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LES Analysis on Turbulent Flow past 2D Square Cylinder

using Various Dynan■ic SGS Models

各種 Dynamic SGSモデルによる2次元角柱周辺流れのLES解 析

ShuzO MLTRAKAMI*,Satoru IIZUKA**,Akashi MOCHIDA**and Yoshihide TOMINAGA***

村 上 周 三 ・飯 塚  悟 ・持 田  灯 ・富 永 禎 秀

A turbulent vortex shedding flow past a two dimensional (2D) square cylinder at Re:2'2x104

was analyzed by Large Eddy Simutation (LES) using various dynamic subgrid-scale (SGS)models'

Here, Z cases of computations were carried out using three different computational grids, two

ditferent grid systems and four ditferent sGS models. Results from these computations were

compared with those from the experiment by Lyn and Rodi. The Lagrangian Dynamic Mixed (LDM)

model provided very good results in the four SGS models compared here. Furthermore, a method

for stabilization by averaging over particle traiectories employed in the LDM model contributed to

a remarkable improvement of computation stability'

l .  lntroduction

This paper reports on the results of Large Eddy

simulations (LES) of a turbulent vortex shedding flow past

a two dimensional (2D) square cylinder at Re:2'2xLOa

using various dynamic subgrid-scale (SGS) models U-5]'

The flowfield analyzed in this paper was one of the test cases

for the LES Workshop of FIow past Bluff Bodies

(Tengernsee workshop) held in Tengernsee' Germany,

June L995 [6] and also for the 2nd ERCOFTAC workshop

benter for Development of Instrumentation Technology,

Institute of Industrial Science, University of Tokyo
**Department of Building and Civil Engineering, Iustitute of

Industrial Science, University of Tokyo
***Niigata Institute of Technology

on Direct and Large-Eddy simulation held in Grenoble,

France, September 1996.

The types of SGS models used are as follows ; the static

type of conventional Smagorinsky model (S model, eqns'(1)

and (2) in the Appendix (case 1)), the Dynamic Smagorins-

ky model (DS model, eqn.(6) in the Appendix (case 2)), the

Dynamic Mixed model (DM model, eqn'(10) in the

Appendix (case 3)) and the Lagrangian Dynamic Mixed

model (LDM model, eqn.(16) in the Appendix (case 4)) (cf'

Table 1).

h* : the grid interval adjacent to the cylinder wall
* I S (Cs, damping function*2)
*2 sfu : standard Van Driest damping (:l -exp(-xn*/25)), 

. ^.
mfu : modified Van Driest damping (:( I -exp(-xn*i 25)')u'')

Values are made dimensionless by the cylinder width, D, and

the inflow velocity, Uo.

Table 1 Computed cases

case SGS Inodel grid computational
domain

number of
erid point

hw average tline

(Note l)

1 S (0.l3,sfu)-' colocated
20(xl)X

1 4 ( x 2 ) X

2 ( x 3 )

104(xl)× 68(x2)

X10(X2)

[grid A]

0.022 ～61

2 DS colocated 0.022 ～15

D M colocated 0.022 ～15

4 LDM colocated 0.022 ～15

5 LDM staggered 0.022 ～15

6 S (0.l,mfu)' ' colocated
20(xl)

14(x2)

4 ( x 3 )

X

X

107(xl)X103(x2)

x14(x3)[grid B]

0.02 ～15

7 LDM staggered 140(xl)X103(x2)

x32(x3)[grid C]

0.02 ～61
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2. Outline of computations

Table 1 lists 7 cases computed. Computations were

carried out for three different computational grids (grids A-

C), two different grid systems (colocated and staggered

grids) and four different SGS models. Details of SGS
models compared here are given in the Appendix.

Preliminary computations were carried out on a relatively

coarse grid (grid A) using four types of the SGS models in

cases 1-4. The relative performance of these four SGS

models was clarified by comparison with those given from

the experiment by Lyn and Rodi [7]. As is described later,

LDM model provided the best results.

A colocated grid was used in cases 1-4. In case 5, a

computation using a staggered grid was carried out in order

to assess the difference in prediction accuracy between

colocated grid and staggered grid. In case 6, we carried out

the computation with the same conditions as those of the

computation by the University of Karlsruhe group for the

LES Workshop of FIow past Bluff Bodies (Tegernsee

workshop) [6] [Note 2]. Results of case 6 were compared

with those of case L. Finally, a computation using the LDM

model was carried out with a grid spacing (grid C) which was

finer than grid A used in cases 1-5 and grid B for case 6.

A second-order centered difference scheme was adopted

for the spatial derivatives. For time advancement, the 2nd

order Adams-Bashforth scheme was used for the convection

terms and the Crank-Nicolson scheme for the diffusion

terms. The interval for time advancement is 1.0x10-3

except for cases 2 and3 (2.0x10-a for cases 2 and 3) in non-

dimensional time scale based on U6 and D.

At the inflow boundary, the approach flow was set to be

constant and uniform and no velocity fluctuations exist. A

convective condition was used at the outflow boundary of

the computational domain. Symmetry conditions were

employed for the: lateral boundaries, and periodicity

conditions were imposed for the boundary planes perpen-

dicular to the cylinder axis. For the boundary condition at

the solid walls, Werner and Wengle's approach [8] was

adopted [Note 3].

3. Gomparison of various Dynamic SGS models

with Erid A (cases 1-4)

Firstly, the relative performance of various SGS models,

i.e., S, DS, DM and LDM, are compared using grid A

(cases 1-4, cf. Table 1).

Fig.l shows the time-averaged velocity (u1) along the
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centerline. In front of the cylinder, the results are not

influenced by the difference of the SGS models used, but

there are fairly large differences in the wake region. Case L

(S model) underestimates the length of the reverse flow

region considerably. Both cases 2 (DS model) and 3 (DM

model) show good agreement with the experiment than

does S model, and there is little difference between the

results obtained with these two types of dynamic SGS

models in the region of 0.5(xr<1.5. Further downstream

(x1 ) 1.5), case 3 (DM model) seems to give more

reasonable result than does case 2 (DS model).

Fig.2 compares the time-averaged velocity (r:1) along the

centerline between case 3 (DM model) and case 4 (LDM

model). In the LDM model, the model coefficient C

(C:Cs2) is calculated using the averaged quantities along

the path line following the approach developed by

Meneveau et al. t5l (eqns.(12)-(17) in the Appendix).
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Fig. I Comparison of the time-averaged velocity (tr) along the

centerline for S. DS and DM models

SJ'
uo

0.8

0.6

0.4

0.2

0

-0.2

-0.4

- 2  - l  0  I  2  3  4  S  I O
D

Fig. 2 Comparison of the time-averaged velocity (u) along
centerline for DM and LDM models
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Although both results show good agreement with the

experiment, case 4 (LDM model) provides more accurate

result than case 3 (DM model). The LDM model seems to

provide the best result in these four sGS models compared.

Furthermore, the use of LDM model contributes to a

remarkable improvement of calculation stability as shown in

Fig. 3. Consequently, CPU time was reduced by 337o in

comparison with DM model.

4. Influence of difference in grid spacings

(comparison between case 1 and case 6)

The conditions for computation, i'e', the grid spacing'

SGS model, etc., employed in case 6 is almost the same as

those in the computation by the university of Karlsruhe

group presented at the LES Workshop of Flow past Bluff

Bodies [6].
The result of case 6 is compared with case f in Fig' 4' The

spatial oscillation of velocity is observed in the region of x1

)2 in case 6, while this oscillation does not appear in the

result of case 1. As described in Note 4, this difference is

mainly caused by the difference in the grid spacings for both

cases. The spacing of grid B (case 6) in the streamwise (xr)

direction is coarser than that of grid A (case 1) in the region

behind the cylinder (x1)1). The spacing in the spanwise

(x3) direction of grid B (case 6) is also coarser than that of

grid A (case L) for the whole domain' By these coarse

spac ingsofgr idB, thespat ia losc i l la t iono fve loc i tywas

c a u s e d i n c a s e 6 i n t h e r e g i o n b e h i n d t h e c y l i n d e r a s i s

indicated in Fig. 4. on the other hand, the resolution of grid

B i n x l a n d x 2 d i r e c t i o n s i s f l n e r t h a n t h a t o f g r i d A i n t h e

vicinity of the cylinder wall (-l ( x1 ( 1)' Hence, the

computation with grid B provided more accurate results in

the vicinity of the cylinder wall in comparison with the

results using grid A' Considering these points, a new grid

(grid C) was designed. The resolution of grid C in x1 and x2

directions is almost the same as that of grid B in the vicinity

of the cylinder wall, but much finer than that of grid B in the

region behind the cylinder. In this region, the resolution of

grid c in x1 direction becomes identical to that of grid A.

Furthermore, the grid spacing in the spanwise (x3) direction

is much finer in grid C than those in grid A and grid B'

5. Performance of LDM model with grid G (case 7)

Hereafter, results of a computation using LDM model

with grid c (case 7) are shown. In this case, the staggered

grid was used (cf. Note 5). Integral parameters are

compared in Table 2. The statistical quantities were

0.8 I
tUo/ D

Fig. 3 Comparison of the time-history

between DM and LDM models

of model coefficient

-Q.'
uo

0.8

0.6

0.4

0.2

0

-0.2

-0.4
- 2  - l  o  I  2  3  4  t +u

Fig. 4 Comparison of the time-averaged velocity ([r) along the

centerline between cases 1 and 6

determined by using the time-history of predicted flowfields

during 8 vortex shedding periods for this case' The

correspondence between the results of case 7 and experi-

ments is satisfactory except for the value of Cpr-*' Fig'5

compares the time-averaged velocity (g1) along centerline.

The result of case 7 reproduced the velocity distribution in

the reverse flow region behind the cylinder accurately.

6.  Conclusions

(1) Dynamic sGS models provide much mofe accurate

predictions of the sizes of the reverse flow region behind

the cylinder than does the static type of conventional

SmagorinskY model (S model).

(2) A method for stabilization by averaging over particle

trajectories employed in LDM model can contribute to

remarkable improvement of calculation stability. Within
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Table 2 Integral parameters

L l x L 2 x L 3 NIx N2X N3 hw St くCD> i CDrllls CLnns

case 7
(LDM model)

2 0 D  x l Z D  x  ① 140x103x32 0.02 0 . 1 3 1 2.05  i  O.12
l

1.39

Lvn「71 ExpeHment (Re=2.2× 104) 0。132 2.1

Vickcv「121 ExpeHment(Re=1× 105) 2,05  i   ― ― 1.32

Lcc r131 Expe五 ment(Re=1.76× 105) 2.05  i  O.23 1.22
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Fig.5  COmparison of the tirne_averaged velocity

centerline Of LDⅣI model(case 7)

L1: computational domain in xi
direction ( i=1,2,3)

Ni : mesh resolution in xldirection
St: Strouhal number

s  Ao
D

(ur) along the

Cp : drag coefficient
C1- : lift coefficient
h*: the grid intenual in the normal direction

adjacent to the cylinder wall

In S model (cases L and 6), C is treated as a constant. The
value of 0.0169 and 0.01 were selected for cases 1 and 6.
respectively. These values correspond to 0.L3 and 0.1 of the
so-called Smagorinsky constant Cs (cf. Table 1). A is
multiplied by the Van Driest type wall damping function f'
l-exp (-x,+/25) in case L and mfu, {1 - exp 1-x"+i25;3}0 

s

in case 6 in order to account for the near wall effect in S
model, while f, is not necessary in dynamic SGS models.

In dynamic SGS models, the model coefficient C is
determined dynamically. Following Germano et al.[l], a
test filter (denoted as i in this paper) is introduced to derive
an expression for C. The width of test-filter is taken to be

twice the width of grid-filter. Germano et al. defined the
resolved turbulent stress as follows:

f;1 can be related to the SGS stress ?;; and the subtest-scale

stress T;; : ulu; - [;[; by

f t j = T i i - i i i

DS model (case 2) employs the dynamic procedure using
a least square method proposed by Lilly [2] to determine the
coefficient C:

q■0=―÷冊
w h e r e  M l = P Sに j

In DM model (case 3), a linear combination of the
dynamic Smagorinsky model and the scale similarity model
is adopted 14, 1,4l.In DM model, anisotropic part of (ri1 is
expressed as [4, 14]:
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the experiences of our group, the LDM model seems to
be most suited for the analysis of flowfield around a
cylinder, since it provides good calculation stabilities

and also good prediction accuracy.

Appendix SGS models compared

In the Smagorinsky model, the anisotropic part of the
SGS stress ft; is modeled as follows:

=-2C△ 2151百
1=-27scsSil     (1)

where SGS viscosity vs65 is

Vscs: c-d'? lS | (c : cs2) (z)

Here, - ( denotes the grid-filtered values and A is the

width of the grid-filter, 51; is the resolved-scale strain rate
tensor,

u  _  t  i a u ,  ,  a r t , \  , = ,  . . = -S, i : i [z r . ; t ' / ,  l s l : (zs i js i i ) ' / z  (3)
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・j―÷aj・k=-27s:sSl+Bl―÷δlBkk       (8)

The first and the second terms in the right-hand of eqn'(8)

derive from the Smagorinsky and the scale similarity models

respectively.

Here, C is determined by
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where H{x}iS the ramp functiOn(H(x}=X if X>O and Zero

otherwise),and

咽 〓―÷

where Hi; is the term originated

model. Hi; is written as [4];

( 1 0 )

fronl the scale siinilarity

( 1 1 )

At IT"t =  ( 1  + a t l T - |

The technique of Lagrangian averaging

added to the Dynamic Mixed model. We

model.

^ /+ .\ 1 Ir-r*r - [ur.,r
L ( x ' t r : 2  I , r ,

where

( 1 5 )

can be easily

call it LDM

(16)

Ｔ^
ｕ

二
●
ｕ一青

ｕｉｕｊ
〓Ｈ ―(ilij―il■)

The value of C obtained from eqns.(6) and (10) can be

either positive or negative. A negative value of C implies a

locally negative value of eddy-viscosity which causes the

numerical instabitity. In cases 2 and3, we set the coefficient

c equal to be zero wherever c is estimated to be negative

(clipping procedure).

Previous authors have used an averaging over

homogeneous directions to avoid the numerical instability

(Germano et al.[l], Akselvotl et al.[15], Zang et al'[3] )'

The disadvantages of this treatment is that the plane-

averaging can only be applied to flowfields that have a

homogeneous direction. This treatment cannot be applied

to three-dimensional flowfields such as a flow around a

cube. Thus, this treatment excludes the application of LES

to more chaltenging flows of engineering interest' In

Lagrangian Dynamic Smagorinsky model (LDS model), the

model coefficient c is calculated following the approach

developed by Meneveau et al.[5] in which the residual in

eqn.(5) is minimized along fluid trajectories rather than flow

homogeneous directions, resutting in an expression for the

model coefficient;

Cm=―=襦 (12)

The numerator and denominator of eqn.(L2) are obtained

using a simple time discretization, resulting in

I I研① =εH l M l + 1 0 0 + ( 1 -→ I I M「 ―i i n△t ) (17)

LDM model was used in cases 4, 5 and 7 in Table L'

The time-scale T in eqn.(15) is defined as T:sn

(n:Al1s-1/a). Meneveau et al.[5] recommend a value of 2

for a based on the filtered DNS data of isotropic turbulence.

Within the experiences of our group, this value of 2 was not

optimum for u (T=2n) for flow around a bluff body' Here,

the value of.0.2was selected for a (T:0.2n) in cases 4, 5 and

7 as a result of numerical experiments.

Note 1

The time-averaged values were determined by the time-

averaging over 8 vortex shedding periods (61 in the non-

dimensional time scale) in case I' as well as by averaging

over the spanwise direction.

Fig.6 compares the time-averaged velocity determined by

time-averaging over 2 shedding periods with that averaged

over 8 shedding periods for case 1 (s model). The difference

between values based on these two different averaging time

is very small as far as time-averaged velocity is concerned.

Thus, the averaging time for time-averaged values was

reduced to 2 vortex shedding periods (15 in the non-

dimensional time scale) in cases 2-6.

Note 2

This computation by Karlsruhe group was recommended

as a reference for the test case for the 2nd ERCOFTAC

workshop held in Grenoble, 1996.

Note 3

In Werner and Wengle's approach [8], u linear or ll7

power-law distribution of the instantaneous velocity is

assumed :

I L けoり
= H {ε t t j M 島

+ lα
) + ( 1 - → I E M  σ一 i Fムt ) )

I Lけoり=εⅣllM l + 1 (マ)十(1-→I‰Mα ―島n△t)}

( 1 3 )

( 1 4 )
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This wall function becomes identical to the no-slip
boundary condition when xn* S 11.81. Fig.7 illustrates the
distribution of time-averaged values of x'+ of the grid points
adjacent to the cylinder walls. In most areas, the value of is
lower than 11.81. Thus the linear-law, i.e., the no-slip
boundary condition, is applied in these areas. At corner
areas, the value of xn+ slightly exceeds 11.81.

Note 4

As shown in Table 1, four factors, i.e., grid spacings,
values of Cs, wall damping functions and sizes of
computational domain in spanwise direction, are different
between cases 1 and 6. In the earlier research by our group
(Murakami et al. [9]), the influence of the Cs value and the
size of computational domain was examined. In that study,
computations were carried out for two different values of Cs
(0.13 and 0.1 adopted in cases 1 value and 6 respectively)
with grid A. As shown in [9], the difference between the
results of these two cases was very small. Furthermore, two
computations were carried out and compared for two sizes
of different computational domain in the spanwise direc-
tion, 2D and 4D in t9l. Regarding the time-averaged
velocity , the result of the case with a larger computational
domain (4D) provided a slightly smaller reverse flow region
behind the cylinder. However, we noted that there were no
outstanding differences for each computational domain size.

We have also carried out another computation (case 6') in
which only the damping function was changed from
mfr(:(l - exp 1-x,+ 125)3)0's) adopted in case 6 ro the
function used in case l. (fi, : 1-exp (- xn+ 125)). Through the
comparison between the results of cases 6 and 6', it was
confirmed that the results were not much affected by the
difference in the forms of wall damping functions.

The rest of different factors between cases 1 and 6 is grid
spacing. We consider that the difference in the grid spacings
is the main factor for the differences between the results of
both cases.

Note 5 Comparison between colocated grid and stag-
gered grid

A colocated grid (Rhie and Chow [10]) was used for cases
1-4 and 6. However, recently it was reported that the result
based on staggered grid provides more accurate prediction

44

- 2  - t  0  I  2  3  4  S  i . r -O
D

Fig. 6 Comparison of the time-averaged velocity (nr) along the
centerline determined by time averaging over 2 shedding
periods and 8 shedding periods
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Fig. 7 Distribution of time-averaged values of xl (case 7)

than that based on colocated grid in a LES computation of

channel flow, because the result based on colocated grid

includes some numerical errors (Ooka et al. t11]).
In this study, we compared the result based on colocated

grid (case 4) with that based on staggered grid (case 5). As

for the time-averaged velocity (ur), both results are almost

the same, but case 5 is slightly better (figures are omitted
here). So we used staggered grid for case 7.

Nomenclature

Xi :three components of the spatial coordinate
(i: 1,2,3 : streamwise, lateral, spanwise)

u; : three components of the velocity vector

f : instantaneous value of a quantity

f :filtered value of /
<f> : time averaged value of /

xn : distance from the wall

L5

C

-2 pedods(S modeり
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xn* : xnu*/v, u*: friction velocity

Re :Reynolds number, Re : UoD/v

D : width of the square cYlinder

Uo :1ut) value at inflow of computational domain

When values are made dimensionless, the representative

length scale D, velocity scale Us and air density p arc used.

(Manuscript received, October 24, 1996)
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