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Abstract

Quantum many-body problems model the behavior caused by the interactions between particles in a

many-body system interacting via quantum mechanics. One well-known example of a quantum many-

body problem is the Mott transition. According to band theory, which ignores the interactions between

electrons, many materials that should be conductors are in fact Mott insulators. These materials are

prevented from conducting due to the repulsive interactions between electrons.

The Mott transition is described by the Hubbard model, which is a minimal model that takes into ac-

count of not only the quantum mechanical motion of electrons in a solid but also the repulsive interaction

between electrons. The Hubbard model can also describe not only such quantum phase transitions but

also magnetism and superconductivity. Despite this importance, the Hubbard model is mathematically

difficult to solve. To analyse the quantum many-body system described by the Hubbard model, quantum

simulations, which simulate a quantum system by mapping into another simpler one with controllable

parameters, have recently attracted a lot of attention.

Recently, a quantum phase transition from a superfluid state to a Mott insulator state was experi-

mentally observed by a quantum simulation using optical lattices. In this experiment, the macroscopic

property of the Mott insulator was observed in the form of an interference pattern. However the micro-

scopic property can only be known unless the wave function is calculated.

In this dissertation, the “FDTD-Q method” which is an application of the finite-difference time-

domain (FDTD) method is introduced to solve the time-dependent Schrödinger equation. In this study,

using the FDTD-Q method, the wave function of a two-particle two-site system is calculated and the

calculation is also extended to a three-particle system in a three-site geometry. The properties of a Mott

insulator phase were analysed using these results.
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1.1 Background

1.1.1 Quantum Many-body Problem

The quantum many-body problem may be defined as the study of the behavior caused by the effects of

interaction between particles in a many-body system interacting via quantum mechanics. By describing

the microscopic behavior of each particle, the macroscopic properties of the system, which appear as

cooperative phenomena of the particles, is predicted. However, due to the exponential increase of the

Hilbert space of the system, it becomes difficult to solve the set of equations determined by quantum

mechanics.

Examples of quantum many-body problems include polymer molecules and materials in a solid state.

Exact solutions are impossible in almost all many-body problems. A simple and efficient approach for

solving quantum many-body problems is to ignore some interactions within the system. This allows the

problem to be reduced to a simpler model.

As an example of this, in solid state physics, the nearly free electron model is a model of the electron’s

behavior in solids that enables to understand the electronic property of crystalline materials. The nearly

free electron approximation can describe many properties of the electrons. One of consequences of this

theory is that it predicts the same number of electrons in each unit cell. If the number of electrons is

odd, it is expected that there is an unpaired electron in each unit cell. This means that the valence band

is not fully occupied and, therefore, the material should be a conductor.

As described above, solving particular quantum many-body problems using certain approximations

has allowed the properties of various materials to be understood. However this is very rare in many

quantum many-body problems and, as a consequence, their properties are still unknown.

1.1.2 Mott Insulator

The band theory of solids had been successful in the describing the electrical properties of materials.

However, in 1937, J. H. de Boer and E. J. W. Verwey pointed out that a variety of transition metal oxides,

e.g. MnO, FeO, CoO, Mn3O4, NiO, etc., which were expected to be conductors according to band theory

were in fact insulators [1]. Specifically, since MnO and CoO have an odd number of electrons per unit

cell, they should theoretically be insulators. N. F. Mott and R. Peierls conjectured that this abnormal

property could be caused by electron-electron interactions which are not considered in the formulation

of conventional band theory [2]. Such materials are called Mott insulators.

In 1949, Mott proposed a model for NiO as an insulator [3]. In this case, conduction could be under-

stood by the following formula:

(Ni2+O2−)2 → Ni3+O2− + Ni1+O2− (1.1)

The formation of the energy gap preventing conduction can be regarded as a competition between the

Coulomb potentialU between3d-electrons and the kinetic integralt of 3d-electrons between neighbor-
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ing atoms. Then, the total energy gap is

Egap = U − 2zt (1.2)

wherez is the number of the nearest neighbor atoms.

Generally, Mott insulators occur when the repulsive Coulomb potentialU is large enough so that an

energy gap arises. One of the simplest theories characterizing Mott insulators is the Hubbard model,

which is referred to below.

1.1.3 The Hubbard Model

The Hubbard model is a model for electrons in a solid which strongly interact with each other through

an extremely short-range repulsive Coulomb interaction [4]. The Hubbard model is a minimal model

that takes into account for not only the quantum mechanical motion of electrons in a solid but also

the repulsive interaction between electrons. In spite of its simplicity, it is thought to be a qualitative

description of the properties of most solids. It is believed that the Hubbard model exhibits a variety

of nontrivial phenomena, for example metal-insulator transitions, antiferromagnetism, ferrimagnetism,

ferromagnetism, Tomonaga-Luttinger liquids, and superconductivity [5–8].

The Hamiltonian of the Hubbard model is made up with two parts:Hhop which represents the quantum

mechanical hopping, andHint which represents the repulsive interaction between electrons. EitherHhop

andHint alone is easily analyzed and the results can be easily interpreted. It is found that electrons

behave as “waves” inHhop and that, on the other hand, they behave as “particles” inHint. The problem

becomes nontrivial when we consider electrons in a system with the Hamiltonian that is a sum of the

two Hamiltonians (H = Hhop + Hint). This is related to the wave-particle dualism in quantum physics,

which makes it a fascinating problem form the point of view of quantum mechanics.

The Hubbard model was originally proposed to describe electrons in solids and since has been con-

sidered as a model for high-temperature superconductivity. More recently, the the bosonic version of the

model has been also studied [9] and has been used to describe the behavior of ultracold atoms trapped

in optical lattices [12]. The model used for bosons is referred to as the “Bose-Hubbard model”. In the

following, I will explicitly write “Hubbard model” for the model of the electrons (or other fermions) and

“Bose-Hubbard model” for the model of bosons.

From a mathematical point of view, the HamiltoniansHhop andHint do not commute with each other.

Although each Hamiltonian can be easily diagonalized, it is nontrivial to analyze the property of their

sum. However, one can get various interesting “physics” if one considers the problem of the competition

between the wave-like nature and the particle-like nature. Consequently, to understand this problem is a

very challenging issue and the model (in two dimensions) has remained unsolved for over fifty years.
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1.1.4 Quantum Simulation

A universal quantum simulator was proposed by Richard P. Feynman in 1982 [14]. Feynman showed

that a classical Turing machine takes exponentially increasing time with the problem size when simu-

lating quantum many-body systems exactly, whereas his hypothetical quantum simulator would not. In

a quantum simulator, the quantum system is recreated in another simpler quantum system with control-

lable parameters. Such simulation is called quantum simulation.

In a real material, a parameter can be modified only within a small range, so that the information

gained by experiments is rather limited. However a quantum simulator is easier to implement compared

to a universal quantum computer owing to no need for local control operation and isolation from external

reservoirs. Consequently, a quantum many-body system is able to be simulated over a wide parameter

range.

Recently, quantum simulations of the Hubbard model and the Bose-Hubbard model have been im-

plemented and studied about quantum phase transitions. Through these experiments performed with

quantum simulators, phenomena which are impossible to calculate theoretically due to their complexity

might be revealed.

1.2 Objectives

1.2.1 Quantum Phase Transition in a Gas of Ultracold Atoms

For a system at absolute zero temperature, all thermal fluctuations vanish, while quantum fluctuations

remain. These microscopic quantum fluctuations can produce a macroscopic phase transition in the

ground state of a many-body system when either the interaction energy between particles overcomes the

kinetic energy, or vice versa.

In 2002, a quantum phase transition was observed in a system consisting of a Bose-Einstein conden-

sate of87Rb atoms with repulsive interactions, held in a three-dimensional optical lattice potential [17].

As the potential depth of the optical lattice increased, the quantum phase changes from a superfluid

phase into a Mott insulator phase. In the superfluid state, each atom is delocalized throughout the entire

lattice with long-range phase coherence. In contrast, the Mott insulator state has exact numbers of atoms

localized at each lattice site without phase coherence.

In the experiment described above, the phase coherence between different lattice sites was tested by

observing interference patterns of atoms after a sudden termination of the confining lattice potential. In

the superfluid phase, where all atoms are spread out over the entire lattice with equal relative phases

between different lattice sites, a high-contrast three-dimensional interference pattern was obtained as

expected for a periodic array of phase coherent matter wave sources. On the other hand, in the Mott

insulator phase, where atoms are tightly localized at a single lattice site with no phase coherence, no

interference pattern was visible.
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1.2.2 Necessity of Numerical Analysis

The existence of the Mott insulator was revealed by a true experiment where an interference pattern

was observed. The interference pattern shows that each atom is localized at an individual site. However,

although that experiment is interesting in itself, we can only deduce macroscopic properties of a many-

body system which arises from the result of microscopic behavior of each atom. To know the true state

of each particle, there is a need for the wave function of the system to be calculated.

Of course, it is computationally impossible to analyse the wave function of such a system with many

particles. It is necessary to reduce the number of particles and to simplify the system for the numerical

analysis. However, even if the system contains only two particles in two-site geometry, we can know the

correlation between the two particles by the numerical simulation. Consequently, this simulation also

would aid the understanding of the true nature of Mott insulators.

1.3 Description of the Remaining Chapters

The outline of this dissertation is as follows.

Chapter 2 contains the details of the Hubbard model and quantum simulations. Examples of quantum

simulators for both the Hubbard model and the Bose-Hubbard model are introduced. In this chapter, I

will explain the difference between the superfluid phase and the Mott insulator phase in detail. I will

then comment on the necessity of numerical analysis of the Mott insulator state.

Chapter 3 contains numerical methods for solving the time-dependent Schrödinger equation. The

“FDTD-Q method” is introduced, which is a modification of the FDTD method widely used for solving

Maxwell’s equations. Conditions for the calculations are also described in this chapter.

Chapter 4 contains the implementation of the FDTD-Q simulations of a two-particle system in a two-

site geometry. The general outline of numerical simulation is described and results of the simulation are

also seen in this chapter.

Chapter 5 contains the implementation of the FDTD-Q simulations of a three-particle system in a

three-site geometry. In this chapter, the numerical simulation is extended to a three-particle system for

the generality.

Chapter 6 contains the conclusions of this dissertation. In addition, future prospects are also described.
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2.1 The Hubbard Model

2.1.1 Overview

The Hubbard model is an approximate model used in solid state physics to represent quantum phase

transitions between conducting and insulating states. The Hubbard model is the simplest model of

interacting particles in a lattice, containing only two terms in Hamiltonian: kinetic and potential terms

[4]. The kinetic term allows tunneling, or hopping, of particles between sites of the lattice. The potential

term consists of on-site interactions.

Although, the standard Hubbard model considers electrons, the particles can also be any type of

fermion. In addition, the model has been extended to bosons in the form of the Bose-Hubbard model [9].

The Hubbard model is mainly based on the tight-binding approximation in solid state physics. In the

tight-binding approximation, electrons are considered to occupy the standard orbits of their constituent

atoms. These electrons hop between atoms during conduction. Mathematically, this is represented as a

hopping integral or a transfer integral between nearby atoms, which can be considered as the physical

principle that creates electron bands in crystalline materials. However, in this approximation, interac-

tions between electrons are ignored .

By formulating conduction in terms of a hopping integral, the Hubbard model also contains the on-site

repulsions originating from the Coulomb repulsive interactions between electrons. This involves compe-

tition between the hopping integral, which moves electrons between neighboring atoms, and the on-site

repulsive interaction, which does not. In this way, the Hubbard model can explain Mott insulators, which

are prevented from becoming conducting by the strong repulsive interactions between particles.

2.1.2 Definition of the Hubbard Model

Let the latticeΛ be a collection of sitesx, y, . . .. In the Hubbard model, each lattice site corresponds

to an atomic site in a crystal. In order to simplify the situation significantly, it is assumed that each atom

has only one electron orbit and the corresponding orbital state is non-degenerate. Because electrons in

other states do not play important roles in determining the low-energy physics, they can be ignored (See

Fig.2.1).

Field Operators

Here,x is a position of the electron in the lattice sitesΛ, andσ is a spin of the electron which can

be up (↑) or down (↓). c†x,σ is the fermion creation operator, which creates an electron with spinσ at

sitex, andcx,σ is the fermion annihilation operator, which annihilates an electron with spinσ at sitex.

nx,σ = c†x,σcx,σ is the number operator. These fermion operators obey the canonical anti-commutation

relations

{c†x,σ, cy,τ} = c†x,σcy,τ + cy,τ c
†
x,σ = δx,yδσ,τ (2.1)
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Fig. 2.1: A Highly Schematic View of Tight-binding Descriptions. a) a single atom with multiple

electrons in different orbits. b) In a solid, electrons in the black orbits can move around, while those in

the light gray orbits are localized at the original atomic sites. The electrons in the gray orbits are mostly

localized around the atomic sites, but there is a non-negligible tunneling probability of hopping to nearby

gray orbits. c) Electrons only in gray orbits are considered, which are expected to play an essential role

in determining the properties of the system. d) Assuming that the gray orbit is non-degenerate, a lattice

model that electrons stay on lattice sites and hop from a site to another is obtained.

and

{c†x,σ, c†y,τ} = c†x,σc†y,τ + c†y,τ c
†
x,σ = 0, (2.2)

whereδi,j is the Kronecker delta.

The state without any electrons is represented as|Ψvac⟩, defined by the following equation

cx,σ|Ψvac⟩ = 0 ( ∀x, σ ). (2.3)

The Hilbert space of the model is generated by the states derived by multiplying the creation operator

c†x,σ with variousx andσ onto the state|Ψvac⟩. Because the anti-commutation relation (Eq. (2.2))

implies

(c†x,σ)2 = 0, (2.4)

the state of each lattice site can be either vacant, occupied by a single electron with a spin↑ or ↓, or

occupied by two electrons with spins both↑ and↓. Since four states exist par a lattice site, the total

dimension of the Hilbert space is4|Λ|, where|Λ| is the number of lattice sites.
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Hamiltonian

The Hamiltonian of the Hubbard model is represented as the sum of two elements

H = Hhop + Hint. (2.5)

The hopping HamiltonianHhop generally has the form

Hhop =
∑

x,y∈Λ

∑
σ=↑,↓

tx,yc
†
x,σcy,σ. (2.6)

The hopping amplitudetx,y = ty,x, assumed to be real, describes the quantum mechanical amplitude for

an electron to hop from sitex to y (or fromy to x). Whenx = y, that is an electron stays at the present

lattice site, the summand of Eq. (2.6) becomes

tx,xc†x,σcx,σ = tx,xnx,σ, (2.7)

which is simply a single-body potential at the sitex.

On the other hand, the interaction HamiltonianHint is generally written

Hint =
∑
x∈Λ

Uxnx,↑nx,↓. (2.8)

OftenUx is set to be a constant (Ux = U ). ForUx > 0, Hamiltonian corresponds to repulsive interaction.

When two electrons occupy a single site atx, the total energy of the system rises byUx. Although the

original Coulomb interaction is long ranged, only on-site short-range interactions are taken into account

as the main and strongest part of the interaction. This equation can also be interpreted such that the

long-range part of the Coulomb interaction is screened by the electrons in different orbital states which

are ignored in the Hubbard model.

Total Number Operator

The total number operator is defined as

N̂e =
∑
x∈Λ

(nx,↑ + nx,↓). (2.9)

This operator commutes with the HamiltonianH. N̂e is a conserved quantity, such as the total spin.

Stationary states of the system are obtained by keeping the eigenvalueN̂e constant. In the following,

only the Hilbert space with the number operatorN̂e having a fixed eigenvalueNe is considered. Since

every lattice site can have at most two electrons,Ne satisfies

0 ≤ Ne ≤ 2|Λ|. (2.10)

The total electron numberNe is one of the most fundamental parameters in the Hubbard model.

2.1.3 Extreme Situations of the Hubbard Model

In order to comprehend the sum of the two Hamiltonians in the Hubbard model, two limits are dis-

cussed here.
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Non-interacting System

Let us assume that the repulsive Coulomb interaction inHint satisfies

Ux = 0 ( ∀x ∈ Λ ). (2.11)

The Hamiltonian is then

H = Hhop =
∑

x,y∈Λ

∑
σ=↑,↓

tx,yc
†
x,σcy,σ. (2.12)

Since Eq. (2.12) is quadratic in fermion operators, it can be diagonalized easily. The single-electron

Schr̈odinger equation corresponding to the hopping HamiltonianHhop is∑
y∈Λ

tx,y|ϕy⟩ = ε|ϕx⟩, (2.13)

where |ϕ⟩ = (|ϕx⟩)x∈Λ is a wave function of the single-electron, andε is the single-electron en-

ergy eigenvalue. The eigenvalue and eigenstates of Eq. (2.13) are respectively denoted asεj and

|ϕ(j)⟩ = (|ϕ(j)
x ⟩)x∈Λ, with the indexj = 1, 2, . . . , |Λ|. The energy levels are ordered asεj ≤ εj+1

with considering degeneracies.

Let us now consider a simple example. Consider a one-dimensional latticeΛ = 1, 2, . . . , N and

impose periodic boundary conditions, that is, the sitex + N is identified as the sitex. As for the

hopping matrix elements, I assume that following values:{
tx,x+1 = tx+1,x = −t ( ∀x ∈ Λ )
tx,y = 0 ( otherwise )

. (2.14)

The corresponding Schrödinger equation (2.13) can be easily solved according to the wave function
1√
N

eikx, with wave number

k =
2πn

N
( n = 0,±1,±2, . . . ,±N

2
). (2.15)

The eigenvalues areε(k) = −2t cos k. If one makes a suitable correspondence betweenn andj =
1, 2, . . . , N , the desired energy levelεj is obtained.

Now let us define the fermion operators corresponding to the eigenstates|ϕ(j)⟩ by

a†k,σ =
∑
x∈Λ

c†x,σ

1√
N

eikx. (2.16)

Due to the orthonormality of the set of eigenstates{|ϕ(j)⟩}j=1,2,...,|Λ|, one finds that the inverse trans-

formation of Eq. (2.16) is

c†x,σ =
∑

k=−π,−π+ 2π
N

,...,π

a†k,σe−ikx. (2.17)

Substituting Eq. (2.17) into Eq. (2.6) and using Eq. (2.13),Hhop can be diagonalized as

Hhop =
∑

σ=↑,↓

∑
k

ε(k)a†k,σak,σ =
∑

σ=↑,↓

∑
k

ε(k)ñk,σ, (2.18)

whereñk,σ = a†k,σak,σ can be interpreted as the electron number operator for the eigenstate with mo-

mentumk.
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Here, letA andB be arbitrary subsets of{−π,−π + 2π
N , . . . , π} which satisfy|A| + |B| = Ne. By

using Eq. (2.18), the state

|ΨA,B⟩ =

( ∏
k∈A

a†k,↑

)( ∏
k∈A

a†k,↓

)
|Ψvac⟩ (2.19)

is found to be an eigenstate ofH = Hhop and its energy eigenvalue is

EA,B =
∑
k∈A

ε(k) +
∑
k∈B

ε(k). (2.20)

The ground state of this non-interacting system can be obtained by choosing subsetsA andB which

minimize the energyEA,B.

When the corresponding single-electron energy eigenvalues are non-degenerate, i.e.εj < εj+1, and

the total electron numberNe is even, the ground state of the system with the HamiltonianH = Hhop is

written

|ΨGS⟩ =

( Ne/2∏
j=1

a†k(j),↑a
†
k(j),↓

)
|Ψvac⟩. (2.21)

This indicates that the state is filled with both up and down spins from the lowest energy level. See Fig.

2.2.

Fig. 2.2: The Ground State of a Non-interacting System. The lowestNe
2 energy levels of a single

electron system are filled with up and down spin electrons.

In the discussion above, the electron has a plane wave form with a certain wave numberk. The

diagonalization of the HamiltonianH = Hhop shows that the electrons behave as “waves” in this non-

interacting system.
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Non-hopping System

Let us now assume that the hopping matrix elements inHhop satisfy

tx,y = 0 ( ∀x, y ∈ Λ ). (2.22)

The Hamiltonian is then

H = Hint =
∑
x∈Λ

Uxnx,↑nx,↓, (2.23)

which is in fact already diagonalized. A general eigenstate can be written

|ΨX,Y ⟩ =

( ∏
x∈X

c†x,↑

)( ∏
y∈Y

c†y,↑

)
|Ψac⟩, (2.24)

whereX andY are arbitrary subsets ofΛ, and represent lattice sites which are occupied by up and down

spin electrons. The total electron number in this state is given by

Ne = |X| + |Y |, (2.25)

and the energy eigenvalue is given by

EX,Y =
∑

x∈X∩Y

Ux. (2.26)

For a given electron numberNe, the ground state can be found by choosing subsetsX and Y that

minimize the energyEX,Y . In the case ofNe ≤ |Λ|, if the subsetsX andY are chosen as satisfying

X ∩ Y = ∅, i.e. two electrons do not exist on a same site. The energy of the ground state then equals to

0.

Needless to say, the electrons behave as “particles” in this non-hopping system, which repulsively

interact only when two happen to be on a same site.

2.1.4 Expansion into the Bose-Hubbard Model

The Bose-Hubbard model is an approximate model of interacting bosons on a lattice. It is closely

related to the Hubbard model which originated from solid state physics as an approximate representation

of the behavior of the electrons confined in atomic potentials of a crystalline solid. The difference is that

the fermionic operators are now replaced by bosonic creation and annihilation operators. The Bose-

Hubbard model is used to study systems such as bosonic atoms in optical lattices.

The Hamiltonian of the Bose-Hubbard model is given by

H = −t
∑

{(x,y)|nearest neighbor}
(b†xby + b†ybx) +

1
2
U

∑
x

n̂x(n̂x − 1) −
∑
x

µxn̂x, (2.27)

whereb†x andbx are bosonic creation and annihilation operators, satisfying

[bx, b†y] = δx,y (2.28)
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and

[bx, by] = 0. (2.29)

n̂x = b†xbx is the number operator and it gives the number of the particles at the sitex. t is the hopping

matrix element,U is the on-site interaction, andµx is the chemical potential.

In fermionic systems, the Mott transition are complicated due to the spin of electrons and the anti-

commutating nature of the operators. On the other hand, for interacting bosonic system with spin zero,

the situation is much simpler and more easily studied. Therefore theoretical analyses of the dynamics of

the Bose-Hubbard model are often studied [10,11].

2.2 Quantum Phase Transition

2.2.1 Overview

Due to Heisenberg’s uncertainty, fluctuations remain even at zero temperature in a quantum system.

These quantum fluctuations may be strong enough to induce a quantum phase transition which brings

about a macroscopic change. A remarkable example of such a quantum phase transition is the shift

from the superfluid state to the Mott insulator state in a system made up of bosonic particles which

repulsively interact each other. This transition was first studied theoretically [9] and, recently, have been

shown to be observable when an ultracold gas of atoms with repulsive interactions is stored in a periodic

potential [12].

Let us consider an atomic gas of bosons at extremely low temperatures. In such an ultracold situation,

a Bose-Einstein condensate is formed. When a lattice potential is applied on the Bose-Einstein conden-

sate, this results in a superfluid state with long-range phase coherence. In the superfluid state, bosons

can hop from one lattice site to the next only by a tunnel coupling.

If the lattice potential is raised smoothly, the system stays in the superfluid state as long as atom-

atom interactions are small relative to the tunnel coupling. In this phase, the delocalized wave function

minimizes the kinetic energy which is dominant in the system and therefore the total energy is also

minimized.

If the lattice potential is raised further, the repulsive atom-atom interactions become large compared

to the tunnel coupling. In this phase, since the total energy is minimized when each lattice site is filled

with the same number of atoms, the atom number per site becomes fixed. This is accompanied by the

reduction of fluctuations in the atom number on each site, and phase coherence is consequently lost.

This situation is called the Mott insulator phase.

The above physics can be described by the Bose-Hubbard model (see Eq. (2.27)). In the following,

the two main phases of the model, i.e. the superfluid state and the Mott insulator state, is discussed.
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(a) Optical Lattices (b) Lattice Potential

Fig. 2.3: Ultracold Atoms in Optical Lattices

2.2.2 Superfluid Phase

In the limit where the tunneling (hopping) term dominates the Hamiltonian, the total energy of the

ground state is minimized by single-particle wave functions that are spread out over the entire lattice.

The many-body ground state for a homogeneous system (µx = constant) is given by

|ΨSF⟩U=0 ∝
(

M∑
x=1

a†x

)N

|Ψvac⟩, (2.30)

whereM is the lattice site number, andN is the atom number. Note that this is equivalent to the plane

wave states discussed in Subsection 2.1.3, with allk = 0.

In this regime, all atoms occupy identical extended Bloch states. Furthermore this regime is well

represented by a macroscopic wave function with long-range phase coherence over the entire lattice.

2.2.3 Mott Insulator Phase

In the opposite limit, where the interaction term dominates the Hamiltonian, the ground state of the

system consists of wave functions of localized atoms with a same number per site. Then the ground state

is a product of local Fock states for each lattice site. The many-body ground state for a filling factorn

(n atoms per site) is given by

|ΨMI⟩t=0 ∝
(

M∏
x=1

(a†x)n

)
|Ψvac⟩, (2.31)

in the homogeneous case.
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This Mott insulator state cannot be expressed by a macroscopic wave function. In this regime, no

phase coherent prevails in the system but there exists perfect correlations in the atom number between

lattice sites.

2.3 Quantum Simulation

2.3.1 Universal Quantum Simulator

In 1982, Richard Feynman proposed that a universal quantum computer could be used to simulate

physical systems [14]. Since the number of variables that must be taken into account to simulate a

quantum system increases exponentially with the number of particles in the system, he claimed that

the simulations of quantum many-body systems are intractable on any classical computer, and conjec-

tured that other computers built incorporating quantum mechanics should be able to simulate quantum

mechanical systems efficiently. It is known that certain phenomena in quantum field theory are well

imitated by certain condensed matter systems and therefore he guessed that there should be a certain

class of quantum systems which would simulate any other systems, a so-called “Universal Quantum

Simulator”.

In 1996, Seth Lloyd showed Feynman’s conjecture to be correct [15]. Furthermore, he also indi-

cated that the experimental requirements to accomplish an efficient simulation of interacting many-body

systems would be less demanding compared to the implementation of Shor’s factoring algorithm [16],

which is the best known problem that a quantum computer can solve more efficiently than a classi-

cal computer. Although a quantum computer implementing Shor’s algorithm might need millions of

quantum bits (qubits), quantum simulation requires a quantum computer (simulator) with only a few

hundreds or thousands qubits.

2.3.2 Benefits of Quantum Simulations

With quantum simulators, many condensed matter phenomena described by a many-body Hamilto-

nian that cannot be treated either analytically or numerically with classical computers, are thought to

become tractable. Therefore, through these experiments, important phenomena in physics, chemistry,

and even biology are hoped to be understood.

The experiment of ultracold atoms stored in optical lattices is the most successful implementation of

a quantum simulator to date. The lattices are artificial crystals made of laser light (Fig. 2.3(a)) where

ultracold atoms are confined in arrays of a microscopic potential (Fig. 2.3(b)). They can be manipulated

externally by optical techniques. Due to the many controllable parameters over the atoms, this system is

highly suited for performing quantum simulations.

2.4 Quantum simulation of the Hubbard Model

Recently there have been a lot of advances in trapping of fermionic atoms in optical lattices [18]. One

of the features of an optical lattice is that the effective form of interactions is an extremely short-range
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interaction [13]. In a real system where the physics is described by a Hubbard model, the interactions are

of a long-range form originating from the Coulomb interaction. Therefore such effects may be difficult

to take into account in an optical lattice approach. To simulate a Coulomb interaction, a real Coulomb

interaction may be necessary in the system carrying out the simulation.

2.4.1 Quantum Simulator Using Surface Acoustic Waves

Another type of quantum simulator using fermionic particles were proposed for studying the Hubbard

model [19]. This quantum simulator is desired to understand the metal-Mott insulator (conducting-

insulating) quantum phase transition in a solid.

In Ref. [19], Byrnes et al. start with a standard modulation-doped GaAs/AlGaAs heterojunction,

which forms a two-dimensional electron gas (2DEG). Interdigital transducers (IDTs) are placed outside

of the 2DEG mesa. Surface acoustic waves (SAWs) are launched by driving a high frequency AC voltage

to the IDTs, forming an interference area at the center of the device. An electric potential is induced

due to the piezoelectric property of GaAs. As the SAW moves, it carries the trapped electron with it in

the local minima of the potential induced by the SAW [20]. The electrons in the lattice interact via a

Coulomb repulsive force and thus create a Hubbard model (see Fig. 2.4).

Fig. 2.4: Quantum Simulator Using SAW. Green areas show periodic potential experienced by electrons.

“S” denotes a source electrode and “D” a drain electrode.
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2.5 Quantum Simulation of the Bose-Hubbard Model

In 2002, Markus Greiner et al. observed a quantum phase transition in a Bose-Einstein condensate of
87Rb, held in a three-dimensional optical lattice potential [17]. In this experiment, the phase coherence

between different lattice sites was tested by suddenly turning off the confining potential. The atoms were

then permitted to expand freely and interfere with each other.

2.5.1 Superfluid Phase

In the superfluid phase, where all atoms are delocalized throughout the entire lattice with equal relative

phases between different lattice sites, a high-contrast three-dimensional interference was detected as

expected for a periodic array of phase coherent matter wave source (Fig. 2.5).

Fig. 2.5: Schematic Three-dimensional Interference Pattern.k denotes the wave vector of the laser light.

(Excerpted from Ref. [17])

2.5.2 Quantum Phase Transition into the Mott Insulator Phase

As the lattice potential height is increased, the resulting interference pattern changes markedly. In

the initial state, where there exists no lattice potential, the Bose-Einstein condensate has perfect phase

coherence and therefore only a first-order interference peak is observed (Fig. 2.6a). The strength of

higher-order interference maxima increases as the lattice depth is increased because the atoms tightly

localize on every lattice site (Figs. 2.6b-d). When the lattice potential is further increased, the strength of

the interference maxima no longer increases (Figs. 2.6e, f). Instead, an incoherent background appears.

Finally, no interference pattern is visible at all (Figs. 2.6 g, h). Phase coherence has been absolutely lost

at this lattice potential.
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Fig. 2.6: Absorption Images of Multiple Matter Wave Interference Patterns. These were obtained after

suddenly releasing the atoms from an optical lattice potential with different potential depths. (Excerpted

from Ref. [17])

During the evolution, the interference pattern remarkably changes from the coherent to the incoherent.

When the interference pattern is still visible, no broadening of the interference maxima can be observed.

With a strong lattice potential, this completely vanishes in the incoherent background. This phenomenon

can be explained on the basis of the superfluid-Mott insulator phase diagram. After the system has

crossed over the quantum critical point, it changes into an incoherent Mott insulator phase. Near this

quantum critical point, the system is inhomogeneous, that is to say, partially in the superfluid state and

also partially in the Mott insulator state. Therefore both interference peaks and incoherent background

are visible.

2.6 Problems and Requirements

Ultracold atoms in optical lattices have experimentally realized a Mott insulator state. The interfer-

ence pattern indicates that each atom is localized at an individual site [17]. However the behavior of

each particle in the Mott insulator state is unclear from this experiment alone. To understand the true

behavior of each particle, the wave function of the quantum many-body system must be calculated.

Of course, it is impossible to calculate the wave function of such a system of tens or hundreds particles

with computers. Thus it is necessary to reduce the particle number and simplify the system for numerical

analysis. Even if the target system contains only two particles, one can know the correlation between the

two particles using a numerical simulation. It is hoped to gain a better understanding of Mott insulators

using this calculation.



Chapter 3

FDTD-Q method

– 19 –



Chapter 3 The FDTD-Q Method 20

3.1 Numerical Analysis

3.1.1 Numerical Solutions for Partial Differential Equations

Numerical schemes for solving partial differential equations, e.g. Maxwell’s equations and the time-

dependent Schrödinger equation, include the following:

• The finite difference method

Functions are discretized and then represented by their values at certain grid points and derivatives

are approximated through differences in these values. Finite differences are one of the simplest

ways of approximating a differential operator.

• The finite element method

Functions are represented in terms of basis functions and the partial differential equations are solved

in their integral form. The solution is based on eliminating the differential equation completely, or

rendering the partial differential equation into an equivalent ordinary differential equation with

standard solutions.

• The finite volume method

Space is divided into discrete parts and the change within each volume is calculated by considering

the flux across the surface of each volume.

• The spectral method

Functions are represented as a sum of their basis functions, for example Fourier components. By

substituting the Fourier decompositions into the original partial differential equations, a system of

ordinary differential equations is obtained.

The finite difference method is usually regarded as the simplest and the most easily understood method

and thus we usually choose to use this finite difference method. The finite element and the finite volume

methods are widely used in engineering and in computational fluid dynamics, and are suited for problems

in complicated geometries. The spectral methods are generally the most accurate, if the solutions are

sufficiently smooth.

In this chapter, the finite difference method is employed for solving the time-dependent Schrödinger

equation. This scheme is adopted not only for the spatial domain but also for the temporal domain.

Consequently, using this scheme, the time response of the wave function is calculated and the scattering

of the quantum particle can be calculated.

3.1.2 Explicit Versus Implicit Schemes

For numerically solving partial differential equations, either explicit scheme or implicit scheme, as

well as semi-implicit scheme, may be applied. Explicit methods calculate the state of a system at a

later time, or a next time step, only from the state of the system at the current time. On the other hand,

implicit methods find the later state by solving an equation involving both the current state of the system
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and the later one. The explicit method is called as the “forward Euler method”, while the implicit

method is called as the “backward Euler method”. Moreover the semi-implicit method is called the

“Crank-Nicolson method”. This method involves taking the derivative half way between the beginning

and the end of the time step. It is thus an average between the fully implicit and fully explicit schemes.

The explicit method is stability bound, but much faster on a per-time-step basis. Furthermore, because

the time step is severely restricted, this method tends to produce a more temporally accurate solution.

Generally, the explicit method is suitable for time-dependent problems with fast moving dynamics.

The main advantage of the implicit approach is to march in large time steps for the steady state

without any stability conditions. The price for stability is the need to solve a linear algebraic system at

each demanding time step, which is a rather expensive computational task and therefore takes a lot of

time. In addition, although harmless to stability, the time-step size has to be carefully chosen, due to the

numerical accuracy of the time evolution.

3.1.3 Solutions of the Time-dependent Schrödinger Equation

The numerical solutions of the time-dependent Schrödinger equation (or similar equations) have been

studied for a long time in order to calculate the dynamics of quantum mechanical systems [21–24].

These time-domain calculations are useful for estimating the response of various quantum devices. In

the following sections, I introduce a solution for the time-dependent Schrödinger equation with a focus

on the “FDTD-Q method”.

3.2 The FDTD-Q Algorithm (Real Time)

The finite-difference time-domain (FDTD) is a computational electrodynamics modeling scheme. It

is widely used to solve Maxwell’s equations for scientific and engineering applications [26,27].

The FDTD method belongs to the general class of grid-based differential time-domain numerical mod-

eling methods. Maxwell’s equations (in partial differential form) are transformed into central-difference

equations. The equations are solved in a leapfrog manner: the electric field is solved at a given instant

in time, then the magnetic field is solved at the next instant in time, and the process is iterated over and

over.

This scheme is also useful for the analysis of quantum devices [28, 29]. The scheme is extended for

solving the time-dependent Schrödinger equation

ih̄
∂ψ(r, t)

∂t
= Ĥψ(r, t), (3.1)

where the Hamiltonian has the form

Ĥ = − h̄2

2m
∇2 + V (r, t), (3.2)

wherem is the mass of the particle andV is the potential.
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In this section, I will describe an application algorithm of the FDTD technique for solving the time-

dependent Schrödinger equation. In the following, to distinguish the two algorithms, I call the scheme

“FDTD” for electromagnetism and “FDTD-Q” for quantum mechanics.

3.2.1 Separation of Real and Imaginary Parts

To obtain two real equations, the complex wave function is separated into two real functions. They

correspond to the real and imaginary parts

ψ(r, t) = ψre(r, t) + iψim(r, t). (3.3)

Then, by separating real and imaginary parts, Eq. (3.1) is divided into the following two equations

involving real functions corresponding toψre andψim.

h̄
∂ψre(r, t)

∂t
= − h̄2

2m
∇2ψim(r, t) + V (r, t)ψim(r, t) (3.4)

h̄
∂ψim(r, t)

∂t
=

h̄2

2m
∇2ψre(r, t) − V (r, t)ψre(r, t) (3.5)

3.2.2 Discretization

In order to solve the partial differential equations numerically, it is required to transform the continu-

ous functions into discrete functions as described below. In the following case, the spatial dimension of

the wave function is fixed to one, i.e.ψ(r, t) = ψ(x, t), for simplicity. Space is divided into small cells

of width ∆x and time is split into short steps of span∆t.

ψre(x, t) = ψre(i∆x, n∆t) ≃ Rn
i (3.6)

ψim(x, t) = ψim(i∆x, n∆t) ≃ In
i (3.7)

Next, the partial differential equations are transformed into difference equations. The Schrödinger

equation contains first-order derivatives in time and second-order derivatives in space. They are calcu-

lated by using a central difference approximation as described below.

• First-order derivative in time

∂ψ

∂t
≈

ψ(t + ∆t
2 ) − ψ(t + ∆t

2 )
∆t

(3.8)

• Second-order derivative in space

∂2ψ

∂x2
≈ ψ(x + ∆x) − 2ψ(x) + ψ(x − ∆x)

(∆x)2
(3.9)

The former approximate accuracy is(∆t)2, and latter is(∆x)2.
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Using the above discretization, the Schrödinger equation (Eqs. (3.4) and (3.5)) is discretized and the

following two equations are obtained.

R
n+ 1

2
i = R

n− 1
2

i − ∆t

h̄

[
h̄2

2m

In
i+1 − 2In

i + In
i−1

(∆x)2
− V n

i In
i

]
(3.10)

I
n+ 1

2
i = I

n− 1
2

i +
∆t

h̄

[
h̄2

2m

Rn
i+1 − 2Rn

i + Rn
i−1

(∆x)2
− V n

i Rn
i

]
(3.11)

3.2.3 Iteration

The calculation of Eqs. (3.10) and (3.11) at a given pointi involves the pointsi + 1 andi − 1. For

example, to update the real part of the wave function at the discrete pointi at the instant(n + 1
2)∆t, the

values of the imaginary part of the wave function at the pointsi, i + 1, andi − 1 at the instantn∆t are

required. The calculation involves the real and imaginary parts of the wave function at each node and

second-order derivatives at each point of the discrete space. Therefore, in this scheme, both the real and

imaginary parts of the wave function are located at the same node. This fact is different to the FDTD

method applied to electromagnetic problems. The electric and magnetic field components are sampled

at distinct spatial points, whereas the real and imaginary parts of wave function are calculated at the

same spatial point (Fig. 3.1).

(a) Yee Cell (b) FDTD-Q Cell

Fig. 3.1: Field Components within a Cubical Grid

The time instants of the real and imaginary parts of the wave function are updated out of step with

each other. The imaginary part of the wave function is out of step by a time∆t
2 relative to the real part.

Therefore Eqs. (3.10) and (3.11) are evaluated alternately. This leapfrog manner is an analogy between

the FDTD method and the FDTD-Q method.



Chapter 3 The FDTD-Q Method 24

3.2.4 Initial Value

To start this staggered algorithm, the initial values of the wave function, i.e.ψre(x, 0) andψim(x, ∆t
2 ),

are necessary. An approximation is then used for estimating the initial wave functionψim(x, ∆t
2 ).

For example, a suitable initial state for an area without any potential is a plane waveψ(x, 0) = ϕ(x) =
eikx. The wave function is represented at the instantt by

ψ(x, t) = ϕ(x)e−iωt = ϕ(x)e−i
E(k)

h̄
t, (3.12)

whereω is the angular frequency andE(k) is its energy. An approximation of the imaginary part of the

wave function att = ∆t
2 may be obtained as

ψim(x,
∆t

2
) = −ψre(x, 0) sin(

E∆t

2h̄
). (3.13)

3.2.5 Definition of Probability Density

It is not obvious in this system that the probability density is simply evaluated by

P = Re[ψ]2 + Im[ψ]2, (3.14)

sinceR andI are not defined at the same time. If one makes the choice Ref. [28],

P (x, t) = ψre(x, n∆t)2 + ψim(x, (n +
1
2
)∆t)ψim(x, (n − 1

2
)∆t) (3.15)

at integern = t
∆t and

P (x, t) = ψre(x, (n +
1
2
)∆t)ψre(x, (n − 1

2
)∆t) + ψim(x, n∆t)2 (3.16)

at half-integern = t
∆t , then it is guaranteed that the difference

∑
x

P (x, t +
∆t

2
) −

∑
x

P (x, t) (3.17)

vanishes identically and therefore probability is conserved.

3.3 Stability Conditions

The time step∆t is the time increment between continuous calculations in the numerical approach

described by Eqs. (3.10) and (3.11). A suitable choice of∆t is important in the FDTD-Q simulations,

since the computational cost decreases as∆t increases. A larger∆t provides longer simulation time

with the same number of calculation iterations. However, if∆t is too large, this makes the simulation

unstable. The optimal choice of the time discretization is the largest one that keeps the algorithm stable.



Chapter 3 The FDTD-Q Method 25

In Refs. [29] and [30], the stability relationship between temporal and spatial discretizations is ex-

pressed as below inequality

∆t ≤ h̄
h̄2

m

[
1

(∆x)2
+ 1

(∆y)2
+ 1

(∆z)2

]
+ V

. (3.18)

The critical time step Eq. (3.18), which gives long simulation times and yet maintains the stability of

the algorithm, should be used in the calculations.

3.4 Absorbing Boundary Conditions

In this section, I consider a computation area ofx = [0, N∆x], whereN is a integer. From Eqs.

(3.10) and (3.11),Rn
i andI

n+ 1
2

i (i = 1, 2, . . . , N − 1) are calculated fromRn−1
i , I

n− 1
2

i andRn
i . If one

takes boundary conditions ofRn
0 = I

n+ 1
2

0 = Rn
N = I

n+ 1
2

N = 0 for all n, perfect reflections occur at the

boundary as if an infinite potential wall existed. To avoid this reflections, it is necessary to implement

absorbing boundary conditions.

3.4.1 Outline

To construct absorbing boundary conditions, the boundary should be transparent for plane waves of

the form

ψ(x, t) = e−i(ωt−kx). (3.19)

This expression is only valid for scattering states. The basic idea is to build an algebraic equation for

the wave vectork and the frequencyω, and then utilize the relationship between thex-t domain and the

k-ω domain. In short, the correspondence ofi ∂
∂t ⇔ ω and−i ∂

∂x ⇔ k is used to construct a differential

equation at the boundaries which is transparent for plane waves.

It is obvious that the boundaries are fully transparent only for plane waves and thus it is impossible

to construct perfectly absorbing boundary conditions for arbitrary waves. From Eqs. (3.1), (3.2), and

(3.19), the following dispersion relation for the wave vectork is obtained

h̄2k2 = 2m(h̄ω − V ). (3.20)

This equation can be solved fork and yields

h̄k = ±
√

2m(h̄ω − V ). (3.21)

In this equation, the plus sign means a right-going wave and the minus sign means a left-going wave.

The absorbing boundary conditions should be constructed to satisfy the dispersion relation given by

the plus-signed Eq. (3.21) at the right boundary and the minus-signed Eq. (3.21) at the left boundary.

Unfortunately, Eq. (3.21) cannot be converted into an partial differential equation. Consequently, many

approximation methods are proposed [31–36].
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3.4.2 Pad́e Approximation

In Ref. [32] and others, the following Padé approximation centered at a positive constantk = k0 is

applied tok2.

k2 = k2
0

−3k + k0

k − 3k0
+ O((k − k0)3) (3.22)

Substituting the above equation into Eq. (3.20), one obtains

h̄2k2

2m
≈ h̄2k2

0

2m

−3k + k0

k − 3k0
= h̄ω − V

h̄2k2
0

2m
(−3k + k0) = (k − 3k0)(h̄ω − V ). (3.23)

Using correspondencei ∂
∂t ⇔ ω and−i ∂

∂x ⇔ k, second absorbing boundary condition

h̄2k2
0

2m
(3i

∂

∂x
+ k0)ψ = −(i

∂

∂x
+ 3k0)(ih̄

∂

∂t
− V )ψ (3.24)

is obtained. From the original Schrödinger equation,

(ih̄
∂

∂t
− V )ψ = − h̄2

2m

∂2ψ

∂x2
(3.25)

is guaranteed to hold. Substituting Eq. (3.25) into Eq. (3.24), one gets a new absorbing boundary

condition

(i
∂

∂x
+ k0)3ψ = 0. (3.26)

This is a time-independent equation. Therefore, one can calculate the boundary values of the wave

function from the values near the boundary at the same time.

Eq. (3.26) is separated into the real and imaginary parts in a similar way to Sec. 3.2.

∂3ψre

∂x3
+ 3k0

∂2ψim

∂x2
− 3k0

2 ∂ψre

∂x
− k0

3ψim = 0 (3.27)

∂3ψim

∂x3
− 3k0

∂2ψre

∂x2
− 3k0

2 ∂ψim

∂x
+ k0

3ψre = 0 (3.28)

3.4.3 Discretization

If Eqs. (3.27) and (3.28) are discretized, we will obtain difference equations. However, at the bound-

ary, the central difference method is impractical, since the values in outer domain are not defined. We

will therefore employ the forward and backward difference methods in this case. Specifically, the for-

ward difference method is applied at the left boundary (x = 0) and the backward difference method is

applied at the right boundary (x = N∆x).
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Left Boundary

The derivatives are approximated in the following forward difference method as follows:

• The 1st-order derivative

∂ψ

∂x
≈ ψ(∆x) − ψ(0)

∆x
(3.29)

• The 2nd-order derivative

∂2ψ

∂x2
≈ ψ(2∆x) − 2ψ(∆x) + ψ(0)

(∆x)2
(3.30)

• The 3rd-order derivative

∂3ψ

∂x3
≈ ψ(3∆x) − 3ψ(2∆x) + 3ψ(∆x) − ψ(0)

(∆x)3
(3.31)

Eqs. (3.27) and (3.28) are modified into the following difference equations

R3 − 3R2 + 3R1 − R0

(∆x)3
+ 3k0

I2 − 2I1 + I0

(∆x)2
− 3k0

2 R1 − R0

∆x
− k0

3I0 = 0 (3.32)

I3 − 3I2 + 3I1 − I0

(∆x)3
− 3k0

R2 − 2R1 + R0

(∆x)2
− 3k0

2 I1 − I0

∆x
+ k0

3R0 = 0. (3.33)

They are solved forR0 andI0 which then yields

R0 =
3

a2 + 1
R1 +

3(a2 − 1)
(a2 + 1)2

R2 −
3a2 − 1

(a2 + 1)3
R3

+
3a

a2 + 1
I1 −

6a

(a2 + 1)2
I2 −

a(a2 − 3)
(a2 + 1)3

I3 (3.34)

I0 = − 3a

a2 + 1
R1 +

6a

(a2 + 1)2
R2 +

a(a2 − 3)
(a2 + 1)3

R3

+
3

a2 + 1
I1 +

3(a2 − 1)
(a2 + 1)2

I2 −
3a2 − 1

(a2 + 1)3
I3 (3.35)

with a = k0∆x.

Right Boundary

The derivatives are approximated in the following backward difference method as follows:

• The 1st-order derivative

∂ψ

∂x
≈ ψ(N∆x) − ψ((N − 1)∆x)

∆x
(3.36)

• The 2nd-order derivative

∂2ψ

∂x2
≈ ψ(N∆x) − 2ψ((N − 1)∆x) + ψ((N − 2)∆x)

(∆x)2
(3.37)

• The 3rd-order derivative

∂3ψ

∂x3
≈ ψ(N∆x) − 3ψ((N − 1)∆x) + 3ψ((N − 2)∆x) − ψ((N − 3)∆x)

(∆x)3
(3.38)
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Eqs. (3.27) and (3.28) are modified into the following difference equations:

RN − 3RN−1 + 3RN−2 − RN−3

(∆x)3
+ 3k0

IN − 2IN−1 + IN−2

(∆x)2

−3k0
2 RN − RN−1

∆x
− k0

3IN = 0 (3.39)

IN − 3IN−1 + 3IN−2 − IN−3

(∆x)3
− 3k0

RN − 2RN−1 + RN−2

(∆x)2

−3k0
2 IN − IN−1

∆x
+ k0

3RN = 0. (3.40)

They are solved forRN andIN which then yields

RN =
3

a2 + 1
RN−1 +

3(a2 − 1)
(a2 + 1)2

RN−2 −
3a2 − 1

(a2 + 1)3
RN−3

− 3a

a2 + 1
IN−1 +

6a

(a2 + 1)2
IN−2 +

a(a2 − 3)
(a2 + 1)3

IN−3 (3.41)

IN =
3a

a2 + 1
RN−1 −

6a

(a2 + 1)2
RN−2 −

a(a2 − 3)
(a2 + 1)3

RN−3

+
3

a2 + 1
IN−1 +

3(a2 − 1)
(a2 + 1)2

IN−2 −
3a2 − 1

(a2 + 1)3
IN−3 (3.42)

with a = k0∆x.

3.4.4 Energy-weighted Wave-number Parameter

The parameterk0 plays the role of the expansion point in the Padé approximation. In the above

absorbing boundary conditions, it needs to be pre-estimated. Therefore, one of the most important

issues is how to select a suitablek0 such that it minimize the reflection of the wave at the boundary. In

the following, for convenience, the discussion is focused on the right boundary (x = N∆x).

It is most constructive to estimate the parameter in the frequency domain. The wave function at time

t is able to be expressed in terms of a Fourier series. In Ref. [35], a general strategy is given to estimate

the wave-number parameterk0, which is a function of timet. The strategy is to use a discrete Fourier

series expansion of the physical variable in space

ψ̂(χ, t) =
N∑

j=0

ψ(xj , t)e−iχxj
2π
L ( for χ = −N

2
,−N

2
+ 1, . . . ,

N

2
) (3.43)

with x0 = 0, xN = L andN even. If a certain Fourier mode is dominant, one can choose the parameter

k0 = 2π
L χ0 such that

|ψ̂(χ0, t)| = max
0≤χ≤N

2

{ |ψ̂(χ, t)| }. (3.44)

Eq. (3.44) is not the best choice in many practical cases. When two Fourier modes are both dominant,

it is obvious that the best choice of the parameter to minimize the reflection is the medial value of the



Chapter 3 The FDTD-Q Method 29

two different wave numbers. Consequently, an improvement is to use a weighting strategy [34]. The

approach is to weight the energy as follows,

k0 =
2π

L

N
2∑

χ=0

{|ψ̂(χ, t)|pχ)}
/ N

2∑
χ=0

|ψ̂(χ, t)|p, (3.45)

with p a positive real number. Whenp → +∞, Eq. (3.45) converges to Eq. (3.44). In Ref. [34], the

authors suggest thatp = 4 is a good choice based on numerical experiments.

3.5 The FDTD-Q Algorithm (Imaginary Time)

The Schr̈odinger equation provides the general description of microscopic phenomena. However the

Schr̈odinger equation is analytically solvable only in a few highly idealized cases and thus, for realistic

systems, one needs to resort to numerical solutions. Recently the Diffusion Monte Carlo method was

introduced for these analytically unsolvable systems [37–39]. This method is suitable for obtaining the

ground state of many complicated quantum systems. However the method that works best for simple

systems, such as systems without local potential minima, is the imaginary time evolution method [40,

41], which is the basic concept of the Diffusion Monte Carlo method and is described below.

3.5.1 Imaginary-time Evolution

The solution of the time-dependent Schrödinger equation can be written in general as a linear super-

position of stationary states with the time dependence given by the phase factorexp(−iEnt/h̄), where

En is then-th energy level of the quantum system. The energy can be chosen such that all energies are

positive.

Now, if we consider in imaginary time, that is to say, replacing the timet by −iτ , the solution of

the Schr̈odinger equation is given by a sum of transients of the formexp(−Enτ/h̄). As the quantum

system evolves in imaginary time, the longest surviving transient corresponds to the ground state (the

state with the lowest possible energyE0) of the system. Consequently, evolved for adequately long in

imaginary time, one can obtain both the ground state energyE0 and the ground state wave functionϕ0

of the quantum system. Moreover, this method is not sensitive to the initial state prepared.

3.5.2 Numerical Scheme

The numerical scheme for the imaginary-time Schrödinger equation is basically similar to the scheme

for the real-time Schr̈odinger equation described in Sec. 3.2. The Schrödinger equation in imaginary

time is as follows,

−h̄
∂ψ(r, τ)

∂τ
= Ĥψ(r, τ), (3.46)

where the Hamiltonian has the form

Ĥ = − h̄2

2m
∇2 + V (r). (3.47)
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Separating the wave function into real and imaginary parts, one obtains the following two equations:

h̄
∂ψre(r, τ)

∂τ
=

h̄2

2m
∇2ψre(r, τ) − V (r)ψre(r, τ) (3.48)

h̄
∂ψim(r, τ)

∂τ
=

h̄2

2m
∇2ψim(r, τ) − V (r)ψim(r, τ). (3.49)

Then, discretizing the wave function, one obtains the following two equations,

Rn+1
i = Rn

i +
∆t

h̄

[
h̄2

2m

Rn
i+1 − 2Rn

i + Rn
i−1

(∆x)2
− ViR

n
i

]
(3.50)

In+1
i = In

i +
∆t

h̄

[
h̄2

2m

In
i+1 − 2In

i + In
i−1

(∆x)2
− ViI

n
i

]
, (3.51)

in the one-dimensional case.
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4.1 Overview

4.1.1 Two-particle Two-site System

To analyse the nature of a Mott insulator phase, particularly to find the state of each particle, it is

necessary to calculate the wave function of the system. Let us consider two electrons trapped in a plane,

e.g. a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterojunction. In this chapter, I will

consider a two-electron system where the two electrons are trapped in a two-site geometry (see Fig. 4.1).

The electrons are confined within the area:

D = { (x, z) | 0 < x < Lx, 0 < z < Lz } (4.1)

in thex-z plane. The external confining potentialVext is described as{
Vext = 0 ( (x, z) ∈ D )
Vext = ∞ ( else )

. (4.2)

The lattice potentialVlat is modulated only inx-direction and written

Vlat(x, t) = V (t) cos
(

4πx

Lx

)
, (4.3)

whereV (t) ≥ 0 is the time-transient lattice potential depth.

Fig. 4.1: Lattice Potential in the Two-Site Model

4.1.2 Conceptual Expression of the Ground State in the Two-site Model

In this two-site geometry, the ground state of a single electron is simply and conceptually expressed

by two basic states|L⟩ and|R⟩, or their superposition state. The|L⟩ state corresponds to a state where
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the electron is mostly found on the left site (0 ≤ x ≤ Lx
2 ). On the other hand, the|R⟩ state corresponds

to a state where the electron is mostly found on the right site (Lx
2 ≤ x ≤ Lx). The single-electron

ground state of this model is then

|Φ⟩ =
1√
2
(|L⟩ + |R⟩). (4.4)

The ground state of the two-electron system without any interaction is then written

|Ψ⟩U=0 =
1√
2
(|L⟩ + |R⟩)1 ⊗

1√
2
(|L⟩ + |R⟩)2

=
1
2
(|LL⟩ + |LR⟩ + |RL⟩ + |RR⟩), (4.5)

where

|LL⟩ = |L⟩1 ⊗ |L⟩2 (4.6)

|LR⟩ = |L⟩1 ⊗ |R⟩2 (4.7)

|RL⟩ = |R⟩1 ⊗ |L⟩2 (4.8)

|RR⟩ = |R⟩1 ⊗ |R⟩2. (4.9)

Using this expression, we may guess that the ground state of the system with interactions might be

given by

|Ψ⟩U ̸=0 =
1√
2
(|LR⟩ + |RL⟩) (4.10)

since|LL⟩ and|RR⟩ states contain the higher interaction energy.

4.1.3 Time Evolution

The lattice potentialVlat corresponding to the tunneling (hopping) term may only be a tunable pa-

rameter in nature because it is applied externally. However, exploiting the calculation techniques, the

interaction term is also controllable and can even be set to zero.

While controlling these two parameters, we simulate the time evolution of the system. Beginning

in the ground state of the system, the system remains in the ground state as long as the condition of

adiabatic evolution is observed. We may thereby calculate the ground state for all interaction energies.

4.1.4 Phase Observation

A transient phase of the system is observed in the form of interference patterns after a free expansion.

This was also seen in the experiment of Greiner et al [17]. After the two electrons are released from both

the external confining potential and the lattice potential, they freely propagate through thex-z plane

while interfering with each other.
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In the experiment of Greiner et al., the phase is perfectly coherent over the entire lattice in a Bose-

Einstein condensate state and therefore only the first-order interference maximum is visible (Fig. 2.6a).

In a superfluid state, all atoms are localized throughout the entire lattice with equal relative phases

between different lattice sites and, thus, higher-order interference maxima are visible (Fig. 2.6b-d). On

the other hand, in a Mott insulator state, since each of atoms are localized on an individual site, no

interference pattern is visible (Fig. 2.6g, h).

As described above, higher-order interference maxima should be visible in a metal (conducting) phase

of this system, while only a blurry and broadened interference pattern should be observed in a Mott

insulator (insulating) phase in this calculation.

4.2 Implementation

4.2.1 Hamiltonian

In aN -body system where each particle has the massmi, the Hamiltonian of the system is described

in the following form:

ĤN−body =
N∑

i=1

(
− h̄2

2mi
∇i

2 + Vi(ri, t)

)
+

∑
i̸=k

Vi,k(ri, rk). (4.11)

Vi is the single-body potential for thei-th particle. It depends on the positionri and also timet. Vi,k is

the potential of interaction between thei-th andk-th particles. It depends on the both positionsri and

rk. UsuallyVi,k is a function of the relative position|ri − rk|. TheN -body Schr̈odinger equation is

then written

ĤN−bodyΨ(r1, r2, . . . , rN , t) = ih̄
∂

∂t
Ψ(r1, r2, . . . , rN , t). (4.12)

Let us consider the situation of two particles confined in thex-z plane, where an external potential is

modulated only inx-direction. Eq. (4.11) is then rewritten

Ĥ2−body = − h̄2

2m1

(
∂2

∂x2
1

+
∂2

∂z2
1

)
− h̄2

2m2

(
∂2

∂x2
2

+
∂2

∂z2
2

)
+V1(x1, t) + V2(x2, t) + V1,2(x1, z1, x2, z2), (4.13)

whereV1,2 is the potential of the Coulomb interaction between two particles and, thus, has the following

form:

V1,2(x1, z1, x2, z2) =
e2

4πεrε0

1√
(x1 − x2)2 + (z1 − z2)2

, (4.14)

where we have the elementary chargee, the permittivity of free spaceε0, and the relative permittivity

εr. See Appendix A for numerical values used. In addition, Eq. (4.12) is rewritten

Ĥ2−bodyΨ(x1, z1, x2, z2, t) = ih̄
∂

∂t
Ψ(x1, z1, x2, z2, t). (4.15)
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In the following, I assume that the two electrons have the same mass (m1 = m2 = m∗
e) and anti-

parallel spins, that is to say, one has an up-spin (↑) and the other has a down-spin (↓), and also assume

that the spin part of the wave function of the system is antisymmetrized. In this way we interpret the

ground state of the system for two electrons, which are fermions. (Note that one can also consider a

boson version if assumes two spin less particles.)

4.2.2 Probability Density

The probability density that the first-indexed electron is found at(x1, z1) and the second-indexed

electron is found at(x2, z2) at a same timet is given by

P (x1, z1, x2, z2, t) = |Ψ(x1, z1, x2, z2, t)|2. (4.16)

In this system, since the two lattice sites are aligned along thex-axis, the probability density distri-

bution of z-direction is not physically important. Because we are interested in which site the particle

exists, there is a need for calculate the following probability densities:

P (x1, x2, t) =
∫ ∫

P (x1, z1, x2, z2, t)dz1dz2 (4.17)

P (x1, t) =
∫

P (x1, x2, t)dx2 (4.18)

P (x2, t) =
∫

P (x1, x2, t)dx1 (4.19)

(4.20)

4.2.3 Discretization (Real Time)

To calculate the wave function using the FDTD-Q algorithm described in Sec. 3.2, the wave function

has to be separated into its real and imaginary parts and discretized. We must therefore transform the

two-body Schr̈odinger equation (Eq. (4.15)) into difference equations. Let us here define the second-

order differences as the following equations:

DiffXRn
i1,j1,i2,j2 =

Rn
i1+1,j1,i2,j2

+Rn
i1−1,j1,i2,j2

+Rn
i1,j1,i2+1,j2

+Rn
i1,j1,i2−1,j2

−4Rn
i1,j1,i2,j2

(∆x)2
(4.21)

DiffZRn
i1,j1,i2,j2 =

Rn
i1,j1+1,i2,j2

+Rn
i1,j1−1,i2,j2

+Rn
i1,j1,i2,j2+1+Rn

i1,j1,i2,j2−1−4Rn
i1,j1,i2,j2

(∆z)2
(4.22)

DiffXI n
i1,j1,i2,j2 =

In
i1+1,j1,i2,j2

+In
i1−1,j1,i2,j2

+In
i1,j1,i2+1,j2

+In
i1,j1,i2−1,j2

−4In
i1,j1,i2,j2

(∆x)2
(4.23)

DiffZI n
i1,j1,i2,j2 =

In
i1,j1+1,i2,j2

+In
i1,j1−1,i2,j2

+In
i1,j1,i2,j2+1+In

i1,j1,i2,j2−1−4In
i1,j1,i2,j2

(∆z)2
, (4.24)

with cell size∆x = Lx
Nx

, ∆z = Lz
Nz

and position indexesi1, i2, j1, j2. Parametersi1, i2 ∈ {i|i =
0, 1, . . . , Nx} andj1, j2 ∈ {j|j = 0, 1, . . . , Nz} correspond tox1, x2, z1, andz2 respectively, that is,

for example,x1 = i1∆x. Using the above definitions, the Schrödinger equation is transformed into the

following two difference equations:

R
n+ 1

2
i1,j1,i2,j2

= R
n− 1

2
i1,j1,i2,j2

− h̄∆t

2m∗
e

{
DiffXI n

i1,j1,i2,j2 + DiffZI n
i1,j1,i2,j2

}
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+
∆t

h̄

{
V n

i1 + V n
i2 +

e2

4πεrε0

1√
(i1 − i2)2(∆x)2 + (j1 − j2)2(∆z)2

}
In
i1,j1,i2,j2 (4.25)

I
n+ 1

2
i1,j1,i2,j2

= I
n− 1

2
i1,j1,i2,j2

+
h̄∆t

2m∗
e

{
DiffXRn

i1,j1,i2,j2 + DiffZRn
i1,j1,i2,j2

}

−∆t

h̄

{
V n

i1 + V n
i2 +

e2

4πεrε0

1√
(i1 − i2)2(∆x)2 + (j1 − j2)2(∆z)2

}
Rn

i1,j1,i2,j2(4.26)

When the indexes satisfy to(i1, j1) = (i2, j2), the Coulomb potential diverges. Therefore the values

of the wave function are fixed to0 at those cells.

Rn
i,j,i,j = In

i,j,i,j = 0, ∀i, j, n (4.27)

In this calculation, I employed the parameters described in Tab. 4.1:

Tab. 4.1: Parameters for the Simulation of a Two-particle System

Name Symbol Value Unit

Width Lx 2.0 × 10−7 m
Depth Lz 1.0 × 10−7 m
Cell Number forx-direction Nx 20 −
Cell Number forz-direction Nz 8 −
Time Step ∆t 1.0 × 10−15 s

4.2.4 Discretization (Imaginary Time)

Using Eqs. (4.21) - (4.24), the imaginary time evolution is formulated in a similar way.

R
n+ 1

2
i1,j1,i2,j2

= R
n− 1

2
i1,j1,i2,j2

+
h̄∆t

2m∗
e

{
DiffXRn

i1,j1,i2,j2 + DiffZRn
i1,j1,i2,j2

}

−∆t

h̄

{
V n

i1 + V n
i2 +

e2

4πεrε0

1√
(i1 − i2)2(∆x)2 + (j1 − j2)2(∆z)2

}
Rn

i1,j1,i2,j2(4.28)

I
n+ 1

2
i1,j1,i2,j2

= I
n− 1

2
i1,j1,i2,j2

+
h̄∆t

2m∗
e

{
DiffXI n

i1,j1,i2,j2 + DiffZI n
i1,j1,i2,j2

}

−∆t

h̄

{
V n

i1 + V n
i2 +

e2

4πεrε0

1√
(i1 − i2)2(∆x)2 + (j1 − j2)2(∆z)2

}
In
i1,j1,i2,j2 (4.29)

4.2.5 Absorbing Boundary Conditions

If two electrons are released from an external confining potential and a lattice potential, they freely

expand in the plane. However computational resources restrict vast-area calculations. Consequently

there is a need for implementing absorbing boundary conditions to calculate the propagation in a small

area and to save resources.
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The absorbing boundary condition formula represented by Eq. (3.26) can be applied to all coordinates.

The implementation described in Sec. 3.4 can be used to modify the indices of Eqs. (3.34), (3.35), (3.41),

and (3.42).

4.3 Experimental Procedure

4.3.1 Initial State

Without any lattice potential and any interaction, i.e.,V1 = V2 = V1,2 = 0, the single-electron wave

function of the ground state is given by

ϕi(xi, zi) =
2√

LxLz
sin

(
πxi

Lx

)
sin

(
πzi

Lz

)
, (4.30)

and the ground-state energy of a single electron is also given by

EGS =
π2h̄2

2m∗
e

(
1

Lx
2 +

1
Lz

2

)
(4.31)

The wave function of the system is then written

Φ(x1, z1, x2, z2) = ϕ1(x1, z1)ϕ2(x2, z2)

=
4

LxLz
sin

(
πx1

Lx

)
sin

(
πz1

Lz

)
sin

(
πx2

Lx

)
sin

(
πz2

Lz

)
. (4.32)

Following the description in Sec. 3.2, one obtains the following discretized initial values:

R0
i1,j1,i2,j2 =

4
LxLz

sin
(

πi1
Nx

)
sin

(
πj1

Nz

)
sin

(
πi2
Nx

)
sin

(
πj2

Nz

)
(4.33)

I
1
2
i1,j1,i2,j2

= −R0
i1,j1,i2,j2 sin

(
EGS∆t

h̄

)
. (4.34)

4.3.2 Increasing the Lattice Potential

As the lattice potential is gradually increased, without any interaction, both two electrons start to

localize on each lattice site. For large lattice potentials, each electron will be in a superposition state of a

left on-site state and a right on-site state. In this state, the electron can hop from the left site to the right

site, and vice versa. The wave function of the system has the form of Eq. (4.5).

In this simulation, the lattice potential was increased with a step∆V = 1.0 × 10−26[J] during half a

step (∆t
2 ). The increment continued fromt = 0 to t = 104∆t.

4.3.3 Increasing Both the Interaction Term and the Lattice Potential

After switching on the interaction term att = 0, to calculate the ground state of an interacting system,

an imaginary time evolution is performed for some time until the ground state is obtained. As the lattice

potential is gradually increased in real time, electrons become localized on each site.
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In this simulation, the imaginary time evolution was iterated for104 steps. After this, the lattice

potential was increased with a step∆V = 1.0× 10−26[J] for every half a step (∆t
2 ). This was continued

from t = 104∆t to t = 2 × 104∆t.

4.3.4 Free Expansion

Released from both the external confining potential and the lattice potential after the time evolution,

the electrons scatter freely and interfere with each other. In this scattering process, only the propagation

along thex-axis was calculated, for the electrons do not interfere as much along thez-direction due to

thex-directional site alignment. Furthermore, the interaction term is set to zero again since it no longer

affects the correlation between the two electrons after localization.

4.4 Results and Speculations

In this section, I will show two types of figures. The figures with red and blue line graphs show

the probability density distribution as a function ofx. The red line indicates the first indexed electron

and the blue line indicates the second indexed electron. The figures with black envelopes and colored

inners show the conditional probability density distribution as a function ofx on the condition that the

opposite electron is found at the vertically lined position. The inner color indicates the relative phase

(see Appendix B). In the both types of figure, the green line indicates the shape of the lattice potential.

4.4.1 Initial State

The initial state is given by Eq. (4.32). This is plotted in Figs. 4.2 and 4.3. The wave function of the

initial state without any interaction and any lattice potential is spread over the whole area with perfect

phase coherence.

Fig. 4.2: Probability Density Distribution of the

Initial State

Fig. 4.3: Conditional Probability Density Distribu-

tion of the Initial State
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After being released from the external confining potential, the two electrons freely expand and in-

terfere with each other. In Figs. 4.4 and 4.5, only the first-order maximum is visible at the center.

Fig. 4.4: Interference Pattern of the Initial State
Fig. 4.5: Conditional Interference Pattern of the

Initial State

4.4.2 Regime with Hopping

After the lattice potential is increased, the electrons localize on both sites with equal phase (see Figs.

4.6 and 4.7). In Fig. 4.7, we see that the left and right sides of the single-electron wave function are in

phase.

Fig. 4.6: Probability Density Distribution of a Regime with Hopping

After being released from the external confining potential and the lattice potential, the two electrons

freely expand and interfere with each other. In Figs. 4.8 and 4.9, we see higher-order maxima. Further-

more, in Fig. 4.9, we see that the interference maxima are always visible wherever the opposite electron

is found. Consequently, as the sum of these phenomena, the probability density distribution (Fig. 4.8)

also shows the interference maxima.
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(a) When one is found at the center, the

other can be found on both sites.

(b) When one is found on the left site, the

other can be found on both sites.

(c) When one is found on the right site, the

other can be found on both sites.

Fig. 4.7: Conditional Probability Density Distribution of a Regime with Hopping

Fig. 4.8: Interference Pattern of a Regime with Hopping
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(a) First-order Maximum (b) Left-side Peak

(c) Right-side Peak

Fig. 4.9: Conditional Interference Pattern of a Regime with Hopping

This state can be written

|Ψ⟩ =
1
2
(|L⟩ + |R⟩)1 ⊗ (|L⟩ + |R⟩)2. (4.35)

Both electrons can hop from one site to the other site respectively. This phase consists of the quantum

superposition state of each particle and, consequently, can be thought to be a metal phase, or a superfluid

phase if considering the experiment of Greiner et al.

4.4.3 Regime with Hopping and Interaction

After the imaginary time evolution and the increase of the lattice potential, the electrons begin lo-

calizing on an individual site (see Figs. 4.10 and 4.11). This state has a correlation between electron

positions. That is to say, if one electron is found on one site, the other electron is found on the opposite

site.
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Fig. 4.10: Probability Density Distribution of a Regime with Hopping and Interaction

(a) When one is found at the center, the

other can be found on both sites.

(b) When one is found on the left site, the

other can be found on the right sites.

(c) When one is found on the right site, the

other can be found on the left sites.

Fig. 4.11: Conditional Probability Density Distribution of a Regime with Hopping and Interaction
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After being released from the external confining potential and the lattice potential, the two electrons

freely expand and interfere with each other. An “explicit” interference pattern is observed only in Fig.

4.13(a). However, comparing all the figures of Fig. 4.13, it is found that the phase of this state is

incoherent. Although each figure has interference maxima, the positions of the maxima differ with each

other. When the integral of these patterns are taken, the interference maxima negate each other and the

probability density distribution (Fig. 4.12) has no interference pattern left.

This state can be written

|Ψ⟩ =
1√
2
(|LR⟩ + |RL⟩)

=
1

2
√

2
{(|L⟩ + |R⟩)1 ⊗ (|L⟩ + |R⟩)2 − (|L⟩ − |R⟩)1 ⊗ (|L⟩ − |R⟩)2}. (4.36)

As an example, let us consider the case where one finds the second indexed electron at the center.

According to Eq. (4.36), there are two possible cases(|L⟩ + |R⟩)1 ⊗ (|L⟩ + |R⟩)2 and(|L⟩ − |R⟩)1 ⊗
(|L⟩ − |R⟩)2. In the latter case, the second indexed electron has a form(|L⟩ − |R⟩). However, since

the left and right sides of the single-electron wave function is joined with the sign “−”, the interference

center is a node and, consequently, the probability density at the center is almost zero. The second

indexed electron cannot be found in the latter case and thus the former case is embraced. On the other

hand, in the former case, the single-electron wave function of the first indexed electron has the form

(|L⟩ + |R⟩), where the left and right sites are in phase. In this situation, the single-particle interference

of the first indexed electron occurs.

Both electrons cannot exist together on a same site. This state can be thought to be a Mott insulator

phase. Consequently a Mott insulator phase can be interpreted as being made up with entangled states

of the particles.

Fig. 4.12: Interference Pattern of a Regime with Hopping and Interaction
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(a) On condition that electron 1 (or 2) is

the state(|L⟩ + |R⟩)
(b) On condition that electron 1 (or 2) is

the state(|L⟩ − |R⟩)

(c) On condition that electron 1 (or 2) is

the state(|L⟩ − |R⟩)

Fig. 4.13: Conditional Interference Pattern of a Regime with Hopping and Interaction
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5.1 Overview

5.1.1 Three-particle Three-site System

In this chapter, the numerical simulation is extended to a three-particle system in a three-site geometry

to analyse the property of Mott insulators more generally. Let us consider three particles confined to a

plane (see Fig. 5.1). The particles exist within the area:

D = { (x, z) | 0 < x < Lx, 0 < z < Lz } (5.1)

in thex-z plane. The external confining potentialVext is described as{
Vext = 0 ( (x, z) ∈ D )
Vext = ∞ ( else )

. (5.2)

The lattice potentialVlat is modulated only inx-direction and written

Vlat(x, t) = V (t) cos
(

6πx

Lx

)
, (5.3)

whereV (t) ≥ 0 is the time-transient lattice potential depth.

Fig. 5.1: Lattice Potential in the Three-Site Model

5.1.2 Conceptual Expression of the Ground State in the Three-site Model

In this three-site geometry, the ground state of a single particle is simply and conceptually expressed

by three basic states|L⟩, |C⟩ and|R⟩, or their superposition state. The|L⟩ state corresponds to a state

that the particle is found on the center site (0 ≤ x ≤ Lx
3 ) and the|C⟩ state corresponds to the center site
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(Lx
3 ≤ x ≤ 2Lx

3 ) and the|R⟩ state corresponds to the right site (2Lx
3 ≤ x ≤ Lx). The single-particle

ground state of this model written

|Φ⟩ =
1√
3
(|L⟩ + |C⟩ + |R⟩). (5.4)

The three-particle ground state without any interaction is then written

|Ψ⟩U=0 =
1√
3
(|L⟩ + |C⟩ + |R⟩)1 ⊗

1√
3
(|L⟩ + |C⟩ + |R⟩)2 ⊗

1√
3
(|L⟩ + |C⟩ + |R⟩)3. (5.5)

Using this expression, we may guess that the ground state of this three-particle system with interac-

tions will be given by

|Ψ⟩U ̸=0 =
1√
6
(|LCR⟩ + |LRC⟩ + |CLR⟩ + |CRL⟩ + |RCL⟩ + |RLC⟩) (5.6)

since interaction energy evokes excitation if two or more particles exist on a same site.

5.2 Implementation

5.2.1 Hamiltonian

Let us consider the situation of three particles confined in thex-z plane, where an external potential

is modulated only inx-direction. Eq. (4.11) is then rewritten

Ĥ3−body = − h̄2

2m1

(
∂2

∂x2
1

+
∂2

∂z2
1

)
− h̄2

2m2

(
∂2

∂x2
2

+
∂2

∂z2
2

)
− h̄2

2m3

(
∂2

∂x2
3

+
∂2

∂z2
3

)
+V1(x1, t) + V2(x2, t) + V3(x3, t)

+V1,2(x1, z1, x2, z2) + V2,3(x2, z2, x3, z3) + V3,1(x3, z3, x1, z1). (5.7)

In addition, Eq. (4.12) is rewritten

Ĥ3−bodyΨ(x1, z1, x2, z2, x3, z3, t) = ih̄
∂

∂t
Ψ(x1, z1, x2, z2, x3, z3, t). (5.8)

In the following, for simplicity, I assume that the three particles have a same mass and they are spin

less bosons. (Note that one can also consider a fermion case if assumes antisymmetrized spin part of the

wave function such that the energy is minimized.)

5.2.2 Probability Density

The probability density that the first-labeled particle is found at(x1, z1) and the second-labeled par-

ticle is found at(x2, z2) and the third-labeled particle is found at(x3, z3) at a same timet is given

by

P (x1, z1, x2, z2, x3, z3, t) = |Ψ(x1, z1, x2, z2, x3, z3, t)|2. (5.9)

Thex-directional distribution of the probability density of the first-labeled particle is then written

P (x1, t) =
∫ ∫ ∫ ∫ ∫

P (x1, z1, x2, z2, x3, z3, t)dz1dx2dz2dx3dz3. (5.10)
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5.2.3 Discretization (Real time)

To calculate the wave function, it must be separated into real and imaginary parts and discretized as

described in Sec. 3.2. In the following, I abbreviate the position indexes, that isRn
i1,j1,i2,j2,i3,j3

to Rn

andIn
i1,j1,i2,j2,i3,j3

to In. By the same token, for example,Rn
i1+1,j1,i2,j2,i3,j3

is abbreviated toRn
i1+1. Let

us then define the second order differences as the following equations:

DiffXRn =
Rn

i1+1 + Rn
i1−1 + Rn

i2+1 + Rn
i2−1 + Rn

i3+1 + Rn
i3−1 − 6Rn

(∆x)2
(5.11)

DiffZRn =
Rn

j1+1 + Rn
j1−1 + Rn

j2+1 + Rn
j2−1 + Rn

j3+1 + Rn
j3−1 − 6Rn

(∆x)2
(5.12)

DiffXI n =
In
i1+1 + In

i1−1 + In
i2+1 + In

i2−1 + In
i3+1 + In

i3−1 − 6In

(∆x)2
(5.13)

DiffZI n =
In
j1+1 + In

j1−1 + In
j2+1 + In

j2−1 + In
j3+1 + In

j3−1 − 6In

(∆x)2
, (5.14)

with cell size∆x = Lx
Nx

, ∆z = Lz
Nz

. Using this definition the Schrödinger equation is transformed into

the following two difference equations:

Rn+ 1
2 = Rn− 1

2 − h̄∆t

2m∗
e

{
DiffXI n + DiffZI n

}
+

∆t

h̄

{
V n

i1 + V n
i2 + V n

i3 + V1,2 + V2,3 + V3,1

}
In (5.15)

In+ 1
2 = In− 1

2 +
h̄∆t

2m∗
e

{
DiffXRn + DiffZRn

}
−∆t

h̄

{
V n

i1 + V n
i2 + V n

i3 + V1,2 + V2,3 + V3,1

}
Rn (5.16)

whereVm,n = Vint
1√

(im−in)2(∆x)2+(jm−jn)2(∆z)2
with {m,n} ∈ {1, 2, 3}.

In this implementation, I employed the parameters described in Tab. 5.1:

Tab. 5.1: Parameters for the Simulation of a Three-particle System

Name Symbol Value Unit

Width Lx 3.0 × 10−7 m
Depth Lz 1.0 × 10−7 m
Cell Number forx-direction Nx 18 −
Cell Number forz-direction Nz 4 −
Time Step ∆t 1.0 × 10−15 s

5.2.4 Discretization (Imaginary Time)

Using Eqs. (5.11)-(5.14), the imaginary time evolution is formulated in a similar way to Chap. 4.

Rn+ 1
2 = Rn− 1

2 +
h̄∆t

2m∗
e

{
DiffXRn + DiffZRn

}
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−∆t

h̄

{
V n

i1 + V n
i2 + V n

i3 + V1,2 + V2,3 + V3,1

}
Rn (5.17)

In+ 1
2 = In− 1

2 +
h̄∆t

2m∗
e

{
DiffXI n + DiffZI n

}
−∆t

h̄

{
V n

i1 + V n
i2 + V n

i3 + V1,2 + V2,3 + V3,1

}
In (5.18)

5.3 Experimental Procedure

5.3.1 Initial State

Without any lattice potential and any interaction, the single-electron wave function of the ground state

is given by

ϕi(xi, zi) =
2√

LxLz
sin

(
πxi

Lx

)
sin

(
πzi

Lz

)
, (5.19)

and the ground-state energy of a single electron is given by

EGS =
π2h̄2

2m∗
e

(
1

Lx
2 +

1
Lz

2

)
. (5.20)

The wave function of the system is then written

Φ(x1, z1, x2, z2, x3, z3) = ϕ1(x1, z1)ϕ2(x2, z2)ϕ2(x3, z3)

=

(
2√

LxLz

)3 3∏
n=1

sin
(

πxn

Lx

)
sin

(
πzn

Lz

)
. (5.21)

Following the description in Sec. 3.2, one obtains the following discretized initial values:

R0 =

(
2√

LxLz

)3 3∏
n=1

sin
(

πin
Nx

)
sin

(
πjn

Nz

)
(5.22)

I
1
2 = −R0 sin

(
3EGS∆t

2h̄

)
. (5.23)

5.3.2 Increasing the Lattice Potential

As the lattice potential is gradually increased, without any interactions, the three particles start to

localize on each lattice site. Finally, each particle is left in a superposition state of the left, center, and

right on-site states. In this state, the particle can tunnel from one site to another. The wave function of

the system has the form of Eq. (5.5).

In this simulation, the lattice potential was increased with a step∆V = 2.0 × 10−26[J] in half a step

(∆t
2 ). This was continued fromt = 0 to t = 103∆t.

5.3.3 Increasing of Both the Interaction Term and the Lattice Potential

After switching on the interaction term att = 0, an imaginary time evolution is performed for an

sufficiently long time to calculate the ground state of the interacting system. As the lattice potential is

then gradually increased in real time, the particles start to localize on a site.
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In this simulation, the imaginary time evolution was iterated for103 steps. After this, the lattice

potential was increased with a step∆V = 2.0× 10−26[J] for half a step (∆t
2 ). This was continued from

t = 103∆t to t = 2 × 103∆t.

5.3.4 Free Expansion

Released from all potentials after the time evolution, the particles scatter freely and interfere with each

other. In this scattering process, only the propagation along thex-axis was calculated since the particles

do not interfere as much along thez-direction due to thex-directional site alignment. Furthermore, in

this process, the interaction term is set to zero again because it no longer affects the correlation between

the three particles after localization.

5.4 Results and Speculations

In this section, there are two types of result figures. One shows probability density distributions

of the first indexed particle. The other shows conditional probability density distributions of the first

indexed particle on condition that the second indexed particle is found at a red-lined position and the

third indexed particle is found at blue-lined position. The inner color indicates a relative phase. In both

types of figure, the green line graph indicates the shape of the lattice potential.

5.4.1 Regime with Hopping

After the lattice potential is increased, the particles localize on every three sites with equal phase (see

Figs. 5.2 and 5.3). Fig. 5.3 shows that the left, center, and right sides of a single-particle wave function

are in phase in this state.

Fig. 5.2: Probability Density Distribution of a Regime with Hopping

After being released from the external confining potential and the lattice potential, the three particles

freely expand and interfere with each other. In Figs. 5.4 and 5.5, higher-order maxima are visible. Fur-

thermore Fig. 5.5 show that the interference maxima are always visible wherever the other particles are
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(a) Condition of|L⟩2|L⟩3 (b) Condition of|L⟩2|C⟩3 (c) Condition of|L⟩2|R⟩3

(d) Condition of|C⟩2|L⟩3 (e) Condition of|C⟩2|C⟩3 (f) Condition of|C⟩2|R⟩3

(g) Condition of|R⟩2|L⟩3 (h) Condition of|R⟩2|C⟩3 (i) Condition of|R⟩2|R⟩3

Fig. 5.3: Conditional Probability Density Distribution of a Regime with Hopping
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found. Consequently, the sum of these phenomena also shows an interference maxima in the probability

density distribution (Fig. 5.4).

Fig. 5.4: Interference Pattern of a Regime with Hopping

This state can be written

|Ψ⟩ =
1
2
(|L⟩ + |C⟩ + |R⟩)1 ⊗ (|L⟩ + |C⟩ + |R⟩)2 ⊗ (|L⟩ + |C⟩ + |R⟩)3. (5.24)

All particles can hop from one site to another site respectively. This phase consists of quantum superpo-

sition states of each particle and, consequently, can be thought to be a superfluid phase.

5.4.2 Regime with Hopping and Interaction

After the imaginary time evolution and the increase of the lattice potential, the particles begin local-

izing on an individual site (see Figs. 5.6 and 5.7). This state has a correlation between the positions of

the particles. That is to say, if one particle is found on one site and another particle is found on another

site, the last particle can then be found on the last site.

After being released from the external confining potential and the lattice potential, the three particles

freely expand and interfere with each other. An “explicit” interference pattern is observed only in Fig.

5.9(a). However, comparing each of the figures in Fig. 5.9, one can see that the phase of this state is

incoherent. Although each figure has interference maxima, the positions of the maxima differ with each

other. When the integral of these phenomena is taken, the interference maxima negate each other and

the probability density distribution (Fig. 5.8) has no interference pattern left.

This state can be represented by Eq. (5.6). In this situation, the single-particle interference maxima

of one particle exist at different positions which depend on the positions of other particles.

Either particle cannot exist together on the same site. This state can be thought to be a Mott insulator

state. Consequently a Mott insulator quantum can be interpreted to be made up of entangled states of

the particles.
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(a) (b)

(c) (d)

Fig. 5.5: Conditional Interference Pattern of a Regime with Hopping

Fig. 5.6: Probability Density Distribution of a Regime with Hopping and Interaction
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(a) Condition of|L⟩2|L⟩3 (b) Condition of|L⟩2|C⟩3 (c) Condition of|L⟩2|R⟩3

(d) Condition of|C⟩2|L⟩3 (e) Condition of|C⟩2|C⟩3 (f) Condition of|C⟩2|R⟩3

(g) Condition of|R⟩2|L⟩3 (h) Condition of|R⟩2|C⟩3 (i) Condition of|R⟩2|R⟩3

Fig. 5.7: Conditional Probability Density Distribution of a Regime with Hopping and Interaction
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Fig. 5.8: Interference Pattern of a Regime with Hopping and Interaction

(a) (b)

(c) (d)

Fig. 5.9: Conditional Interference Pattern of a Regime with Hopping
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6.1 Results of This Study

In this study, the wave function of a two-electron system in a two-site geometry was numerically

simulated. The Hamiltonian of this system contains both the kinetic energy and the repulsive Coulomb

interaction term. The dominant term therefore determines the properties of the system. The ground

state of the system was obtained by adiabatic evolution of the parameters. After obtaining the ground

state, the system was released from all potentials and interactions and the interference patterns of the

probability density distribution was obtained. From analyses of these patterns, two typical quantum

phases of the system were confirmed:a metal phase and a Mott insulator phase.

In a metal phase, or a superfluid phase if considering bosons, the left and right sides of a single-

electron wave function were in phase for any place. This has the same interference pattern as a single-

particle interference pattern. A metal phase is therefore made up with superposition states of each

electron as expected.

In a Mott insulator phase, if one electron is found on one site, the other electron is found on the oppo-

site site. Therefore a single-particle interference pattern with maxima at different points which depends

on the position of the other particle is observed. Summed up these interference patterns, a probability

density distribution that is totally broadened and with interference is obtained. A Mott insulator phase

can thus be thought to consist of entangled states of the particles.

6.2 Future Prospects

In this study, I simulated the two typical cases:non-interacting case (U = 0) and strongly interacting

case. One may also consider points nearer to the cross-over point where the dominant term of the

Hamiltonian changes.

In this dissertation, I also considered a three-particle case and obtained similar results to the two-

particle case. We may also consider simulations of systems with more particles in order to look at cases

near the quantum critical point, as a true phase transition occurs only for an infinite number of particles.
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Tab. A.1: Physical Constants

Name Symbol Value Unit

Permittivity of free space ε0 8.854187817 × 10−12 F · m−1

Planck’s constant h 6.62607 × 10−34 J · s
Dirac’s constant h̄ = h

2π 1.054572 × 10−34 J · s
Elementary charge e 1.602177 × 10−19 C
Electron rest mass me 9.10938 × 10−31 kg

Relative permittivity in GaAs εr 1.31 × 101 -

Electron effective mass in GaAs m∗
e 0.067me kg

Circle ratio (C/C++ compiler definition) π 3.14159265358979323846 -
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The HSV (Hue, Saturation, Value) model is a nonlinear transformation of the RGB color space. It

defines a color space in terms of three components:

• Hue, the color type

Ranges from 0 to 360 ˚ .

• Saturation (Purity), the vibrancy of the color

Ranges from 0 to 100%.

• Value, the brightness of the color

Ranges from 0 to 100%.

The definition of the HSV color model is device-dependent. HSV is only defined relative to RGB

intensities without the physical definitions of chromaticities and white point. This model may be used

in color progressions.

Transformations between RGB and HSV

The ranges of the values:

H ∈ (0, 360)

S, V,R,G,B ∈ (0, 1)

• From RGB to HSV

Let MAX equal the maximum of the(R,G,B) values, andMIN equal the minimum of those

values.

H =



undefined, if MAX = MIN
60 × G−B

MAX−MIN , if MAX = R and G ≥ B

60 × G−B
MAX−MIN + 360, if MAX = R and G < B

60 × B−R
MAX−MIN + 120, if MAX = G

60 × R−G
MAX−MIN + 240, if MAX = B

(B.1)

S =

{
0, if MAX = 0
1 − MIN

MAX , else
(B.2)

V = MAX (B.3)

• From HSV to RGB



Hi =
[

H
60

]
mod 6

f = H
60 − Hi

p = V (1 − S)
q = V (1 − fS)
t = V (1 − (1 − f)S)
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

R = V, G = t, B = p, if Hi = 0
R = q, G = V, B = p, if Hi = 1
R = p, G = V, B = t, if Hi = 2
R = p, G = q, B = V, if Hi = 3
R = t, G = p, B = V, if Hi = 4
R = V, G = p, B = q, if Hi = 5

(B.4)

(a) Relationship between HSV and RGB (b) HSV Color Wheel

Fig. B.1: HSV Color Space


