生 産 研 究 539

特 集 6 研究速報

液状化解析への3次元個別要素法の適用

Application of 3-D Distinct Element Method to Liquefaction

目 黒 公 郎*·片 山 恒 雄** Kimiro MEGURO and Tsuneo KATAYAMA

1. はじめに

個別要素法 (Distinct Element Method, DEM) を用い た従来の液状化解析は主に2次元(2D)を対象とし、非 排水条件を模擬した定体積条件下でモデルにせん断変形を 与えるものであった¹⁾. また間隙水の挙動を簡便的に考慮 したモデルもあるが、それらは規則的に配置された等粒径 の粒状体モデルを対象とし、間隙の形状や大きさが著しく 変化する挙動を追いかけるには至っていない²⁾. それは 時々刻々と変化する間隙の変化を追跡し、隣り合った間隙 間での水のやり取りを効率よく求める手法がなかったため である.この問題を取り扱った先駆的な研究に、垂水・伯 野³⁾の研究がある.これは2D-DEM を用いて、不規則な 半径でランダムな要素配置のモデルを対象に、時々刻々と 変化する間隙の変化を直接追いかけ、その面積の変化に応 じた過剰間隙水圧を要素に作用させることにより、液状化 現象を解析する試みである.しかし、対象モデルが2次元 であるため大きな間隙比を持つモデルの作成が困難である こと、また複雑な形状を持つ間隙の面積を逐次計算するた めに複雑なアルゴリズムと長い計算時間を要してしまうこ とから、現実的な問題として液状化現象を解析するまでに 至らなかった.そこで本研究では3D-DEM モデルを対象 とし、間隙水の挙動を仮想のブロックごとに扱うことによ り間隙部分の逐次変化を簡単なアルゴリズムで追跡し、 DEM に間隙水の挙動を効率よく取り込む手法を開発した ので報告する.

2. 間隙水の挙動を取り入れた 3 次元 DEM

今回開発した手法とは,図1(a),(b)に示すように解 析領域を適当なブロックに分割し、このブロックを単位と

*東京大学生産技術研究所 国際災害軽減工学研究センター **科学技術庁 防災科学技術研究所 して間隙水の挙動を扱うものである.すなわち要素の移動 による間隙の変化をブロック単位で追跡し,複雑な間隙の 形状変化と体積変化を簡単に取り扱う方法である.以下に その概略を説明するが,提案手法の概念を簡潔に説明する ために,図1 (b)~(e)では2次元問題として扱った表記 をしている.

まず時間ステップごとの間隙部分の体積変動から過剰間 隙水圧を求め、これを隣接する6ブロックとの間で比較す る.ブロック間に過剰間隙水圧の差があれば、間隙水をダ ルシー則に従って移動させる(図1(c)).過剰間隙水圧が 要素に与える抗力は、ブロックの重心から要素の中心へ引 いたベクトルの方向に間隙水圧の変動に基づいて作用させ る(図1(d)).隣接するブロック間の過剰間隙水圧の差 によって生じる間隙水の流れが要素に及ぼす力は、図1 (e)に示すように所属するブロック内の間隙水の3次元的 な流れと各要素の3次元的な運動とを比較し、両者の相対 速度と各要素の大きさに応じて作用させる.

ところで本研究では、仮想ブロックの境界面で囲まれた 範囲内に存在する全ての要素の体積(部分的に含まれる要 素はその部分の体積)をトータルして、そのブロック内の 要素の占める体積としている.より簡便的な手法としては、 ブロック内に中心が存在する要素だけを取り上げ、これら の全体積をそのブロックでの要素の占める体積とする手 法⁴⁾もある.しかし著者らが以前この手法を用いて行った 解析結果からは、以下のような問題点があり、これらの点 を解決せずにはこの手法を適用することは難しいという結 論に至った.すなわちこの手法では、ブロックに部分的に 含まれる要素の体積を無視する一方で、本来は隣接する他 のブロックに含まれる部分の体積を余分にカウントしてい る.ゆえにこのモデルを用いる場合には、多数の要素と大 きな領域を対象とし、仮想ブロックの大きさも十分大きく しないと、部分的に含まれる要素の体積や本来は含まれて 研

i+1

による過剰間隙水圧の発生と間隙水の移動

(c) 隣接するブロック間の間隙比の変化

(b) ブロックを単位とした要素と

間隙の体積の考え方

(a) 3次元座標系とブロック 番号の関係

(d) 過剰間隙水圧による抗力の方向 (e) ブロック内に生じた流れによる抗力

図1 間隙水の挙動を取り入れたDEM解析モデル

いない部分の体積の影響が無視できない. さらに要素の中 心座標がある時間ステップ中に仮想境界面を横切るような 場合に,所属するブロックが変わるので要素全体の体積が 突然他のブロックの要素体積として評価されてしまい,現 実的でない過剰間隙水圧の変化をもたらすなどの問題が起 こる.本研究で用いた手法は,このような問題を極力生じ させないように配慮したモデルである.

3. モデルの作成と解析結果

以下に本研究で用いた解析モデルとそのモデルを用いた シミュレーション結果を紹介するが、本報告では提案手法 の妥当性を示すことを第1目的として、まずは本手法を用 いて液状化現象が再現できることを示す. 定量的な議論に ついては、次の機会に説明する.

図2に示す計算領域の中で,まずハッチのついた範囲に ランダムな粒径を持つ要素を格子状に発生させ(図3(a)), これを液体で満たされた容器内に自由落下させることで, 平均間隙比約93%のゆる詰めのパッキングモデル(図3 (b))を作成した.この時点で,ほとんどの要素はZ座標が k≤6 の範囲に納まっている.水中落下の過程で各ブロック内の過剰間隙水圧は図4に示すように変化する.要素の移動によって,解析モデルの上部では直後に負の過剰間隙水圧が働き,下部では正の過剰間隙水圧が作用する.しかしこの変動は間隙水が移動することで沈静化し安定する.なお図3(b)のパッキングモデルの作成に際しては,速やかに安定状態を得るために解析パラメータとして実際よりも大きな透水係数を与えた.

次に図3(b)に示すモデルの底面とX方向の2枚の壁 に図5に示す変位波形を入力させ、モデルが液状化する過 程を解析した.X方向の壁を変位制御することで外力を 作用させるので、間隙水の挙動を取り扱う仮想ブロック境 界も入力と同様の変位で移動させ、過剰間隙水圧の急激な 変動を抑えた.解析では、モデルの表層付近の要素が所属 するブロック(k=6,7)について、自由水面を有する条 件を与えた.

平均間隙比約93%のゆる詰めのパッキングモデル(図3 解析結果を図6と図7に示す.これらはそれぞれ、図2

24

48巻11号 (1996.11)

で濃い色のハッチのついた8ブロック {(2,j,k), ただしj =2,3, k=2,5} の過剰間隙水圧と間隙比の時間変化を示している. 図6が {(2,2,k), ただしk=2,5} の4ブロック, 図7が {(2,3,k), ただしk=2,5} の4ブロックの結果である.

まず全体的な傾向として,液状化現象は急激な変位が作 用する4秒付近で発生し始め,引き続き入力される大振幅 の変位によってさらに進展する.大きな振幅が納まった後 には,過剰間隙水圧は徐々に逸散し収束に向かう.

過剰間隙水圧と間隙比の時間変化を比較すると,初期間 隙比の大きなブロックでは振動外力によって要素の骨格が はずれ,間隙比が小さくなるとともに正の過剰間隙水圧が 生じていることがわかる.一方初期間隙比の小さなブロッ クでは,まずは間隙比の増加にともなう負の過剰間隙水圧 が生じる.そして間隙比が他のブロックと同程度のゆる詰 めの状態になって初めて液状化現象が始まる.間隙水が逸 散しやすい表層付近のブロックの過剰間隙水圧は,一般的

図2 解析モデルのブロック分割(ハッチのついた領域が初期 状態で要素が存在する範囲)

48巻11号(1996.11) 542

な傾向としては下層のブロックほど上昇しない. このよう な過剰間隙水圧の急激な上昇と逸散過程は、間隙水を DEM に直接取り込んで初めて解析が可能となったもので ある. 30秒間の液状化解析後のモデル全体の様子を図3 (c) に示すが、振動外力を加える前の状態(図3(b)) に 比べ、間隙比が小さくなり締め固められたことがわかる. これは液状化による要素骨格の再構成と間隙水の逸散によ るものである.

ところで、液状化現象とは直接関係ないが、今回用いた 程度の規模の解析モデル(要素数、計算領域、仮想ブロッ クの大きさの関係を総合して)では、図6と図7の初期間 隙比を比較するとわかるように、ブロックによってかなり のばらつきが見られる.透水係数のように「あるマスとし ての土の性質|を解析に用いる場合、ブロックごとの要素 数が少数であったり、ローカルな差があまりに大きくなっ たのでは現実的でなくなってしまう. この問題を解決する には、仮想ブロック内に十分な数の要素が所属するような モデルを用いるか、透水係数を間隙比の関数として解析に 取り組むなどの工夫が必要になる.

4. ま ح め

今回提案した過剰間隙水圧の影響を直接取り込んだ 3D-DEM 解析では、液状化にともなう過剰間隙水圧の上昇と 逸散過程,ならびに要素骨格の再構築過程が忠実に再現さ

({(2,3,k), ただしk=2,5)の4ブロック)

れる. これらの現象は従来の手法では十分に解析できてい ないものであり、本手法が液状化にからむ様々な現象の解 明、ならびに挙動解析に大きな可能性を持つことを示すも のである.

特に本手法では、過剰間隙水圧の変動を直接取り扱える ので、ボイリング現象や過剰間隙水圧の逸散による液状化 地盤の見かけの剛性の時間変化などが、何の問題も無く自 然に解析できる長所を有している.

最後に本研究を進めるに際しては, 中央大学工学部の渡 辺英之氏,中林亮氏,曽田暢一氏にご協力いただいた.こ (1996年8月23日受理) こに感謝の意を表する.

参考文献

- 1) 例えば,澤田純男・土岐憲三・吉田望:楕円要素を用い た個別要素法による砂の液状化挙動解析,第30回土質工 学研究発表会, pp. 773-776, 1995.
- 木山英郎・西村 強・藤村 尚:間隙水連成型個別要素 2)法の基本と拡張, 土木学会論文集, No. 499, 3-28, pp. 31-39, 1994.
- 垂水祐二・伯野元彦:Quick Sand と液状化に関する粒状 3) 体シミュレーション、東京大学地震研究所報、Vol. 62, pp. 535-577, 1987.
- 中瀬 仁・安中 正・藤谷昌弘・嶋田昌義:ケーソン式 4) 護岸の模型振動実験に対する間隙水の影響を考慮した個 別要素法の適用, 第23回地震工学研究発表会, pp. 453-456, 1995.