生産研究 531

報 72 速

特 研 報 究 速

兵庫県南部地震で被災した鉄道擁壁の逆解析

Back Analyses of Railway Soil Retaining Walls Damaged by the 1995 Hyogoken-Nanbu Earthquake

古関潤一*・龍岡文 夫**・舘山 滕*** Junichi KOSEKI, Fumio TATSUOKA and Masaru TATEYAMA

1. はじめに

1995年1月17日の兵庫県南部地震では、特に鉄道構造物 において, 擁壁の被害が各所で生じた^{1)~3)}.これは, 鉄 道路線が激震地を通っていたことと擁壁の建設が古いこと による.ここでは、擁壁の耐震設計手法を合理化すること を目的として、兵庫県南部地震で被災した数種類の擁壁に ついて,震度法と極限釣り合い解析に基づく現行の設計手 法4),5)のもとで逆解析を実施した結果を報告する.

2. 検討対象

以下に示す4地区の計5種類の鉄道擁壁を対象とした. これらの位置を震度 VII の範囲とあわせて図1に示す。 (1) 住吉地区

JR 神戸線摂津本山~住吉駅間の北側のもたれ式擁壁が, 約500 m にわたって完全に転倒した(図2参照). 根入れ が深い場合には地表面の位置で壁体が折れ、また、根入れ が浅い場合には根入れ部分を含む壁体全体が転倒した.

図1 検討対象擁壁の位置と震度 VII の範囲

*東京大学生産技術研究所 第5部 **東京大学大学院工学系研究科・工学部

****財団法人 鉄道総合技術研究所

*根入れが比較的浅い区間では壁体全体が転倒した。 図2 住吉地区(JR 摂津本山~住吉駅間)のもたれ式 擁壁(a) 断面図(b) 被災状況

(2) 石屋川地区

阪神本線石屋川駅付近の両側の重力式擁壁が、延べ約 400mにわたり大きく前傾した(図3参照,図は南側の断 面). このうち約200 mの区間では、中央高さ付近の打ち 継ぎ目に沿って壁体が破断し、上部が地上に落下したもの もあった.

また、北側に隣接する約30mの長さのL型擁壁も前傾 し、壁体の一部に亀裂が発生した(図4参照).ただし、 控え壁のある区間では亀裂は発生せず,前傾のみが生じた. (3) 新長田地区

JR 山陽本線新長田駅の南側に建設されたL型擁壁が、 約200 m にわたって前傾し、基礎が滑動するとともに、壁 体の中央部に大きな亀裂が発生した(図5参照).なお, 建設当時の資料によれば擁壁の基礎地盤部には補強用の木 杭が打ち込まれていたが、今回の地震後の復旧工事の際に 一部を掘削して調査したところ、木杭は発見されなかった. (4) タナタ地区

JR 神戸線芦屋~摂津本山駅間の神戸市東灘区森南町一

研

究 速

石屋川地区(阪神石屋川駅付近)の重力式擁壁(a) 図 3 断面図(b)被災状況

図4 石屋川地区(阪神石屋川駅付近)のL型擁壁(a) 断面図(b)被災状況

丁目(通称タナタ)の南側を拡幅するため総延長約300m にわたって建設された、剛な壁面工(鉄筋コンクリート) を有するジオテキスタイル補強土擁壁が、剛体的に若干水 平方向に変位するとともに傾斜した(図6参照).壁体が 最も高くなる区間で水平変位量が最大となり、その大きさ は頂部で26 cm, 地表面位置で10 cm であった.

3. 検討方法

図2~図6に示した計5つの擁壁を対象に、外部安定 (擁壁全体の滑動,転倒,および基礎地盤の支持力に関す る安定性)と内部安定(擁壁壁体のコンクリートまたは鉄 筋に生じる圧縮、引張応力に関する安定性)に対する安全 率が1.0となるような限界水平震度を現行の設計法に基づ いて逆算した.計算条件は、盛土材と壁体コンクリートの

図 5 新長田地区(JR新長田駅)の盛土のあるL型擁 壁(a)断面図(b)被災状況

キスタイル補強土擁壁(a) 断面図(b) 被災状 況

強度試験結果や支持地盤のボーリング調査結果等を参考に して表1および表2に示すとおりに設定し、盛土材から擁 壁に作用する土圧の計算は試行くさび法を用いて行った. 図1に示したように、各擁壁は震度 VII の地域に位置 していた.また、周辺家屋の被災状況も別途調査したが, どの擁壁のまわりにも木造家屋の倒壊率が50%を超える地 区があり、極めて激しい地震動が作用したことが推測され 究 速 報

地区 (線壁の型式) 様式図		住吉地区 (もたれ式擁壁)	石屋川地区 (薫力式擁壁)	石屋川地区 (L型擁壁)	新長田地区 (L型擁壁)	タナタ地区 (補強土擁壁)
		$\begin{array}{c} & & \\ & & \\ & & \\ \hline \delta = \\ \phi / 2 \\ c \\ c \\ \phi / 2 \\ c \\$	₩m δ=0 φ/2 φ/2 σ=φ	$ \begin{array}{c} \delta = \phi / 2 \\ \delta = \phi \\ c \\ \delta = \phi \\ \delta = \phi \\ \end{array} $	仮想背面 る= ¢	すべり面 回転中心 交易上店 (清動抵抗) 8=0
コンクリート壁体	r (kN/m ³)	23.2	22.7	12.6	111	
上圧計算に用いた	$r(kN/m^3)$	18.1	17.5	17.5	16.1	24.5
盛土材の条件	$c(kN/m^2)$	0.0	0.0	0.0	0.0	10.7
	¢(`)	45	42	42	36	41
支持力計算に用いた 支持地盤の条件	γ (kN/m ³)	19.7	18.9	18.9	17.3	17.4
	c (kN/m ²)	0.0	0.0	0.0	49.1	0.0
	¢(°)	41.8	35.8	35.8	0	33.4
支持力係数	Nc	91	37	37	5.1	26
	Nr	150	32	32	0	17
	Ng	82	24	24	1	15

表1 外部安定に対する計算条件

表2 内部安定に対する計算条件

	(擁書	地区 壁の型式)		住吉地区 (もたれ式擁壁)	石屋川地区 (重力式擁壁)	石屋川地区 (L型擁壁)	新長田地区 (L型擁壁)	タナタ地区 (補強土擁壁)
		莫式図		8=0	δ=0	8=0	8=0	
コンク	<u>r</u>	(kN/m ³)		23.2	22.7	22.5	23.2	24.5
ノート	圧縮強度	(kN/m ²)		18.6	18.8	30.5	25.8	20.6
	引張強度	(kN/m^2)		1.66	1.41	2.47	2.26	_
筋	引張り強度	(M(N/m ²)		-	-	481	481	481
	単位延長当り	断面積((m²/m)	-	-	77.6 × 10 ⁻⁴	19.4 × 10 ⁻⁴	5.08 × 10 ⁻⁴

た.ここでは、文献⁶⁾に基づいて各地点における地表最大 水平加速度 a_{hmax} を一律に600~800 cm/sec²と想定し, 逆 解析で得られた限界水平震度との関係について検討した.

計算は、鉛直地震動の影響を考慮しない場合と考慮した 場合のいずれについても行ったが、以下では考慮しない場 合の結果を示す.考慮した場合の結果については文献⁷⁾を 参照されたい.

4. 検討結果

逆算した限界水平震度と,これに対応する破壊モードを 表3にまとめて示す.ただし、タナタ地区の補強土擁壁で は、計算上は内部安定に対して極めて高い安全率が得られ、 また,実際にも壁面工に重大な損傷は生じていないため, 以下では内部安定は検討対象としない.

外部安定に対する限界水平震度は、新長田地区のL型 擁壁が著しく小さな値であったことを除くと0.34~0.50の 範囲となり、前述した地表最大水平加速度の推測値から換 算される水平震度(0.6~0.8)よりも小さかった.ただし、 逆解析より想定される破壊モードは,実際の被災状況とほ

ぼ対応した.

一方で、内部安定に対する限界水平震度は、住吉地区の もたれ式擁壁と石屋川地区のL型擁壁で、地表最大水平 加速度の推測値からの換算水平震度と同等の値が得られた. 石屋川地区の重力式擁壁では1.0を超える大きな限界水平 震度が得られたが、これは、壁体の打ち継ぎ目での強度低 下を逆解析上は考慮していないためと考えられる.

ここで,限界水平震度のみを比較すると.最も耐震性が 劣るのは新長田地区のL型擁壁で、これと対照的に住吉 地区のもたれ式擁壁は、タナタ地区の補強土擁壁とほぼ同 等の比較的高い耐震性を有していたことになる. しかしな がら、これらの関係は、2. で述べた実際の被災状況とは 対応していない. 違う型式の擁壁が同一の水平震度で設計 された場合、実際の耐震性はかなり異なっている可能性が あることがわかる.

表3に示した限界水平震度を,前述した換算水平震度で 正規化したものを「換算係数」として図7に示す.図7は、 検討対象とした各擁壁が実際に被災していること、すなわ ち,安全率がちょうど1.0となる限界状態に対応する地表

地区名	体路刑士	限界水平震度(対応する破壊モード)			
	9推望望氏	外部安定問題	内部安定問題		
住吉	もたれ式	0.48(転倒)	0.77(引張応力)		
石屋川	重力式	0.34(支持力)	1.14(引張応力)		
	L型	0.44(支持力)	0.78 (引張応力)*		
新長田	L型	0.09 (滑動)**	0.23(引張応力)		
タナタ	補強土壁	0.50(滑動)	***		

表3 限界水平震度の逆解析結果

* 圧縮応力に対する限界水平震度もほぼ同じ値であった。 ** 基礎地盤が十分な支持力を有していたものと仮定した。 *** 壁面工の著しい損傷は生じなかったため対象外とした。

最大水平加速度は前述した a_{hmax} よりも小さいと考えられ ることを考慮すると,設計で用いるべき換算係数の下限値 を示していると見なすことができる.

図7(a)によれば, 擁壁の型式によって実際の被災程度 が異なるにもかかわらず, 外部安定に対して逆算された換 算係数の下限値は, 新長田地区のL型擁壁を除き0.4~ 0.8の範囲となった. また, 内部安定に対しては, 同図 (b)より同一の擁壁に関して外部安定よりも大きな値が 得られた. これらより, 現行の耐震設計法では, 同一の擁 壁でも破壊モードに応じて水平震度を変える必要があり, 特に内部安定に対しては, 想定される地震動の最大値を水 平震度に換算する際にある程度低減できる可能性があるこ とがわかる.

5. おわりに

兵庫県南部地震では,石積み擁壁と重力式擁壁が崩壊・ 倒壊などの著しい被害を受けた.これらに対し,L型擁壁 は完全な倒壊には至らなかった点において,比較的ねばり 強い挙動を示した.今後,重要度の高い擁壁を建設する場 合には,このような大地震時の挙動の違いを考慮して適切 な型式を選定する必要がある.

また,地震時の慣性力を静的な力に置き換える震度法に 基づいて擁壁の耐震設計を実施する場合,想定される地震 動の最大値をそのまま静的な水平震度に換算することは, 外部安定に対する検討においては必ずしも合理的ではない.

これらの点を明らかにするために,今回報告した被災事 例の逆解析のほかに,模型実験に基づく検討⁸⁾を現在実施 している. (1996年8月9日受理)

図 7 換算係数の逆解析結果 (a) 外部安定 (b) 内部 安定

参考文献

- 古関潤一, 龍岡文夫: 阪神・淡路大震災における擁壁の 挙動について, 生産研究, 47巻11号, 1995.
- 鉄道総合技術研究所:兵庫県南部地震鉄道被害調査報告
 鉄道総研報告特別第4号, 1996, pp. 86-98.
- 3) 地盤工学会阪神大震災調査委員会:阪神・淡路大震災調 査報告書(解説編), 1996, pp. 327-341.
- 土木学会:国鉄建造物設計標準解説一基礎構造物,抗土 圧構造物,1986.
- 鉄道総合技術研究所:鉄道構造物等設計標準・同解説-土構造物,丸善,1992.
- 6) 佐藤忠信:震度7の帯内における最大地動の推定,土と 基礎, Vol. 44, No. 2, 1996.
- 7) Koseki, J., Tateyama, M., Tatsuoka, F. and Horii, K.: Back Analysis of Soil Retaining Walls for Railway Embankments Damaged by the 1995 Hyogoken-Nanbu Earthquake, -An Investigation into the Damage to Civil Structures-, 土木学会耐震工学委員会, 1996.
- 8) Munaf, Y., Koseki, J. and Sato, T.: Model Tests on Seismic Behaviour of Soil Retaining Walls, 生産研究, 48巻7 号, 1996.