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The Second Order Hydrodynamic Actions On A Flexible Body (Part II)
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The contributions of the first order wave potentials and responses to the second order
hydrodynamic actions for a flexible body are discussed. The velocity potetential, the
hydrodynamic pressure and hydrodynamic forces are presented in Part |. The generalized forces
in irregular waves and the equations of motion are presented in this paper.

1. Generalized forces in irregular waves

1.1 Irregular waves
According to Pierson'? the irregular waves may be
described by an aggregation of regular waves, namely

N
T = zcjcos(mejt +€j) 1.1)
A

Where wej = @ j -k jUcosf is the encounter wave frequen-
¢y, is a random phase angle, uniformly distributed in the
regime of (-m, ). {; is the wave amplitude of the j-th wave
component, which may be obtained from the wave energy
spectrum S¢(w) in the form

gj - JZS;; (Wej ) Awe; (1.2)

with Aw,; being the frequency interval corresponding to
we;. Following this expression, the first order potentials ¢y,
¢p and the principal coordinates Py may be represented as

N i(wgtte;)
¢(1 (xay, Z, t) = zltfpa (xs y, Z,(l))e 2 L (13&)
F

N .
P, 0= 35jp, (e ¥ (1.3b)
2

where ¢, denotes either or. ¢ or ¢p.
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1.2 The first order hydrodynamic forces
After using (1.3) for the formulas in Section 4.3 in the
precious paper, the following expressions may be obtained.
(1) Wave exciting forces
i(mejtﬂj)

N
== Ttk e (1.42)
=1

& (0g) = pJ[+57 oogg + W-V)[go (1) +ép (]S (1.4b)
S
(2) Radiation forces and hydrodynamic coefficients

W= DS (02 =
Hi’®= Y YGjlwgA x (@e)) —iwgBy ()]  (1.52)
k=1j=1
i(mejt+ej)
L ©

where

i
Ark@e)=—3Re [0 1510 (we +W-v)] (1))
s

Brk(me)'m—,e"lm Pk (e)dS

(3) Restoring forces and coefficients
(l) m N i{wejt+ej) 1.6
= J=

Cu = pgaallewy +1@g -wyw2ies, ()
S

and
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m N ey it s
AR (0= 2 ACk 2Lipy o e, (1.72)
ok £
ACy = pfdulgz' +1 (W2 -U?)ds. (1.7b)
S
where

0 o — .0 0
dr4 =Wrhy -V, 13, drS—urn3_Wrnl

(1.8)
dy = 0 (k=4,56)

0 0
dr6 =Vl -0 Ny,

Among the hydrodynamic coefficients given above, A and

B, are respectively the hydrodynamic inertial and damping
coefficients, C,x and ACy are the frequency-independent
restoring coefficients. Ay, B and Cy are obviously the
same as those in the linear hydroelasticity theory®>. ACy is
exceptional, which is due to the influence of the rigid body
rotations to the steady-state fluid forces.

1.3 The second order hydrodynamic forces

Substitution of (3.3), (3.11), (4.5), (4.25 ~ 31) of the
previous paper and (1.3) in (4.24) of the previous paper
gives the second order hydrodynamic forces in the form

z® - 1

1[(wej —wej t+(ej —€;)]

N N
+ 3 YEit;Qn ©

i=0j=1
NN 1(0)’H.!)t+ s +E;
+ Cichrij e[ el ej) (g j)] (1.9)
i=0j=1
where it is defined that
so=1, wp=0=e¢y, (1.10a)
P - =0 2 2.2 _dt
Jo=-1 [ @id)W?-U?)? ==
07" 4g C{v r Ji-a2 (1.10b)
m
= = (1
Qo =Tr @)+ STa @B @), (1.100)
) m
Dyg; = 31, (@¢j) +kg T (0P (ef) , (1.10d)
=1

Qrij = K7 (wej,0ej) +%fr' (e, Wej)
m
+ %kzl{g-k (wej )I"|(<l) (wej) ck h:k (we; »Wej )Pg(l)(wei )
+ 2K i (e 0 )’ﬁﬁ])(wej) + 2K i (e , Wej )Pg)(wei)

m
+%p&”(wei)lgl[ﬁ?”(wejm(wei,wej)
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+ t:kl(‘ﬂei’wej)) + grk]ﬁgl)(mej)
1
+2G i (06 0B} (0]} (1.10¢)

Dﬁj = Kp(wei ,(Dej) + '%fr (wej ’wej)

1 Dy PRSP
+5 E{Erk(mei)pk (wej)+hrk(‘”e1smej)Pk (wei)
k=1

+ 2K (0 »Wej )P}cl) (wej)
m
+ 1D (4) Y6} (@ X (wei 05
I=1

g (wei,wej))*“grkzpfl)(mej)

+2G 1 (0 0605 (6]} - (1.10f)

The coefficients contained in these formulas, namely
Jes Tiks Bk fr, f;’ hrk’ h;k’ K., K;’ Krk» Krk’ K:k’
Qekt » trkis trids Erkido Gy and Gy, are given in Appendix
A.

Evidently, the second order forces provide the frequency
independent components, the wave-frequency components,
the sum and difference-frequency components. In deriving
these formulas the following relation for multiplication of
the real parts of two complex variables is employed.

Re(X)"Re(Y) = 7 [Re(X - ) +Re(X - V)] .

Here in the formulas of (1.10) and those in Appendix A, an
over bar Y is used to represent the conjugate of the complex
variable Y.

2. Equations of Motion

2.1 Linear Equation

If only the first order excitations are included in the
analysis, after extraction of the portion accounting for
steady-state condition, the generalized equation of motion
(3.13) in the previous paper may be written in the form

(a+A)p +®+B)p +(c+C+Cm)p =D 2.1)

where A, B, C and Cm are the matrices with the
components defined respectively by (1.5), (1.6), and (3.17)
in the previous paper. The components of the wave
excitation vector (1) is given by (1.4). The solution of this
equation provides the first order principal coordinates and
pP(w) and pP (k=1, 2,..., m).
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2.2 Non-linear equations of motion

Based on the solutions of the first order potentials and ¢,
¢p and @ (k=1, 2,..., m), and the first order principal
coordinates Pypy(w) (k =1, 2,..., m), the second order
forces may be .calculated. The equations of motion for
solving the principal coordinates Py, where both the first
order and the second order actions are included may be
represented either in frequency domain, or in time domain.

2.2.1 Equations of motion in frequency domain

The hydroelastic equations of motion for a floating
structure encountering the steady-state, first order and
second order wave forces may be obtained in frequency
domain by using (4.17~19) in Part I, (1.4~7), and (1.9) for
(3.13) in Part I. The inclusion of non-linear mooring forces
is not quite convenient in frequency domain. Therefore only
the linear mooring forces described by (3.17) in Part I is
introduced. This results in a set of equations in the form

m
kE[ark +A PO+ Ok +By )Pk (©
=]

+(Crg +Coi + ACk +Cmyy )py (1]
=D w+z2m+@2? +G,)
@O +G, +19)

N A
+ St gl @)
j=1

]

N N )

+ 2 E Gingrijel[(mei —0g (g —¢;)]
i=0;=1
N N g

+ 2 2 sisiDsi e'[(“’ei‘f“’ej)“(siﬂj)]

i=0j=1 2.2)
where r =1, 2,..., m. Zy) G, and I, are the steady-state
forces given in (4.18), (3.18) in Part I and (1.10)
respectively. The formulas for the first and second order
force terms may be found in (1.4) and (1.10).

(2.2) shows that the solution of the total responses of the
principal coordinates Py(k) consists of the steady-state
components due to Zy), G; and I, the wave frequency
components due to the terms of &, Q. and D, the
difference frequency components coming from the terms of
Qij, and the sum frequency components coming from those
of Dy;;. It should be noted that wheni = j in (2.2), the terms
of Qy; corresponds to the generalized mean draft force for r-
th mode. The solutions of (2.2) may be decomposed in the
form
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flojtrei]

p,®O=P, *3 IGiGj{Pk(‘Dij)e
i=0j=

ot oot
+p;(‘°i})°'[m"t+£”]} k=12,.,m) (23)

where

Cl)g=0~)i"(0j, Bij-=5i‘5j:

+ _ L
w i - w; - (Dj, eij = € + EJ'.
The results for Py, py(w;)and p:(mi;) may be

numerically solved from the following equations.

m

(erk +Crk +ACk +Cmyy )Pk
kzl (2.4)

=7Z0+G,+Iy  (=12,.,m)
m
kzl[—wi;)z(ark +Age) + (05 Ybrk +Br)

+erk +Crk +ACKk +Cmy)lpk(0ij) = Qj (2.5
r=12..m; i=0,1,.,N; j=12,.,N)

m
kz[—<mi}>2<a,k +Agg) + (i )bk +Brk)
=1

+(ork +Cr +ACq +Cmp)lpk (o)) 2.6)
=D +8j0%
r=12..m; i= 0,1,...,N;, i=1,2,..,.N)

where 8, is the Kroneker delta function. The hydrodynamic
coefficients A and B,y take their values at the correspond-
ing frequencies wjj or mi}'.

2.2.2 Equations of motion in time domain

After the inclusion of the second order wave forces, the
three-dimensional hydroelastic equations of motion may be
written in time domain in the form®

kgl[(ark +Krk )pk O +bx +§rk )pk ®

+(er +Co +Cidp, ®
t

+[ K (t-1)p, (x)dt]
0

=Z® 4G, +EV 0 +zP ) +A, ® (2.7)

where Ay, By, Ci and €'y are the time domain
hydrodynamic coefficients. They are defined as follows
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A =—p[Jashyds,
S
1By = -pfabudS + p[[-[(W- )iy 2.8)
S s
- (@7 - V)WhyydS - p fa, (T x 5i) - Wi, dC,
By

[Crk =Crk,

{Cix = pgﬁ-[(v‘v WE? - (@ VW dS (2.9

- p_cfar (-I. x 1i) -WkadC.

W

The retardation functions Ky(t) (r, k =1, 2, ,..., m) have
the form

Ko ®=-pffa, & xxdS+ pisrﬁ-[(v‘v-w?
S

R X s (2.10)
- @y V)W, dS - p_fa, (Ix ) Wy dC
Cw
In the case W=-U7, it can be simplified that
By = —piSI appdS - pUjS[wlkﬁ-g"’x— s (@11
(2.12)

~, a9
Cix --ngkn'sx‘U?dS,

and
Xk - dup
Ky =—-pffa, 5,dS—pUff x -5 dS. (2.13)
S S

The time domain hydrodynamic coefficients A, By, Cri
and C'y are time and frequency independent. They only
depend on the geometry of the wetted surface, the forward
speed, and the dry modes of the structure. The following
relations among the time domain hydrodynamic coef-
ficients, the retardation functions, and the frequency
domain hydrodynamic coefficients may also be used to
calculate Ay, By and Ky(t):

SEISAN-KENKYU 199
Kx®):

Kik = Ak @) + 2[R @sinn)de = Ag(),
0
1By = Bri(@) - fKpc(x)cos(wr)dr, (2.14)
0

K ® =2 fo[Ag (=) - A (@)]sin(@t)dw.
| 0

When the structure has no forward speed, it is found that
Brk = C;'k =0.

When the structure has no forward speed, it is found that
Erk = é;k =0.

At the right side of the generalized equations of motion
the steady-state forces, first order and second order forces
may be obtained from (3.18), (4.18), (4.36) in Part I and
(1.9). The response-dependent non-linear mooring forces
now can be easily handled in the time domain analysis, and
are all included in the term A.(t).

3. Concluding remarks

The linear hydroelasticity theories have been developed
and applied for years. The coupled analyses of the
hydrodynamic and the structural problems allow the
responses of marine structure to be examined in a unified
manner. The mean drift forces, low frequency and sun
frequency excitations induced by the second order wave
actions, and the non-linear loads due to the instantaneous
wetted surface effect, may give more influence to the
structural distortions, than the rigid body motions. This may
especially the case for a large bulkcarrier, a fast slender
vehicle, and a very large floating structure. The existing

. methods of evaluating the second order wave forces have
been widely employed for the predictions of motions and
loads of rigid bodies. The formulas presented in this paper
just show that the similar methods may be extended to the
hydroelastic problems. More numerical effort is evidently
needed. However there seems no significant difficulty to

~ obtain the results with the accuracy similar to that achieved
by the rigid body analyses.
(Manuscript received, January 9, 1997)

17



200 Vol. 49 No. 4 (1997. 4)

3)

4)

5)

8)

9)

10)

11)

12)

13)

References

Report of Technical Committee of Loads, Proceedings of
12th ISSC, New Foundland, Canada, 1994.

Report of Technical Committee of Seakeeping, Proceed-
ings of ITTC96, Norway, 1996.

Lin, W. M. and Yue, D. K. : Numerical solution for large-
amplitude ship motions in the time domain. 18th ONR,
1990.

Bishop, RE.D,, Price, W.G. and Wu, Yousheng: A general
linear hydroelasticity theory of floating structures moving
in a seaway. Phil. Trans. Of Royal Society, London, A316,
1986.

Wu, Yousheng and Price, W. G.: Advances in hydroelasti-
city of ships. Aero-hydroelasicity Developments and
Applications, ed. E. J. Cui, Semological Press, Beijing,
1993.

Wang, Dayun: Three-dimensional hydroelastic analysis of
ships in time domain. Ph.D. Thesis, China Ship Scientific
Research Center, China, 1995.

Du, Shuangxing: A rational frequency domain analysis
method of three-dimensional hydroelastic responses of
floating structures traveling in waves. Ph.D. Thesis, China
Ship Scientific Research Center, China, 1996.

Gu, Y.L, Du, S. X. and Wu, Yousheng: Program of three-

dimensional hydroelasticity analyses of floating traveling

structures, Section 4.3 THAFTS, User's Menu of
HEROES (Hydro-Elastic Responses of Ocean Engineering
Structures), CSSRC, Wuxi, China, 1991.

Miao, Q. M., Dy, S. X, Dong, S. Y. and Wu, Yousheng:
Hydrodynamic analysis of a moored very large floating
structure. Proc. of Int. Workshop on VLFS, Hayama,
Japan, 1996.

Newman, J.N.: The theory of ship motions. Advances in
Applied Mechanics, Vol. 18, 221-283, 1978.

Liapis, S.J, and Beck, R.F.: Seakeeping computations using
time-domain analysis. Proc. of the 4-th Int. Symp. On
Numerical Hydrodynamics, National Academy of Scien-
ces, Washington DC, 34-58, 1985.

Huang, D.B.: The numerical calculation of time domain
Green function and its derivatives. Shipbuilding of China,
Vol. 119(4), 16-25, 1992.

Pierson, W.]J.Jr.: Wind generated gravity waves. Advances
in Geophysics, Vol. 2 Academic Press, New York, 1955.

Appendix A.  The coefficients of the second order forces

Eg (@) = pfJld g + (@09} - V)](iw +W-V)
S

9, (@) +9p (w)1dS

f, (mi,w,-)=%p_tsr(ﬁ-ﬁ:’)vm(mi)+qm(mi)l
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£; (mi,w,->=%p_{sr(ﬁ-ﬁ?)vm(ma)+qm(wi>1
“VIFo (@) +@p (0;)1dS
hy (@;,0;) = p [ (-52)VIg, (@) +op (@;)]
S
Vo (0;)dS
hy (@;,05) = pfJ @37 VI, (@;) +9p (@;)]
S
Vq)k((u,)dS
q,, @;,0)) = Pg[d;z +(@-8; )7 V)
(iw; + W-V)py (@;)dS
tra (0;,07) = 3 p [ @-87) Vo (0;) Vo (0;)dS
S
tha (@;,©7) = 7 P (1-57) Vo (@) V5 (w;)dS
S
gaa = P dlews +3 @R -VIW?1dS
S
+pfalez +7 (W? -U?))ds
S
S

where dg (1, k=1.2,...,m) are defined in (4.36).
The coefficients €); and oty are as follows.

-t s hy W +de W,
i3V W
egs = -5 (X W2 +y' 2 W),

€45 = €54 =%x,%wz’

€46 = Co4 '%(x"f‘;‘x'%wz)’

1 1 3_wl
ess =€gs =5 (Y +3y 57 W5),

€41 =V? (1 2 7),
e =-uj (=7,
e =0  (foralltheotherk and /).

Op44 = =3 (VENg +WiN3),

ayss = -3 Py +wing),

C.r66 =—%(u?n1 +veny),

Crgs = Q54 = %V?’

Qrge = Oreq = Arse = 065 =%W?,

oy =0 (kI w4,56).

N dt
Jo = h_ng

-3 J @TDHW -U
Cw
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J (@)= -4 [@T)W? -U)iw+W-V)
Cw
d!
[, (@) +p ()] J1_-n_ ?
T (@=-% [@I)W? -U)-iw+W-V)
Cw :
— — d
[9, (@) +op (w)] et

T (@)= -5 [J@T))[(w+W- Vg (@)
Cw

1 =0 2 oq_dl
+5 @ V)W* =w
7@ V) 3y

T @)=~ [@E)(-iw +W- V) (@)
Cw

1 /=0, 2 _ 0 d!
+3 @ V)W Wk]‘[]__"g
K, (0g,0q) = =25 J@-T)i0g +W- V)9, (@)
Cw .
+9p (010 + W- V), (@g) +op (w0 )1—3’5—%
K} (04, 04) = =25 J@-07)iwg + W Vg (0g)
Cw

+9p ()](-iwg + W V)P, (@5) + 00 (@] _JILL_%
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Krk (o >mej) = "'% I(ﬁ'ﬁ:)("imej +W'V)
C

W
[@, (@) +@p (@] [(iwg; +W - V)gy (0g;)
+7@ VW -wil T

K, (0g,04) = -EPE J @7 Yo, +W-V)
Cw

[0, (@e) +Pp (@) [(~iw + W V)P, ()
+@ VW -wi] i

K} (@g,04)=-5 [@8)wg +W-V)
Cw

(90 (0) +Pp (W) [(wg + WV, (@)

+ @ VW -wi]

Gy (04, 0) = 3¢ cf(ﬁ-ﬁ‘:)[(iwei +W Vg (0g)
W

+1@ VW2 - wi o, +W- Vg (@)

+@ VW -wil i

Gly (04, 0) =~ 35 [@A-T))[(0g + W Vo (@)
Cw

+ 1@ -VIW? —w) (=i + W V)§; (@)

1 = 2 dl
+7 @7 V)W -wi]

=1
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