M とテンプレート集合 T_L, T_R を頭部モデルとして登録する.以上 の処理により頭部モデルの登録が成功した場合のみ,これ以降に述べる変形モデ ルの逐次更新及び頭部姿勢の追跡処理に移り,失敗した場合は登録に成功するま でこれら一連の処理を繰り返す.なお,初期化直後は剛体モデルしか存在しない ため,変形パラメータ a_tは0に設定する.

3.2.3 頭部姿勢の推定結果を用いた特徴点位置の再計算

本節では,図3.2 における Feature-point recalculation step について説明する. 正確な頭部変形モデルを構築するためには,各特徴点の正確な3次元座標が必要になる.後に詳細を述べる Pose estimation step では,式(3.1)を元にフレーム

図 3.5: 特徴点の推定位置と正確な位置

ごとの顔形状 *M_t*を推定する.しかし,本システムでは逐次的なモデル更新を行うため,未知の変形が起こった場合には必ずしも推定された形状が正確な特徴点 位置と一致するとは限らない(図3.5).

そこで本手法では, Pose estimation step で推定した頭部姿勢 p_t と顔形状 M_t を元に,改めて各特徴点の正確な位置を再計算する.ここで,モデル座標系における K 個の特徴点の正確な 3 次元位置座標を表す 3K 次元ベクトルを M'_t とし,以下, M'_t を真形状と呼ぶ.

本手法では, M'_t についての誤差関数 E_t を定義し, E_t を最小化することによって M'_t を決定する.

$$E_t = E_t^I + \epsilon E_t^M \tag{3.3}$$

ここで, E_t^I は特徴点周辺の見えに関する誤差を表し, E_t^M は推定形状 M_t に対する幾何学的な誤差を表している.このとき, ϵ は定数であり,本手法では経験的に2000に固定している.以下, E_t^I と E_t^M について具体的に説明する.

 E_t^I を定義する前に,まず投影関数 \mathcal{P}_h を定義する.これは,頭部姿勢 p_t に応じた並進や回転を真形状 M_t' に適用した上で,各特徴点を画像平面hに投影する関数である.

$$\boldsymbol{m}_{h,t} = \mathcal{P}_h(\boldsymbol{p}_t, \boldsymbol{M}_t') \tag{3.4}$$

 $m_{h,t}$ はK個の投影点の2次元座標で形成される2K次元ベクトルである.

これを用いて,特徴点周辺の見えに関する誤差 E¹を次のように定義する.

$$E_{t}^{I} = \sum_{\substack{\text{ROI}\\h\in\{L,R\}}} \left\{ \rho || \boldsymbol{I}_{t}^{h}(\boldsymbol{m}_{h,t}) - \boldsymbol{I}_{t-1}^{h}(\boldsymbol{m}_{h,t-1}) ||^{2} + || \boldsymbol{I}_{t}^{h}(\boldsymbol{m}_{h,t}) - \boldsymbol{I}_{1}^{h}(\boldsymbol{m}_{h,1}) ||^{2} \right\}$$
(3.5)

ここで, $I_t^h(m_{h,t})$ は K 次元輝度ベクトルを示す. $I_t^h(m_{h,t})$ の k 番目の要素は,入 力画像 I_t^h における $m_{h,t}$ の k 番目の 2 次元座標での輝度を表す.式 (3.5) の第 1 項 は,現在の画像 I_t^h 中の K 個の注目領域と直前の画像 I_{t-1}^h 中の注目領域との見え の誤差を表す標準的な誤差関数である.一方,第2項は現在の画像 I_t^h 中の注目領 域と追跡開始時の画像 I_1^h 中の注目領域との見えの誤差を表す.この項は Gokturk らの手法 [15] でも使用されており,特徴点のドリフトを回避する効果が報告され ている.また, ρ は第1項と第2項の間の比率を表す.現在は経験的に, ρ を4に, 注目領域の大きさを 16 × 16 画素に設定している.

 E_t のもう一方の項 E_t^M は次のように,推定形状 M_t と真形状 M'_t との誤差として定義される.

$$E_t^M = ||M_t' - M_t||^2 (3.6)$$

この項の導入により,ユーザの頭部姿勢が大きく変化した場合であっても,特徴 点を見失うことなく追跡できるようになる.頭部変形モデルの更新により M_t が 正確な形状に近づくにつれて,より安定して M'_t を計算することが可能となる.

以上の定義により得られる E_t を最小化することにより, M'_t を算出する.具体的には,次のような手順で前フレームとの差分形状 $dM = M'_t - M'_{t-1}$ を計算する [15].

まず,輝度ベクトル $I_t^h(m_{h,t})$ を M'_{t-1} の近傍で1次の項までテイラー展開することで次のような近似式を得る.

$$\mathbf{I}_{t}^{h}(\boldsymbol{m}_{h,t}) = \mathbf{I}_{t}^{h}(\mathcal{P}_{h}(\boldsymbol{p}_{t}, \boldsymbol{M}_{t}')) \\
= \mathbf{I}_{t}^{h}(\mathcal{P}_{h}(\boldsymbol{p}_{t}, \boldsymbol{M}_{t-1}' + d\boldsymbol{M})) \\
= \mathbf{I}_{t}^{h}(\mathcal{P}_{h}(\boldsymbol{p}_{t}, \boldsymbol{M}_{t-1}')) + \hat{\boldsymbol{K}}_{t}^{h}d\boldsymbol{M}$$
(3.7)

ただし,

$$\hat{\boldsymbol{K}}_{t}^{h} = \frac{\partial \boldsymbol{I}_{t}^{h}}{\partial \boldsymbol{m}_{h,t}} \bigg|_{\hat{\boldsymbol{m}}_{h,t}} \frac{\partial \mathcal{P}_{h}}{\partial \boldsymbol{M}_{t}'} \bigg|_{\boldsymbol{p}_{t},\boldsymbol{M}_{t-1}'}$$
(3.8)

$$\hat{\boldsymbol{m}}_{h,t} = \mathcal{P}_h(\boldsymbol{p}_t, \boldsymbol{M}_{t-1}')$$
(3.9)

とする.これを式 (3.5) に代入することにより, E_t^I は次のように dM の関数として表現できる.

$$E_t^I = \sum_{\substack{\text{ROI}\\h\in\{L,R\}}} \left\{ \rho || \hat{\boldsymbol{K}}_t^h d\boldsymbol{M} + \Delta \boldsymbol{I} ||^2 + || \hat{\boldsymbol{K}}_t^h d\boldsymbol{M} + \Delta \boldsymbol{I}_0 ||^2 \right\}$$
(3.10)

ただし

$$\Delta \boldsymbol{I} = \boldsymbol{I}_{t}^{h}(\hat{\boldsymbol{m}}_{h,t}) - \boldsymbol{I}_{t-1}^{h}(\boldsymbol{m}_{h,t-1})$$
(3.11)

$$\Delta \boldsymbol{I}_0 = \boldsymbol{I}_t^h(\hat{\boldsymbol{m}}_{h,t}) - \boldsymbol{I}_1^h(\boldsymbol{m}_{h,1})$$
(3.12)

とする.

また, E_t^M に関しては,式(3.6)から次のようにdMの関数として記述できる.

$$E_t^M = ||dM + M'_{t-1} - M_t||^2$$
(3.13)

したがって,式 (3.10) と式 (3.13) から E_t は dM に関する 2 次関数となり,次式 を解くことで E_t を最小にする dM が得られる.

$$\frac{\partial E_t}{\partial d\boldsymbol{M}} = 0 \tag{3.14}$$

 E_t^I , E_t^M の各々をdMで偏微分した結果は次のようになる.

$$\frac{\partial E_t^I}{\partial d\boldsymbol{M}} = \sum_{\substack{\text{ROI} \\ h \in \{L,R\}}} \left\{ 2(\rho+1)\hat{\boldsymbol{K}}_t^{h\text{T}}\hat{\boldsymbol{K}}_t^h \right\} d\boldsymbol{M} + \sum_{\substack{\text{ROI} \\ h \in \{L,R\}}} \left\{ 2\hat{\boldsymbol{K}}_t^{h\text{T}}(\rho\Delta \boldsymbol{I} + \Delta \boldsymbol{I}_0) \right\} \quad (3.15)$$

$$\frac{\partial E_t}{\partial d\boldsymbol{M}} = 2d\boldsymbol{M} + 2(\boldsymbol{M}_{t-1}' - \boldsymbol{M}_t)$$
(3.16)

したがって,式 (3.3),式 (3.14),式 (3.15),式 (3.16)から dMは次式によって求められる.

$$d\boldsymbol{M} = -\boldsymbol{D}^{-1}\boldsymbol{d} \tag{3.17}$$

ただし, D, d は次のように定義する.

$$\boldsymbol{D} = \sum_{\substack{\text{ROI}\\h \in \{L,R\}}} \left\{ 2(\rho+1) \hat{\boldsymbol{K}}_t^{h\text{T}} \hat{\boldsymbol{K}}_t^h \right\} + \epsilon \boldsymbol{E}_{3K \times 3K}$$
(3.18)

$$\boldsymbol{d} = \sum_{\substack{\text{ROI} \\ h \in \{L,R\}}} \left\{ 2 \hat{\boldsymbol{K}}_{t}^{h\text{T}}(\rho \Delta \boldsymbol{I} + \Delta \boldsymbol{I}_{0}) \right\} + \epsilon (\boldsymbol{M}_{t-1}' - \boldsymbol{M}_{t})$$
(3.19)

ここで $E_{3K\times 3K}$ は $3K \times 3K$ の単位行列を示す. 収束するまで式 (3.17) による dM の算出を繰り返すことで,最終的な真形状 M'_t を得る.

多くの場合は,この最小化処理により真形状 M'_t を正しく決定することができる.その一方で, $Pose\ estimation\ step$ における頭部姿勢の推定誤差などの影響に

より, M'_{t} の中に剛体運動に対応する成分が含まれる場合も存在する.この成分を除去せずに頭部変形モデル構築し,その頭部モデルを用いて頭部姿勢を推定した場合,頭部剛体運動と顔変形を適切に分離することが不可能になる.そこで, M'_{t} に含まれる剛体運動成分を除去するために,次のような処理を行う[27].まず, M'_{1} から M'_{t-1} までの平均形状 \bar{M}'_{t-1} を計算する.その後, $M'_{t} \ge \bar{M}'_{t-1}$ の対応する点同士の距離の2乗和が最小になるように, M'_{t} に3次元的な並進と回転を適用し,その結果を改めて M'_{t} として定義する.以上の方法により, M'_{t} に剛体運動成分が含まれる場合には,その大部分を除去することが可能である.しかしながら, M'_{t} が正しく計算されている場合には悪影響を及ぼす可能性もある.そこで本手法では, $M'_{t} \ge M_{t}$ との距離が一定の閾値を超えた場合のみ,以上の処理を適用している.

3.2.4 CCIPCA による顔形状モデルの自動構築

本節では,図3.2の Deformation analysis step について説明する.

ここでは、フレーム*t*までに得られた真形状 $M'_1, M'_2, ..., M'_t$ を元に平均形状ベ クトル \overline{M}_t と基底形状行列 M_t を計算する.通常のPCA(主成分分析:Principal Components Analysis)では、データ全体の分散共分散行列について解析を行う 必要があるため、実時間システムの中で得られるデータに対して逐次的に基底行 列を計算することはできない、それに対し本手法では、Candid Covariance-free Incremental PCA(CCIPCA)[35]と呼ばれる手法を利用することで、個々の入力 データが得られるごとに基底行列を更新することを可能にしている.以下、具体 的な処理について簡単に説明する.

まず,平均 $ar{M}_t$ は次のように増分的な推定が可能である.

$$\bar{\boldsymbol{M}}_t = \frac{t-1}{t} \bar{\boldsymbol{M}}_{t-1} + \frac{1}{t} \boldsymbol{M}'_t \qquad (3.20)$$

ここで, $\hat{M}_i = M'_i - \bar{M}_i$ とおく.この正規化された形状ベクトル \hat{M} の分散共分散行列 $S = E\{\hat{M}\hat{M}^T\}$ を知ることができれば,基底形状ベクトル x は行列 Sの固有ベクトルとして算出することができる.すなわち,対応する固有値を λ とすると,xと λ は次式を満たす.

$$\lambda \boldsymbol{x} = \boldsymbol{S} \boldsymbol{x} \tag{3.21}$$

しかし,フレーム*t*までに得られたサンプルから母集団の分散*S*を推定することはできない.そこで,式 (3.21)において*S*をサンプルの分散共分散行列に,*x*をフレーム*i*での推定値*x_i*に置き換えることで,次のようなベクトル $v = \lambda x$ の近似式を得る.

$$\boldsymbol{v}_t = \frac{1}{t} \sum_{i=1}^t \hat{\boldsymbol{M}}_i \hat{\boldsymbol{M}}_i^T \boldsymbol{x}_i \qquad (3.22)$$

さらに,右辺の x_i を1フレーム前の推定値で置き換えることで,次のように増分的な計算式が定義できる.

$$\boldsymbol{v}_{t} = \frac{1}{t} \sum_{i=1}^{t} \hat{\boldsymbol{M}}_{i} \hat{\boldsymbol{M}}_{i}^{T} \frac{\boldsymbol{v}_{i-1}}{||\boldsymbol{v}_{i-1}||}$$
(3.23)

$$= \frac{t-1}{t} \boldsymbol{v}_{t-1} + \frac{1}{t} \hat{\boldsymbol{M}}_t \hat{\boldsymbol{M}}_t^T \frac{\boldsymbol{v}_{t-1}}{||\boldsymbol{v}_{t-1}||}$$
(3.24)

ただし, $v_0 = \hat{M}_1$ とする.最大の固有値を $\lambda_{(1)}$,それに対応する第1主成分を $x_{(1)}$ とすると, v_t は $t \to \infty$ のとき $\pm \lambda_{(1)}x_{(1)}$ に収束する[40].

一方,式 (3.24)からは第1主成分しか算出できないため,さらに次のような手順で第2主成分以降を算出する.第j主成分の算出に用いるサンプルを $\hat{M}_{i,(j)}$ とすると, $v_{i,(j)}$ を求めた後,次式により新たに $\hat{M}_{i,(j+1)}$ を計算する.

$$\hat{M}_{i,(j+1)} = \hat{M}_{i,(j)} - \hat{M}_{i,(j)}^T \frac{\boldsymbol{v}_{i,(j)}}{||\boldsymbol{v}_{i,(j)}||} \frac{\boldsymbol{v}_{i,(j)}}{||\boldsymbol{v}_{i,(j)}||}$$
(3.25)

これにより得られるサンプル $\hat{M}_{i,(j+1)}$ は $v_{i,(j)}$ の補空間におかれるため,これを式 (3.24)の入力として用いることで $v_{i,(j)}$ に直交するような $v_{i,(j+1)}$ を算出することが できる.

つまり,新たなサンプル形状 M'_t が得られるごとに,まず式 (3.20) により平均 を更新する.さらに, B 個の基底形状ベクトル全てに対して式 (3.24) による更新 と式 (3.25) によるサンプルの生成を繰り返す.これにより,本手法で用いる B 個 の基底形状ベクトルを一定の計算コストで増分的に算出することができる.これ ら全ての基底ベクトルを横に並べた行列を式 (3.1) における基底形状行列 M_t とす る.また,ここで同時に得られる固有値 $\lambda_{(1)} \sim \lambda_{(B)}$ の平方根を大きい順に並べた B 次元ベクトル μ も定義する. μ の各要素は,顔変形パラメータである a_t の各要 素の標準偏差に対応する.それゆえ本手法では,後に述べるシステム雑音の分散 や仮説の重みの決定に μ を使用している. 正確な頭部変形モデルを構築するためには、できるだけ信頼性の高い形状データを使用する必要がある.そこで本手法では、推定姿勢 p_t から判断して、ユーザがカメラの方を向いている場合の M'_t だけを分析対象として使用する.これは、ユーザが横を向いている場合と比較して特徴点追跡に成功している可能性が高いためである.また、サンプル形状 M'_t と前フレームまでの平均形状 \bar{M}_{t-1} との間の距離を計算し、その距離が一定以上であるという条件を満たす場合にのみ M'_t を CCIPCAへの入力とする.実際に追跡の中で得られる顔形状データはほとんどが無表情の顔であるため、すべてのサンプルを均等に扱った場合、変形を含むデータの学習に対する影響が小さくなってしまう.それに対してこのような基準を加えることで、無表情のサンプルを学習の対象から除外している.

3.3 頭部変形モデルを用いた頭部姿勢推定

本節では,頭部変形モデルと左右2台のカメラからの入力画像を用いて,3次 元的な頭部姿勢を実時間で推定するための手法を説明する.これは図3.1の Pose estimation step での処理に対応する.

3.3.1 パーティクルフィルタを用いた頭部姿勢と顔形状の推定

本手法における頭部姿勢推定手法の基本的な枠組みは先行研究 [43] に準ずる.こ こでは 3.2.1 節で述べた頭部変形モデルとパーティクルフィルタを利用し,各入力 画像フレーム t に対して (6+B) 次元状態ベクトル $x_t = (p_t^T, a_t^T)^T$ を推定する.こ のとき, p_t は世界座標系からモデル座標系への並進と回転を表す 6 次元頭部姿勢 ベクトルである.

推定の流れを図 3.6 に示す.パーティクルフィルタ [18] では,状態ベクトルの確 率密度関数を図 3.6 のように離散的な重み付きの仮説群により表現する.本手法で 用いる仮説群 $\{(s_t^{(i)}; \pi_t^{(i)})\}(i = 1...N)$ は,(6 + B)次元状態空間内のN 個の仮説 $s_t^{(i)}$ と,各仮説に対応する重み $\pi_t^{(i)}$ で構成される.

まず,直前のフレームt-1の仮説群 $\{(s_{t-1}^{(i)}; \pi_{t-1}^{(i)})\}$ と次式の動作モデルを用いて新たな仮説をN 個生成する.

$$\boldsymbol{s}_{t}^{(i)} = \boldsymbol{s}_{t-1}' + \tau \boldsymbol{v}_{t-1} + \boldsymbol{\omega}$$

$$(3.26)$$

図 3.6: パーティクルフィルタにおける推定の流れ

この動作モデルでは隣り合うフレーム間での頭部姿勢の変化が等速直線運動に従うことを仮定している. s'_{t-1} は { $(s^{(i)}_{t-1}; \pi^{(i)}_{t-1})$ }の中から選択された仮説であり, τ はフレーム間の時間間隔, v_{t-1} は直前のフレームt-1で計算されている状態ベクトルxの速度, ω はシステム雑音である.

このとき, ω の分布によって仮説 $s_t^{(i)}$ の拡散の性質が決定される.本手法では, (6 + B) 次元ベクトル ω の各要素をそれぞれ固有の分散を持つ平均が0のガウ ス雑音としている.そして,これら(6 + B) 個の各要素の分散を並べたベクトル $\varsigma = (\varsigma_p^{\rm T}, \varsigma_a^{\rm T})^{\rm T}$ に関して,頭部姿勢パラメータに対応する部分である ς_p と顔変形パ ラメータに対応する部分である ς_a のそれぞれについて異なる手法で値を決定して いる. ς_p に関しては,状態ベクトルの速度に応じて適応的に制御する.このよう な制御により,姿勢推定の精度を高く維持するとともに,ユーザの突発的な動作 にも高い追従性で追跡することが可能となる[43].一方 ς_a に関しては,顔変形パ ラメータ a_t の標準偏差に対応するベクトル μ を用いて $\varsigma_a = \kappa\mu$ とする. μ の計算 方法については 3.2.4 節で述べた通りである.なお, κ は経験的に 0.5 に設定して いる. 次に,新たな仮説 $s_t^{(i)}$ に対応する重み $\pi_t^{(i)}$ を決定する.これは仮説と入力画像との一致度を示す量であり,各カメラからの入力画像に対する仮説の一致度 $\mathcal{N}_h(s_t^{(i)})$ をもとに,式(3.27)のような関数により計算される.

$$\pi_t^{(i)} \propto \exp\left(-\frac{\left(2K - c_t^{(i)}\right)^2}{2\sigma^2}\right) \exp\left(-\frac{1}{2}\sum_{b=1}^B \left(\frac{a_{t,b}^{(i)}}{\mu_b}\right)^2\right)$$
(3.27)

$$c_t^{(i)} = \sum_{h \in \{L,R\}} \mathcal{N}_h(\boldsymbol{s}_t^{(i)})$$
 (3.28)

ここで, $c_t^{(i)}$ は式 (3.28)に示すように全てのカメラにおける評価値 $\mathcal{N}_h(s_t^{(i)})$ の和で あり,-2Kと 2K の間の値を取る.式 (3.27)の第1項はこの $c_t^{(i)}$ をガウス関数に より評価したもので,標準偏差 σ は経験的に 3.0に設定している.一方,第2項は 顔変形パラメータ $a_t^{(i)}$ についての関数であり,この項を乗じることでモデルが過 度に変形しないように拘束を与えている.このとき, $a_{t,b}^{(i)}$ は $a_t^{(i)}$ の b 番目の要素, μ_b は μ の b 番目の要素である.以上の計算を行った上で,合計が1になるよう $\pi_t^{(i)}$ を正規化する.

なお、ここで用いられる評価関数 $\mathcal{N}_h(s_t^{(i)})$ は次のように定義される.まず、仮 説 $s_t^{(i)}$ が与えられたとき、 $s_t^{(i)}$ の形状成分にあたる $a_t^{(i)}$ と式 (3.1)を用いて頭部モ デルの形状を変形し、次いで、 $s_t^{(i)}$ の姿勢成分である $p_t^{(i)}$ によって変形後のモデル を移動する.その後、式 (3.4) と同じ投影関数を用いて K 個の 3 次元特徴点をカメ ラ h からの入力画像フレーム I_t^h に投影し、その投影点周辺の画像とテンプレート 集合 T_h の中の対応するテンプレートとの間のマッチングスコアを正規化相関によ り計算する.このマッチングスコアを K 個の投影点について計算し、それらの和 を $\mathcal{N}_h(s_t^{(i)})$ の出力値とする.

最後に,仮説群 $\{(s_t^{(i)}; \pi_t^{(i)})\}$ を用いて,現在の姿勢 p_t と顔変形 a_t を表す状態ベクトル x_t を計算する.ここでは,重みが最大となる仮説の近傍に属する仮説集合の加重平均により x_t を求める.

$$w_t^{(i)} = \begin{cases} 1 & \text{if } || \boldsymbol{s}_t^{(i)} - \boldsymbol{s}_t^{(M)} || < d \\ 0 & \text{else} \end{cases}$$
(3.29)

$$\boldsymbol{x}_{t} = \frac{\sum_{i=1}^{N} \boldsymbol{s}_{t}^{(i)} \pi_{t}^{(i)} w_{t}^{(i)}}{\sum_{i=1}^{N} \pi_{t}^{(i)} w_{t}^{(i)}}$$
(3.30)

このとき, $s_t^{(M)}$ は最大の重みを持つ仮説である.現在のところ,dの値は経験的に決定している.

また,次の画像フレームでの姿勢推定のために x_t の速度 v_t を計算しておく.

$$\boldsymbol{v}_t = \frac{\boldsymbol{x}_t - \boldsymbol{x}_{t-1}}{\tau} \tag{3.31}$$

 v_t の要素のうち,顔変形に対応する最後のB個の要素は0に設定する.これは,顔 変形のパラメータの変化は等速直線運動の仮定には十分に適合しないためである.

3.3.2 Halfway Partitioned Sampling

3.3.1節で述べた手法により新たな仮説群 $\{(s_t^{(i)}; \pi_t^{(i)})\}$ を得ることは可能である. 本手法ではさらに,高次元状態空間中の確率密度関数を限られた数の仮説でより 効率良く近似するために,partitioned sampling [25] と似た考え方を用いて仮説の 生成・重み付けを行い, $\{(s_t^{(i)}; \pi_t^{(i)})\}$ を決定する.ここでは,この仮説の更新手法 を halfway partitioned sampling と呼ぶこととし,その概要を以下に説明する.

ユーザの動きを注意深く観察すると、人間の頭部姿勢や顔形状の変化は大体2種 類の型に分類できることがわかる.1つは顔の変形をあまり伴わない頭部姿勢の剛 体的な変化であり、もう1つは頭部姿勢の変化をあまり伴わずに顔形状を中心に 変化するものである.そこで、両方の型に効率良く対処するために、まず、全仮説 の半分には式 (3.26)のうち姿勢成分の変化だけを適用し、残りの半分には式 (3.26) の顔変形成分だけを適用する.その後、式 (3.28)と式 (3.27)によって仮説の重みを 決定し、新たな仮説群 $\{(s_t^{(i)}; \pi_t^{(i)})\}$ を得る.さらに、 $\{(s_t^{(i)}; \pi_t^{(i)})\}$ に対して通常の リサンプリング処理、すなわち、頭部姿勢と顔変形を合わせた全体的な状態空間 の中での仮説の再生成・重み付けを行う.以上の処理により得られた $\{(s_t^{(i)}; \pi_t^{(i)})\}$ は、状態ベクトル x_t の確率密度関数を比較的少量の仮説で効率良く表現できる. また、頭部姿勢運動と顔変形が同時に発生した場合についても、上記のリサンプ リング処理の適用により適切に対処することが可能となっている.

3.4 評価実験

提案手法の性能を評価するために実験を行った.本実験では, Intel Pentium4 3.0GHz と Windows XP を搭載した汎用 PC を 1 台使用した.入力画像として, 2 台の IEEE1394 カメラ (Point Grey Research 社製 Flea (図 3.7)) により取り込ま

図 3.7: 実験で利用したカメラ 図 3.8: 頭部姿勢推定システムの概観

れた 640×480 画素の画像を使用した.カメラはあらかじめ, Zhang らの手法 [39] を利用してキャリブレーションを行っている.また,画像テンプレートの大きさ は 16×16 画素,パーティクルフィルタの仮説の総数は 1000 であった.このとき, 本システムは毎秒 30 フレームで動作した.システム全体の概観は図 3.8 に示すと おりである.

本実験で用意した画像列では,ユーザが頭部を動かしながら顔の変形を時折行っ ている.この画像列は60秒(1800フレーム)分のデータで構成されている.この うち最初の120フレームでは,初期化時に自動的に獲得される頭部剛体モデルを用 いて頭部姿勢を推定した.これは,姿勢推定の開始直後は,CCIPCAによって計 算される基底行列 M の信頼性が低いためである.その後の残り1680フレームで は,逐次的に更新される頭部変形モデルにより頭部姿勢と顔変形を推定した.な お,この1680フレームのうちの最初の約1100フレームでは,ユーザは口の開閉 やしかめ面といった顔変形を行いながら頭部運動を行っている.これに対し,残 りの約600フレームでは,ユーザは顔変形をほとんど行わずに頭部の剛体運動だ けを行っている.

また,上記の推定結果と比較する目的で,同じ1800フレームに対して,頭部剛体モデルを用いた頭部姿勢推定も行った.この頭部剛体モデルは,2.2節で述べた初期化部の処理により構築されたものであり,変形モデルを用いる実験の最初の 120フレームで使用するものと同じモデルである.このようにして得られた2種類の頭部姿勢推定結果を比較した.

図3.9に頭部姿勢推定の結果画像を示す.この図には,推定された頭部姿勢に対

応するモデル座標軸と,推定された顔形状 M_t を画像平面に投影した点が描かれ ている.図の左列が頭部剛体モデルを用いた場合の結果画像,右列が頭部変形モ デルを用いた場合の結果画像である.これらの結果画像から,提案手法により得 られた頭部変形モデルが顔変形への対処に大きく貢献していることがわかる.

さらに,図3.10には頭部剛体モデルと頭部変形モデルをそれぞれ用いた場合の 推定結果のグラフを示す.この図において,細い線は剛体モデルを用いた場合の 推定結果であり,太い線は変形モデルを用いた場合の推定結果である.xは水平方 向,yは鉛直方向,zは深さ方向の運動であり,rollはz軸回り,yawはy軸回り, pitch はx軸回りの回転である.この図を見ると,第121フレームから第1200フ レーム付近までは両方の推定結果に明確な相違が見られる.図3.9の推定結果画像 と図3.10中の対応するフレームでの推定結果を考慮すると,頭部変形モデルを用 いた方がより正しく推定できていることがわかる.すなわち,頭部変形モデルは, 剛体モデルとは異なり,顔形状の変化に対して適切に対処可能であることが示さ れた.一方,残りの約600フレームでは両方の推定結果がほぼ一致している.こ のことから,頭部変形モデルが不要な顔変形を伴うことなく,正しく頭部剛体運 動を推定できていることがわかる.

また,図3.10 中最下部のグラフは,頭部変形モデルで用いる基底形状ベクトル に対応する5個の固有値の累積寄与率を示す.累積寄与率は,低次元のモデルが データ全体の情報をどの程度まで表現できるかを示す一つの目安である.本手法の ように CCIPCA を用いて基底を更新する場合,新たな変形情報が得られるとデー タのばらつきが大きくなるため一時的に累積寄与率は低下するが,学習による基 底の更新を繰り返すことで累積寄与率は上昇し,再びデータ全体を表現すること が可能になる.実験では追跡開始直後に一度大きく累積寄与率が低下しているが, その後の学習により600 フレーム(20 秒)程度で80%近くまで回復していること がわかる.

図 3.9: 頭部姿勢推定の結果画像

図 3.10: 頭部剛体/変形モデルを用いた頭部姿勢推定の結果
第4章 パラメータ分離モデルを用いた単眼による頭部姿勢推定

4.1 はじめに

第3章で述べた手法では、システムの構築に2台以上のカメラを必要としていた.複数台のカメラを用いるシステムでは、カメラ画像から直接追跡対象の3次元位置及び形状を算出できるほか、複数の視点から対象を捉えることで追跡の安定性も向上するという利点がある.しかし、実際の応用を考えた場合、スペースの確保や費用の面で複数台のカメラを設置するのは難しい場合が多い.近年では、ビデオチャットやテレビ電話などの普及とカメラの低価格化に伴い、大規模な設置型システムに留まらず、個人用のデスクトップ環境やモバイルデバイスなど、インタラクション技術をより多様な場面に適用することが可能になってきている.こうした中で幅広いアプリケーション応用を想定した頭部姿勢推定システムを構築する上では、1台のカメラのみを用いてシステムを構築できる技術が要求される.本章では、追跡の精度・安定性を損なうことなく、さらに設置コスト面での欠点も補うような、1台のカメラで構築可能な3次元頭部姿勢推定システムを提案する.

単眼で3次元姿勢を推定するために,本手法では事前学習により構築した人間 の顔形状に関するモデルを利用して状態推定を行う.第2章で述べたとおり,顔形 状の変動における要因は大きく次の二つに分けて捉えることができる.

- 眉の上下や口の開閉といった,個人内の変形に対応する要素
- 目の位置や鼻の高さといった,個人差に対応する要素

これらを全て単一のパラメータで表現することで特定のユーザに依存しない汎用 性の高いモデルを作成する場合,パラメータの次元数を低く抑えることは困難と なる.特に実時間の推定を行う場合,安定性や計算速度の面でのデメリットが大 きい.これに対し,二つの要素をそれぞれ異なるパラメータにより記述したモデ

図 4.1: 単眼システムの概要

ルは,近似精度を保ったまま個々のパラメータの次元を低く抑えることが可能に なる.さらに形状変化の要因を分けて捉えることができるため,表情認識などの 応用を考える上でも有用であると言える.

本章では,先に述べた3つの条件を満たす頭部姿勢推定を実現するための枠組 みとして,顔形状の個人内変動(変形パラメータ)と個人間変動(個人差パラメー タ)を分離して表現するパラメータ分離モデルを用いた頭部姿勢推定手法を提案 する.本手法では,分離モデルの元で二つの異なる処理を統合することで実時間 頭部姿勢推定を実現する.一つはパーティクルフィルタを利用した姿勢,変形の 時系列推定であり,フレームごとに変化する頭部姿勢と変形パラメータの安定し た追跡を可能とする.もう一つはバンドル調整の枠組みを利用した個人差の調整 であり,複数フレームの情報を用いたパラメータの最適化を実時間処理の中で逐 次的に実行する.このような二つの手法を統合することで,二つのパラメータの 性質の違いに対してそれぞれ適切なアプローチによる推定を実現することができ る.これにより,任意のユーザに対して事前の準備を伴うことなく,顔変形を含 む頭部姿勢推定が単眼でも可能になる.そして,複数のカメラを用いた手法と比 較しても遜色の無い頭部姿勢推定が実現できることを,評価実験により検証する.

システムの概要を図 4.1 に示す.すなわち,変形と姿勢の時系列推定を行う Estimation step と,複数フレームに対する最適化により個人差の調整を行う Modeling step により構成される.以下,本章の流れは次のようになる.第4.2節では,本手 法で用いるパラメータ分離モデルの作成方法について述べる.

4.2 頭部変形モデルの構築

本節では,本手法で用いる顔形状モデルの詳細とその作成方法について述べる. サンプルとして用意した形状データをもとに,任意のユーザに対応できる汎用的な 顔形状モデルを作成する.モデル作成を行う上で要因ごとにパラメータを分離する 手法はいくつか考えられるが,本研究では,Vlasicらの手法と同様にN-mode SVD にもとづく多重線形モデルを利用した[34].こうした多重線形モデルはVasilescu らが顔認識やテクスチャ生成に応用したことでコンピュータビジョンの分野でも 近年注目を集めた手法であり[32,33],複数人の変形のような多数の要因によって 形成される対象を,より洗練された形でモデル化することができる.

4.2.1 モデル構築に用いるテンソル解析

まず,具体的なモデル構築について述べる前に,本手法で用いるテンソル解析の基本について解説する[22].

テンソル

テンソルとはベクトルや行列といった多次元配列を一般化した構造であり,ス カラー,ベクトル,行列は,それぞれ0階,1階,2階のテンソルに対応する.図 4.2 に示す 𝒜 は, *I*₁ × *I*₂ × *I*₃ 個の要素を持つ3階のテンソルを表している.

テンソルの展開と行列との積

行列における行と列に対応するような要素の方向を,テンソルでは「モード」と 呼ぶ.N階のテンソル $\mathscr{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ において,モードnの要素ベクトルとは n番目のインデックスのみを変更し,それ以外を固定した時に得られる I_n 次元の ベクトルを指す.このとき, \mathscr{X} におけるモードnのベクトルすべてを列方向に並 べた行列 $X_{(n)} \in \mathbb{R}^{I_n \times (I_1 I_2 \dots I_{n-1} I_{n+1} \dots I_N)}$ を定義することができる.図 4.2 の右側は, 3 階のテンソル \mathscr{A} を各モードで展開した時の様子を示す.

図 4.2:3 階のテンソルの展開

☑ 4.3: Singular Value Decomposition

さらに,テンソル $\mathscr{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ と行列 $C \in \mathbb{R}^{J_n \times I_n}$ のモード n における積 (*Mode-n product*) $\mathscr{Y} = \mathscr{X} \times_n C$ は次のように定義される.

$$\mathscr{Y}_{i_1\dots i_{n-1}j_n i_{n+1}\dots i_N} = \sum_{i_n} \mathscr{X}_{i_1\dots i_{n-1}i_n i_{n+1}\dots i_N} \boldsymbol{C}_{j_n i_n}$$
(4.1)

つまり, 𝒴 のモード n 空間は 𝕮 のモード n 空間の行列 C による線形写像となっており, これはテンソルの展開を用いて次のように書くことができる.

$$\boldsymbol{Y}_{(n)} = \boldsymbol{C}\boldsymbol{X}_{(n)} \tag{4.2}$$

N-mode SVD

まず,通常の SVD (Singular Value Decomposition) について説明する. $I_1 \times I_2$ 行列 X は,必ず次式のような積の形に分解することができ,これを Singular value decomposition (特異値分解)と呼ぶ.

$$\boldsymbol{X} = \boldsymbol{U}_1 \boldsymbol{S} \boldsymbol{U}_2^T \tag{4.3}$$

各 U_n は $I_n imes I_n$ 直交行列であり,Sは対角要素以外は0である次のような $I_1 imes I_2$ 行列である.

$$\boldsymbol{S} = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_{\min(I_1, I_2)}) \tag{4.4}$$

 σ_i は特異値と呼ばれ, σ_1 から大きい順に並べられる.また, このとき U_1 , U_2 の 列ベクトルは順に左特異値ベクトル, 右特異値ベクトルと呼ばれ, それぞれ行列 Xの列空間(モード1), 行空間(モード2)の正規直交基底になっている.した がって, 各々の基底の次元数を削減することによって, 次のように行列Xの低次 元近似表現を得ることができる.

$$\boldsymbol{X} \approx \check{\boldsymbol{U}}_1 \check{\boldsymbol{S}} \check{\boldsymbol{U}}_2^T$$
 (4.5)

以上の概略を図 4.3 に示す.図中に色付きの線で示したように,例えば U_1 のある 1行(橙)を取り出して特異値(緑)で重み付けされた基底(青)に掛け合わせる ことで,Xの対応した行ベクトル(赤)が得られる.つまり, U_1 , U_2 の行ベク トルは各モードの特定のデータに対応したパラメータ(基底ベクトルに対する重 み)と考えることができる.

このような行列における SVD を,さらに3 階以上のテンソルに対して一般化したものを,N-mode SVD または HOSVD (Higher Order SVD)と呼ぶ.

式 4.3 は次のようにテンソルの積の形で書くことができる.

$$\boldsymbol{X} = \boldsymbol{S} \times_1 \boldsymbol{U}_1 \times_2 \boldsymbol{U}_2 \tag{4.6}$$

N 階のテンソル $\mathscr X$ に対してもこれと同じように,次のような分解を行うことができる.

$$\mathscr{X} = \mathscr{C} \times_1 \boldsymbol{U}_1 \times_2 \boldsymbol{U}_2 \dots \times_N \boldsymbol{U}_N \tag{4.7}$$

テンソル & はコアテンソルと呼ばれ,次式により算出される.

$$\mathscr{C} = \mathscr{X} \times_1 \boldsymbol{U}_1^T \times_2 \boldsymbol{U}_2^T \dots \times_N \boldsymbol{U}_N^T$$
(4.8)

式(4.3)における Sとは異なり,コアテンソルは対角成分以外にも値を持つ.

 U_n は次のように,テンソル \mathscr{X} をモードnで展開した行列 $X_{(n)}$ に対する SVDにより得られる.

$$\boldsymbol{X}_{(n)} = \boldsymbol{U}_n \boldsymbol{S}_n \boldsymbol{V}_n^T \tag{4.9}$$

すなわち,行列の場合と同様に U_n の列ベクトルはモードn空間の正規直交基底になることがわかる.したがって,次のようなテンソル $\mathscr X$ の低次元近似表現が得られる.

$$\mathscr{X} \approx \mathscr{C} \times_1 \check{\boldsymbol{U}}_1 \times_2 \check{\boldsymbol{U}}_2 \dots \times_N \check{\boldsymbol{U}}_N$$

$$(4.10)$$

ただし, N-mode SVD においては,単純な下位基底の切り捨てだけでは最良の近 似が得られないことが知られており, ALS (Alternating Least Squares)と呼ばれ るアルゴリズムを用いて \check{U}_n の計算を行うことでより良い近似が可能になる[23].

図 4.4: モデル化の対象となる顔変形の例

4.2.2 N-mode SVD による形状パラメータの分離

次に,具体的なモデル構築作業について述べる.

学習に用いるデータを取得する際には,第3章で述べた手法にもとづく頭部姿 勢推定を利用した.顔形状モデルも第3章で述べた手法と同じものを採用してお り,K個の特徴点の3次元座標で構成された3K次元形状ベクトルMとそれに対 応付けられた各特徴点のテンプレート画像により表現される.本手法では,この 形状ベクトルMをN-mode SVDによる解析を利用して事前にモデル化する.

4.5 章で述べる本論文の実験では,モデル化の対象とする変形は次の二種類に 絞った.一つは図4.4(a)のような口の横方向の運動であり,もう一つは同図(b)の ような眉の上下を含む顔全体の縦方向の運動である.モデル構築のサンプルとし て用いるS人の人物それぞれについてこれらの運動を行う様子を一定時間記録し, 以下に述べる手順で自動的に形状データを抽出する.

それぞれの運動には基準となる距離l(図 4.4 中の矢印に対応)を定め,まず人物毎に<math>lの最大値 l_{max} と最小値 l_{min} を計測する.これにより定義される変形率 $r = (l - l_{min})/(l_{max} - l_{min})$ を基準にして, $r = 0.0 \sim 1.0$ の範囲で等間隔に,合計 A通りの形状データを取得する.

さらに,取得した形状データは顔中心で左右に分割し,それぞれを反転させて生成した形状を二つの独立したサンプルとして扱う.これによりモデルを左右対称なものとし,不要な回転成分が含まれるのを防いでいる.また,本手法では $3K \times 2S \times A$ 個のサンプル全体の平均 \overline{M} を差し引き,正規化したデータに対する解析を行う.

このようにして得られたデータを元に,図4.5のようなデータテンソル 𝔗 ∈

図 4.5: モデル構築に用いるデータテンソル

 $\mathbb{R}^{3K \times 2S \times A}$ を作成する.図中, Feature points 方向には顔形状ベクトルMが対応し, Action 方向には同一人物のデータが, Shape 方向にはrの値が等しい変形が, それぞれ対応付けられた形で格納される.

$$\mathscr{T} = \mathscr{C} \times_{\text{feature}} \boldsymbol{U}_{\text{feature}} \times_{\text{shape}} \boldsymbol{U}_{\text{shape}} \times_{\text{action}} \boldsymbol{U}_{\text{action}}$$
(4.11)

ここで $\mathscr{M} = \mathscr{C} \times_{\text{feature}} U_{\text{feature}}$ とおくと,次のような表現が得られる.

$$\mathscr{T} = \mathscr{M} \times_{\text{shape}} U_{\text{shape}} \times_{\text{action}} U_{\text{action}}$$
 (4.12)

M は特徴点モード空間, すなわち形状ベクトルに関する基底を含むテンソルであり, 実際には次のように直接 *M* を計算することができる.

$$\mathscr{M} = \mathscr{T} \times_{\text{shape}} \boldsymbol{U}_{\text{shape}}^T \times_{\text{action}} \boldsymbol{U}_{\text{action}}^T$$
(4.13)

さらに,ALS アルゴリズムを用いて次元数を削減した基底($\mathcal{M} \in \mathbb{R}^{3K \times S' \times A'}$, $\dot{U}_{\text{shape}} \in \mathbb{R}^{2S \times S'}$, $\check{U}_{\text{action}} \in \mathbb{R}^{A \times A'}$)を用いることで,次のようにデータテンソルの近似表現が得られる.

$$\mathscr{T} \approx \mathscr{M} \times_{\text{shape}} \check{\boldsymbol{U}}_{\text{shape}} \times_{\text{action}} \check{\boldsymbol{U}}_{\text{action}}$$

$$(4.14)$$

通常の SVD との対応から明らかなように, \check{U} の行ベクトルはデータテンソルに含まれる特定の変形や個人に対応する係数となっている.そこで本手法では, \check{U}_{shape} を元に個人差を表す係数の平均 \bar{s} 及び標準偏差 σ_s を,また \check{U}_{action} を元に変形を表す係数の平均 \bar{a} 及び標準偏差 σ_a を,それぞれ算出する.この分布を元に個人差パラメータ $s \in \mathbb{R}^{S'}$ と変形パラメータ $a \in \mathbb{R}^{A'}$ を与えることで,次のように任意の顔形状ベクトル *M* を記述することができる.

$$\boldsymbol{M} = \boldsymbol{\bar{M}} + \boldsymbol{\check{\mathcal{M}}} \times_{\mathrm{shape}} \boldsymbol{s}^T \times_{\mathrm{action}} \boldsymbol{a}^T$$
 (4.15)

本手法ではパラメータが正規分布に従うことを仮定し,第4.4節において平均と標 準偏差をシステム雑音の大きさやパラメータ拘束範囲の決定にこれらの平均と標 準偏差を利用している.

生成される顔形状の例を図 4.6 に示す.図 4.6 において縦方向では個人差パラメー タが,横方向では姿勢及び変形パラメータが一致している.

すなわち,以上の処理により,顔形状のモデルとして以下の情報が得られる.

図 4.6: パラメータ分離モデルにより生成される顔形状の例

- モデルテンソル *M*
- 個人差パラメータ分布 s, σ_s
- 変形パラメータ分布 ā, σ_a

このモデルを用いることで,ある時刻 t におけるユーザの状態は変形パラメータ ベクトル a_t と個人差パラメータベクトル s に世界座標系からモデル座標系への並 進と回転を表す6次元頭部姿勢ベクトル p_t を加えた3つのパラメータで記述でき る.このとき,各パラメータの添え字に表したように,変形 a_t と姿勢 p_t は時間に 依存して常に変化する.一方,個人差 s は同じユーザに対して時間に関わらず一 定の値をとる.本手法では,こうしたパラメータの性質の違いに合わせ,以下の 節で述べる二つの手法を統合した頭部姿勢推定を行う.

4.3 バンドル調整の枠組みによる個人差パラメータ推定

本節では,4.2節で説明したモデルに対して個人差の調整を行う処理について述べる.これは図4.1における *Modeling step*の処理に相当する.

バンドル調整は最尤推定手法の一つであり,複数フレームに跨る誤差関数を最 小化することでカメラ姿勢とモデル形状を同時に調整する.映像から3次元モデ ルを復元するStructure from Motion 技術などにおいて,おおまかな推定形状を 精緻化するための手法として広く用いられている.近年,バンドル調整の枠組み にパラメータ表現された事前構築モデルを取り入れるモデルベースのバンドル調 整手法が提案されている[11,29].Xinらはこれを利用して,安価なカメラからの ビデオ入力を元に効率よく頭部の3次元形状を自動構築する手法を提案している [38].Vachettiらの手法[31]ではこの枠組みを実時間の頭部姿勢追跡に応用するこ とで,任意のユーザに対して頭部の剛体運動推定を可能にしている.また,非剛 体のStructure from Motion において,バンドル調整の枠組みを利用して基底を含 めた最適化を行う例もいくつか提案されている[1,9].

本研究ではこのバンドル調整の枠組みをパラメータ分離モデルに導入することで,変形を含む形状推定を実時間処理の中で実現している.さらに,パラメータの制約条件を用いることで,逐次的なバンドル調整を行う上でより効果的な処理 が可能となる.以下,その具体的な処理について説明する.

図 4.7: バンドル調整の概要

4.3.1 バンドル調整の問題設定

まず,バンドル調整は一般的に次のような誤差関数の最小化問題となる.

$$\min_{\boldsymbol{P}_i, \boldsymbol{X}_k} \sum_{i=1}^{x} \sum_{k=1}^{n} D(\boldsymbol{x}_{ik}, \boldsymbol{P}_i \boldsymbol{X}_k)^2$$
(4.16)

ここで X_k はモデル中 k 番目の点の 3 次元座標であり, P_i は i 番目のフレームにお ける投影行列, x_{ik} は, フレーム i の入力から画像特徴により得られた点 k の正確 な 2 次元座標を示す. $D(x_{ik}, P_i X_k)^2$ は, 画像中の特徴点 x_{ik} とモデルにもとづく 投影点 $P_i X_k$ とのユークリッド距離である. すなわち式 (4.16) は図 4.7 のように, 動画フレームから得られた特徴点の 2 次元軌跡を元にして, 投影点が軌跡に最も 近くなるようなモデルの 3 次元形状とカメラ姿勢を推定する式になっている.

本手法で用いる顔形状モデルを用いた場合,バンドル調整によるパラメータ調整は次のようになる.まず,フレームiにおけるユーザ頭部の状態は,世界座標系からモデル座標系への並進と回転を表す6次元頭部姿勢ベクトル p_i と変形パラメータベクトル a_i ,そして時間に依存しない個人差パラメータベクトルsによって記述できる.このとき,次のような投影関数 \mathcal{P} を定義することができる.これは, a_i ,sから式 (4.15)によって決まる顔形状ベクトル M_i に頭部姿勢 p_i に応じた並進や回転を適用した上で, M_i の各特徴点を画像平面に投影する関数である.

$$\boldsymbol{m}_i = \mathcal{P}(\boldsymbol{p}_i, \boldsymbol{M}_i) \tag{4.17}$$

すなわち, m_i はK個の投影点の2次元座標で構成される2K次元ベクトルとなる.

一方,フレーム*i*における真の特徴点2次元座標を \hat{m}_i とする.これは*Estimeation* stepにおいて姿勢推定の結果を元に探索した座標であり,計算方法の詳細に関し ては4.4節で述べる.すると,第tフレームにおいて次のような過去nフレーム分 の誤差関数が定義できる.

$$F_t = \sum_{i=t-n+1}^t D(\hat{\boldsymbol{m}}_i, \mathcal{P}(\boldsymbol{p}_i, \boldsymbol{M}_i))^2$$
(4.18)

本手法では Zhang らの手法 [41] と同様に,新たなフレームが得られるごとに F_t の最小化を行う.これにより姿勢 p_t と変形 a_t の推定値を最適化すると共に,個人 差 sを更新していく.

Levenberg-Marquardt アルゴリズムによる誤差関数の最小化

バンドル調整における誤差関数の最小化には,一般的に Levenberg-Marquardt アルゴリズム(LM アルゴリズム)が用いられる.これはガウスニュートン法に最 急降下法を組み合わせたアルゴリズムであり,収束の速さと結果の安定性を兼ね 備えた,非線形の最小化問題を解く上で標準的な手法になっている.まず,簡単 にアルゴリズムの概要について説明する.本研究では,Lourakis らにより公開さ れている C 言語用の LM アルゴリズムライブラリ [24] を利用して以下の処理を実 装した.

ここでは次式のような誤差関数の最小化問題を考える.

$$F = \sum_{i} D(\boldsymbol{y}_{i}, f(\boldsymbol{x}_{i}))^{2}$$

= $||\boldsymbol{y} - f(\boldsymbol{x})||^{2}$ (4.19)

ここで*x*はパラメータベクトル,*y*は観測ベクトルであり,関数*f*はパラメータ と観測の結びつきを表す.つまり,式(4.18)では調整対象となる全てのパラメー タを並べたベクトル($p_{t-n+1}^T, \dots, p_t^T, a_{t-n+1}^T, \dots, a_t^T, s^T$)^Tが*x*に,全フレームの特 徴点観測座標を並べたベクトル($\hat{m}_{t-n+1}^T, \dots, \hat{m}_t^T$)^Tが*y*に対応している.

LM アルゴリズムでは一般的な最小化アルゴリズムと同様に,パラメータの差分 δ_x を繰り返し計算することで最適化を行う.xの近傍でテイラー展開を行うこと で,fに関して次のような近似が得られる.

$$f(\boldsymbol{x} + \boldsymbol{\delta}_{\boldsymbol{x}}) \approx f(\boldsymbol{x}) + \boldsymbol{J}\boldsymbol{\delta}_{\boldsymbol{x}}$$
(4.20)

ここでJはxに関するfのヤコビアン $\frac{\partial f(x)}{\partial x}$ である.これを式(4.19)に代入すると次式が得られる.

$$F = ||\boldsymbol{y} - f(\boldsymbol{x}) + \boldsymbol{J}\boldsymbol{\delta}_{\boldsymbol{x}}||^2$$

= $||\boldsymbol{\varepsilon} + \boldsymbol{J}\boldsymbol{\delta}_{\boldsymbol{x}}||^2$ (4.21)

ここで $\varepsilon = y - f(x)$ は誤差ベクトルを表す.したがって, $\frac{\partial E}{\partial \delta_x} = 0$ とおくことで, 次式の解として δ_x を算出することができる.

$$\boldsymbol{J}^T \boldsymbol{J} \boldsymbol{\delta}_{\boldsymbol{x}} = -\boldsymbol{J} \boldsymbol{\varepsilon} \tag{4.22}$$

式 (4.22) は正規方程式と呼ばれ,ガウスニュートン法ではこれを利用した最小化 を行う.ガウスニュートン法は解の近傍において高速な収束を実現できる一方,初 期値が解から離れている場合は局所解に陥る可能性が高くなってしまう.LMアル ゴリズムではこの欠点を解決するために,式(4.22)を次のように変更した拡張正 規方程式を用いる.

$$(\boldsymbol{J}^T \boldsymbol{J} + \boldsymbol{\mu} \boldsymbol{E}) \boldsymbol{\delta}_{\boldsymbol{x}} = -\boldsymbol{J} \boldsymbol{\varepsilon}$$
(4.23)

ここで E は単位行列であり, μ はダンピングファクターと呼ばれる非負の値である.式 (4.23)を用いることで, μ が大きい場合は次のように最急降下法に近い値が得られる.

$$\delta_x \simeq -\frac{1}{\mu} J \varepsilon$$
 (4.24)

最急降下法では収束が遅くなるというデメリットがあるが,局所解に陥るのを避けることができる.一方,µが0に近い場合は式(4.22)を用いたガウスニュートン法に近い値が得られることになる.LMアルゴリズムでは,繰り返しの中で現在の状態に応じてµの値を調整する.これにより,解から離れた初期状態では最急降下法を用いた探索を,解の近傍ではガウスニュートン法を用いた探索を行うことができる.

本手法ではさらに,LMアルゴリズムにおいてパラメータの調整範囲に対して制 約条件を設定する[19].

$$\min_{\boldsymbol{x}} F , \ \boldsymbol{x} \in \boldsymbol{C} \tag{4.25}$$

C はパラメータ*x* に対する制約範囲であり,本手法では次式のようなボックス型の拘束を考える.

$$\boldsymbol{C} = \{\boldsymbol{x} \mid \boldsymbol{\chi}_{\min} \leq \boldsymbol{x} \leq \boldsymbol{\chi}_{\max}\}$$
(4.26)

 χ_{\min} , χ_{\max} はパラメータの最小値,最大値を表す定数ベクトルとする.また,次のようにxをCの範囲内に投影する関数 P_C を定義する.

$$P_{\boldsymbol{C}}(\boldsymbol{x}) = \begin{cases} \boldsymbol{\chi}_{\max} & (\boldsymbol{x} > \boldsymbol{\chi}_{\max}) \\ \boldsymbol{x} & (\boldsymbol{\chi}_{\min} \le \boldsymbol{x} \le \boldsymbol{\chi}_{\max}) \\ \boldsymbol{\chi}_{\min} & (\boldsymbol{x} < \boldsymbol{\chi}_{\min}) \end{cases}$$
(4.27)

最小化の際は,最初に式 (4.23)を用いて制約のない状態で差分 δ_x を算出した上で,式 (4.27)を用いて次のように定義される \dot{x} を解とする.

$$\dot{\boldsymbol{x}} = P_{\boldsymbol{C}}(\boldsymbol{x} + \boldsymbol{\delta}_{\boldsymbol{x}}) \tag{4.28}$$

実際のアルゴリズムでは,式(4.28)により求めたパラメータで誤差が大きくなってしまう場合,ラインサーチや最急降下法を組み合わせて用いることで必ず誤差が小さくなるようにパラメータを更新していく.

4.3.2 バンドル調整の逐次実行

次に本節では,本手法における具体的なバンドル調整の実行方法について説明 する.一般的に,形状に比べて姿勢はより安定した推定が可能であることが知ら れており,本手法ではこれを利用した2段階のパラメータ調整を行う.以下, $p = (p_{t-n+1}^T,...,p_t^T)^T$, $a = (a_{t-n+1}^T,...,a_t^T)^T$ とし,あるパラメータxに関して調整範 囲の制約を C_x ,調整における初期値を \hat{x} と表記する.

第一段階: 姿勢のみの調整

以上の手順により選択した n フレームの情報に対して,まず次のように姿勢の みに関する最適化を行う.

$$\min_{\boldsymbol{p}} F_t , \ \boldsymbol{p} \in \boldsymbol{C}_{\boldsymbol{p}}$$
(4.29)

このとき, \hat{p} および C_p は次のように設定する.

$$\hat{\boldsymbol{p}}_{i} = \begin{cases} \boldsymbol{p}_{i}^{(t-1)} & (i < t) \\ \boldsymbol{p}_{t}^{\prime} & (i = t) \end{cases}$$
(4.30)

$$\boldsymbol{C}_{\boldsymbol{p}} = \{ \boldsymbol{p} \mid \boldsymbol{\hat{p}}_i - \boldsymbol{\lambda}_p \leq \boldsymbol{p} \leq \boldsymbol{\hat{p}}_i + \boldsymbol{\lambda}_p \}$$
(4.31)

ここで $p_i^{(j)}$ はフレームjまでの観測にもとづくフレームiの調整結果を示し,すで に一度調整が行われているフレームt-1まではこれを初期値として用いる.新た なフレームtに関しては,4.4節で述べるパーティクルフィルタによる姿勢推定の 結果 p'_t を初期値として用いる.また, λ_p は定数ベクトルであり,初期値から一定 の範囲内に収まるような制約を与えている.

第二段階: 顔形状を含めた調整

次に,形状を含めた全てのパラメータに対して最適化を行う.

$$\min_{\boldsymbol{p},\boldsymbol{a},\boldsymbol{s}} F_t , \quad \boldsymbol{p} \in \boldsymbol{C}_{\boldsymbol{p}}, \quad \boldsymbol{a} \in \boldsymbol{C}_{\boldsymbol{a}}, \quad \boldsymbol{s} \in \boldsymbol{C}_{\boldsymbol{s}}$$
(4.32)

まず,姿勢パラメータに関しては初期値として第一段階の調整結果 p を用いる.

$$\hat{\boldsymbol{p}} = \hat{\boldsymbol{p}} \tag{4.33}$$

*C*_pは式(4.31)に従う.

また,変形パラメータに関しては次のように \hat{a} , C_a を設定する.

$$\hat{\boldsymbol{a}}_{i} = \begin{cases} \boldsymbol{a}_{i}^{(t-1)} & (i < t) \\ \boldsymbol{a}_{t}^{\prime} & (i = t) \end{cases}$$

$$\boldsymbol{C}_{\boldsymbol{a}} = \begin{cases} \{\boldsymbol{a} \mid \hat{\boldsymbol{a}}_{i} - \boldsymbol{\lambda}_{a} \leq \boldsymbol{a} \leq \bar{\boldsymbol{a}} + 2\boldsymbol{\sigma}_{a} \} & \text{if } \hat{\boldsymbol{a}}_{i} + \boldsymbol{\lambda}_{a} > \bar{\boldsymbol{a}} + 2\boldsymbol{\sigma}_{a} \\ \{\boldsymbol{a} \mid \bar{\boldsymbol{a}} - 2\boldsymbol{\sigma}_{a} \leq \boldsymbol{a} \leq \hat{\boldsymbol{a}}_{i} + \boldsymbol{\lambda}_{a} \} & \text{if } \hat{\boldsymbol{a}}_{i} - \boldsymbol{\lambda}_{a} < \bar{\boldsymbol{a}} - 2\boldsymbol{\sigma}_{a} \end{cases}$$

$$\{\boldsymbol{a} \mid \hat{\boldsymbol{a}}_{i} - \boldsymbol{\lambda}_{a} \leq \boldsymbol{a} \leq \hat{\boldsymbol{a}}_{i} + \boldsymbol{\lambda}_{a} \} & \text{if } \hat{\boldsymbol{a}}_{i} - \boldsymbol{\lambda}_{a} < \bar{\boldsymbol{a}} - 2\boldsymbol{\sigma}_{a} \end{cases}$$

$$\{\boldsymbol{a} \mid \hat{\boldsymbol{a}}_{i} - \boldsymbol{\lambda}_{a} \leq \boldsymbol{a} \leq \hat{\boldsymbol{a}}_{i} + \boldsymbol{\lambda}_{a} \} & \text{otherwise} \end{cases}$$

$$(4.34)$$

初期値に関しては姿勢と同様の考え方をとり,一度調整が行われたフレームに関してはその値を,新たなフレームに関してはパーティクルフィルタの推定値 a'_t を設定する.制約範囲に関しても同様だが,4.2節でモデル構築の際に算出したパラメータの分布を元に, $\bar{a} \pm 2\sigma_a$ を超えない範囲で上限,下限を設定する.正規分布

を仮定したときに分布全体の95%に収まるような制限を与えることで,必要以上の変形が起こるのを防いでいる.

一方,個人差パラメータは次のように,初期値として過去 N_s(> n) フレーム分の調整結果の平均を与える.

$$\hat{\boldsymbol{s}} = \frac{1}{N_s} \sum_{i=t-N_s}^{t-1} \boldsymbol{s}^{(i)}$$
(4.36)

これにより,個人差パラメータに関してはフレーム間の細かい推定変動の影響を 抑え,長期的な観測にもとづく調整を行う.

$$C_{s} = \begin{cases} \{s \mid \hat{s}_{i} - \lambda_{s} \leq s \leq \bar{s} + 2\sigma_{s}\} & \text{if } \hat{s}_{i} + \lambda_{s} > \bar{s} + 2\sigma_{s} \\ \{s \mid \bar{s} - 2\sigma_{a} \leq s \leq \hat{a}_{i} + \lambda_{s}\} & \text{if } \hat{s}_{i} - \lambda_{s} < \bar{s} - 2\sigma_{s} \end{cases}$$
(4.37)
$$\{s \mid \hat{s}_{i} - \lambda_{s} \leq s \leq \hat{s}_{i} + \lambda_{s}\} & \text{otherwise} \end{cases}$$

制約範囲に関しては,変形パラメータと同様に設定する.

各パラメータの調整範囲 λ_p , λ_a , λ_s に関しては,現在は経験的に値を設定している.個人差パラメータの調整範囲 λ_s に関しては, λ_a に比べて相対的に小さい値を設定する.これにより,さらに個人差パラメータのフレーム間変動を抑制している.

調整に利用するフレームの選択

式 (4.18) においてフレーム数 n は常に固定としているが,これは必ずしも連続 した n フレームである必要はない.追跡の中で得られるフレームの中から調整に 適したものを選択することで,より効果的な形状推定を行うことができる.本手 法では,フレームの選択を以下のような手順で行う.

前回の調整に利用したフレームの集合を $\{f_1, f_2, ..., f_n\}$ とすると,この中から1 つを新たなフレーム f_t で置き換えることで新たな調整用集合を生成する.このと き考えられる n 通りの組み合わせ ($\{f_t, f_2, ..., f_n\}$ から $\{f_1, ..., f_{n-1}, f_t\}$ まで)に 関して,本手法では推定姿勢角度のばらつきに注目して各集合の評価を行う.すな わち,n 通りそれぞれの場合に与えられる姿勢初期値(式(4.30))に関して,顔向 きに関して最も分散が大きくなる組み合わせを調整用の集合として採用する.こ れにより,

図 4.8: 姿勢推定の処理の流れ

4.4 顔形状推定を伴う頭部姿勢推定

本節では,図4.1 における Estimation step の処理について説明する.4.3 節で述 べた処理により並行して顔形状モデルの個人調整を行いながら,入力画像フレーム に対する顔変形 a_t 及び頭部姿勢 p_t の推定を実現する.さらに本節では追跡を開始 するための初期化処理についても説明し,改めて実時間頭部姿勢推定全体の流れに ついて整理する.処理の流れは図4.8 のようになる.初期化ステップ(Initialization step)では数フレームにわたって2次元の顔特徴点を検出し,これに対してバンド ル調整を行うことで姿勢及び顔形状の初期化を自動で行う.初期化が完了すると入 力フレームに対する逐次的な推定(Estimation step)に入る.Estimation step は, パーティクルフィルタによる姿勢,変形の推定を行う Pose estimation step とバン ドル調整に用いるための正確な特徴点位置を再計算する Feature-point recalculation step により構成される.以下,各ステップの詳細について説明する.

4.4.1 顔検出と顔形状・姿勢の自動初期化

本節では Initialization step の詳細について説明する.処理の概要は図 4.9 に示したとおりである.ここではまず, 複眼の推定システムと同様の手法で2次元の特徴点座標を検出する.最初にオムロン社で開発された OKAO ビジョンライブラリ

図 4.9: 顔モデルと頭部姿勢の初期化

を利用して入力画像から自動的に顔および6個の顔特徴点を検出した上で[21],残 りの(K - 6)個の特徴点について追跡に適した画像特徴を持つ点を検出する[30]. このアルゴリズムの詳細に関しては3.2.2節を参照されたい.

ただし,4.2節で述べたように本手法では左右対称な顔形状モデルを利用しているため,ここで検出する顔特徴点もできる限り左右対称な点を抽出する必要がある.そこで本手法ではさらに,次のような手順で対称性の判定を行う.検出された K 個の特徴点に関して,左右で対応する2点を結んだ K/2本の線分の傾きを算出する.この K/2 個の傾きの分散が一定以上の大きさになった場合は対称性が低いと判断し,検出失敗と見なす.

以上の処理を経て n フレーム分の顔検出に成功すると,式(4.18)に基づくバン ドル調整を一定回数繰り返すことで頭部姿勢及びモデルパラメータの初期化を行 う.この場合,式(4.30)のような初期推定値が得られないため,初期化ステップ においてはあらかじめ設定した値を各パラメータの繰り返し初期値として用いる. 第4.5節で述べる実験では,頭部姿勢に関しては顔がほぼ画面の中央,カメラに正 対するような値を,モデルパラメータに関しては平均形状に近いほぼ0の値を,そ れぞれ初期値として設定している.

最後に初期化時の入力画像を元に,ユーザ独自の K 個のテンプレート画像集合 T を登録する.こうして追跡を開始するのに必要な情報が得られると,自動的に Estimation step の逐次処理に移行する.

4.4.2 パーティクルフィルタにおける多重線形モデルの利用

次に,本節ではパーティクルフィルタを利用した頭部姿勢と顔変形の推定について説明する.これは図 4.8 の Pose estimation step の処理に相当する.変形を含む姿勢推定の大まかな枠組みは 3.3.1 節と同様である.

逐次推定の対象となるのは時間的に変化するパラメータp_t, a_tのみであり, 個 人差パラメータsはその対象としない.本手法で用いる多重線形モデルにおいて, 個人差パラメータsを固定とすることで次のように変形に関する基底形状ベクト ル*M*_sが得られる.

$$\mathcal{M}_{\boldsymbol{s}} = \tilde{\mathscr{M}} \times_{\text{shape}} \boldsymbol{s}^T \tag{4.38}$$

これを用いて,式 (4.15) は変形パラメータ a_t に関する線形モデルとして表現する ことができる.

$$\boldsymbol{M} = \bar{\boldsymbol{M}} + \boldsymbol{a}_t \boldsymbol{\mathcal{M}}_{\boldsymbol{s}} \tag{4.39}$$

このようにして得られるフレームt時点での変形モデルを用いて,各入力画像に対して (6 + A') 次元状態ベクトル $x_t = (p_t^T, a_t^T)^T$ を推定する.大まかな推定の流れは 3.3.1 節と同様であり,以下,本節では個々の処理の詳細に関して説明する.

本節における仮説群 $\{(\boldsymbol{u}_t^{(i)}; \pi_t^{(i)})\}(i = 1...N)$ は, (6 + A')次元状態空間内のN個の仮説 $\boldsymbol{u}_t^{(i)}$ と,各仮説に対応する重み $\pi_t^{(i)}$ で構成される.

まず,直前のフレームt-1の仮説群 $\{(\boldsymbol{u}_{t-1}^{(i)}; \pi_{t-1}^{(i)})\}$ と等速直線運動にもとづく動作モデルを用いて新たな仮説をN個生成する.

$$\boldsymbol{u}_{t}^{(i)} = \boldsymbol{u}_{t-1}^{\prime} + \tau \boldsymbol{v}_{t-1} + \boldsymbol{\omega}$$

$$(4.40)$$

このとき, u'_{t-1} は{ $(u^{(i)}_{t-1}; \pi^{(i)}_{t-1})$ }の中から選択された仮説であり, τ はフレーム間の時間間隔, v_{t-1} は直前のフレームt-1で計算されている状態ベクトルxの速度である.

 ω は仮説の拡散の性質を決めるシステム雑音であり,各要素はそれぞれ固有の 分散を持つ平均が0のガウス雑音としている.頭部姿勢パラメータに対応する部分 は 3.3.1 節と同様に,状態ベクトルの速度に応じて適応的に制御する.一方,変形 パラメータに対応する部分に関してはモデル作成時に計算したパラメータの分布 にもとづき,ガウス雑音の分散を $\kappa\sigma_a$ とする. κ は経験的に 0.2 に設定している. 次に,新たな仮説 $u_t^{(i)}$ に対応する重み $\pi_t^{(i)}$ を決定する.これは仮説と入力画像との一致度を示す量であり,入力画像に対する仮説の一致度 $\mathcal{N}(u_t^{(i)})$ をもとに,次のような関数により計算される.

$$\pi_t^{(i)} \propto \exp\left(-\frac{\left(K - \mathcal{N}(\boldsymbol{u}_t^{(i)})\right)^2}{2\sigma^2}\right) \exp\left(-\frac{1}{2}\sum_{b=1}^B \left(\frac{a_{t,b}^{(i)} - \bar{a}_b}{\varsigma_b}\right)^2\right) \quad (4.41)$$

第1項は $\mathcal{N}_h(u_t^{(i)})$ をガウス関数により評価したもので,標準偏差 σ は経験的に1.0 に設定している.一方,第2項は顔変形パラメータ $a_t^{(i)}$ についての関数であり,こ の項を乗じることでモデルが過度に変形しないように拘束を与えている.このと き, $a_{t,b}^{(i)}$, \bar{a}_b , ς_b はそれぞれ $a_t^{(i)}$, \bar{a} , σ_a のb番目の要素である.以上の計算を行っ た上で,合計が1になるよう $\pi_t^{(i)}$ を正規化する.

ここで用いられる評価関数 $\mathcal{N}(\boldsymbol{u}_{t}^{(i)})$ は次のように定義される.まず,仮説 $\boldsymbol{u}_{t}^{(i)}$ が与えられたとき,形状成分にあたる $\boldsymbol{a}_{t}^{(i)}$ と式 (4.39)を用いて現在の顔形状を計算し,さらに姿勢成分 $\boldsymbol{p}_{t}^{(i)}$ によって変形後の顔モデルを移動する.その後,式(4.17)と同じ投影関数を用いてK個の3次元特徴点を入力画像 I_{t} に投影し,投影点周辺の画像とテンプレート集合Tの中の対応するテンプレートとの間のマッチングスコアを正規化相関により計算する.そして,K個の投影点に関するスコアの和を $\mathcal{N}(\boldsymbol{u}_{t}^{(i)})$ の出力値とする.

最後に,仮説群 $\{(u_t^{(i)}; \pi_t^{(i)})\}$ を用いて,重みが最大となる仮説の近傍に属する仮説集合の加重平均により現在の状態ベクトル x_t を求める.

さらに,本手法でも3.3.2節と同様の halfway partitioned sampling 手法を用いて仮説の拡散・移動および評価を行う.これにより,変形を含む頭部姿勢に対しても比較的少量の仮説で効率良く確率密度関数の近似を行うことができる.

4.4.3 2次元特徴点座標の再計算

次に,本節では図 4.8 の Feature-point recalculation step について説明する.個 人差の調整が正しく行われていない場合,4.4.2 節で推定した特徴点座標は必ずし も正確な位置にならない.そこで,本ステップでは特徴点座標の推定値 m'_t をもと に真の2次元特徴点座標 \hat{m}_t を再計算し,これを式(4.18)のバンドル調整における 観測として利用することにより個人差パラメータの修正を行う.以下,計算差方 法の詳細について述べる. 本手法では次のような誤差関数 E_t を定義し、これを最小化することによって \hat{m}_t を決定する.

$$E_t = E_t^I + \epsilon E_t^M \tag{4.42}$$

 ϵ は定数であり,本手法では経験的に 4000 に固定している.式 (4.42)は 3.2.3節 と同じ考えに基づくが,本手法では 2次元の特徴点座標に関する計算を行うため, 各々の定義は若干異なる.以下, $E_t^I \ge E_t^M$ について具体的に説明する.

まず, E_t^I は次のように定義される.

$$E_{t}^{I} = \sum_{\text{ROI}} \left\{ \rho || \boldsymbol{I}_{t}(\hat{\boldsymbol{m}}_{t}) - \boldsymbol{I}_{t-1}(\hat{\boldsymbol{m}}_{t-1}) ||^{2} + || \boldsymbol{I}_{t}(\hat{\boldsymbol{m}}_{t}) - \boldsymbol{I}_{1}(\hat{\boldsymbol{m}}_{1}) ||^{2} \right\}$$
(4.43)

ここで $\hat{m}_t \in \mathbb{R}^{2K}$ はフレーム t における真の 2 次元特徴点座標, $I_t(\hat{m}_t) \in \mathbb{R}^K$ は輝度ベクトルを示す. $I_t(\hat{m}_t)$ の k 番目の要素は入力画像 I_t における \hat{m}_t の k 番目の 2 次元座標での輝度を表している.式 (4.43)の各項は特徴点付近の注目領域における見えの誤差を表す.第1項は現在の画像 I_t と直前の画像 I_{t-1} との,第2項は現在の画像 I_t と追跡開始時の画像 I_1 との誤差を示す. ρ は第1項と第2項の間の比率を表し,現在は経験的に4に設定している.また,注目領域の大きさは16×16 画素に設定している.

次に,もう一方の項 E_t^M は次のように定義される.

$$E_t^M = ||\hat{m}_t - m_t'||^2 \tag{4.44}$$

ここで m'_t は 2 次元特徴点座標の推定値であり, 4.4.2 節において推定された状態 ベクトル x_t にもとづき,式 (4.17) により計算される.したがって,式 (4.44) は推 定座標 m'_t と真座標 \hat{m}_t の誤差を表す.これにより,推定座標の周辺で真の特徴点 座標を計算することができる.

以上の定義により得られる E_t を利用し,前フレームとの差分形状 $d\hat{m} = \hat{m}_t - \hat{m}_{t-1}$ を求めることで真座標 \hat{m}_t を計算する.

まず, 3.2.3 節と同様にテイラー展開による $I_t(\hat{m}_t)$ の近似を行うことで, E_t^I は次のように $d\hat{m}$ の関数として記述できる.

$$E_t^I = \sum_{\text{ROI}} \left\{ \rho || \hat{\boldsymbol{K}}_t d\hat{\boldsymbol{m}} + \Delta \boldsymbol{I} ||^2 + || \hat{\boldsymbol{K}}_t d\hat{\boldsymbol{m}} + \Delta \boldsymbol{I}_0 ||^2 \right\}$$
(4.45)

ただし,

$$\hat{\boldsymbol{K}}_{t} = \frac{\partial \boldsymbol{I}_{t}}{\partial \hat{\boldsymbol{m}}_{t}} \Big|_{\hat{\boldsymbol{m}}_{t-1}}$$
(4.46)

$$\Delta \boldsymbol{I} = \boldsymbol{I}_t(\hat{\boldsymbol{m}}_{t-1}) - \boldsymbol{I}_{t-1}(\hat{\boldsymbol{m}}_{t-1})$$
(4.47)

$$\Delta \boldsymbol{I}_0 = \boldsymbol{I}_t(\hat{\boldsymbol{m}}_{t-1}) - \boldsymbol{I}_1(\hat{\boldsymbol{m}}_1)$$
(4.48)

とする.

また, E_t^M は次のようになる.

$$E_t^M = ||d\hat{m} + \hat{m}_{t-1} - m'_t||^2$$
(4.49)

したがって, $\frac{\partial E_t}{\partial d\hat{m}} = 0$ とおくことにより, E_t を最小にする $d\hat{m}$ は次式により求められる.

$$d\hat{\boldsymbol{m}} = -\boldsymbol{D}^{-1}\boldsymbol{d} \tag{4.50}$$

ただし, D, d は次のように定義する.

$$\boldsymbol{D} = \sum_{\text{ROI}} \left\{ 2(\rho+1) \hat{\boldsymbol{K}}_t^T \hat{\boldsymbol{K}}_t \right\} + \epsilon \boldsymbol{E}_{2K \times 2K}$$
(4.51)

$$\boldsymbol{d} = \sum_{\text{ROI}} \left\{ 2 \hat{\boldsymbol{K}}_t^T (\rho \Delta \boldsymbol{I} + \Delta \boldsymbol{I}_0) \right\} + \epsilon (\hat{\boldsymbol{m}}_{t-1} - \boldsymbol{m}'_t)$$
(4.52)

式 (4.50) により得られる $d\hat{m}$ が一定の大きさに収束するまで以上の処理を繰り 返し,真の 2 次元特徴点座標 \hat{m}_t を得る.

ただし,以上の処理は各特徴点が明確に見えた状態で行う必要があり,特徴点 が不明瞭な状態で誤った再計算を行った場合,その後の推定にも悪影響を及ぼす. そこで本手法では,推定された頭部姿勢がカメラの方向を向いており,かつ最大 の仮説評価値が設定した閾値を上回る場合のみ,特徴点の再計算及びバンドル調 整を実行している.

4.5 評価実験

提案手法の性能を評価するために,第3章で述べた複眼推定システムとの比較 による評価実験を行った.3.4節と同様に2台の校正済みIEEE1394カメラを設置 して撮影した画像列に対して,まず両方のカメラを用いてユーザの頭部姿勢及び 顔形状を測定する.その後,提案手法により一方のカメラのみを用いて推定した 結果と比較することにより,提案手法の精度を評価する.

本実験では, Intel Core 2 Duo E6700 を搭載した汎用 PC を 1 台使用した.搭載 メモリは 3.0GB であり, OS は Windows XP を利用している.入力画像は 640×480 画素であり,画像テンプレートの大きさは 16×16 画素,パーティクルフィルタの 仮説の総数は 750 であった.バンドル調整に用いるフレーム数は n = 5,個人差パ ラメータの平均を算出するためのフレーム数は N = 15 とした.LM アルゴリズム における繰り返しの回数は,第一段階と第二段階それぞれ 5回,合計 10回に制限 した.初期化ステップのみ,各 10回,合計 20回の調整を行った.このとき,初期 化ステップの処理時間は約 70[ms] となった.また,追跡中の処理時間はバンドル 調整を行った場合で平均 30[ms],顔向きなどの条件により調整を行わない場合で 平均 7[ms] となり,本システムは毎秒 30 フレームで動作した.

実験では, *S* = 11 人の人物から獲得した, *A* = 10 通り(図4.4の二つの変形に ついてそれぞれ5個)の変形を元に構築したモデルを用いた.3*K*×22×10のデー タテンソルを元に,個人差パラメータ10次元,変形パラメータ5次元の顔形状モ デルを作成した.

A. モデルに被験者自身のデータが含まれる場合

まず,被験者自身の情報がモデルに含まれる場合について実験を行った.すなわち,ここで実験対象となるユーザは,モデルの学習対象である11人の中に含まれている.

入力として用いたのは 60 秒 (1800 フレーム)分の画像列であり,被験者は顔の 変形を含む頭部運動を行っている.最初に,2台のカメラにより撮影した画像列に 対して複眼システムによる姿勢推定を行った.本実験では一度姿勢推定を行った 後にモデルを保持したまま再度推定を行い,2度目の推定結果を複眼システムの 推定値として利用した.これは,CCIPCA により逐次的な変形モデル学習を行う 場合,追跡の初期段階では十分変形に対応できない場合があるためである.次に, 一方のカメラ画像のみを用いて提案手法による単眼推定を行い,複眼推定の結果 に対する誤差を評価した.

図 4.10 に,頭部姿勢推定の結果画像を示す.左列が複眼による推定結果,中央 が単眼による推定結果であり,推定された頭部姿勢及び特徴点座標が描画されて

	х	у	Z
平均 [mm]	2.60	3.12	9.56
標準偏差 [mm]	2.24	1.73	9.69

	roll	pitch	yaw
平均 [degree]	0.43	2.45	2.33
標準偏差 [degree]	0.31	2.08	1.95

表 4.1: 頭部姿勢の推定誤差(実験 A)

いる.また,右列はz軸(奥行き)方向の推定誤差を確認するために二つの推定 結果を異なる視点から描画した図である.赤い+が複眼,青い+が単眼の推定結 果を示す.このように,顔変形や奥行き方向の大幅な変動を伴う姿勢に対しても 安定した追跡が可能である.

さらに,二つの頭部姿勢推定結果の詳細なグラフを図 4.12 に示す.赤い細線が 複眼推定,青い太線が単眼推定の結果を表わす.x は水平方向,y は鉛直方向,zは深さ方向の運動,roll はz 軸回り,yaw はy 軸回り,pitch はx 軸回りの回転で ある.このとき,複眼推定に対する単眼推定の誤差は表 4.1 に示すとおりである. x,y,roll はほぼ複眼での推定結果推定に一致しており,比較的単眼での推定が 難しいz 及びpitch,yawの推定結果に関しても高い精度での推定を実現している ことがわかる.

また,頭部座標系における各顔特徴点の3次元座標の平均誤差を図4.1に示す. 複眼推定とは異なり,単眼推定では左右対称のモデルを用いるため,二つの推定 結果は必ずしも厳密に一致するとは限らないが,変形が起こった場合もも大きな 誤差を生じさせることなく,フレーム間平均誤差5.9[mm]での形状推定を実現し ている.

B. モデルに被験者自身のデータが含まれない場合

次に,同じ画像列を用いてモデルに被験者自身の情報が含まれない場合について実験を行った.すなわち,前述のモデル構築用データから被験者自身のサンプルを除き,S = 10人,A = 10通りの変形を元に作成したモデルを元に推定を行った.個人差パラメータの次元数は変わらず,個人差パラメータ15次元,変形パラメータ5次元とした.そのほかの実験条件も全て同じである.

複眼の推定値に対して実験 A と実験 B の推定結果を比較したグラフを図 4.13 に 示す.このように,学習済みのユーザに比べて全体に推定誤差が大きくなるもの

図 4.10: 頭部姿勢推定の結果画像(実験A)

図 4.11: 推定された顔特徴点座標(頭部座標系)の平均誤差(実験 A)

	х	У	\mathbf{Z}		roll	pitch	yaw
平均 [mm]	3.73	1.92	17.85	平均 [degree]	0.43	3.07	2.49
標準偏差 [mm]	2.57	1.47	9.37	標準偏差 [degree]	0.32	2.31	1.96

表 4.2: 頭部姿勢の推定誤差(実験B)

の,未知のユーザに対しても大きな精度劣化を生じさせることなく姿勢推定が可 能である.このとき,複眼推定との誤差は表4.2のようになった.特にzに顕著で あるが,表4.1と比べて誤差平均が大きい結果になっており,モデル自身が持つ近 似誤差が姿勢推定全体に影響していると考えられる.

C. 初期化のみで逐次的なバンドル調整を行わない場合

最後に,本手法で用いる逐次的な個人差調整の効果を検証するために,毎フレームのバンドル調整を行わない場合の推定結果との比較を行った.*Estimation step* では個人差パラメータを固定としてパーティクルフィルタによる姿勢・変形推定のみを実行し,時系列推定に移行するために必要な初期化ステップでのみバンドル調整を行った.モデルは実験Aと同じく,被験者自身の情報が含まれるものを用いた.

この場合の推定結果を実験Aの結果と比較したグラフを図4.14 に示す.逐次的 バンドル調整を行わない場合,姿勢推定の安定性が大きく損なわれ,これは図4.14

図 4.12: 頭部姿勢推定の結果(実験A)

図 4.13: 頭部姿勢推定の結果(実験B)

	х	У	\mathbf{Z}		roll	pitch	yaw
平均 [mm]	2.71	3.43	11.38	平均 [degree]	0.43	2.52	2.26
標準偏差 [mm]	2.11	2.03	11.43	標準偏差 [degree]	0.32	2.03	2.02

表 4.3: 頭部姿勢の推定誤差(実験C)

において特に z の推定に顕著に表れている. 複眼推定との誤差は表 4.3 のようになり, z の推定に関しては平均だけでなく標準偏差も増加している.

このように,本手法で用いた逐次的なバンドル調整の枠組みは,推定精度及び 安定性の向上に寄与していることがわかる.

図 4.14: 頭部姿勢推定の結果(実験C)

第5章 結論

5.1 本研究のまとめ

本論文では, HCI 技術への柔軟な応用が可能となる,以下の2点を同時に実現 する実時間頭部姿勢推定手法を提案した.

- 不特定多数のユーザに対して自動的に推定を開始できる
- 発話や表情変化に伴う顔変形が起こった場合でも,安定して推定を継続で
 きる

顔変形を伴う実時間頭部姿勢推定を不特定多数のユーザに対して実現することは, 現在でも難しい課題になっている.これを解決するために,本論文では二つの異 なるアプローチに基づく手法を提案した.

顔変形モデルの自動構築を伴う頭部姿勢推定

まず第3章では1つめの手法として,3次元頭部姿勢の実時間推定と同時に顔変 形モデルを自動的に構築するための手法を提案した.複眼カメラを用いて取得し たユーザ頭部の3次元形状を元に,CCIPCAアルゴリズムを利用した増分的な変 形モデルの構築を行う.本研究の主な貢献は以下の2点にまとめられる.

1. 姿勢推定と並行して頭部変形モデルを連続的に更新する.

2. 頭部姿勢と顔形状の推定性能を逐次的に向上させる.

本研究は,頭部変形モデルの構築と頭部姿勢の推定を実時間で同時に実行することを試みた最初の研究例であると考えられる.

本手法の特徴として,それまでの追跡中に起こった変形に対してはモデルを拡 張して対応することが可能である,という点が挙げられる.したがって,ユーザ 毎の変形の特徴を効率良く捉えた柔軟な追跡が可能になる.また,複数のカメラ を用いることにより,追跡の精度と安定性も向上する.姿勢推定に一定の精度が 要求されるアプリケーションや環境設置型のシステムにおける利用などを想定し た場合,大変有効な手法であると言える.

パラメータ分離モデルを用いた単眼カメラによる頭部姿勢推定

一方,第4章では2つめの手法として,事前に構築した顔形状モデルを元に単眼 カメラのみで顔変形及び頭部姿勢の推定を行う手法を提案した.顔形状の個人内 変動(変形パラメータ)と個人間変動(個人差パラメータ)を分離して表現した モデルに対して,パーティクルフィルタとバンドル調整を各パラメータの性質に 合わせて利用する.これにより,単眼カメラでのシステム構築が可能になる.本 研究の主な貢献は次のようになる.

- 1. 個人差調整を推定と並行して同時に行うことで,推定性能を逐次的に向上させる.
- 2. パラメータ分離モデルを用いた変形・姿勢推定を実時間システムの中で実現 する.

推定精度に関しても, 複眼システムにも遜色のない性能を実現している.

統計的性質に基づく多重線形モデルの利用,モデル空間内での時系列トラッキング,そして複数フレームに対する全パラメータの最適化と,従来手法と比べて もより妥当な形で個々の技術を統合した手法であると言える.単眼カメラでのシ ステム構築が可能であることは本手法の大きな特徴であり,複眼のシステムと比 較して大幅に設置コストの低い,個人向けのアプリケーションやモバイル機器で の利用に適した手法になっている.

5.2 今後の課題

複眼システムに関して

前者の複眼システムに関しては,追跡の中で初めて見られる変形に対する表現 力は乏しくなるという欠点がある,特に追跡開始直後,モデルの学習が十分行わ れていない場合には,極端に大きい変形には対応できない場合も考えられる.

また,モデル構築の正確さには特徴点位置の再計算精度も大きく影響するが,特 徴点の変動から変形による成分だけを厳密に抽出するのは非常に難しい問題であ る.姿勢変動と変形の厳密な切り離しを実現することで,モデルのみならず頭部 姿勢に関してもより正確な評価が可能になると言える.

今後の課題として,こうした問題に対応することでさらなる追跡精度の向上を 目指すことが挙げられる.

単眼システムに関して

後者の単眼システムに関しては,まずは未知ユーザに対する推定性能をより厳密に評価することが課題として挙げられる.現在はモデル構築時の学習人数が限られた状態での実験を行っているため,今後はさらに学習人数を増やしてより正確な評価を行う必要がある.

推定精度については,モデル構築手法そのものを見直すことで改善できると考 えられる.現在は個人性と表情というあくまでも意味上の分離によりデータを収 集とモデル構築を行っているが,姿勢推定精度の観点から見ると,姿勢に影響の ある変形と影響のない変形を分離することも重要である.変形パラメータが姿勢 変動と同じ動きを含む場合,その正確な推定は非常に困難となる.現在のモデル においてこれは縦方向の回転(pitch)に顕著であり,推定精度悪化の原因になっ ている.

さらに,横向き(yaw)方向の追跡可能範囲や,奥行き(z)方向の追従性に関 しては,そもそも単眼で推定を行う上で避けられない問題になっている.今後は こうした問題にも対処しながら,より実用に適したシステム構築を目指す予定で ある.

より詳細な顔情報解析への取り組み

両手法共通の今後の課題としては,感情推定などへの応用を目的としたモデルの拡張が挙げられる.現在のモデルは必要最低限の特徴点で構成されており,目・ ロの開閉や眉の形状が捉えられないことは,表情の解析を行う上で大きなネック になっている.今後はメッシュモデルの利用なども視野に入れながら,より詳細な 顔形状モデルを利用した推定を実現する.さらに,瞬き検出や視線推定など,顔 に関する発展的なセンシング技術を統合することで,総合的なセンシングシステ ムの構築を目標とする.

システムの特性を生かしたアプリケーションの提案

最後に,本手法の特性を生かした応用アプリケーションの提案が課題として挙 げられる.不特定多数のユーザが利用する公共ディスプレイでの利用や,ウェブ カメラを利用したデスクトップ環境での個人向けアプリケーションなどを通して, 実際の具体的応用例と共に本手法の有効性を示していきたいと考えている.

謝辞

本研究を遂行するにあたっては,非常に多くの方々のご指導とご協力を賜りました.この場を借りて,皆様に心から感謝の意を表します.

修士課程の2年間に渡り日頃から熱心にご指導頂き,本研究を遂行する機会を 与えて下さいました佐藤洋一助教授に,深く御礼申し上げます.

本研究の基礎となるシステムのコードを提供して頂き,数多くの貴重なご助言 を頂きました岡兼司さんに深く感謝いたします.

岡部孝弘助手,佐藤いまり助手をはじめとして,研究生活を様々な面から支え て頂いた佐藤研究室の皆様に深くお礼申し上げます.

そして最後に,日々心の支えとなってくれた全ての友人と,学生生活を支えて くれた母に心から感謝いたします.

ありがとうございました.

2007年2月2日

菅野 裕介
参考文献

- H. Aanaes and F. Kahl: Estimation of deformable structure and motion, Proc. Workshop on Vision and Modelling of Dynamic Scenes, ECCV'02, (2002).
- [2] J. Ahlberg: CANDIDE-3 an updated parameterized face, *Technical Report LiTH-ISY-R-2326*, Dept. of Electrical Engineering, Linkoping University (2001).
- [3] B. Bascle and A. Blake: Separability of pose and expression in facial tracking and animation, Proc. IEEE Int. Conf. Computer Vision, pp. 323–328 (1998).
- [4] S. Basu, I. Essa and A. Pentland: Motion Regularization for Model-based Head Tracking, Proc. Int. Conf. Pattern Recognition, Vol. 3, pp. 611–616 (1996).
- [5] C. Bregler, A. Hertzmann and H. Biermann: Recovering non-rigid 3d shape from image streams, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Vol. 2, pp. 690–696 (2000).
- [6] T. F. Cootes, G. J. Edwards, and C. J. Taylor: Active Appearance Models, Proc. European Conf. on Computer Vision (ECCV 1998), pp. 484-498 (1998).
- [7] D. DeCarlo and D. Metaxas: Optical flow constraints on deformable models with applications to face tracking, *Int. J. Computer Vision*, Vol. 38, No. 2, pp. 99–127 (2000).
- [8] D. DeCarlo and D. Metaxas: Adjusting sape parameters using model-based optical flow residuals, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 24, No. 6, pp. 814–823 (2002).
- [9] A. Del Bue, X. Llado and L. Agapito: Non-rigid structure from motion using non-parametric tracking and non-linear optimization, *Proc. IEEE Workshop on Articulated and Non-Rigid Motion*, Vol. 1, p. 8 (2004).

- [10] A. Del Bue, X. Llado and L. Agapito: Non-rigid metric shape and motion recovery from uncalibrated images using priors, *Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition*, Vol. 1, pp. 1191–1198 (2006).
- [11] M. Dimitrijevic, S. Ilic and P. Fua: Accurate face models from uncalibrated and ill-lit video sequences, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Vol. 2, pp. 1034–1041 (2004).
- [12] F. Dornaika and F. Davoine: Simultaneous facial action tracking and expression recognition using a particle filter, *Proc. IEEE Int. Conf. Computer Vision*, Vol. 2, pp. 1733–1738 (2005).
- [13] F. Dornaika and A. D. Sappa: Rigid and Non-rigid Face Motion Tracking by Aligning Texture Maps and Stereo-Based 3D Models, Proc. Advanced Concepts for Intelligent Vision Systems (ACIVS 2006), pp. 675–686 (2006).
- [14] A. Gee and R. Cipolla: Fast visual tracking by temporal consensus, Image and Vision Computing, Vol.14, pp.105–114 (1996).
- [15] S. B. Gokturk, J. Y. Bouguet and R. Grzeszczuk: A data-driven model for monocular face tracking, *Proc. IEEE Int. Conf. Computer Vision*, Vol. 2, pp. 701–708 (2001).
- [16] R. Gross, I. Matthews and S. Baker: Generic vs. person specific active appearance models, *Image and Vision Computing*, Vol. 23, No. 11, pp. 1080–1093 (2005).
- [17] G. D. Hager and P. N. Belhumeur: Efficient region tracking with parametric models of geometry andillumination, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 20, No. 10, pp. 1025–1039 (1998).
- [18] Isard, M. and Blake, A.: Condensation- conditional density propagation for visual tracking, Int. J. Computer Vision, Vol.29, No.1, pp.5-28 (1998).
- [19] C. Kanzow, N. Yamashita and M. Fukushima: Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties, J. Computational and Applied Mathematics, Vol. 172, pp. 375–397 (2004).

参考文献

- [20] M. La Cascia, and S. Sclaroff and V. Athitsos: Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3D models, *IEEE Transactions on Pattern Analysis and Machine Intelligence* Vol. 22, No. 4, pp. 322–336 (2000).
- [21] S. Lao, T. Kozuru, T. Okamoto, T. Yamashita, N. Tabata and M. Kawade: A fast 360-degree rotation invariant face detection system, *Demo session of IEEE Int. Conf. Computer Vision* (2003).
- [22] L. De Lathauwer, B. De Moor and J. Vandewalle: A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, Vol. 21, No. 4, pp. 1253–1278 (2000).
- [23] L. De Lathauwer, B. De Moor and J. Vandewalle: On the best rank-1 and rank-(R₁, R₂, ..., R_N) approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, Vol. 21, No. 4, pp. 1324–1342 (2000).
- [24] M. I. A. Lourakis: levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++, http://www.ics.forth.gr/~lourakis/levmar/ (2004).
- [25] J. MacCormick and M. Isard: Partitioned sampling, articulated objects, and interface-quality hand tracking, *Proc. European Conf. Computer Vision*, Vol. 2, pp. 3–19 (2000).
- [26] Y. Matsumoto and A. Zelinsky: An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement, *Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition*, pp. 499–504 (2000).
- [27] I. Matthews and S. Baker: Active appearance models revisited, Int. J. Computer Vision, Vol. 60, No. 2, pp. 135–164 (2004).
- [28] E. Munoz, J. M. Buenaposada, L. Baumela: Efficient model-based 3D tracking of deformable objects, *Proc. IEEE Int. Conf. Computer Vision*, pp. 877–882 (2005).

- [29] Y. Shan, Z. Liu and Z. Zhang: Model-based bundle adjustment with application to face modeling, Proc. IEEE Int. Conf. Computer Vision, pp. 644–651 (2001).
- [30] Tomasi, C. and Kanade, T.: Shape and motion from image streams: a factorization method-3, detection and tracking of point features, *Technical Report CMU-CS-91-132*, (1991).
- [31] L. Vacchetti, V. Lepetit and P. Fua: Stable real-time 3D tracking using online and offline information, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 26, No. 10, pp. 1380–1384 (2004).
- [32] M. A. O. Vasilescu and D. Terzopoulos: Multilinear analysis of image ensembles: TensorFaces, Proc. European Conf. on Computer Vision (ECCV'02), pp. 447–460 (2002).
- [33] M. A. O. Vasilescu and D. Terzopoulos: TensorTextures: multilinear imagebased rendering, ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2004), pp. 336-342 (2004).
- [34] D. Vlasic, M. Brand, H. Pfister and J. Popovic: Face transfer with multilinear models, ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2005), Vol. 24, No. 3, pp. 426–433 (2005).
- [35] J. Weng, Y. Zhang and W. S. Hwang: Candid Covariance-Free Incremental Principal Component Analysis, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol.25, No.8, pp.1034–1040 (2003).
- [36] J. Xiao, S. Baker, I. Matthews, and T. Kanade: Real-Time Combined 2D+3D Active Appearance Models, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Vol. 2, pp. 535–542 (2004).
- [37] J. Xiao, B. Georgescu, X. Zhou, D. Comaniciu and T. Kanade: Simultaneous Registration and Modeling of Deformable Shapes, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 2429–2436 (2006).

- [38] L. Xin, Q. Wang, J. Tao, X. Tang, T. Tan and H. Shum: Automatic 3D face modeling from video, Proc. IEEE Int. Conf. Computer Vision, Vol. 2, pp. 1193-1199 (2005).
- [39] Z. Zhang: Flexible camera calibration by viewing a plane from unknown orientation, Proc. IEEE Int. Conf. Computer Vision (ICCV '99), pp. 666-673 (1999).
- [40] Y. Zhang and J. Weng: Convergence Analysis of Complementary Candid Incremental Principal Component Analysis, *Technical Report MSU-CSE-01-23*, Dept. of Computer Science and Eng., Michigan State Univ. (2001).
- [41] Z. Zhang and Y. Shan: Incremental motion estimation through modified bundle adjustment, Proc. IEEE Int. Conf. Image Processing, Vol. 2, pp. 343–346 (2003).
- [42] Z. Zhu and Q. Ji: Robust Real-Time Face Pose and Facial Expression Recovery, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 681–688 (2006).
- [43] 岡兼司,佐藤洋一,中西泰人,小池英樹:適応的拡散制御を伴うパーティクル フィルタを用いた頭部姿勢推定システム,電子情報通信学会論文誌 D-II, Vol. J88-D-II, No. 8, pp. 1601–1613 (2005).

発表文献

- 菅野裕介,佐藤洋一:表情変動を許容した実時間頭部姿勢推定のための個人 間および個人内変動に対する顔形状推定,情報処理学会コンピュータビジョ ンとイメージメディア研究会,2006-CVIM-156-21,pp. 179–186 (2006).
- 2. 岡兼司, 菅野裕介, 佐藤洋一: 頭部変形モデルの自動構築を伴う実時間頭部 姿勢推定, 情報処理学会論文誌 Vol. 47 No. SIG 10 (CVIM 15) pp. 185–194 (2006).