生產研究 593

研究速報

コンクリートの凍結融解性状に関する基礎研究(2)

―モルタルの伸縮挙動と細孔構造の変化―

Freezing-and-Thawing Behavior of Concrete (2) -Length Changing and Micro Pore Structure of Mortar-

> 岡本修一^{*}・魚本健人^{*} Shuichi OKAMOTO and Taketo UOMOTO

1. はじめに

コンクリートのみならず多孔質材料では,寒冷地におけ る凍結融解の繰り返しによる劣化は重要な課題であり,劣 化の機構・対策・評価方法等に関する多くの研究が現在も 行われている.これらの研究成果に基づき,コンクリート では凍結融解による劣化防止対策として,AE剤やAE減 水剤等を使用しコンクリート中に微細な独立気泡を適量混 入させるという手法が確立されている.

一方,劣化の機構に関しては,T.C. Powersの研究を始め,我が国においても,洪・鎌田両氏の研究成果等に代表 されるように,コンクリート内部の細孔の構造・分布状況 ならびに,毛細管空隙中に存在する水の挙動(相変化に伴 う体積膨張や水圧,毛細管空隙中の水の過冷却,未凍結水 の移動 etc.)が重要であることは明らかにされている^{1)~3)} が,全ての劣化挙動を合理的に説明するに至ってはいない.

そこで本研究では、凍結融解機構のモデル化を目標に、 基礎資料を得ることを目的で、前報に引き続きモルタル供 試体を用い、凍結融解サイクルの進行とともに変化する伸 縮挙動を細孔構造の変化の面から検討を加えた.

2. 実験概要

2.1 供試体の作成

供試体は,試験時の断面内温度ならびに水分分布が比較 的容易に均一とできる4×4×16 cmのモルタル供試体と した.配合は,W/C=65%,S/C=2とし,セメントには 普通ポルトランドセメントを,細骨材には富士川産の川砂 (比重:2.63,吸水率:2.01%)を使用した.長さ変化並び に細孔径分布測定用供試体は,いずれも打設後1日で脱型 し,材齢14日まで20℃水中養生を行い,各測定項目におけ る凍結融解開始直前の初期値を測定した後,厚さ0.05 mm

*東京大学生産技術研究所 第5部

のアルミテープでシールしポリエチレン袋に入れ凍結融解 試験を行った.

2.2 凍結融解試験

凍結融解試験用供試体は、アルミテープでシールし、更 にポリエチレン袋で封緘した状態のまま不凍液の入った温 度可変槽に設置し試験を行った.試験は、約16時間で20℃ から-20℃まで降温、約2時間温度を保持した後、約6時 間で20℃まで昇温を1サイクルとし、20サイクルまで繰り 返した.供試体の温度履歴については熱電対を、伸縮挙動 については埋込み型ひずみゲージを供試体の中心部に設置 し測定を行った.

また,劣化の程度を知るために超音波法による相対動弾 性係数の測定も行った.

2.3 細孔径分布及び反応率の測定方法

細孔径分布及び反応率の測定は,所定の凍結融解サイク ル終了毎に,細孔径分布測定用供試体を4×4×4 cm に カットし2.5~5.0 mm に粗粉砕したものを使用した.

測定は,水銀圧入式のポロシメータにより,圧入圧0.4 Pa~420 Pa の範囲で行った.

3. 実験結果及び考察

3.1 凍結融解時の伸縮挙動と細孔構造の変化

図1に凍結融解試験時の供試体のひずみの状況を図2に 相対動弾性係数の経時変化を示す.但し,ひずみに関して は前報⁴⁾と同様に線膨張係数相当分のひずみを補正し図示 してある.前報にもあるように,モルタル供試体は凍結融 解の過程で残留ひずみを伴い,試験開始からの残留ひずみ はサイクルが進むにつれ大きくなる.

しかし、凍結融解により生ずる残留ひずみの増分は、10 サイクルまででは約1200 μの残留ひずみが生じているのに 対し、10サイクルから20サイクルまででは約300 μの増大 にとどまっており、サイクルが進むにつれ次第に少なくな

究 速

る.この挙動は図2に示した相対動弾性係数の経時変化と 良く対応し、モルタルの内部組織の緩みが進行しているも のと考えられる。また、その進行の程度は、初期サイクル で特に大きいことが伺える.

そこで、実際に細孔容量を測定した結果を図3に示す. これよると、凍結融解サイクルが進むにつれ、約0.1µm 以下の細孔は減少する傾向が認められらるものの、見掛け 上は細孔構造には著しい差異はみとめられない.

しかし、図4,5に示すように、同一期間まで20℃標準 養生を行った供試体の細孔径分布測定結果と比較してみる と、本来であれば時間の経過とともにセメントの水和反応 が進み、大きな細孔が少なくなり、旦つ、全細孔容量も 徐々に少なくなるはずのものが、凍結融解を受けることで 約1.0~0.1µm付近の細孔が増加する傾向となることが 明確となる. つまり、凍結融解を受けることによるモルタ

ルの内部組織の緩みは、この細孔径の増加に対応するもの であり、結果的に見かけの細孔構造の変化を少なくしてい るものと考えられる.

3.2 凍結融解試験中の空隙率と飽水度の変化

凍結融解による劣化は、内部空隙の飽水度に大きく依存 する4).従って、凍結融解時の細孔構造の変化と併せて、 飽水度を知ることも重要となる.

図6は、予備供試体により測定した供試体の空隙率(供 試体体積に対する空隙容量の割合)と飽水度(自由水容量の 空隙容量に対する割合)の結果を示したものである.図よ り、凍結融解サイクルを重ねるにつれ空隙率は増加するが、 飽水度は逆に低下しており、凍結融解20サイクル終了時に は、水の体積膨張率から求められる限界飽水度(水が凍結 しても凍結圧を生じない限界)程度まで低下している.

以上のことから考えると、今回の試験のように供試体を 封緘した状態での凍結融解試験においては、凍結融解作用 による微視的破壊による全体的な空隙量増大と、 セメント の水和反応による自由水の消費の影響等により、実質の空 隙の飽水度は低下し、結果として、空隙中水分の凍結によ る体積変化に伴う膨張圧が緩和されることとなり,図1で 見られたような、凍結融解サイクルの進行に伴う1サイク

24

ル当たりの残留ひずみ増分量の減少が生じたものと考えら れる.

4. あとがき

コンクリートの凍結融解による劣化メカニズムを解明す る為の基礎的資料を得ることを目的に、モルタル供試体の 凍結融解時の伸縮状況の測定と細孔径分布の経時変化の測 定を行った.

その結果、供試体を封緘した状態での凍結融解試験にお いて見られる、凍結融解サイクル進行に伴う1サイクル当 たりの残留ひずみ増分量の減少は、凍結融解作用による微 視的破壊により約1.0~0.1µm付近の細孔が増加し,実 質的な空隙飽水度が低下することによるものと考えられる. (1996年9月30日受理)

文 献 考

- T.C. Powers: A Working Hypothesis for Further Studies 1) of Frost Resistance of Concrete, Proc. of ACI, Vol. 41, 1945.
- T.C. Powers, R.H. Helmuth: Theory of Volume Changes 2) in Hardend Portland-Cement Paste During Freezing, Proc. of Highway Research Board, Vol. 32, 1953.
- 洪, 鎌田:コンクリートの凍害と初期凍害, コンクリー 3) ト工学年, Vol. 16, No. 5, 1978.
- 岡本,魚本:コンクリートの凍結融解性状に関する基礎 4) 的研究, 生産研究, Vol. 48, No. 10, 1996.

25