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研 究 解 説
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The Second Order Hydrodynamic Actions On A Flexible Body (Part I)
弾性浮体に働 く二次の流体力学的作用 (その 1)

Wu YOUSHENG*,Hisaaki MAEDA**and Takeshi KINOSHITA**

呉  有 生 。前 田 久 明 ・木 下  健

The second order hydrodynamic forces due to rigid body rotations and variations of
instantaneous wetted surface area may provide non-linear loads to the structural responses of a
ship travel ing in rough seas, and may also induce low frequency osci l lat ion or springing of a mult i-
module very large floating structure moored in waves. As a preliminary study of the second order
hydroelastic behavior of marine structures, the contributions of the first order wave potentials and
responses to the second order hydrodynamic actions for a flexible body are formulated, and the
corresponding expressions. The velocity potential, The hydrodynamic pressure and The
hydrodynamic forces are presented in this paper.

1. Introduct ion

The second order hydrodynamic forces induced by the
rigid body rotations and the variation of the instantaneous

wetted surface area have been a great concern in the
estimation of responses of a floating platform, a mooring
system, or a VLFS in random waves. When a ship travels in
rough seas, the large motions and the hydrodynamic forces
acting on the instantaneous wetted surface also result in the
non-linear behaviors of the structural loads and responses.
This may be observed in many ways, including the
phenomenon of greater magnitudes of midship sagging
moments than those of hogging moments of a ship traveling
in waves, for example. To meet the requirements of safety,
reliability, and performance of ships and other marine
structures, the naval architects have to make continuous
effort in seeking the possible ways to predict the non-linear
loads more reasonably, rationally, as well as practically for
application.

The second order wave forces have been widely
investigated for motion and drift force predictions of
stationary floating marine structures. In most cases the
structure is approxirnated as a rigid body responding to first
order and second order wave forces. When the structure has

China Ship Scientific Research Center, Wuxi, China
* *2nd 

Department, Institute of Industrial Science, University
of Tokyo

forward speed as the case of a ship, or when it encounters

current for the case of a stationary floating system, the
modeling and solution of second order problems get more

complicated.

For a ship traveling in. irregular waves, the non-linear

effect induced by rotations of the hull has not yet been

thoroughly investigated. Many publications concern about

the instantaneous wetted surface effect. In this connection

the strip theories have shown to be easily handled and

mostly usedl). The non-linear three-dimensional hydrody-

namic actions on a ship have also been the subject of
research, though not much (see, for example, ITTC'962)).

Lin and Yue3) presented a three-dimensional method of

solving the large-amplitude motions of a rigid ship. In this
method the time-domain Green Function is employed, the
free surface condition is linear, while the hydrodynamic

integral equations are taken over the instantaneous wetted

surface and its water line.

If the structural responses (distortions, stresses, bending

moments, etc.) to the non-linear second order hydrodyna-

mic actions are to be examined together with the rigid body
motions, the solution of corresponding fluid-structure

interactions is even more complicated. It should be

reminded that the inclusion of the flexible body distortions

in the analysis does not give notable influence to the

resultant hydrodynamic forces and moments required for

the rigid body motion predictions. The key advantage of
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doing so is to obtain more rational predictions of local and

global structural (not only the rigid body) loads and

responses.

During the past decade great progress has been made in

the development and application of the linear three-

dimensional hydroelasticity theoriesa)-7). How to account

for the non-linear hydrodynamic forces in the three-

dimensional fluid-structure interactions remains a field to be

further investigated. This paper discusses the contributions

of the first order velocity potentials and responses to the

second order hydrodynamic actions on a flexible body. No

attempt is made at the present stage to consider the non-

linear effect due to slamming impact and wet deck loading.

Only allowed for in the analysis are' the second order

hydrodynamic actions induced by the rigid body rotations

and the variation of the instantaneous wetted surface area.

The structure is still assumed linear, and the existing linear

three-dimensional hydroelasticity approach is used to obtain

the first order velocity potentials and responses of the

structures). The expressions of the generalized second order

hydrodynamic forces are formulated, and the non-linear

equations of motion both in frequency domain and in time

domain are presented. The methods introduced may be

used to develop a numerical procedure for prediction of

non-linear loads and responses of a ship traveling in rough

seas, or a multi-module VLFS in waves, where each of the

modules may have rigid body rotations. The corresponding

numerical study is now being continued at Institute of

Industrial Science of Tokyo University, and China Ship

Scientific Research Center.

2. Goordinate systems

Three coordinate systems will be used to define the fluid

actions and the structural responses as shown in Fig. L,

where Ax6y6z6 is a space-fixed frame of reference; Oxyz is

an equitibrium frame of axes moving with forward seed U
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and remaining parallel to Axoyozo; O'x'y'z' is a body-fixed

axes system. O'x'y'z'coincides with Oxyz in the absence of

any disturbance. The O'z' axis passes through the gravity

center G and points upwards. The plane lies on the

undisturbed water surface.

3. Structural dYnamics

3.1 Definition of the Displacement Components

The structure is discretized by finite element method as a

system of m degrees of freedom. The rigid body transitions,

rotations and the flexible body distortions of the structure

are denoted by the vectors f1,r1]pand [p respectively. ftis

described with respect to the equilibrium frame of axes,

while r1-p and up ore both described with respect to the body

fixed axes system. They are
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(3.1a)

,  (3.1b)

(3.3)

(3. lc)

where [, (r E 7) denotes the distortion of the structure in its

r-th principal mode, and

o ,  =  | vx f i r .

The displacement due to the 6 rigid body modes are

respectively

i i 1  - { u r , 0 , 0 } ,  f i 2  - { 0 ,  u z , 0 } ,  i l 3  - { 0 , 0 ,  u 3 } ,

f i+ = {0,  -z '0+, } '0+},  [5 = {2i05, 0,  -* '0t} ,

[o = {-y '06,  x '06,  0}.  (3.2)

Evidently,
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In linear theory the total displacement at any point of the

structure may be expressed as

6 0 )  - { u 0 ) , y ( l ) , w ( l ) y  = “ｕ
ｍ
で
ん
自

= rl-r +t-n x ?, *fin.

In a general case an order'parameter e is introduced that

h; /4 - O(e) 'F* f Ll, wherc L is a characteristic length

of the structure. The order of distortions may be

represented as 
ln" /fl - O(e" ). For a conventional ship vFig. I Coordinate systems
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may be about I.5-2.0. However for some kind of VLFS,

for example a shallow draft barge-type very large floating

airport, taking Las the draft, v may be 1.0 or less.

If the effect of the rigid body.rotations are to be examined

to the second order, the total displacement at any point of

the structure described in the axes system Oxyz may be

written as

fi = [n-r + TG, 1to )l - i,
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modes of the dry structure, ■1(X′,ytZ′)={u:,v:,W:}

(r=1,2,… 。,m),may be Obtained.The nrst s破lmodes are

the rigid body modes, deflned as

i l‐ (1 , 0 , 0 ) ,■ :‐ (0 , 1 , 0 ) ,■ :‐ (0 , 0 , 1 ) ,

五!‐{0,一ztyり,■:日(Z10,一Xり,■:"{―ytX10)●o

These dry modes may be used as an aggregation of

orthogOnal functions to represent the structural responsesin

the form

i"Σttr(x′,y′,Z′)=Σ■:(X′,ytZりpr(0  (3.10)
r=l                 r=1

where Pr(t)(r=1,2,… ,m)are the principal coordinates.

This expression may be used for either the nrst order

responses,or the second order responses.For the■rst order

responses(3110)giVes(3.3),with

fr. - fripft)(t). (3.11)

When representing the second order responses, (3.10) is

non-linear to the fluid excitations, and gives

m m

fr - >il, (X', ! ' ,2')= ) u: (x',y', r ')p!t) (t) .
r=1 r=l

In this case (3.7) becomes

i l = fr+ft,+flfrD

According to (3.2) and (3.9), the first six principal

coordinates are respectively

P r ( t ) = u l  ,  P z ( t ) = u 2 ,  P l ( t ) = u 3 ,
p+ (t) = 04 , ps (t) = 05 , pe (t) = 00 . (3.12)

3.3 Generalized equations of motion

If the expression (3.10) is introduced, it is found that the

matrix equation of motion of the structure, may be written

in the form

a i i + b p + c p - Z + L , + G ( 3 . 1 3 )

where a and c are generalized mass and stiffness matrices of

the dry structrJre respectively, both symmetric such that

crr - colao. The matrix b represents the structural

damping in terms of the principal coordinates. The matrix p

is the vector lpr(t), pz(t), ..., p-(t)l . The generalized forces

and Z, A, and G will be examined individually.

(3.4)

Here i is the transformation matrix between the coordinate

systems O'x'y'z' and Oxyz. It has the form

T=I+R+H,

The formula (3.a) may therefore be written to the second

order in the form

■=■ (1)+IF′ +RttD・ (3.7)

The second term at the right hand side represents the

second order influence of the rigid body rotations to the

local displacement. The third term describes the first order

influence of the rigid body rotations to the representation of

distortions in the equilibrium frame of axes. The three terms

of (3.7) are of the orders O(e), O(rt) and O(e3) respectively

for a conventional ship; however may be of O(e), O(e2) and

O(r') respectively for a VLFS.

In a similar way, the relationship of normal vectors of the

body's wetted surface, defined in the two coordinate

systems O'x'y'z' and Oxyz, relating to the steady-state and

disturbed conditions, may be written as

N(*,y, z,t)=Tfr(x', y',2',t) = fr+Rn+frn. (3.8)

3.2 Principal modes and principal coordinates

Under the assumption of linear structure a set of principal
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3.4 Generalized forces

The generalized fluid force Z corresponding to p may

contain the linear and non-linear hydrodynamic actions.

In linear theory its r-th component is

Zr(t)=―∬■
・■lpdS

S

where p denotes the pressure acting on the wetted surface

S, R is the outward unit normal vector into the fluid. If the

second order hydrodynamic forces are included it is

expressible as

Zr(t)=―∬貴
°1'p dS

S ( t )

where the integration is taken over the instantaneous

wetted surface S(t), and N denotes its unit normal vector,

defined by (3.8).

The matrix A representing generalized concentrated

forces at the principal coordinates may include the actions

of l inear or non-l inear mooring forces l( t)  ( f  :  1,2, . . . ,

mo), acting at.(X/j, y'3, z'i).In this case !(t) is a function of

the principal coordinates. If only the mooring forces are

considered, the generalized concentrated force at P. is

SEISAN‐ KENKYU

4. Hydrodynamic actions

4.1, Velocity potential

4.1.1 Decomposition of velocity potentials

The fluid is assumed inviscid, incompressible, and the

flow is irrotational. If the body travels with a constant

forward speed U in x direction, the velocity potential may

be decomposed in the formlo)

(3.14)

Provided that the hydrodynamic drag and damping

forces acting on the mooring lines are neglected, the

motions of the attachment points of the mooring lines are

small, and the linear assumption is employed, !(t) will be

proportional to the principal coordinates. In this simple

case A, (r:  1, 2, . . . ,  m) are always expressible as

ΦO。,y。,Z。,0=Uφは,y,z)+фは,y,Z,0

with the lunsteady component expressed as

φ(X,y,Z,t)=φ。(X,y,z,t)+φD( y`,z,t)+Σφk(X,y,Z,t)
k=1

(4.2)

φ denOtes the velocity potential for the steady lnotion of the

body in calln watero The velocity of the steady flow relative

to the mo宙 ng equilibrium frame of reference is

W=U▽ (φ―⇒. (4,3)

Qo, Qn and Q1 denote the incident, diffracted and radiation

wave potentials respectively. k : 1,2, ..., m correspond to

atl the dry modes of the structure, including the 6 rigid body

modes.

With the wave steepness as the perturbation parameter o,

the diffracted and radiation potentials Qp and Q1 can be

expressed as a power series of s:

S - s6(t) +cr,2q(2) *.. .

(3.15)

(4.1)

(4.4)

一ＴｙＸ一ｕ
ｍ。マ
ι
Ｈ

〓△ (3.16)

(3,17)

m

△r(0=Σ(Cmrk)pk(り
k=1

where Cm.k is a restoring coefficient representing the

mooring line effect. If the motions of the attachment

po in ts  are not  smal l ,  q( t )  ( i  :  1 ,2 , . . . ,  mo)  and A,  ( r :  l ,

2, ..., m) will be non-linearly dependent on the principal

coordinates. For chain mooring lines they may be

calculated by the catenary theory in time domaine).

The generalized force G represents that of distributed

gravity, with the r-th component in the form

The first order potentials can be calculated by the linear

hydroelasticity theories4-8). The solution of the second

order potentials Q') it complicated for engineering applica-

tions. In the present paper only the second order wave

forces, closely related to the contribution of the first order

potentials and responses are examined using the pressure

integration method. Therefore hereafter the superscript ofi)

will be omitted.

Corresponding to (3.10) the first order radiation poten-

tials may be represented as

lk(X,y,z,0=Ψk(X,y,Z)pk(0          (4.5)

4.1.2 The governing equations of the flrst order potentials

for a flexible body

Gr‐~p∬pbgWidΩ
Ω

( 3 . 1 8 )
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The unsteady velocity potential for a flexible structure

satisfles the following governing equations

k(P,t)=0

[Q罪―U■)2+gfJ(χk

士χk(P,t)=0
χk(P,の
=0

景χklt=。=―gttΨlk
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P∈ V ,

z=0,        (4.9a)

P∈ S ,

P∈ V ,

z = 0 ,        ( 4 . 9 b )

P∈ S,

P∈ V,

+Ψ2k) = 0

P∈ S,z = 0 , t > 0 ,

P∈ 百,      (4。
9c)

z=0,

z=0。

▽2._0

G暑二u景 )2.+gttφ ‐0

士φ‐0

P∈ V

Z‐ 0

(On SCa beの

命φ=■・戯(り+J。)xW―(ざり。ηtt P∈百

Radiation Coddo■      R=

(4.6)

where P: (*, y, z) n, V is the fluid domain.

With the substitution of (3.3) and (3.11), the wetted surface
boundary condition of the radiation potentials may be
represented in the form

,P)p * 
(t)'

(4.7)

DfrJ,
In frequency domain the separation of the time and the

space variations allows the radiation potentials, correspond-
ing to each of the flexible body modes, to be solved by
employing a suitable boundary integral or boundary
element method. The details may be found in
references4's'7'8), where the three-dimensional pulsating
source Green function, or the pulsating and translating
source Green function were used for floating, or traveling
flexible marine vehicles.

In time domain, the radiation
transferred to three new functions

t

fu(P;0 =/fr*(p;t-r)pp (t)dt ,
0

with

potentials may be

in the following way

(4.8a)

φk(P;t)=Ψ lk(P)δ(0+Ψ2k(P)HC)+χ k(P;t)。 (4.8b)

Here δ(H)and H(t)are deined as

and ∫δ(Oftt)dt=frO),

The filnctionsand !rrr, rlzr satisfy the following equations.

72

The numerical solutions of Vrr, Uzr and 11 may be obtained
by employing the time domain Green functionslr'r2), and
the boundary integral method6).

4.2 Hydrodynamic pressures

According to Bernoulli equation and an expansion from
the instantaneous wetted surface S(t) to its steady state
mean position S, the fluid pressure acting on the body's
wetted surface may be expressed as

pヒ。=―p[1す■
・Vl{lφ+(■・⊃φ

+÷(w2_u2)+告(71)2+セ}L
(4,10)

(4.11)

(4.13)

By adopting (3.7), the pressure on the instantaneous wetted
surface of a flexible body with arbitrary geometric shape
may be represented to the second order in the form

plsar = pt"ls *p(4ls

where

ρ~中1lwt言磨
♂】岬あ

pO=― p{go薔
′+長五D)・▽Z′

+0°)・η(景十W・ηφ
* f tv0)' I * ttft' + flfiD) . vlw')ls

Obviously the first and second terms at the right hand side
of (4.13) are equivalent to
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―pg山′+飾D)・L′=―pg2o4V′~05助)“.。
~pg 10406X′+0506y′_÷(01+eξ)zη

For a body which is either slender,or thin,or flat,the

correspOnding flrst order and second order pressure

components are respectively as follows.

メリ=―p{皓―Uゎφ+g。′+→}ヒ

p(2)=_ρ{gσttF′◆⊃z′+gαこD・つZ′
'+O①・η(十―Uわφ+÷(▽φ)2}時

4。3  Hydrodynarllic forces

suttti"ling(3.8)and(4.11～13)into(3.15)yieldS

ZrO=ZF)+Zll)o+ZF)0       (4.17)

where Z∫°),Z∫1)(t)and Z∫2)(t)are respect市ely the

constant,flrst order and second order forces. They are as

follows.

ZP=prn.畔[解′+券Ⅳ2_u2】鵡
S

which represents the generalized steady― state buoyancy

forces and resistant forces.The generalized flrst order forces

are

Z l l ) o =Ξ l l ) + H l l ) + R l l )十 △R r    ( 4。 1 9 )

where

Ξ,)=p∬■・■(景+W・⊃ItO+ID01dS,  (4.20)
S
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■
2)(t)=p∬I侶動。■:+0=■:)(■(1)・▽)]

S

(l+W・⊃[幌+IDldS

+p∬■・五:告[▽φ。+▽ID12ds,
S

E9o=二ρln..:VI.0(0+φD(0]・Vlk ①dS,(4.26)

D9o=2呼[両・プ+9ず凛
①・Ⅶ

(十+W・⊃lkodS (4.27)

+呂
呂告呼
。・・1)恥0 0VI「OdS,

SP①=p∬ぼ島・1:[甲す告「
①・ηW21ds

S

+p∬個励・■:IgZ′+÷(W2_u2)]ds  (4.28)
S

十p∬o・五:x爾静
′+飾 D)レ

′+告W2 ) d s .
S

The term△ Z∫
°)denotes the forces induced by the

instantaneous variation of the wetted surface area△S=S(t)

一 S . T h i s  i s        '

A Z 9 (り = p∬ 五・■, ( I (十+臀
・
⊃ φ+告 ( W 2 _ u 2 )

aS                  (4.29)

+÷0°)・⊃w21+ま子′+W)}dS.

The integration over △ S may also be represented by an

integral along the water line Cw and a line integral in

vertical direction on the hull.Itis also known that along Cw

on S,to leading ordёr O(C),the f01lowing expression e対sts

g中 ……
音
It影+W・ ⊃ φ+÷ (W2… u2)+告 σll)・η W21

(4.30)

where g*is the local wave elevationo Thus(4.29)may

further be expressed as

M!4(tt=-ps I 2|a.0;l$
cu' r/l - ni

where

2 = 2(x ' ,y ' ,2 ' , t )  =  s*  -  vs

(4。15)

“.16)

(4.18)

(4.21)

(4.22)

(4.25)

“.31)

(4.32)

HP=2呼・・・:喘+W・⊃帆uS,

RP=咽 ・■・1:[gW+きO①・⊃W21ds,
S

ARr = p$6n).0llez'+|tw2 -u2)Ias . 9.23)
s

The last term AR, represents the influence of the rigid body

rotations to the first order forces, while the other terms are

the same as the linear theorya's). The generalized second

order forces may be expressed as

z?O = 4t)(t) +Ela(t) *Dla(t) +s!t)(t) +az[4(t) (4.24)

where Fr(2), gr(2), DJ2) and Sr(2) are the contributions of the

first order fluid pressures due to the movement of the wetted

surface. These are

denotes the relative vertical displacement of the structure

and the local water surface.

The concluding remarks and the references are shown in

the second paper. (Manuscript received, January 9,1997)
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