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Abstract

Quantum many-body problems model the behavior caused by the interactions between particles in a
many-body system interacting via quantum mechanics. One well-known example of a quantum many-
body problem is the Mott transition. According to band theory, which ignores the interactions between
electrons, many materials that should be conductors are in fact Mott insulators. These materials are
prevented from conducting due to the repulsive interactions between electrons.

The Mott transition is described by the Hubbard model, which is a minimal model that takes into ac-
count of not only the quantum mechanical motion of electrons in a solid but also the repulsive interaction
between electrons. The Hubbard model can also describe not only such quantum phase transitions but
also magnetism and superconductivity. Despite this importance, the Hubbard model is mathematically
difficult to solve. To analyse the quantum many-body system described by the Hubbard model, quantum
simulations, which simulate a quantum system by mapping into another simpler one with controllable
parameters, have recently attracted a lot of attention.

Recently, a quantum phase transition from a superfluid state to a Mott insulator state was experi-
mentally observed by a quantum simulation using optical lattices. In this experiment, the macroscopic
property of the Mott insulator was observed in the form of an interference pattern. However the micro-
scopic property can only be known unless the wave function is calculated.

In this dissertation, the “FDTD-Q method” which is an application of the finite-difference time-
domain (FDTD) method is introduced to solve the time-dependenb8uttger equation. In this study,
using the FDTD-Q method, the wave function of a two-particle two-site system is calculated and the
calculation is also extended to a three-particle system in a three-site geometry. The properties of a Mott
insulator phase were analysed using these results.
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1.1 Background

1.1.1 Quantum Many-body Problem

The quantum many-body problem may be defined as the study of the behavior caused by the effects of
interaction between particles in a many-body system interacting via quantum mechanics. By describing
the microscopic behavior of each particle, the macroscopic properties of the system, which appear as
cooperative phenomena of the particles, is predicted. However, due to the exponential increase of the
Hilbert space of the system, it becomes difficult to solve the set of equations determined by quantum
mechanics.

Examples of quantum many-body problems include polymer molecules and materials in a solid state.
Exact solutions are impossible in almost all many-body problems. A simple and efficient approach for
solving quantum many-body problems is to ignore some interactions within the system. This allows the
problem to be reduced to a simpler model.

As an example of this, in solid state physics, the nearly free electron model is a model of the electron’s
behavior in solids that enables to understand the electronic property of crystalline materials. The nearly
free electron approximation can describe many properties of the electrons. One of consequences of this
theory is that it predicts the same number of electrons in each unit cell. If the number of electrons is
odd, it is expected that there is an unpaired electron in each unit cell. This means that the valence band
is not fully occupied and, therefore, the material should be a conductor.

As described above, solving particular quantum many-body problems using certain approximations
has allowed the properties of various materials to be understood. However this is very rare in many
guantum many-body problems and, as a consequence, their properties are still unknown.

1.1.2 Mott Insulator

The band theory of solids had been successful in the describing the electrical properties of materials.
However, in 1937, J. H. de Boer and E. J. W. Verwey pointed out that a variety of transition metal oxides,
e.g. MnO, FeO, CoO, MyD4, NiO, etc., which were expected to be conductors according to band theory
were in fact insulators [1]. Specifically, since MnO and CoO have an odd number of electrons per unit
cell, they should theoretically be insulators. N. F. Mott and R. Peierls conjectured that this abnormal
property could be caused by electron-electron interactions which are not considered in the formulation
of conventional band theory [2]. Such materials are called Mott insulators.

In 1949, Mott proposed a model for NiO as an insulator [3]. In this case, conduction could be under-
stood by the following formula:

(Ni?T0%*7)y — Ni*T0*™ + Ni' TO?~ (1.1)

The formation of the energy gap preventing conduction can be regarded as a competition between the
Coulomb potentiall betweerd-electrons and the kinetic integrabf 3d-electrons between neighbor-
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ing atoms. Then, the total energy gap is
Egop =U — 22t (1.2)

wherez is the number of the nearest neighbor atoms.

Generally, Mott insulators occur when the repulsive Coulomb potetitiallarge enough so that an
energy gap arises. One of the simplest theories characterizing Mott insulators is the Hubbard model,
which is referred to below.

1.1.3 The Hubbard Model

The Hubbard model is a model for electrons in a solid which strongly interact with each other through
an extremely short-range repulsive Coulomb interaction [4]. The Hubbard model is a minimal model
that takes into account for not only the quantum mechanical motion of electrons in a solid but also
the repulsive interaction between electrons. In spite of its simplicity, it is thought to be a qualitative
description of the properties of most solids. It is believed that the Hubbard model exhibits a variety
of nontrivial phenomena, for example metal-insulator transitions, antiferromagnetism, ferrimagnetism,
ferromagnetism, Tomonaga-Luttinger liquids, and superconductivity [5-8].

The Hamiltonian of the Hubbard model is made up with two pafts;, which represents the quantum
mechanical hopping, antl;,; which represents the repulsive interaction between electrons. Elthgr
and Hj,; alone is easily analyzed and the results can be easily interpreted. It is found that electrons
behave as “waves” ifif},,, and that, on the other hand, they behave as “particlesl;ip. The problem
becomes nontrivial when we consider electrons in a system with the Hamiltonian that is a sum of the
two Hamiltonians {I = Hy,., + Hing). This is related to the wave-particle dualism in quantum physics,
which makes it a fascinating problem form the point of view of quantum mechanics.

The Hubbard model was originally proposed to describe electrons in solids and since has been con-
sidered as a model for high-temperature superconductivity. More recently, the the bosonic version of the
model has been also studied [9] and has been used to describe the behavior of ultracold atoms trapped
in optical lattices [12]. The model used for bosons is referred to as the “Bose-Hubbard model”. In the
following, | will explicitly write “Hubbard model” for the model of the electrons (or other fermions) and
“Bose-Hubbard model” for the model of bosons.

From a mathematical point of view, the Hamiltoniafig,, and H;,,; do not commute with each other.
Although each Hamiltonian can be easily diagonalized, it is nontrivial to analyze the property of their
sum. However, one can get various interesting “physics” if one considers the problem of the competition
between the wave-like nature and the particle-like nature. Consequently, to understand this problem is a
very challenging issue and the model (in two dimensions) has remained unsolved for over fifty years.
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1.1.4 Quantum Simulation

A universal quantum simulator was proposed by Richard P. Feynman in 1982 [14]. Feynman showed
that a classical Turing machine takes exponentially increasing time with the problem size when simu-
lating quantum many-body systems exactly, whereas his hypothetical quantum simulator would not. In
a quantum simulator, the quantum system is recreated in another simpler quantum system with control-
lable parameters. Such simulation is called quantum simulation.

In a real material, a parameter can be modified only within a small range, so that the information
gained by experiments is rather limited. However a quantum simulator is easier to implement compared
to a universal quantum computer owing to no need for local control operation and isolation from external
reservoirs. Consequently, a quantum many-body system is able to be simulated over a wide parameter
range.

Recently, quantum simulations of the Hubbard model and the Bose-Hubbard model have been im-
plemented and studied about quantum phase transitions. Through these experiments performed with
guantum simulators, phenomena which are impossible to calculate theoretically due to their complexity
might be revealed.

1.2 Objectives

1.2.1 Quantum Phase Transition in a Gas of Ultracold Atoms

For a system at absolute zero temperature, all thermal fluctuations vanish, while quantum fluctuations
remain. These microscopic quantum fluctuations can produce a macroscopic phase transition in the
ground state of a many-body system when either the interaction energy between particles overcomes the
kinetic energy, or vice versa.

In 2002, a quantum phase transition was observed in a system consisting of a Bose-Einstein conden-
sate off"Rb atoms with repulsive interactions, held in a three-dimensional optical lattice potential [17].
As the potential depth of the optical lattice increased, the quantum phase changes from a superfluid
phase into a Mott insulator phase. In the superfluid state, each atom is delocalized throughout the entire
lattice with long-range phase coherence. In contrast, the Mott insulator state has exact numbers of atoms
localized at each lattice site without phase coherence.

In the experiment described above, the phase coherence between different lattice sites was tested by
observing interference patterns of atoms after a sudden termination of the confining lattice potential. In
the superfluid phase, where all atoms are spread out over the entire lattice with equal relative phases
between different lattice sites, a high-contrast three-dimensional interference pattern was obtained as
expected for a periodic array of phase coherent matter wave sources. On the other hand, in the Mott
insulator phase, where atoms are tightly localized at a single lattice site with no phase coherence, no
interference pattern was visible.
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1.2.2 Necessity of Numerical Analysis

The existence of the Mott insulator was revealed by a true experiment where an interference pattern
was observed. The interference pattern shows that each atom is localized at an individual site. However,
although that experiment is interesting in itself, we can only deduce macroscopic properties of a many-
body system which arises from the result of microscopic behavior of each atom. To know the true state
of each particle, there is a need for the wave function of the system to be calculated.

Of course, it is computationally impossible to analyse the wave function of such a system with many
particles. It is necessary to reduce the number of particles and to simplify the system for the numerical
analysis. However, even if the system contains only two particles in two-site geometry, we can know the
correlation between the two particles by the numerical simulation. Consequently, this simulation also
would aid the understanding of the true nature of Mott insulators.

1.3 Description of the Remaining Chapters

The outline of this dissertation is as follows.

Chapter 2 contains the details of the Hubbard model and quantum simulations. Examples of quantum
simulators for both the Hubbard model and the Bose-Hubbard model are introduced. In this chapter, |
will explain the difference between the superfluid phase and the Mott insulator phase in detail. | will
then comment on the necessity of numerical analysis of the Mott insulator state.

Chapter 3 contains numerical methods for solving the time-dependenidsufper equation. The
“FDTD-Q method” is introduced, which is a modification of the FDTD method widely used for solving
Maxwell’s equations. Conditions for the calculations are also described in this chapter.

Chapter 4 contains the implementation of the FDTD-Q simulations of a two-particle system in a two-
site geometry. The general outline of numerical simulation is described and results of the simulation are
also seen in this chapter.

Chapter 5 contains the implementation of the FDTD-Q simulations of a three-particle system in a
three-site geometry. In this chapter, the numerical simulation is extended to a three-particle system for

the generality.

Chapter 6 contains the conclusions of this dissertation. In addition, future prospects are also described.
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2.1 The Hubbard Model

2.1.1 Overview

The Hubbard model is an approximate model used in solid state physics to represent quantum phase
transitions between conducting and insulating states. The Hubbard model is the simplest model of
interacting particles in a lattice, containing only two terms in Hamiltonian: kinetic and potential terms
[4]. The kinetic term allows tunneling, or hopping, of particles between sites of the lattice. The potential
term consists of on-site interactions.

Although, the standard Hubbard model considers electrons, the particles can also be any type of
fermion. In addition, the model has been extended to bosons in the form of the Bose-Hubbard model [9].

The Hubbard model is mainly based on the tight-binding approximation in solid state physics. In the
tight-binding approximation, electrons are considered to occupy the standard orbits of their constituent
atoms. These electrons hop between atoms during conduction. Mathematically, this is represented as a
hopping integral or a transfer integral between nearby atoms, which can be considered as the physical
principle that creates electron bands in crystalline materials. However, in this approximation, interac-
tions between electrons are ignored .

By formulating conduction in terms of a hopping integral, the Hubbard model also contains the on-site
repulsions originating from the Coulomb repulsive interactions between electrons. This involves compe-
tition between the hopping integral, which moves electrons between neighboring atoms, and the on-site
repulsive interaction, which does not. In this way, the Hubbard model can explain Mott insulators, which
are prevented from becoming conducting by the strong repulsive interactions between patrticles.

2.1.2 Definition of the Hubbard Model

Let the latticeA be a collection of sites, y, . . .. In the Hubbard model, each lattice site corresponds
to an atomic site in a crystal. In order to simplify the situation significantly, it is assumed that each atom
has only one electron orbit and the corresponding orbital state is non-degenerate. Because electrons in
other states do not play important roles in determining the low-energy physics, they can be ignored (See
Fig.2.1).

Field Operators

Here,x is a position of the electron in the lattice sithsando is a spin of the electron which can
be up () or down (). cjw is the fermion creation operator, which creates an electron withsjgin
sitex, andc; , is the fermion annihilation operator, which annihilates an electron withspinsitex.
Ngo = cgocx,g is the number operator. These fermion operators obey the canonical anti-commutation
relations

{C;,o—a Cy,r} = C;,acyﬂ' + Cy,TC;rc,a = 03,007 (2.1)
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a)

b)

LOXCEOXE:
LOSOROROF

Fig. 2.1: A Highly Schematic View of Tight-binding Descriptions. a) a single atom with multiple
electrons in different orbits. b) In a solid, electrons in the black orbits can move around, while those in
the light gray orbits are localized at the original atomic sites. The electrons in the gray orbits are mostly
localized around the atomic sites, but there is a non-negligible tunneling probability of hopping to nearby
gray orbits. c) Electrons only in gray orbits are considered, which are expected to play an essential role
in determining the properties of the system. d) Assuming that the gray orbit is non-degenerate, a lattice
model that electrons stay on lattice sites and hop from a site to another is obtained.

and

{cT CLJ.} = CLUCLJ. + CLJ.CLU =0, (2.2)

0

whered; ; is the Kronecker delta.

The state without any electrons is representedas.), defined by the following equation
C:c,cr’\I/vac> =0 (V.%',U ) (2.3)

The Hilbert space of the model is generated by the states derived by multiplying the creation operator
cLU with variousz ando onto the statéV,,.). Because the anti-commutation relation (Eq. (2.2))
implies

(CT )2 =0, (2.4

the state of each lattice site can be either vacant, occupied by a single electron with{aosginor
occupied by two electrons with spins bathand |. Since four states exist par a lattice site, the total
dimension of the Hilbert spaceds$®|, where|A| is the number of lattice sites.
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Hamiltonian
The Hamiltonian of the Hubbard model is represented as the sum of two elements
H = Hyop + Hing. (2.5)
The hopping Hamiltoniartly,., generally has the form
Hyop= > > taych,cyo (2.6)
zyeA o=1,]

The hopping amplitude, , = t, ., assumed to be real, describes the quantum mechanical amplitude for
an electron to hop from siteto y (or fromy to x). Whenx = y, that is an electron stays at the present
lattice site, the summand of Eq. (2.6) becomes

tw,xcjg,gc:p,o =ty zNz,0; (27)

which is simply a single-body potential at the site

On the other hand, the interaction Hamiltoniéy, is generally written

Hing = Y Ugng g, . (2.8)
zEA

OftenU, is setto be a constant’{ = U). ForU, > 0, Hamiltonian corresponds to repulsive interaction.
When two electrons occupy a single siterathe total energy of the system risesldy. Although the
original Coulomb interaction is long ranged, only on-site short-range interactions are taken into account
as the main and strongest part of the interaction. This equation can also be interpreted such that the
long-range part of the Coulomb interaction is screened by the electrons in different orbital states which
are ignored in the Hubbard model.

Total Number Operator

The total number operator is defined as

~

N, = Z(nﬂ +ng ). (2.9)
TEA

This operator commutes with the Hamiltoni@h N, is a conserved quantity, such as the total spin.
Stationary states of the system are obtained by keeping the eigerVakenstant. In the following,
only the Hilbert space with the number operatar having a fixed eigenvalud, is considered. Since
every lattice site can have at most two electravissatisfies

0 < N. < 2Al. (2.10)

The total electron numbe¥,, is one of the most fundamental parameters in the Hubbard model.

2.1.3 Extreme Situations of the Hubbard Model

In order to comprehend the sum of the two Hamiltonians in the Hubbard model, two limits are dis-
cussed here.
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Non-interacting System

Let us assume that the repulsive Coulomb interactiofi;ip satisfies

U,=0 (Vz e A). (2.12)
The Hamiltonian is then
H=Hyp= Y, > teych,cyo (2.12)
z,yeENo=T1,]

Since Eqg. (2.12) is quadratic in fermion operators, it can be diagonalized easily. The single-electron
Schiddinger equation corresponding to the hopping Hamiltodiayy, is

> tayldy) = o), (2.13)

yeEA
where |¢) = (|¢.))zen iS @ wave function of the single-electron, ands the single-electron en-
ergy eigenvalue. The eigenvalue and eigenstates of Eq. (2.13) are respectively denotethds
169} = (1¢9"))zen, with the indexj = 1,2,...,|A|. The energy levels are orderedgs< &4
with considering degeneracies.

Let us now consider a simple example. Consider a one-dimensional lAttieel,2,..., N and
impose periodic boundary conditions, that is, the site N is identified as the site. As for the
hopping matrix elements, | assume that following values:

{ loao+l =lgy12 = —t (V$ S A)

2.14
try =0 (otherwise ) (2.14)

The corresponding Scbdinger equation (2.13) can be easily solved according to the wave function

L ¢tk with wave number

VN
2mn N
k=— =0,£1,£2,...,£—). 2.15
N (TL 07 ’ ? ? 2 ) ( )
The eigenvalues arg k) = —2tcosk. If one makes a suitable correspondence betweand; =
1,2,..., N, the desired energy leve} is obtained.

Now let us define the fermion operators corresponding to the eigenstéiésby

T T 1 ikx
., = Z Cro——=€"". (2.16)
TEA \/ﬁ

Due to the orthonormality of the set of eigensta{ﬁs(j)>}j:172w|A‘, one finds that the inverse trans-
formation of Eq. (2.16) is

o= Z a2706_ikx. (2.17)
k:77r,77r+2§,...,7r

Substituting Eq. (2.17) into Eq. (2.6) and using Eq. (2.18),,, can be diagonalized as
Hiop =y Doelk)a jano = > > e(k)ino, (2.18)

o=T1,l k o="1,1 k

whereny, , = aL -0k, Can be interpreted as the electron number operator for the eigenstate with mo-
mentumk.
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Here, letA and B be arbitrary subsets df-m, —m + 27,..., 7} which satisfy|A| + |B| = N,. By
using Eq. (2.18), the state

|Wa,B) = ( 11 ab) ( 11 ab) W yac) (2.19)

keA k€A
is found to be an eigenstate &f = H,,, and its energy eigenvalue is
Eap=Y clk)+ > (k). (2.20)
keA keB

The ground state of this non-interacting system can be obtained by choosing sdilzsets3 which
minimize the energy’ p.

When the corresponding single-electron energy eigenvalues are non-degeneratesis.. 1, and
the total electron numbe¥, is even, the ground state of the system with the Hamiltoflas H,,,,, is
written

Ne/2
|‘I’GS> = < 1_[1 aL(j),T%t(j),l) |\Ijvac>- (2.21)
]:

This indicates that the state is filled with both up and down spins from the lowest energy level. See Fig.
2.2.

dded

Fig. 2.2: The Ground State of a Non-interacting System. The Io@esﬁanergy levels of a single
electron system are filled with up and down spin electrons.

In the discussion above, the electron has a plane wave form with a certain wave rfiumbke
diagonalization of the Hamiltonial = H,,,, shows that the electrons behave as “waves” in this non-
interacting system.
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Non-hopping System

Let us now assume that the hopping matrix elementsgjg), satisfy

try =0 (Vz,y e A). (2.22)
The Hamiltonian is then
H = Hine = Y Uslg, 10| (2.23)
zEA

which is in fact already diagonalized. A general eigenstate can be written

|\IIX,Y> = < H CL,T) < H C;,T> |\Ilac>a (224)

zeX yey

whereX andY are arbitrary subsets df, and represent lattice sites which are occupied by up and down
spin electrons. The total electron number in this state is given by

Ne = [ X[+ Y], (2.25)
and the energy eigenvalue is given by
Exy= Y, U.. (2.26)
zeXNY

For a given electron numbe¥,, the ground state can be found by choosing sub¥etnd Y that
minimize the energy’x y. In the case ofV, < |A], if the subsets{ andY are chosen as satisfying

X NY = (), i.e. two electrons do not exist on a same site. The energy of the ground state then equals to
0.

Needless to say, the electrons behave as “particles” in this non-hopping system, which repulsively
interact only when two happen to be on a same site.

2.1.4 Expansion into the Bose-Hubbard Model

The Bose-Hubbard model is an approximate model of interacting bosons on a lattice. It is closely
related to the Hubbard model which originated from solid state physics as an approximate representation
of the behavior of the electrons confined in atomic potentials of a crystalline solid. The difference is that
the fermionic operators are now replaced by bosonic creation and annihilation operators. The Bose-
Hubbard model is used to study systems such as bosonic atoms in optical lattices.

The Hamiltonian of the Bose-Hubbard model is given by

1 . ra .
H=—t > (b5by + bbs) + SU D (e = 1) = 3 o, (2.27)
{(z,y)|nearest neighbor} T T

whereb! andb, are bosonic creation and annihilation operators, satisfying

[b2, b])] = 02y (2.28)

:E?y
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and
[bz, by] = 0. (2.29)

f. = blb, is the number operator and it gives the number of the particles at the. siie the hopping
matrix element[/ is the on-site interaction, and, is the chemical potential.

In fermionic systems, the Mott transition are complicated due to the spin of electrons and the anti-
commutating nature of the operators. On the other hand, for interacting bosonic system with spin zero,
the situation is much simpler and more easily studied. Therefore theoretical analyses of the dynamics of
the Bose-Hubbard model are often studied [10, 11].

2.2 Quantum Phase Transition

2.2.1 Overview

Due to Heisenberg’s uncertainty, fluctuations remain even at zero temperature in a quantum system.
These quantum fluctuations may be strong enough to induce a quantum phase transition which brings
about a macroscopic change. A remarkable example of such a quantum phase transition is the shift
from the superfluid state to the Mott insulator state in a system made up of bosonic particles which
repulsively interact each other. This transition was first studied theoretically [9] and, recently, have been
shown to be observable when an ultracold gas of atoms with repulsive interactions is stored in a periodic
potential [12].

Let us consider an atomic gas of bosons at extremely low temperatures. In such an ultracold situation,
a Bose-Einstein condensate is formed. When a lattice potential is applied on the Bose-Einstein conden-
sate, this results in a superfluid state with long-range phase coherence. In the superfluid state, bosons
can hop from one lattice site to the next only by a tunnel coupling.

If the lattice potential is raised smoothly, the system stays in the superfluid state as long as atom-
atom interactions are small relative to the tunnel coupling. In this phase, the delocalized wave function
minimizes the kinetic energy which is dominant in the system and therefore the total energy is also
minimized.

If the lattice potential is raised further, the repulsive atom-atom interactions become large compared
to the tunnel coupling. In this phase, since the total energy is minimized when each lattice site is filled
with the same number of atoms, the atom number per site becomes fixed. This is accompanied by the
reduction of fluctuations in the atom number on each site, and phase coherence is consequently lost.
This situation is called the Mott insulator phase.

The above physics can be described by the Bose-Hubbard model (see Eq. (2.27)). In the following,
the two main phases of the model, i.e. the superfluid state and the Mott insulator state, is discussed.
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Fig. 2.3: Ultracold Atoms in Optical Lattices

2.2.2 Superfluid Phase

In the limit where the tunneling (hopping) term dominates the Hamiltonian, the total energy of the
ground state is minimized by single-particle wave functions that are spread out over the entire lattice.
The many-body ground state for a homogeneous sysigr=(constant) is given by

M N
‘\IJSF>U=O (S ( Z a’;) |\Ijvac>7 (2.30)
=1

where M is the lattice site number, and is the atom number. Note that this is equivalent to the plane
wave states discussed in Subsection 2.1.3, with &ll0.

In this regime, all atoms occupy identical extended Bloch states. Furthermore this regime is well
represented by a macroscopic wave function with long-range phase coherence over the entire lattice.

2.2.3 Mott Insulator Phase

In the opposite limit, where the interaction term dominates the Hamiltonian, the ground state of the
system consists of wave functions of localized atoms with a same number per site. Then the ground state
is a product of local Fock states for each lattice site. The many-body ground state for a fillingfactor
(n atoms per site) is given by

M

[ W) =0 o ( (aL)”>|\vaac), (2.31)

=1

in the homogeneous case.
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This Mott insulator state cannot be expressed by a macroscopic wave function. In this regime, no
phase coherent prevails in the system but there exists perfect correlations in the atom number between
lattice sites.

2.3 Quantum Simulation

2.3.1 Universal Quantum Simulator

In 1982, Richard Feynman proposed that a universal quantum computer could be used to simulate
physical systems [14]. Since the number of variables that must be taken into account to simulate a
guantum system increases exponentially with the number of particles in the system, he claimed that
the simulations of quantum many-body systems are intractable on any classical computer, and conjec-
tured that other computers built incorporating quantum mechanics should be able to simulate quantum
mechanical systems efficiently. It is known that certain phenomena in quantum field theory are well
imitated by certain condensed matter systems and therefore he guessed that there should be a certain
class of quantum systems which would simulate any other systems, a so-called “Universal Quantum
Simulator”.

In 1996, Seth Lloyd showed Feynman’s conjecture to be correct [15]. Furthermore, he also indi-
cated that the experimental requirements to accomplish an efficient simulation of interacting many-body
systems would be less demanding compared to the implementation of Shor’s factoring algorithm [16],
which is the best known problem that a quantum computer can solve more efficiently than a classi-
cal computer. Although a quantum computer implementing Shor’s algorithm might need millions of
guantum bits (qubits), quantum simulation requires a quantum computer (simulator) with only a few
hundreds or thousands qubits.

2.3.2 Benefits of Quantum Simulations

With quantum simulators, many condensed matter phenomena described by a many-body Hamilto-
nian that cannot be treated either analytically or numerically with classical computers, are thought to
become tractable. Therefore, through these experiments, important phenomena in physics, chemistry,
and even biology are hoped to be understood.

The experiment of ultracold atoms stored in optical lattices is the most successful implementation of
a quantum simulator to date. The lattices are artificial crystals made of laser light (Fig. 2.3(a)) where
ultracold atoms are confined in arrays of a microscopic potential (Fig. 2.3(b)). They can be manipulated
externally by optical techniques. Due to the many controllable parameters over the atoms, this system is
highly suited for performing quantum simulations.

2.4 Quantum simulation of the Hubbard Model

Recently there have been a lot of advances in trapping of fermionic atoms in optical lattices [18]. One
of the features of an optical lattice is that the effective form of interactions is an extremely short-range
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interaction [13]. In a real system where the physics is described by a Hubbard model, the interactions are
of a long-range form originating from the Coulomb interaction. Therefore such effects may be difficult
to take into account in an optical lattice approach. To simulate a Coulomb interaction, a real Coulomb
interaction may be necessary in the system carrying out the simulation.

2.4.1 Quantum Simulator Using Surface Acoustic Waves

Another type of quantum simulator using fermionic particles were proposed for studying the Hubbard
model [19]. This quantum simulator is desired to understand the metal-Mott insulator (conducting-
insulating) quantum phase transition in a solid.

In Ref. [19], Byrnes et al. start with a standard modulation-doped GaAs/AlGaAs heterojunction,
which forms a two-dimensional electron gas (2DEG). Interdigital transducers (IDTs) are placed outside
of the 2DEG mesa. Surface acoustic waves (SAWSs) are launched by driving a high frequency AC voltage
to the IDTs, forming an interference area at the center of the device. An electric potential is induced
due to the piezoelectric property of GaAs. As the SAW moves, it carries the trapped electron with it in
the local minima of the potential induced by the SAW [20]. The electrons in the lattice interact via a
Coulomb repulsive force and thus create a Hubbard model (see Fig. 2.4).
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Fig. 2.4: Quantum Simulator Using SAW. Green areas show periodic potential experienced by electrons.
“S” denotes a source electrode and “D” a drain electrode.
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2.5 Quantum Simulation of the Bose-Hubbard Model

In 2002, Markus Greiner et al. observed a quantum phase transition in a Bose-Einstein condensate of
87Rb, held in a three-dimensional optical lattice potential [17]. In this experiment, the phase coherence
between different lattice sites was tested by suddenly turning off the confining potential. The atoms were
then permitted to expand freely and interfere with each other.

2.5.1 Superfluid Phase

In the superfluid phase, where all atoms are delocalized throughout the entire lattice with equal relative
phases between different lattice sites, a high-contrast three-dimensional interference was detected as
expected for a periodic array of phase coherent matter wave source (Fig. 2.5).

Fig. 2.5: Schematic Three-dimensional Interference Pattetdlenotes the wave vector of the laser light.
(Excerpted from Ref. [17])

2.5.2 Quantum Phase Transition into the Mott Insulator Phase

As the lattice potential height is increased, the resulting interference pattern changes markedly. In
the initial state, where there exists no lattice potential, the Bose-Einstein condensate has perfect phase
coherence and therefore only a first-order interference peak is observed (Fig. 2.6a). The strength of
higher-order interference maxima increases as the lattice depth is increased because the atoms tightly
localize on every lattice site (Figs. 2.6b-d). When the lattice potential is further increased, the strength of
the interference maxima no longer increases (Figs. 2.6e, f). Instead, an incoherent background appears.
Finally, no interference pattern is visible at all (Figs. 2.6 g, h). Phase coherence has been absolutely lost
at this lattice potential.
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Fig. 2.6: Absorption Images of Multiple Matter Wave Interference Patterns. These were obtained after
suddenly releasing the atoms from an optical lattice potential with different potential depths. (Excerpted
from Ref. [17])

During the evolution, the interference pattern remarkably changes from the coherent to the incoherent.
When the interference pattern is still visible, no broadening of the interference maxima can be observed.
With a strong lattice potential, this completely vanishes in the incoherent background. This phenomenon
can be explained on the basis of the superfluid-Mott insulator phase diagram. After the system has
crossed over the quantum critical point, it changes into an incoherent Mott insulator phase. Near this
guantum critical point, the system is inhomogeneous, that is to say, partially in the superfluid state and
also partially in the Mott insulator state. Therefore both interference peaks and incoherent background
are visible.

2.6 Problems and Requirements

Ultracold atoms in optical lattices have experimentally realized a Mott insulator state. The interfer-
ence pattern indicates that each atom is localized at an individual site [17]. However the behavior of
each particle in the Mott insulator state is unclear from this experiment alone. To understand the true
behavior of each particle, the wave function of the quantum many-body system must be calculated.

Of course, itis impossible to calculate the wave function of such a system of tens or hundreds particles
with computers. Thus itis necessary to reduce the particle number and simplify the system for numerical
analysis. Even if the target system contains only two particles, one can know the correlation between the

two particles using a numerical simulation. It is hoped to gain a better understanding of Mott insulators
using this calculation.
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3.1 Numerical Analysis

3.1.1 Numerical Solutions for Partial Differential Equations

Numerical schemes for solving partial differential equations, e.g. Maxwell’s equations and the time-
dependent Scbdinger equation, include the following:

¢ The finite difference method
Functions are discretized and then represented by their values at certain grid points and derivatives
are approximated through differences in these values. Finite differences are one of the simplest
ways of approximating a differential operator.

¢ The finite element method
Functions are represented in terms of basis functions and the partial differential equations are solved
in their integral form. The solution is based on eliminating the differential equation completely, or
rendering the partial differential equation into an equivalent ordinary differential equation with
standard solutions.

¢ The finite volume method
Space is divided into discrete parts and the change within each volume is calculated by considering
the flux across the surface of each volume.

e The spectral method
Functions are represented as a sum of their basis functions, for example Fourier components. By
substituting the Fourier decompositions into the original partial differential equations, a system of
ordinary differential equations is obtained.

The finite difference method is usually regarded as the simplest and the most easily understood method
and thus we usually choose to use this finite difference method. The finite element and the finite volume
methods are widely used in engineering and in computational fluid dynamics, and are suited for problems
in complicated geometries. The spectral methods are generally the most accurate, if the solutions are
sufficiently smooth.

In this chapter, the finite difference method is employed for solving the time-dependeitBgar
equation. This scheme is adopted not only for the spatial domain but also for the temporal domain.
Consequently, using this scheme, the time response of the wave function is calculated and the scattering
of the quantum particle can be calculated.

3.1.2 Explicit Versus Implicit Schemes

For numerically solving partial differential equations, either explicit scheme or implicit scheme, as
well as semi-implicit scheme, may be applied. Explicit methods calculate the state of a system at a
later time, or a next time step, only from the state of the system at the current time. On the other hand,
implicit methods find the later state by solving an equation involving both the current state of the system
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and the later one. The explicit method is called as the “forward Euler method”, while the implicit
method is called as the “backward Euler method”. Moreover the semi-implicit method is called the
“Crank-Nicolson method”. This method involves taking the derivative half way between the beginning
and the end of the time step. It is thus an average between the fully implicit and fully explicit schemes.

The explicit method is stability bound, but much faster on a per-time-step basis. Furthermore, because
the time step is severely restricted, this method tends to produce a more temporally accurate solution.
Generally, the explicit method is suitable for time-dependent problems with fast moving dynamics.

The main advantage of the implicit approach is to march in large time steps for the steady state
without any stability conditions. The price for stability is the need to solve a linear algebraic system at
each demanding time step, which is a rather expensive computational task and therefore takes a lot of
time. In addition, although harmless to stability, the time-step size has to be carefully chosen, due to the
numerical accuracy of the time evolution.

3.1.3 Solutions of the Time-dependent Sckdinger Equation

The numerical solutions of the time-dependent 8dimger equation (or similar equations) have been
studied for a long time in order to calculate the dynamics of quantum mechanical systems [21-24].
These time-domain calculations are useful for estimating the response of various quantum devices. In
the following sections, | introduce a solution for the time-dependentd@amger equation with a focus
on the “FDTD-Q method”.

3.2 The FDTD-Q Algorithm (Real Time)

The finite-difference time-domain (FDTD) is a computational electrodynamics modeling scheme. It
is widely used to solve Maxwell's equations for scientific and engineering applications [26, 27].

The FDTD method belongs to the general class of grid-based differential time-domain numerical mod-
eling methods. Maxwell’s equations (in partial differential form) are transformed into central-difference
equations. The equations are solved in a leapfrog manner: the electric field is solved at a given instant
in time, then the magnetic field is solved at the next instant in time, and the process is iterated over and
over.

This scheme is also useful for the analysis of quantum devices [28, 29]. The scheme is extended for
solving the time-dependent Séldinger equation

20D e, 3.1)
ot
where the Hamiltonian has the form
. h2
H=——V?+V(rt), (3.2)
2m

wherem is the mass of the particle andis the potential.
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In this section, | will describe an application algorithm of the FDTD technique for solving the time-

dependent Scbdinger equation. In the following, to distinguish the two algorithms, | call the scheme
“FDTD” for electromagnetism and “FDTD-Q” for quantum mechanics.

3.2.1 Separation of Real and Imaginary Parts
To obtain two real equations, the complex wave function is separated into two real functions. They
correspond to the real and imaginary parts

Y(r,t) = Yre(r,t) + ithim(r, 1) 3.3)
Then, by separating real and imaginary parts, Eq. (3.1) is divided into the following two equations
involving real functions corresponding 1@, andy, .

 Ore(r, 1) o

_ " o2, )
T = 5V Yim (7, t) + V(7 t)Yim (7T, 1) (3.4)
Obim(r,t) B,
hT = %V wrc('f’,t) — V(T,t)¢rC(T,t) (35)
3.2.2 Discretization

In order to solve the partial differential equations humerically, it is required to transform the continu-
ous functions into discrete functions as described below. In the following case, the spatial dimension of

the wave function is fixed to one, i.@(r,t) = ¥ (x, t), for simplicity. Space is divided into small cells
of width Az and time is split into short steps of spavi.

Ure(x,t) = Ure(iAx,nAt) ~ R} (3.6)
Yim(x,t) = Yim(iAz,nAt) ~ I

; (3.7)
Next, the partial differential equations are transformed into difference equations. ThizlBgier

equation contains first-order derivatives in time and second-order derivatives in space. They are calcu-
lated by using a central difference approximation as described below.

e First-order derivative in time

M P+ 5 -9+ 3

ot At (3:8)
e Second-order derivative in space

0% (x4 Az) = 2¢(x) +(z — Ax)
dx2 (Ax)?

The former approximate accuracy(idt)?, and latter i Ax)2.

(3.9)
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Using the above discretization, the Satlinger equation (Egs. (3.4) and (3.5)) is discretized and the
following two equations are obtained.

ntl n-1  At|R* I - 20+ I nn

' _ pno3 At AT N VALY & 3.10

Rz Rz h 2m (A$V m ‘ ( )
n+l n-i At|n? n_H — 2R+ R},

AT s B v — Vi'R{ 3.11
% % + h | 2m (A$V %‘RZ ( )

3.2.3 lteration

The calculation of Egs. (3.10) and (3.11) at a given poimolves the pointg + 1 andi — 1. For
example, to update the real part of the wave function at the discreteigtitiie instan{n + %)At, the
values of the imaginary part of the wave function at the paintst 1, andi — 1 at the instanh At are
required. The calculation involves the real and imaginary parts of the wave function at each node and
second-order derivatives at each point of the discrete space. Therefore, in this scheme, both the real and
imaginary parts of the wave function are located at the same node. This fact is different to the FDTD
method applied to electromagnetic problems. The electric and magnetic field components are sampled
at distinct spatial points, whereas the real and imaginary parts of wave function are calculated at the
same spatial point (Fig. 3.1).

(G gl

'ﬁ""'€¥:-'-'1

(a) Yee Cell (b) FDTD-Q Cell

Fig. 3.1: Field Components within a Cubical Grid

The time instants of the real and imaginary parts of the wave function are updated out of step with
each other. The imaginary part of the wave function is out of step by a%ﬁ‘rrelative to the real part.
Therefore Egs. (3.10) and (3.11) are evaluated alternately. This leapfrog manner is an analogy between
the FDTD method and the FDTD-Q method.
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3.2.4 Initial Value

To start this staggered algorithm, the initial values of the wave functionpj.éz, 0) and;y, (z, %),

are necessary. An approximation is then used for estimating the initial wave fuggtion, %).

For example, a suitable initial state for an area without any potential is a planeM@av@) = ¢(z) =
e’* The wave function is represented at the instemy

E(k)

P(a,t) = p(x)e ™ = g(x)e " n °, (3.12)

wherew is the angular frequency arfd(k) is its energy. An approximation of the imaginary part of the
wave function at = % may be obtained as

At EAt

Yim (2, ?) = —re(z,0) Sin(ﬁ). (3.13)

3.2.5 Definition of Probability Density

It is not obvious in this system that the probability density is simply evaluated by
P = Re[¢)]* + Im[y)?, (3.14)
sinceR and[ are not defined at the same time. If one makes the choice Ref. [28],
P, 1) = e, nM + i, (04 ) A, (0 — 2)A) (3.15)
atintegem = - and
P(e,) = tho(e, (04 ) Az, (0 — 3)AD) + (2,1 AD)? (3.16)

at half-integem = é, then it is guaranteed that the difference
;P(m,t—i— %) - %:P(x,t) (3.17)

vanishes identically and therefore probability is conserved.

3.3 Stability Conditions

The time stepAt is the time increment between continuous calculations in the numerical approach
described by Egs. (3.10) and (3.11). A suitable choicAobfs important in the FDTD-Q simulations,
since the computational cost decreaseg\asncreases. A largeAt provides longer simulation time
with the same number of calculation iterations. Howeve#fifis too large, this makes the simulation
unstable. The optimal choice of the time discretization is the largest one that keeps the algorithm stable.
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In Refs. [29] and [30], the stability relationship between temporal and spatial discretizations is ex-
pressed as below inequality

At < h (3.18)

— B2 1 1 1 ’
e+ @t ae) Y

The critical time step Eq. (3.18), which gives long simulation times and yet maintains the stability of
the algorithm, should be used in the calculations.

3.4 Absorbing Boundary Conditions

In this section, | consider a computation arearof= [0, NAz], whereN is a integer. From Eqgs.
(3.10) and (3.11)R” andIZM% (i=1,2,...,N — 1) are calculated fronk~*, Iinfé andR”. If one
takes boundary conditions & = 1{}*% =Ry = IX,JF% = 0 for all n, perfect reflections occur at the
boundary as if an infinite potential wall existed. To avoid this reflections, it is necessary to implement
absorbing boundary conditions.

3.4.1 Outline

To construct absorbing boundary conditions, the boundary should be transparent for plane waves of
the form

Y(w, t) = e Wika), (3.19)

This expression is only valid for scattering states. The basic idea is to build an algebraic equation for
the wave vectok and the frequency, and then utilize the relationship between thedomain and the

k-w domain. In short, the correspondence'gtf S w and—ia% & k is used to construct a differential
equation at the boundaries which is transparent for plane waves.

It is obvious that the boundaries are fully transparent only for plane waves and thus it is impossible
to construct perfectly absorbing boundary conditions for arbitrary waves. From Egs. (3.1), (3.2), and
(3.19), the following dispersion relation for the wave vedtas obtained

h2E? = 2m(hw — V). (3.20)
This equation can be solved fbrand yields

hk = £1/2m(hw — V). (3.21)

In this equation, the plus sign means a right-going wave and the minus sign means a left-going wave.

The absorbing boundary conditions should be constructed to satisfy the dispersion relation given by
the plus-signed Eg. (3.21) at the right boundary and the minus-signed Eq. (3.21) at the left boundary.
Unfortunately, Eq. (3.21) cannot be converted into an partial differential equation. Consequently, many
approximation methods are proposed [31-36].



Chapter3 The FDTD-Q Method 26

3.4.2 Pad Approximation

In Ref. [32] and others, the following Padpproximation centered at a positive constaat kg is
applied tok2.

=3k + ko

k= k{———
O %k — 3k

+ O((k — ko)) (3.22)

Substituting the above equation into Eg. (3.20), one obtains

R°k?  B°k§ =3k + ko

~ = hw—
om . 2m k- 3ko oV

n2kd

5 (=3k+ ko) = (k= 3ko)(hw — V). (3.23)

Using correspondena’ed% S w and—i% < k, second absorbing boundary condition

k2.0 N, L0
is obtained. From the original Saldinger equation,
L0 h? 9%
(hg =V =555 (3.25)

is guaranteed to hold. Substituting Eq. (3.25) into Eq. (3.24), one gets a new absorbing boundary
condition

(iaax + k)3 = 0. (3.26)

This is a time-independent equation. Therefore, one can calculate the boundary values of the wave

function from the values near the boundary at the same time.

Eq. (3.26) is separated into the real and imaginary parts in a similar way to Sec. 3.2.

83 wre 82¢im 2 (%pre

_ M = 27
5+ ko 5t — Bko’ 1 — koY 0 (3.27)
83wim 82 Q;Z)re 2 aq;Z)im 3

023 — 3ko 022 — 3ko o + ko°Yre = 0 (3.28)

3.4.3 Discretization

If Egs. (3.27) and (3.28) are discretized, we will obtain difference equations. However, at the bound-
ary, the central difference method is impractical, since the values in outer domain are not defined. We
will therefore employ the forward and backward difference methods in this case. Specifically, the for-
ward difference method is applied at the left boundary< 0) and the backward difference method is
applied at the right boundary: (= N Ax).
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Left Boundary
The derivatives are approximated in the following forward difference method as follows:

e The 1st-order derivative

oy _ P(Ax) —(0)

~ 3.29
ox Ax ( )
e The 2nd-order derivative
2 —
0% v(2A) - 2(Az) +(0) (3.30
Ox? (Ax)?
e The 3rd-order derivative
Y v(3Az) — 3p(2A7) + 3¥(Az) — (0) (3.31)
o3 (Az)3 '
Egs. (3.27) and (3.28) are modified into the following difference equations
R3s — 3Ry +3R1 — Ry I, — 21 + Iy 2R1—R0 3
- ——— —ko’lp = 0 3.32
(Ax)3 + 3ko (Ax)? 3ko Az ko lo (3.32)
Is — 31, + 311 — Iy Ry —2R1 + Ry 211—10 3 B
(Ax)3 3k0—(A$)2 3ko Ar + ko°Ry = 0. (3.33)
They are solved foRky and/, which then yields
3 3(a?—1) 3a? —1
Boo = it e @l
3a 6a a(a® — 3)
I — — 34
+a2—i—11 (@+1)27% (@+1)3°7° (3.34)
B 3a 6a a(a? —3)
fo s T @@t e
3 3(a® —1) 3a% — 1
— 3.35
+2+11 (a2—|—1)22 (a2—|—1)33 (3.35)
with a = kgAx.
Right Boundary

The derivatives are approximated in the following backward difference method as follows:

e The 1st-order derivative
o b(NAT) = (N —1)Az)

D A (3.36)
e The 2nd-order derivative
0% _ Y(NAz) — 20((N — 1)Az) + ¢((N — 2)Axz)
oz Bo)? (3.37)
e The 3rd-order derivative
0% - P(NAz) — 3¢((N — 1)Az) + 3¢ (N — 2)Azx) — ((N — 3)Ax) (3.38)
3 .

03 (Azx)
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Egs. (3.27) and (3.28) are modified into the following difference equations:

Ry —3Rn_1 +3RNn_2— Rn_3 I =21+ IN—2

3k
(Az)? T A
—3/402% —ko*In =0 (3.39)
In =3IN-1+3In—2—IN-3 3% Ry —2RNy_1+ Ry—2
(Az)? ’ (Ax)?
In —In_
f3k02NTN1 + ko3Ry = 0. (3.40)
They are solved foR andy which then yields
3 3(a? -1) 3a? — 1
Ry = ——Rn_ —— 2 Ryn_9o— ————<Rn_
N 1 N T @@ N T @ N
3a 6a a(a® — 3)
— In_ — = In_ 41
a2+1N1+(2+1>2N2+(2+1)3N3 (3.41)
Iv — 3a ~ 6a a(a® — S)R
3 3(a® —1) 3a® -1
In_ In_9o— ——=In_ 3.42
+a2+1N1+(2+1)2N2 (a2+1)3N3 ( )
with @ = kgAwz.

3.4.4 Energy-weighted Wave-number Parameter

The parametek plays the role of the expansion point in the Baapproximation. In the above
absorbing boundary conditions, it needs to be pre-estimated. Therefore, one of the most important
issues is how to select a suitaldigsuch that it minimize the reflection of the wave at the boundary. In
the following, for convenience, the discussion is focused on the right boundaryN Ax).

It is most constructive to estimate the parameter in the frequency domain. The wave function at time
t is able to be expressed in terms of a Fourier series. In Ref. [35], a general strategy is given to estimate
the wave-number parametiy, which is a function of time. The strategy is to use a discrete Fourier
series expansion of the physical variable in space

N
)

) (3.43)

N
. o 2m N N
w(X7t): E :w<xj7t)€_lxmj% (fOI' X:_57_5+1;--
§=0

with g = 0, xy = L andNV even. If a certain Fourier mode is dominant, one can choose the parameter
ko = 2Exo such that

[$(x0: )| = Oglixﬂ{ [$(x,1)] }- (3.44)

Eqg. (3.44) is not the best choice in many practical cases. When two Fourier modes are both dominant,
it is obvious that the best choice of the parameter to minimize the reflection is the medial value of the
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two different wave numbers. Consequently, an improvement is to use a weighting strategy [34]. The
approach is to weight the energy as follows,

27
ko:f

10a0r0y /S P, (3.45)
x=0

on\z

X

with p a positive real number. When— +o0, Eq. (3.45) converges to Eq. (3.44). In Ref. [34], the
authors suggest that= 4 is a good choice based on numerical experiments.

3.5 The FDTD-Q Algorithm (Imaginary Time)

The Schodinger equation provides the general description of microscopic phenomena. However the
Schibdinger equation is analytically solvable only in a few highly idealized cases and thus, for realistic
systems, one needs to resort to numerical solutions. Recently the Diffusion Monte Carlo method was
introduced for these analytically unsolvable systems [37—-39]. This method is suitable for obtaining the
ground state of many complicated quantum systems. However the method that works best for simple
systems, such as systems without local potential minima, is the imaginary time evolution method [40,
41], which is the basic concept of the Diffusion Monte Carlo method and is described below.

3.5.1 Imaginary-time Evolution

The solution of the time-dependent Sgtinger equation can be written in general as a linear super-
position of stationary states with the time dependence given by the phasectgeteri £,,t /i), where
E,, is then-th energy level of the quantum system. The energy can be chosen such that all energies are
positive.

Now, if we consider in imaginary time, that is to say, replacing the tirhg —ir, the solution of
the Schédinger equation is given by a sum of transients of the fexp(—E,,7/h). As the quantum
system evolves in imaginary time, the longest surviving transient corresponds to the ground state (the
state with the lowest possible enerfy) of the system. Consequently, evolved for adequately long in
imaginary time, one can obtain both the ground state enEpggnd the ground state wave functiog
of the quantum system. Moreover, this method is not sensitive to the initial state prepared.

3.5.2 Numerical Scheme

The numerical scheme for the imaginary-time Sclinger equation is basically similar to the scheme
for the real-time Scladinger equation described in Sec. 3.2. The 8dimger equation in imaginary
time is as follows,

_p Q) _ Hep(r,7), (3.46)
or
where the Hamiltonian has the form
. h2
H=——V*+V(r). (3.47)

2m
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Separating the wave function into real and imaginary parts, one obtains the following two equations:

hawre(r, ) R

or - %V%pre(ra 7—) - V(T)wre('ra 7') (348)
0 im\7", h2
hwa(:ﬂ = %VQTbim(TyT) = V(r)Yim(r, 7). (3.49)

Then, discretizing the wave function, one obtains the following two equations,

At | h? R, —2R! + R!
7’L+1 — n 1+1 (3 1—1 o RPN 350
H; B+ h [Qm (Ax)? VZR%] ( )
At B2 I, =210 4+ I
! it h [2771 (Ax)? Vil ( )

in the one-dimensional case.
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4.1 Overview

4.1.1 Two-particle Two-site System

To analyse the nature of a Mott insulator phase, particularly to find the state of each particle, it is
necessary to calculate the wave function of the system. Let us consider two electrons trapped in a plane,
e.g. a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterojunction. In this chapter, | will
consider a two-electron system where the two electrons are trapped in a two-site geometry (see Fig. 4.1).
The electrons are confined within the area:

D={(z,2)|0<2<L;, 0<z<L,} (4.2)
in thex-z plane. The external confining potentldl,; is described as

Vext =0  ((z,2) € D)
{Vext:oo (‘else) ’ (4.2)

The lattice potential,; is modulated only inc-direction and written

Viae(,£) = V(£) cos (42””), .3)

whereV (t) > 0 is the time-transient lattice potential depth.

Y (Value)

Lz

Fig. 4.1: Lattice Potential in the Two-Site Model

4.1.2 Conceptual Expression of the Ground State in the Two-site Model

In this two-site geometry, the ground state of a single electron is simply and conceptually expressed
by two basic stated.) and|R), or their superposition state. The) state corresponds to a state where
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the electron is mostly found on the left site€ = < %). On the other hand, thé?) state corresponds
to a state where the electron is mostly found on the right égei; x < L;). The single-electron
ground state of this model is then

1
V2

The ground state of the two-electron system without any interaction is then written

) (IL) +[R)). (4.4)

Whuo = (0 + R ® (1) +1R):
— %(|LL>+]LR>+|RL>+|RR>), (4.5)
where
|ILL) = |L)1®|L)2 (4.6)
LR) = L) ®|R): (4.7)
[RL) = [R)1®|L)2 (4.8)
|IRR) = |R)1 ® |R). (4.9)

Using this expression, we may guess that the ground state of the system with interactions might be
given by

1

W) 20 = ﬂ(|LR> + |RL)) (4.10)

since|LL) and|RR) states contain the higher interaction energy.

4.1.3 Time Evolution

The lattice potential/,; corresponding to the tunneling (hopping) term may only be a tunable pa-
rameter in nature because it is applied externally. However, exploiting the calculation techniques, the
interaction term is also controllable and can even be set to zero.

While controlling these two parameters, we simulate the time evolution of the system. Beginning
in the ground state of the system, the system remains in the ground state as long as the condition of
adiabatic evolution is observed. We may thereby calculate the ground state for all interaction energies.

4.1.4 Phase Observation

A transient phase of the system is observed in the form of interference patterns after a free expansion.
This was also seen in the experiment of Greiner et al [17]. After the two electrons are released from both
the external confining potential and the lattice potential, they freely propagate through:ztptane
while interfering with each other.
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In the experiment of Greiner et al., the phase is perfectly coherent over the entire lattice in a Bose-
Einstein condensate state and therefore only the first-order interference maximum is visible (Fig. 2.6a).
In a superfluid state, all atoms are localized throughout the entire lattice with equal relative phases
between different lattice sites and, thus, higher-order interference maxima are visible (Fig. 2.6b-d). On
the other hand, in a Mott insulator state, since each of atoms are localized on an individual site, no
interference pattern is visible (Fig. 2.6g, h).

As described above, higher-order interference maxima should be visible in a metal (conducting) phase
of this system, while only a blurry and broadened interference pattern should be observed in a Mott
insulator (insulating) phase in this calculation.

4.2 Implementation

4.2.1 Hamiltonian

In a N-body system where each particle has the masghe Hamiltonian of the system is described
in the following form:

N 2

Hy_pody = Y <— i Vi + Vz‘(Tz‘7t)> +> Vik(ri,ri). (4.11)
i=1 2m; ik

V; is the single-body potential for theth particle. It depends on the positiepand also time. V; . is

the potential of interaction between thh andk-th particles. It depends on the both positiepsand

r,. UsuallyV; ; is a function of the relative positiopr; — ri|. The N-body Schodinger equation is

then written

. L, 0
HN—body\Il(Tla r,... ,TN,t) = Zﬁa\p(Tl, r2,... ,TN,t). (4.12)

Let us consider the situation of two particles confined initheplane, where an external potential is
modulated only inc-direction. Eq. (4.11) is then rewritten

. n? [ 02 0? h? [ 92 0?
H —bo = _— | — _— _— | —— _—
2-body 2my (8x% * 82%) 2ma (83@% * 82%)
+Vi(21,t) + Va(z,t) + Vio(21, 21, 72, 22), (4.13)

whereV/ » is the potential of the Coulomb interaction between two particles and, thus, has the following
form:
e? 1

. _ 414
12(21, 21, 2, 22) dmeren v/ (11 — 22)% + (21 — 22)% @19

where we have the elementary chatgehe permittivity of free spacey, and the relative permittivity
er. See Appendix A for numerical values used. In addition, Eq. (4.12) is rewritten

N 0
Hy pody¥(21, 21, 2, 22, 1) = Zha‘l’(ﬂfl, 21, T2, 22, ). (4.15)
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In the following, | assume that the two electrons have the same mass=(ms = m;) and anti-
parallel spins, that is to say, one has an up-spjrad the other has a down-spif),(and also assume
that the spin part of the wave function of the system is antisymmetrized. In this way we interpret the
ground state of the system for two electrons, which are fermions. (Note that one can also consider a
boson version if assumes two spin less particles.)

4.2.2 Probability Density

The probability density that the first-indexed electron is foundzat z;) and the second-indexed
electron is found atzs, z2) at a same timeis given by

P(x1, 21,2, 22,t) = |¥(21, 21, T2, 22, )|, (4.16)
In this system, since the two lattice sites are aligned along:thgis, the probability density distri-

bution of z-direction is not physically important. Because we are interested in which site the patrticle
exists, there is a need for calculate the following probability densities:

P(xl,xg,t) = //P(xl,zl,xQ,ZQ,t)dzleQ (417)
P(xy,t) = /P(xl,xQ,t)dxg (4.18)
Plant) = [ Ploros,t)do (4.19)

(4.20)

4.2.3 Discretization (Real Time)

To calculate the wave function using the FDTD-Q algorithm described in Sec. 3.2, the wave function
has to be separated into its real and imaginary parts and discretized. We must therefore transform the
two-body Schiddinger equation (Eq. (4.15)) into difference equations. Let us here define the second-
order differences as the following equations:

n n n n _AP™
DiffXR" R g T 1 g T a1 T i1 4Rn7al,m,yz,421)
v (@.
11,71,%2,72 (Ax>2
n n n n _ARM ..
DifiZR" _ Bt T G- i g TR i ot T i a1t T ing 22)
v (@.
11,71,%2,72 (AZ)Q
n n n n A
DiffX[u - :[i1+1,j17i27j2+Ii1—1,j17i27j2+Ii17j1,i2+1,j2+Ii1,j17i2—1,j2 41217]1722,]2 (4 23)
11,71,2,]2 (Al’)Q
n n n n _ATn
DifizIn _ it T i —vi,g0 TH g ingo 1 T g ingn—1 = 43 i i (4.24)
11,71,22,72 (AZ)2 ’

with cell sizeAz = ﬁ,—z Az = ]%,— and position indexes, , iz, ji, jo. Parameters,, iy € {i|i =
0,1,...,N.} andji, jo € {jlj = 0,1,..., N,} correspond ta:, =2, z1, andz, respectively, that is,
for examplex; = i1 Az. Using the above definitions, the Sodinger equation is transformed into the
following two difference equations:
ntl n—1 hAt | .
By finge = Biy i inge — 5 {DlﬁX[ ix,j1ings T D2 znl,jl,z‘z,jz}

2m}
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At e? 1
h { R e Ve T —g@)?(Az)?} hutan (429
n+l n—1 hAt ‘ ‘
L gbings = Tivgiings T 5 {Dlﬂ XRY jria.ga T DWZRZ@W?}
e
At e? 1

R* . . . (4.26
Irevco V(i = PP (BaP T U1~ oo } boninaf - 26)

_E{Vi? + Vi +

When the indexes satisfy (@1, j1) = (i2, j2), the Coulomb potential diverges. Therefore the values
of the wave function are fixed tat those cells.

Rijii=1i5:5=0, Vi, j,n (4.27)

In this calculation, | employed the parameters described in Tab. 4.1:

Tab. 4.1: Parameters for the Simulation of a Two-particle System

Name | Symbol | value [ Unit |
Width L, 20x1077 | m
Depth L, 1.0x1077 | m
Cell Number forz-direction N, 20 | —
Cell Number forz-direction N, 8| —
Time Step At 1.0x 1075 | s

4.2.4 Discretization (Imaginary Time)
Using Egs. (4.21) - (4.24), the imaginary time evolution is formulated in a similar way.

1 1
n—I—E . n—s hAt . n . n
Ri17j1,i2,j2 - Ri1,j17i27j2 + 2m* DlﬁlXRilvjlai21j2 + DZﬁZRih]‘lﬂéJé
[S]

At e2 1
h { " 2 dmereg /(i1 — i2)2(Ax)2 + (j1 — jQ)Q(AZ)Q} i1ui2.id )
n—&-l n—l hAt X .
Ii17j127i2:j2 = IilvjiiQ,]é + 2 * {DZﬁXIZJLsz + DZﬁZI?h]'hinQ}
(S

At e? 1

—— VPV . . . (4.29
h { Ve e Vi PR T i j2>2<Az>2} iz (429)

4.2.5 Absorbing Boundary Conditions

If two electrons are released from an external confining potential and a lattice potential, they freely
expand in the plane. However computational resources restrict vast-area calculations. Consequently
there is a need for implementing absorbing boundary conditions to calculate the propagation in a small
area and to save resources.
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The absorbing boundary condition formula represented by Eq. (3.26) can be applied to all coordinates.
The implementation described in Sec. 3.4 can be used to modify the indices of Egs. (3.34), (3.35), (3.41),
and (3.42).

4.3 Experimental Procedure

4.3.1 Initial State

Without any lattice potential and any interaction, i¥.,= Vo = Vi » = 0, the single-electron wave
function of the ground state is given by

2 Ly AN
di(xi, z) = T sin <L$> sin (Lz ), (4.30)
and the ground-state energy of a single electron is also given by
w2h? 1 1
Fee — B 4.31
97 o (LI2 +Lz2> (4.31)

The wave function of the system is then written

D(z1,21,72,22) = ¢1(x1,21)02(72, 22)
= LjLZ sin <7zil) sin (Zl) sin (TZQ) sin <7Z2> (4.32)
Following the description in Sec. 3.2, one obtains the following discretized initial values:
4 (min\ . (T . (T2 . (T2
R?ijzm = I.L. sin <]Va:) sin (Nz ) sin (Na:) sin (Nz) (4.33)
1 EgsAt
0 . GS
I grizgs = i o g, SIB ( 5 ) (4.34)

4.3.2 Increasing the Lattice Potential

As the lattice potential is gradually increased, without any interaction, both two electrons start to
localize on each lattice site. For large lattice potentials, each electron will be in a superposition state of a
left on-site state and a right on-site state. In this state, the electron can hop from the left site to the right
site, and vice versa. The wave function of the system has the form of Eq. (4.5).

In this simulation, the lattice potential was increased with a &t&p= 1.0 x 10~26[J] during half a
step %). The increment continued from= 0 to t = 10* At.

4.3.3 Increasing Both the Interaction Term and the Lattice Potential

After switching on the interaction term &= 0, to calculate the ground state of an interacting system,
an imaginary time evolution is performed for some time until the ground state is obtained. As the lattice
potential is gradually increased in real time, electrons become localized on each site.
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In this simulation, the imaginary time evolution was iterated fot steps. After this, the lattice
potential was increased with a st&/ = 1.0 x 10~26[J] for every half a step%_%). This was continued
fromt = 10*Attot = 2 x 10*At.

4.3.4 Free Expansion

Released from both the external confining potential and the lattice potential after the time evolution,
the electrons scatter freely and interfere with each other. In this scattering process, only the propagation
along thex-axis was calculated, for the electrons do not interfere as much alongdhection due to
the z-directional site alignment. Furthermore, the interaction term is set to zero again since it no longer
affects the correlation between the two electrons after localization.

4.4 Results and Speculations

In this section, | will show two types of figures. The figures with red and blue line graphs show
the probability density distribution as a function:ef The red line indicates the first indexed electron
and the blue line indicates the second indexed electron. The figures with black envelopes and colored
inners show the conditional probability density distribution as a functian a@f the condition that the
opposite electron is found at the vertically lined position. The inner color indicates the relative phase
(see Appendix B). In the both types of figure, the green line indicates the shape of the lattice potential.

4.4.1 Initial State

The initial state is given by Eq. (4.32). This is plotted in Figs. 4.2 and 4.3. The wave function of the
initial state without any interaction and any lattice potential is spread over the whole area with perfect
phase coherence.

Electron 1 Electron 1

Tx/4 Lx/2 3Lx/4 Lx Lx/4 LA/2 3Lx/4 Tx
Electron 2 Electron 2

Fig. 4.2: Probability Density Distribution of thHeig. 4.3: Conditional Probability Density Distribu-
Initial State tion of the Initial State
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After being released from the external confining potential, the two electrons freely expand and in-
terfere with each other. In Figs. 4.4 and 4.5, only the first-order maximum is visible at the center.

Electron 1
Electron 1

[Electron 2
Electron 2

Fig. 4.4: Interference Pattern of the Initial Stat:él_(‘::_' éf:tcondmonal Interference Pattern of the
nitial State

4.4.2 Regime with Hopping

After the lattice potential is increased, the electrons localize on both sites with equal phase (see Figs.

4.6 and 4.7). In Fig. 4.7, we see that the left and right sides of the single-electron wave function are in
phase.

[Electron 1

NN

Lx/4 Lx/2 3Lx/4 Lx

Electron 2

Fig. 4.6: Probability Density Distribution of a Regime with Hopping

After being released from the external confining potential and the lattice potential, the two electrons
freely expand and interfere with each other. In Figs. 4.8 and 4.9, we see higher-order maxima. Further-
more, in Fig. 4.9, we see that the interference maxima are always visible wherever the opposite electron

is found. Consequently, as the sum of these phenomena, the probability density distribution (Fig. 4.8)
also shows the interference maxima.
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[Electron 1

T

[Electron 2

I S—_—

[Electron 1

0
[Electron 2

(&) When one is found at the center, the (b) When one is found on the left site, the

other can be found on both sites.

other can be found on both sites.

Electron 1

0

[Electron 2

(c) When one is found on the right site, the
other can be found on both sites.

Fig. 4.7: Conditional Probability Density Distribution of a Regime with Hopping

Electron 1

Electron 2

Lx

Fig. 4.8: Interference Pattern of a Regime with Hopping
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Electron 1

Electron 1

[Electron 2 Electron 2

et T g

(a) First-order Maximum (b) Left-side Peak

Electron 1

[Electron 2

ey

(c) Right-side Peak

Fig. 4.9: Conditional Interference Pattern of a Regime with Hopping

This state can be written
1
W) = 5 (L) +[R)1 @ (IL) + |R))2. (4.35)

Both electrons can hop from one site to the other site respectively. This phase consists of the quantum
superposition state of each particle and, consequently, can be thought to be a metal phase, or a superfluid
phase if considering the experiment of Greiner et al.

4.4.3 Regime with Hopping and Interaction

After the imaginary time evolution and the increase of the lattice potential, the electrons begin lo-
calizing on an individual site (see Figs. 4.10 and 4.11). This state has a correlation between electron
positions. That is to say, if one electron is found on one site, the other electron is found on the opposite
site.
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Electron 1

AN

Lx/3 Lx/2 3Lx/4 Lx

Electron 2

Fig. 4.10: Probability Density Distribution of a Regime with Hopping and Interaction

[Electron 1 [Electron 1
0 Lx/4 | B 3Lx/4 Tx| [0 Lx/4 Tx/2 3Lx/4 x
[Electron 2 Electron 2

(&) When one is found at the center, the (b) When one is found on the left site, the
other can be found on both sites. other can be found on the right sites.

Electron 1

0 Lx/4 Lx/2 3Lx/4 Tx
Electron 2

(c) When one is found on the right site, the
other can be found on the left sites.

Fig. 4.11: Conditional Probability Density Distribution of a Regime with Hopping and Interaction
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After being released from the external confining potential and the lattice potential, the two electrons
freely expand and interfere with each other. An “explicit” interference pattern is observed only in Fig.
4.13(a). However, comparing all the figures of Fig. 4.13, it is found that the phase of this state is
incoherent. Although each figure has interference maxima, the positions of the maxima differ with each
other. When the integral of these patterns are taken, the interference maxima negate each other and the
probability density distribution (Fig. 4.12) has no interference pattern left.

This state can be written

1
v) = \ﬁ(rm +|RL))

1
m{
As an example, let us consider the case where one finds the second indexed electron at the center.
According to Eq. (4.36), there are two possible ca$e$s+ |R)); @ (|L) + |R))2 and(|L) — |R))1 ®
(|IL) — |R))2. In the latter case, the second indexed electron has a(fidrim- |R)). However, since
the left and right sides of the single-electron wave function is joined with the sigrthe interference
center is a node and, consequently, the probability density at the center is almost zero. The second
indexed electron cannot be found in the latter case and thus the former case is embraced. On the other
hand, in the former case, the single-electron wave function of the first indexed electron has the form

(|IL) + |R)), where the left and right sites are in phase. In this situation, the single-particle interference
of the first indexed electron occurs.

(IL) + [B)1 @ (IL) + |R))2 = (IL) = [R)r © (L) = [R))2}.  (4.36)

Both electrons cannot exist together on a same site. This state can be thought to be a Mott insulator
phase. Consequently a Mott insulator phase can be interpreted as being made up with entangled states
of the particles.

Electron 1

Electron 2

Fig. 4.12: Interference Pattern of a Regime with Hopping and Interaction
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[Electron 1 [Electron 1

A A

Electron 2 Electron 2

Y Vv .

(a) On condition that electron 1 (or 2) is (b) On condition that electron 1 (or 2) is
the statg|L) + |R)) the statg|L) — |R))

Electron 1

Y 'V -

[Electron 2

Y V|

(c) On condition that electron 1 (or 2) is
the statg|L) — |R))

Fig. 4.13: Conditional Interference Pattern of a Regime with Hopping and Interaction
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5.1 Overview

5.1.1 Three-particle Three-site System

In this chapter, the numerical simulation is extended to a three-particle system in a three-site geometry
to analyse the property of Mott insulators more generally. Let us consider three particles confined to a
plane (see Fig. 5.1). The particles exist within the area:

D={(z,2)|0<2<L;, 0<z<L,} (5.1)

in the z-z plane. The external confining potentidl; is described as

ext = ; D
Vext = 00 (else)
The lattice potential,; is modulated only inc-direction and written
6
Viaart) = Vi(t) cos (1), (5.3)

whereV (t) > 0 is the time-transient lattice potential depth.

Y (Value)

Lz

Fig. 5.1: Lattice Potential in the Three-Site Model

5.1.2 Conceptual Expression of the Ground State in the Three-site Model

In this three-site geometry, the ground state of a single particle is simply and conceptually expressed
by three basic statd4.), |C') and|R), or their superposition state. Thk) state corresponds to a state
that the particle is found on the center sile{ x < %) and the|C) state corresponds to the center site
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(% < 2 < 2=) and the|R) state corresponds to the right sité¢ < z < L,). The single-particle
ground state of this model written

1

P L)+ |C)+ |R)). 5.4
|©) \/g(l ) +1C) +[R)) (5.4)
The three-particle ground state without any interaction is then written
1 1 1
Wpg—o=—(L)+|CY+|R))1 ® —=(|L) +|C) + |R))2 ® —=(|L) + |C) + |R))3. 55
|>Uo\/§(|>|>\>)1 \/g(!>!>|>)2 \/g(\>\>|>)3 (5.5)

Using this expression, we may guess that the ground state of this three-particle system with interac-
tions will be given by

W00 — \}é(mcm +|LRC) + |CLR) + |CRL) + |[RCL) + |RLC)) (5.6)

since interaction energy evokes excitation if two or more particles exist on a same site.

5.2 Implementation

5.2.1 Hamiltonian

Let us consider the situation of three particles confined inctheplane, where an external potential
is modulated only inc-direction. Eq. (4.11) is then rewritten

. h? [ B2 02 n? [ 92 0? n? [ 02 0?

vy = 3053+ 52) ~ 3 (3 + 32) ~ 3 (03 03)
+Vi(z1,t) + Va(za, t) + Va(xs, t)
+Vi2(z1, 21, 2, 22) + Vo 3(x2, 22, 3, 23) + V31(23, 23, 21, 21). (5.7)

In addition, Eq. (4.12) is rewritten

. 0
H3_poay¥(21, 21, T2, 20, 73, 23, 1) = Zﬁ@‘l’(l’l,zl,xz, 29,13, 23,t). (5.8)

In the following, for simplicity, | assume that the three particles have a same mass and they are spin
less bosons. (Note that one can also consider a fermion case if assumes antisymmetrized spin part of the
wave function such that the energy is minimized.)

5.2.2 Probability Density

The probability density that the first-labeled particle is foun¢uat 21 ) and the second-labeled par-
ticle is found at(x2, z2) and the third-labeled particle is found @ts, z3) at a same time is given

by
P(x1, 21,29, 22,73, 23, 1) = |U(21, 21, T2, 22, T3, 23, 1)|*. (5.9)

The z-directional distribution of the probability density of the first-labeled particle is then written

P(.%'l,t) = /////P(xl,zl,xg,22,x3,23,t)dz1dx2dz2dx3d23. (510)
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5.2.3 Discretization (Real time)

To calculate the wave function, it must be separated into real and imaginary parts and discretized as
described in Sec. 3.2. In the following, | abbreviate the position indexes, t&} is ;, ;. ;. ;, to R"
andIy ; i, i, s i, 101", By the same token, for examplgy, . ; ;. ., ;. ;, IS abbreviated t@?} ;. Let

us then define the second order differences as the following equations:
R «+RY | +R} \+ R, |+ R+ R | —6R"

DiffiXR"* — A 5 (5.11)
iz~ Bt L 1+R2+1+(i;)1+R3H+R _,—6R" 5.12)
D = He I T Jr(iz;;; S 519
DiffzI" = Lt a1 (f;)zl t L - — 6—7”7 (5.14)

with cell sizeAz = J@—z Az = ]@— Using this definition the Schdinger equation is transformed into
the following two difference equations:

1 hAt

R = R"i - = {D XTI + DzﬁZI”}
%{ + Vi + Vg +Vig+Vas + VS,I}In (5.15)
s = iy A {D ifFXR" + DzﬁZR”}
%{ + Vi + Vg +Vig+Vas + V3,1}Rn (5.16)
whereV,, , = Vin L _with {m,n} € {1,2,3}.

Vim—in)2 (A2 4 (jm—dn)? (A2)

In this implementation, | employed the parameters described in Tab. 5.1:

Tab. 5.1: Parameters for the Simulation of a Three-particle System

Name \ Symbol H Value \ Unit \
Width L, 30x1077 | m
Depth L. 1.0x 1077 | m
Cell Number forz-direction N, 18| —
Cell Number forz-direction N, 4| -
Time Step At 1.0x 1071 | s

5.2.4 Discretization (Imaginary Time)

Using Egs. (5.11)-(5.14), the imaginary time evolution is formulated in a similar way to Chap. 4.

hAt
R™3 = R34 {DzﬁXR”—i—DzﬁZR”}
2m}
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At
_f{vﬁ +Viy +Vig +Vig + Vos + V3,1}Rn (5.17)
N ZAf{DiﬁXI" + DzﬁZ[”}
At
—;{Wf +Viy +Vig +Vig 4+ Vaz + Vg,l}I” (5.18)

5.3 Experimental Procedure

5.3.1 Initial State

Without any lattice potential and any interaction, the single-electron wave function of the ground state
is given by

2 (T . [Tz
(bi(f]jz‘, Zi) = m S1n <_Lx> S1n (LZ ), (519)
and the ground-state energy of a single electron is given by
mh? [ 1 1
Egs=—|—+—). 5.20
97 2 (12 12) 5:20)

The wave function of the system is then written

O(x1, 21,2, 22,23,23) = ¢1(x1,21)P2(x2, 22)P2(x3, 23)

3 3
2 n\ . n
— (L 7 ) Hsin (7? )sm <7TLZ > (5.21)
VvV Ligliz n—1 T z

Following the description in Sec. 3.2, one obtains the following discretized initial values:

3 3 . .
2 . ™ . )
0o _ n n
R = <m> g Sin (M) S1n ( NZ ) (522)
EqsAt
I3 = —ROsin (3 ;2 ) (5.23)

5.3.2 Increasing the Lattice Potential

As the lattice potential is gradually increased, without any interactions, the three particles start to
localize on each lattice site. Finally, each particle is left in a superposition state of the left, center, and
right on-site states. In this state, the particle can tunnel from one site to another. The wave function of
the system has the form of Eq. (5.5).

In this simulation, the lattice potential was increased with a &&p= 2.0 x 10~25[J] in half a step
(%). This was continued from= 0tot = 103At.

5.3.3 Increasing of Both the Interaction Term and the Lattice Potential

After switching on the interaction term at= 0, an imaginary time evolution is performed for an
sufficiently long time to calculate the ground state of the interacting system. As the lattice potential is
then gradually increased in real time, the particles start to localize on a site.
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In this simulation, the imaginary time evolution was iterated fot steps. After this, the lattice
potential was increased with a st&y = 2.0 x 10~26[J] for half a step (%). This was continued from
t=103Attot = 2 x 103A¢.

5.3.4 Free Expansion

Released from all potentials after the time evolution, the particles scatter freely and interfere with each
other. In this scattering process, only the propagation along-tinas was calculated since the particles
do not interfere as much along thedirection due to the:-directional site alignment. Furthermore, in
this process, the interaction term is set to zero again because it no longer affects the correlation between
the three patrticles after localization.

5.4 Results and Speculations

In this section, there are two types of result figures. One shows probability density distributions
of the first indexed particle. The other shows conditional probability density distributions of the first
indexed particle on condition that the second indexed particle is found at a red-lined position and the
third indexed particle is found at blue-lined position. The inner color indicates a relative phase. In both
types of figure, the green line graph indicates the shape of the lattice potential.

5.4.1 Regime with Hopping

After the lattice potential is increased, the particles localize on every three sites with equal phase (see
Figs. 5.2 and 5.3). Fig. 5.3 shows that the left, center, and right sides of a single-particle wave function
are in phase in this state.

Ixf6 1x3 w2 2lx3  Slxfe Ix

Fig. 5.2: Probability Density Distribution of a Regime with Hopping

After being released from the external confining potential and the lattice potential, the three particles
freely expand and interfere with each other. In Figs. 5.4 and 5.5, higher-order maxima are visible. Fur-
thermore Fig. 5.5 show that the interference maxima are always visible wherever the other particles are
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Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx
(a) Condition of|L)s|L)3 (b) Condition of|L)2|C)3 (c) Condition of|L)s| R)3

0 w6 B L 2B sk IA T R T T 7 R v S T T R T R IV R T
(d) Condition of|C)2|L)3 (e) Condition of|C')2|C)3 (f) Condition of |C')2| R)3

0 Lx/6 Lx/3 Lx/2 2Lx/3 SLlx/6 Lx Lx/6 Lx/3 Lx/2 2Lx/3 SLlx/6 Lx Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx

(9) Condition of|R)2|L)3

(h) Condition of|R)2|C')3

(i) Condition of | R)2| R)3

Fig. 5.3: Conditional Probability Density Distribution of a Regime with Hopping
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found. Consequently, the sum of these phenomena also shows an interference maxima in the probability
density distribution (Fig. 5.4).

Fig. 5.4: Interference Pattern of a Regime with Hopping

This state can be written
) = %(\L> +1C) + [R))1 @ (IL) +[C) + |R))2 @ (|L) + [C) + |R))s. (5.24)

All particles can hop from one site to another site respectively. This phase consists of quantum superpo-
sition states of each particle and, consequently, can be thought to be a superfluid phase.

5.4.2 Regime with Hopping and Interaction

After the imaginary time evolution and the increase of the lattice potential, the particles begin local-
izing on an individual site (see Figs. 5.6 and 5.7). This state has a correlation between the positions of
the particles. That is to say, if one particle is found on one site and another particle is found on another
site, the last particle can then be found on the last site.

After being released from the external confining potential and the lattice potential, the three particles
freely expand and interfere with each other. An “explicit” interference pattern is observed only in Fig.
5.9(a). However, comparing each of the figures in Fig. 5.9, one can see that the phase of this state is
incoherent. Although each figure has interference maxima, the positions of the maxima differ with each
other. When the integral of these phenomena is taken, the interference maxima negate each other and
the probability density distribution (Fig. 5.8) has no interference pattern left.

This state can be represented by Eq. (5.6). In this situation, the single-particle interference maxima
of one patrticle exist at different positions which depend on the positions of other patrticles.

Either particle cannot exist together on the same site. This state can be thought to be a Mott insulator
state. Consequently a Mott insulator quantum can be interpreted to be made up of entangled states of
the particles.
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@) (b)

(©) (d)

Fig. 5.5: Conditional Interference Pattern of a Regime with Hopping

0 Lx/6 Lx/3 Lx/2 2Lx/3  5Lx/6  Lx

Fig. 5.6: Probability Density Distribution of a Regime with Hopping and Interaction
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0 Lx/6 Lx/3 Lx/2 2Lx/3 SLx6 Lx 0 Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx
(a) Condition of|L)s|L)3 (b) Condition of|L)2|C)3 (c) Condition of|L)s| R)3

0 6 B @ 2 sie L b e B Nz 2N SiN6 I Lus D Dy 23 Siwe Ix
(d) Condition of|C)2|L)3 (e) Condition of|C')2|C)3 (f) Condition of |C')2| R)3

0 Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx 0 Lx/6 Lx/3 Lx/2 2Lx/3 Skxf6 Lx 0 Lx/6 Lx/3 Lx/2 2Lx/3 SLx/6 Lx

(9) Condition of|R)2|L)3

Fig. 5.7: Conditional Probability Density Distribution of a Regime with Hopping and Interaction

(h) Condition of|R)2|C')3

(i) Condition of | R)2| R)3
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Fig. 5.8: Interference Pattern of a Regime with Hopping and Interaction

AN LA M. || LD e |

@) (b)

() (d)

Fig. 5.9: Conditional Interference Pattern of a Regime with Hopping
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6.1 Results of This Study

In this study, the wave function of a two-electron system in a two-site geometry was numerically
simulated. The Hamiltonian of this system contains both the kinetic energy and the repulsive Coulomb
interaction term. The dominant term therefore determines the properties of the system. The ground
state of the system was obtained by adiabatic evolution of the parameters. After obtaining the ground
state, the system was released from all potentials and interactions and the interference patterns of the
probability density distribution was obtained. From analyses of these patterns, two typical quantum
phases of the system were confirmed:a metal phase and a Mott insulator phase.

In a metal phase, or a superfluid phase if considering bosons, the left and right sides of a single-
electron wave function were in phase for any place. This has the same interference pattern as a single-
particle interference pattern. A metal phase is therefore made up with superposition states of each
electron as expected.

In a Mott insulator phase, if one electron is found on one site, the other electron is found on the oppo-
site site. Therefore a single-particle interference pattern with maxima at different points which depends
on the position of the other particle is observed. Summed up these interference patterns, a probability
density distribution that is totally broadened and with interference is obtained. A Mott insulator phase
can thus be thought to consist of entangled states of the particles.

6.2 Future Prospects

In this study, | simulated the two typical cases:non-interacting ddse ()) and strongly interacting
case. One may also consider points nearer to the cross-over point where the dominant term of the
Hamiltonian changes.

In this dissertation, | also considered a three-particle case and obtained similar results to the two-
particle case. We may also consider simulations of systems with more particles in order to look at cases
near the quantum critical point, as a true phase transition occurs only for an infinite number of particles.
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Tab. A.1: Physical Constants

Name \ Symbol H Value \ Unit \

Permittivity of free space €0 8.854187817 x 1072 | F.m™!
Planck’s constant h 6.62607 x 10734 | J-s
Dirac’s constant h= L 1.054572 x 10734 | J-s
Elementary charge e 1.602177 x 10719 C
Electron rest mass Me 9.10938 x 10731 kg
Relative permittivity in GaAs € 1.31 x 10* -
Electron effective mass in GaAs ms 0.067m, kg
Circle ratio (C/C++ compiler definition)  « || 3.14159265358979323846 | -
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The HSV (Hue, Saturation, Value) model is a nonlinear transformation of the RGB color space. It
defines a color space in terms of three components:

e Hue, the color type
Ranges from 0 to 360 ° .

e Saturation (Purity), the vibrancy of the color
Ranges from 0 to 100%.

¢ Value, the brightness of the color
Ranges from 0 to 100%.

The definition of the HSV color model is device-dependent. HSV is only defined relative to RGB
intensities without the physical definitions of chromaticities and white point. This model may be used
in color progressions.

Transformations between RGB and HSV

The ranges of the values:

H € (0,360)
S.V,R,G,B € (0,1)

e From RGB to HSV
Let MAX equal the maximum of théR, G, B) values, andMIN equal the minimum of those

values.
undefined, if MAX = MIN
60 X o if MAX=R and G>B
H = ¢ 60x g% 57y +360, if MAX=R and G<B (B.1)

B—R : _

0, it MAX =0
S = { MIN ] (B.2)
— MAX> else

V = MAX (B.3)

e From HSV to RGB

f % _Hz

p = V(-5

g = V(QA-fS)

t V(I —(1-1)S)
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R=V, G=t, B=p, if H; =0
R=q, G=V, B=p, if H =1
R=p, G=V, B=t, ?f H;, =2 (B.4)
R=p, G=¢q, B=V, if H;=3
R=t, G=p, B=V, if H =4
R=V, G=p, B=gq, if H;=5

(a) Relationship between HSV and RGB (b) HSV Color Wheel

Fig. B.1: HSV Color Space



