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The second order hydrodynamic forces due to rigid body rotations and variations of
instantaneous wetted surface area may provide non-linear loads to the structural responses of a
ship traveling in rough seas, and may also induce low frequency oscillation or springing of a multi-
module very large floating structure moored in waves. As a preliminary study of the second order
hydroelastic behavior of marine structures, the contributions of the first order wave potentials and
responses to the second order hydrodynamic actions for a flexible body are formulated, and the
corresponding expressions. The velocity potential, The hydrodynamic pressure and The

hydrodynamic forces are presented in this paper.

1. Introduction

The second order hydrodynamic forces induced by the
rigid body rotations and the variation of the instantaneous
wetted surface area have been a great concern in the
estimation of responses of a floating platform, a mooring
system, or a VLFS in random waves. When a ship travels in
rough seas, the large motions and the hydrodynamic forces
acting on the instantaneous wetted surface also result in the
non-linear behaviors of the structural loads and responses.
This may be observed in many ways, including the
phenomenon of greater magnitudes of midship sagging
moments than those of hogging moments of a ship traveling
in waves, for example. To meet the requirements of safety,
reliability, and performance of ships and other marine
structures, the naval architects have to make continuous
effort in seeking the possible ways to predict the non-linear
loads more reasonably, rationally, as well as practically for
application.

The second order wave forces have been widely
investigated for motion and drift force predictions of
stationary floating marine structures. In most cases the
structure is approximated as a rigid body responding to first
order and second order wave forces. When the structure has
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forward speed as the case of a ship, or when it encounters
current for the case of a stationary floating system, the
modeling and solution of second order problems get more
complicated.

For a ship traveling in irregular waves, the non-linear
effect induced by rotations of the hull has not yet been
thoroughly investigated. Many publications concern about
the instantaneous wetted surface effect. In this connection
the strip theories have shown to be easily handled and
mostly used”. The non-linear three-dimensional hydrody-
namic actions on a ship have also been the subject of
research, though not much (see, for example, ITTC’96?).
Lin and Yue® presented a three-dimensional method of
solving the large-amplitude motions of a rigid ship. In this
method the time-domain Green Function is employed, the
free surface condition is linear, while the hydrodynamic
integral equations are taken over the instantaneous wetted
surface and its water line.

If the structural responses (distortions, stresses, bending
moments, etc.) to the non-linear second order hydrodyna-
mic actions are to be examined together with the rigid body
motions, the solution of corresponding fluid-structure
interactions is even more complicated. It should be
reminded that the inclusion of the flexible body distortions
in the analysis does not give notable influence to the
resultant hydrodynamic forces and moments required for
the rigid body motion predictions. The key advantage of
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doing so is to obtain more rational predictions of local and
global structural (not only the rigid body) loads and
responses.

During the past decade great progress has been made in
the development and application of the linear three-
dimensional hydroelasticity theories¥”. How to account
for the non-linear hydrodynamic forces in the three-
dimensional fluid-structure interactions remains a field to be
further investigated. This paper discusses the contributions
of the first order velocity potentials and responses to the
second order hydrodynamic actions on a flexible body. No
attempt is made at the present stage to consider the non-
linear effect due to slamming impact and wet deck loading.
Only allowed for in the analysis are the second order
hydrodynamic actions induced by the rigid body rotations
and the variation of the instantaneous wetted surface arca.
The structure is still assumed linear, and the existing linear
three-dimensional hydroelasticity approach is used to obtain
the first order velocity potentials and responses of the

- structure®. The expressions of the generalized second order
hydrodynamic forces are formulated, and the non-linear
equations of motion both in frequency domain and in time
domain are presented. The methods introduced may be
used to develop a numerical procedure for prediction of
non-linear loads and responses of a ship traveling in rough
seas, or a multi-module VLFS in waves, where each of the
modules may have rigid body rotations. The corresponding
numerical study is now being continued at Institute of
Industrial Science of Tokyo University, and China Ship
Scientific Research Center.

2. Coordinate systems

Three coordinate systems will be used to define the fluid
actions and the structural responses as shown in Fig. 1,
where Axgygzo is a space-fixed frame of reference; Oxyz is
an equilibrium frame of axes moving with forward seed U
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Fig. 1 Coordinate systems
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and remaining parallel to Axoyozo; O'x'y'z’ is a body-fixed
axes system. O'x'y’z’ coincides with Oxyz in the absence of
any disturbance. The O'z’ axis passes through the gravity
center G and points upwards. The plane lies on the
undisturbed water surface.

3. Structural dynamics

3.1 Definition of the Displacement Components

The structure is discretized by finite element method as a
system of m degrees of freedom. The rigid body transitions,
rotations and the flexible body distortions of the structure
are denoted by the vectors Tjr,Mg and @ip Tespectively. My is
described with respect to the equilibrium frame of axes,
while Mg and iy are both described with respect to the body
fixed axes system. They are

]
e
[=1]

Nt ¢ =(u;,uy,13), (3.1a)
r=1

S S _ LS

fin = 20, =(04,05,85)=7 D, Vxi,, (3.1b)
r=4 r=4
m

iiD = Eﬁf=(ur’vr’wr)) (310)
r=7

where @ (r Z 7) denotes the distortion of the structure in its
r-th principal mode; and

0, = - Vxi,.

[P

The displacement due to the 6 rigid body modes are
respectively

i ={u,, 0, 0}, W, ={0, u,, 0}, U3 ={0, 0, uz},
i, ={0, -z'0,,y0,}, 1i;={z'0s,0, —x'0;},

ig = {-y'64, x'64, 0}. (3.2)

Evidently,

In linear theory the total displacement at any point of the
structure may be expressed as

m
i =u® vO w1 = T
U’ =ut, vy, w =2u
! 5 21 1 (33

=1 +g xT'+lp.

In a general case an order parameter ¢ is introduced that
W /L| = Oe) = Mg /L|, where L is a characteristic length
of the structure. The order of distortions may be
represented as lﬁD / LI = O(e"). For a conventional ship v

9
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may be about 1.5~2.0. However for some kind of VLFS,
for example a shallow draft barge-type very large floating
airport, taking Las the draft, v may be 1.0 or less.

If the effect of the rigid body.rotations are to be examined
to the second order, the total displacement at any point of
the structure described in the axes system Oxyz may be
written as

i=[, +T@E +ip)]-7'. (3.4)

Here T is the transformation matrix between the coordinate
systems O’x'y’z’ and Oxyz. It has the form

T=T+R+H, (3.5)
where
10 0] 0 -85 6
T=1010 R=[e 0 =-3,], (3.62)
0 0 l '65 64 O
i -(62 +62) 0 0
’FI=5 20,8, -(87+62) 0 . (3.6b)
20,0 200, -7 +6])

The formula (3.4) may therefore be written to the second
order in the form

i=i® +Hr' +Ru, . X))

The second term at the right hand side represents the
second order influence of the rigid body rotations to the
local displacement. The third term describes the first order
influence of the rigid body rotations to the representation of
distortions in the equilibrium frame of axes. The three terms
of (3.7) are of the orders O(g), O(e?) and O(&>) respectively
for a conventional ship; however may be of O(¢), O(¢?) and
O(?) respectively for a VLFS.

In a similar way, the relationship of normal vectors of the
body’s wetted surface, defined in the two coordinate
systems O’x'y’z’ and Oxyz, relating to the steady-state and
disturbed conditions, may be written as

ﬁ(x,y,z,t)=Tﬁ(x’,y’,z’,t)= fi+Ra+Hi. (3.8)

3.2 Principal modes and principal coordinates
Under the assumption of linear structure a set of principal

10
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modes of the dry structure, i (x’,y',z")={u?,v],w/}
(r=1,2, ..., m), may be obtained. The first six modes are
the rigid body modes, defined as

i ={1, 0,0}, i;={0, 1,0}, @3=10,0, I,
Uy ={0,-2,y '}, 85 = {2',0,-x'}, 85 = {~y',x',0} (3.9)
These dry modes may be used as an aggregation of

orthogonal functions to represent the structural responses in
the form

ﬁ-

INzk]

m
i, (x',y',z") = 21 a2 (x',y',2"p, (t) (3.10)

I

r=1

where P,(t) (r =1, 2, ..., m) are the principal coordinates.
This expression may be used for either the first order
responses, or the second order responses. For the first order
responses (3:10) gives (3.3), with

i, =apP(). @3.11)

When representing the second order responses, (3.10) is
non-linear to the fluid excitations, and gives

a2 (x,y', 2P ().

INZE:

m
i= 2 l—ly (X',Y'sz') =

r=

1

—

r

In this case (3.7) becomes
ii=a+Hf' +Rip

According to (3.2) and (3.9), the first six principal
coordinates are respectively

pi®=u,, p,(O=u,, p3(t)=u,,
p4a()=0,, ps(t)=8s5, pst)=0;. (3.12)

3.3 Generalized equations of motion

If the expression (3.10) is introduced, it is found that the
matrix equation of motion of the structure, may be written
in the form

ap+bp+cp=Z+A+G (3.13)

where a and c are generalized mass and stiffness matrices of
the dry structure respectively, both symmetric such that
. = w?a, The matrix b represents the structural
damping in terms of the principal coordinates. The matrix p
is the vector {pi(t), pa(t), ..., pm(t)} . The generalized forces
and Z, A, and G will be examined individuaily.
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3.4 Generalized forces
The generalized fluid force Z corresponding to p may
contain the linear and non-linear hydrodynamic actions.

In linear theory its r-th component is
Z.(H)= —ﬂ'fl-ﬁ?p ds (3.14)
s

where p denotes the pressure acting on the wetted surface
S, i is the outward unit normal vector into the fluid. If the
second order hydrodynamic forces are included it is

expressible as

Z,() = - [fN-apds (3.15)
S(t)
where the integration is taken over the instantaneous
wetted surface S(t), and N denotes its unit normal vector,
defined by (8.8).

The matrix A representing generalized concentrated
forces at the principal coordinates may include the actions
of linear or non-linear mooring forces Tj(t) =1, 2, ...,
m,), acting at.(X';, y';, z';). In this case Tj(t) is a function of
the principal coordinates. If only the mooring forces are

considered, the generalized concentrated force at P is
Mo -
A ()= Y07 (x},y},2)) Ti(0) (3.16)
=1

Provided that the hydrodynamic drag and damping
forces acting on the mooring lines are neglected, the
motions of the attachment points of the mooring lines are
small, and the linear assumption is employed, Tj(t) will be
proportional to the principal coordinates. In this simple
case A, (r=1, 2, ..., m) are always expressible as

m
Ar®= 3 (Cmg)p, () 317
k=1

where Cm,k is a restoring coefficient representing the
mooring line effect. If the motions of the attachment
points are not small, T(t) = 1, 2, ..., mo) and A, (r = 1,
2, ..., m) will be non-linearly dependent on the principal
coordinates. For chain mooring lines they may be
calculated by the catenary theory in time domain?.
The generalized force G represents that of distributed

gravity, with the r-th component in the form

G, =-p[Jf Po&wW dQ (3.18)
Q
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4. Hydrodynamic actions

4.1 Velocity potential
4.1.1 Decomposition of velocity potentials

The fluid is assumed inviscid, incompressible, and the
flow is irrotational. If the body travels with a constant
forward speed U in x direction, the velocity potential may
be decomposed in the form'®

D(Xy,Y0,Z0,1) = U (%,%,2) +$(X,.2.1) CRY
with the unsteady component expressed as
m
d’(x’ Y.z, t) = ¢o (x, Y.z, t) +¢D (xs Y.z, t) + 2 ¢k (X, Y.z, t)
k=1

“4.2)

¢ denotes the velocity potential for the steady motion of the
body in calm water. The velocity of the steady flow relative
to the moving equilibrium frame of reference is

W = UV(@$ -x). 4.3)

(o, Op and ¢y denote the incident, diffracted and radiation
wave potentials respectively. k =1, 2, ..., m correspond to
all the dry modes of the structure, including the 6 rigid body
modes.

With the wave steepness as the perturbation parameter «,
the diffracted and radiation potentials ¢p and ¢, can be
expressed as a power series of «:

p=0p® +ap@ .. 4.4)

The first order potentials can be calculated by the linear

4~8) The solution of the second

hydroelasticity theories
order potentials ¢ is complicated for engineering applica-
tions. In the present paper only the second order wave
forces, closely related to the contribution of the first order
potentials and responses are examined using the pressure
integration method. Therefore hereafter the superscript of"
will be omitted.

Corresponding to (3.10) the first order radiation poten-

tials may be represented as

¢k(x’Y7 z, t) = q)k (x, y’ Z)pk(t) (45)

4.1.2 The governing equations of the first order potentials
for a flexible body

11
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The unsteady velocity potential for a flexible structure
satisfies the following governing equations

(V2 =0 PEV
(F-U) o+gZe=0 z=0
: a"—ncb =0 (on sea bed)

L6- 3G +6 W W@V .- v)W] PeS

R=w}x2 +y2 - o0

(4.6)

Radiation Condition.

where P=(x, y, z) u, V is the fluid domain.

With the substitution of (3.3) and (3.11), the wetted surface
boundary condition of the radiation potentials may be
represented in the form

b = (P)b, (O +b (P)p, (®),
ay =1i-ug, 4.7
b = B-[6 x W - (g VW],

In frequency domain the separation of the time and the
space variations allows the radiation potentials, correspond-
ing to each of the flexible body modes, to be solved by
employing a suitable boundary integral or boundary
element method. The details may be found in

references*>7-8

,» Where the three-dimensional pulsating
source Green function, or the pulsating and translating
source Green function were used for floating, or traveling
flexible marine vehicles.

In time domain, the radiation potentials may be
transferred to three new functions in the following way

t
Ok (P = [ (P;t-T)p, (v)dv , (4.82)
0

with
Ok (P ) =W (P)S®) +p 5 (PYHE) + % (P;1).  (4.8b)

Here 8(H) and H(t) are defined as

L t=0
S(t) = ;
® {0 tw0,

H() = 0 t=<0,
1 t=0.

and  [S(Of(t)dt = £(0),

The functionsand Wy, Yoy satisfy the following equations.

12
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Vi =0 PEV,

Y =0 z=0, (4.9a)
%wlk =Gk P€§,
szk =0 PEV,

I =0 2=0, (4.9b)
v = P €S,
(Vi (P, 1)=0 PEV,
2022 42 Ly +he ) =0

[(a("U ax) gaz](Xk w2k)
PES,z=0,t>0,

= 4.9

1&x20=0 PES, G5
Xk (P0)=0 z=0,
%Xk|t=o =-g v z=0.

The numerical solutions of Yk, Yz and y; may be obtained
by employing the time domain Green functions'*"'?, and
the boundary integral method®.

4.2 Hydrodynamic pressures

According to Bernoulli equation and an expansion from
the instantaneous wetted surface S(t) to its steady state
mean position S, the fluid pressure acting on the body’s
wetted surface may be expressed as

plS(t) =—p[l +ﬁV]{g—t¢ +(W'V)¢

) 5 4.10)
+H WU +2(99)” ++ezlfs

By adopting (3.7), the pressure on the instantaneous wetted
surface of a flexible body with arbitrary geometric shape
may be represented to the second order in the form

1 2
Pl = P )|§ + pt )|§ (4.11)
where
PY = -p{d o +(W- g +[gz' + L (W2 - 1Y) B
+Hgw ++ @D - )W '
p? = -p{g @' +Rip) - vz
+@" VYL +W-V)p (4.13)

+7 (V) + [(HF' +Riip) - VIW?}f5

Obviously the first and second terms at the right hand side
of (4.13) are equivalent to
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- pg (Hf' +Riip) - vz' = - 04v; -65u))
D Png] 4V —Usly .14)

- pg [8,85x' +0585y' -3 (87 +82)z']

For a body which is either slender, or thin, or flat, the
corresponding first order and second order pressure
components are respectively as follows.

=—p{(L-UD)¢+a + W}z (4.15)

p® = —p{gHF’- V)2’ +g®ap - V)2’

(4.16)
+@ V(G -U e+ (V)5

4.3 Hydrodynamic forces
Substituting (3.8) and (4.11~13) into (3.15) yields

Z.® = 20 + 200 + Z9@® @.17)

where Z{®, Z (t) and Z{® (t) are respectively the
constant, first order and second order forces. They are as
follows.

Z0 = o

which represents the generalized steady-state buoyancy

dPlgz' + (w2 - U?)ds (4.18)

forces and resistant forces. The generalized first order forces
are

ZO@® = 20 + H® + RO + AR, (4.19)

&M = pf[a-0(%+W- V) ® +ép®)dS, (4.20)

s
m

HY = 3 pff#:8; G+ W) 008, 421
=1 §

RY = pa-itfgw+i@"-V)WidS, (422)
S

= pf®E)-Gp[gz’ +1(W? -UP)ldS.  (423)
S

The last term AR, represents the influence of the rigid body
rotations to the first order forces, while the other terms are
the same as the linear theory*>. The generalized second
order forces may be expressed as

z@@®) = FPO+EQL®+DP® +SP®) +aZP 1) (4.24)

where F®, E®, D and S are the contributions of the
first order fluid pressures due to the movement of the wetted
surface. These are
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FP @)= pﬂ[(Rn) i +@-a)@? vy
=+ W V)9, +dp1dS (4.25)

o[- 7[Vé, +Vip 17 S,

(2) =

nMB

,IST 37 V9, (1) +bp (D] Vi, (HdS, (4.26)

R0 =§=: pJIR-5? +@-3)ED V)]
(& + W V)i (DdS 4.27)

% ﬂ(‘ 82)Véy (1) - Vi, ()dS,

’.TMa
|Ma

U g(ﬁn )7 [gw +3 @D -V)W*JdS
5
+pfEHD Tz +5 (W -UHS  (428)
5
+pgm-ﬁf)a~ﬁ’+ﬁﬁu)(gz’+-;-W2)dS.

The term AZ? denotes the forces induced by the
instantaneous variation of the wetted surface area AS = S(t)
—S. This is

AZP (1) = pﬂ‘ WL +W-V)p+5 (W2 -U?)
(4.29)
+5(u(l) “V)W?2]+g(z' +w)}dS.

The integration over AS may also be represented by an
integral along the water line Cw and a line integral in
vertical direction on the hull. It is also known that along Cyw
on S, to leading order 0(e), the following expression exists

¢ == LG+ W+ W - U+ LED W)
(4.30)

where ¢* is the local wave elevation. Thus (4.29) may
further be expressed as

= L dl
AZO ) = -pg f Z%@-62) (4.31)
2
Cw 1-n;
where
Z=272x,y,z,t)=¢" -w (4.32)

denotes the relative vertical displacement of the structure
and the local water surface.
The concluding remarks and the references are shown in

the second paper. (Manuscript received, January 9, 1997)
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