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Abstract

In recent years, many multi-finger robotic hands have been designed and
developed in order to emulate a human hand. The human hand has many
sophisticated a lot of complicated dexterous skills that human themselves
sometimes did not notice, for example an ability to grasp and manipulate
tiny objects, a capability to regrasp an object without releasing and so on.
To mimic or imitate these kind of dexterous skills to high degree-of-freedom
mechanic hands, a planning is required and it is often referred as Dexterous
Manipulation Planning (DMP).

In this thesis, DMP is explored in context of learning object manipula-
tion using programming by demonstration (PbD) framework. The idea of
this paradigm to plan a dexterous manipulation by letting robot observes a
stream of human demonstration. An advantage of PbD is that the planning
discovered will also include human purpose in manipulation. This is corre-
sponding to previous research which suggested that human has particular
reasons on how they grasp or manipulate objects.

This thesis proposes a novel method to segment a stream of human ma-
nipulative movement. This is a preliminary step to plan and mimic dexterous
manipulation ability to robot hands in a PbD framework. Human manipula-
tive movement is observed by a data glove, which provides information of 18
joint angles of human hand. Then a highly dimensional joint space is reduced
to a lower dimensional space using principle component analysis. A segmen-
tation is done based on two assumptions: First, a contact relation between
hand and object would change when a coordinative movement of all joint
angles of the hand changes it direction. Second, a coordinative movement
of all joint angles are an approximately linear line in a reduced dimensional
joint space.

To test and apply the proposed method three manipulative movements of
human is considered. Two of which are the repetition of same simultaneous
movement. The other is more complex manipulation of a pen-like object
called interdigital step. The results are compared and discussed with another
previous research.
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CHAPTER 1

Introduction

There is a prospect that in the near future robot will become part of our
environment, and play important role in human society. Robots which once
only existed in the novels, now have gained more of their existence in human
everyday life, e.g. a robotic vacuum cleaner, or even a little toy. Human has
expected more from robots. Human hopes that someday robots will be able
to work alongside and assist them in their environment.

There are so many challenges for enabling the robots to work in human
environment [9]. One of the important challenges is how the robots would be
dealing with a human environment. In real situation, human circumstance
can be very complicated for the robots, when compared to the factories
or laboratories where everything can be controlled. A traditional approach
where knowledges are pre-programmed confines robots to limited abilities
and intelligences. This restriction would result in an incompetence of robots
to fully participate in dynamic environment without further intervention,
once they are manufactured and leave the factory. Therefore, an alternative
method to teach or program a robot is required.

One of the approach is to let the robots learn from the natural statistics of
human environment. Programming by demonstration (PbD) is an approach
to teach robots to learn particular tasks by showing it an example. It has been
proved to effectively teach a robot in many kind of applications, range from
an assembly task in factory [10] till teaching a humanoid robot to dance [11].
In this thesis, we are interested in teaching a robot an object manipulation
task, which can be seen very often in human daily life.

1
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1.1 Programming by Demonstration (PbD)

To teach a particular task to a robot using programming by demonstration
framework, we must first define all task primitives for the task. Task
primitive tells the robot what to do. In other words, task primitives are the
actions which can be understood by the system.

Figure 1.1: Pre-defined task primitives in particular task

Task is defined as a sequence of task primitives. Teaching a task to a
robot by human demonstration can be referred as a process of recognizing
and extracting the sequence of task primitives out of the stream of human
demonstration.

For each task primitives, there are always corresponding skill parame-
ters. Skill parameters tell the robot how to do or perform a corresponding
task primitives. Generally speaking, in programming by demonstration skill
parameters should be able to recognize and extract out of the stream of hu-
man demonstration as well. However, there are also some skill parameters of
some task primitives that might been discovered from other methods.

Once we had recognized and extracted a sequence of task primitives and
the corresponding skill parameters from human demonstration, the result
has to be stored or written in some kinds of representation, which can be
understood by the system. This representation is called abstract task
model, or most of the time only referred as task model.

In other words, task model is a representation of task in programming by
demonstration system. It is composed of two important elements: a sequence
of task primitives, and a corresponding skill parameters. All of which are
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recognized and extracted out of a stream of human demonstration.

Figure 1.2: A Task Model

1.2 Object Manipulation using PbD

Object manipulation is one of task appears everywhere in human everyday
life, e.g. in the kitchen where human cooks, in the office where human works,
or even on the dinning table where human eats. Teaching object manipula-
tion by programming by demonstration has recently been a active research in
robotic filed. Domain of object manipulation task normally limits to activi-
ties which can been seen in everyday life. Although it is not definite which
task primitives should be defined in everyday object manipulation, one of
the approach is to defined task primitives as grasping, manipulating, and
releasing [5].

In this context, grasping refers to a hand movement starting from a empty
hand move toward an object, until a hand have a good grasp of an object.
Releasing refers to a hand movement starting from a hand holding an object
with a type of grasp, until a hand releases the object and has nothing within
it.

Manipulating task primitive is quite complex and sometimes has a very
broad meaning. Manipulating may referred as any hand (or arm) movement
which cause an object to move, likes pushing etc. However, in this context we
would like to refer to the manipulating as a prehensile movement of a hand
that cause an object to move, especially those with a dexterous capabilities.

By defining our task primitives like those defined above, we can make
sure that, if a grasped object is about to change to different object, there
will always be a releasing task primitives in the middle. In other words,
in our system a hand has to release the object it currently grasped, before
grasping another object.

There are many manipulative prehensile movements of a human hand.
Although some approaches have tried to classify them [7][12], the definition
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of manipulative prehensile movements are still not definite, and correspond
to our interest. Therefore, in our study, we further define manipulating task
primitives into more details based on their basic skill parameters: its initial
grasp, its final grasp, and its grasped object. Based on this, our manipulating
task primitives can be classified into two different groups.

1. manipulating which has same type of initial grasp and final grasp. In
other world, type of grasp does not change during manipulation. Its
main intention is solely to move a grasped object together with the
hand as rigid as possible. We will refer to this type of task primitives
as homogeneous manipulation [5] task primitives.

2. manipulating which has initial type of grasp different from final grasp.
Its main intention is to change a type of grasp currently employed at
the object, not to move a grasped object. However, to accomplish
such movement, a object transporting may also occur. We will refer to
this type of task primitives as dexterous manipulation or regrasp task
primitives.

By mention this, we mean that manipulating task primitives which employed
more than two type of grasps, will be divided until each of them only contain
one or two type of grasps the whole time.

Besides, as we mention type of grasps earlier, we would like to define it
more concrete here. In this context, type of grasps defines based on an object
it grasps. For a particular objects, a finite number of static hand postures
will be assigned as all type of grasps. The decision on this might be decided
by system designer himself/herself, or extracted from a stream of human
demonstration. This is done based on the assumption that for particular
category of similar objects, human has specific type of grasps for it [8].

Furthermore, on the system as a whole, when many objects are consid-
ered, two type of grasps from different category of objects may be defined
as same grasp, even though their posture may be a little different because of
an object it hold. We leave this as a choice for system designer, who would
have to build a dynamic grasp recognition system.

Figure 1.3: Example of possible task model.

One possible task model is shown in figure 1.3. An example task model
starts with a hand grasping Object A with grasp Grp A1. Then the hand
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manipulates Object A while using grasp Grp A1. After a while, the hand
changes a from grasp Grp A1 to grasp Grp A2, while holding Object A.
Grasp Grp A2 is used to move Object A, before finally decide to releases
Object A, and so on . . .

1.3 What is This Thesis About?

Kang [13][5] has developed proposed a approach to program object manipu-
lation by human demonstration. He has developed a system which extracts
all skill parameters of the task primitives, which are necessary for mapping
to the target robot hand. However, in his task model, only homogeneous
manipulations were considered.

In our study, we move one step further. We take into account a dex-
terous manipulation, a more precise term would be an in-hand dexterous
manipulation. Considering basic skill primitives of dexterous manipulation
task primitives defined in figure 1.3: a grasped object, initial and final grasp
type, these parameters are telling a robot what to do, but not really how
to do. In other words, they contain insufficient information for target robot
hand to automatically execute the dexterous manipulation.

Figure 1.4: Skill parameters extraction of in-hand dexterous manipulation

While there are so many research proposed a method to solve dexterous
manipulation problem [14], we decide to stick and follow our main approach,
programming by demonstration. This means that we prefer to recognize and
extract skill parameters of dexterous manipulation task primitives by observ-
ing a stream of human demonstration, or in more generic term, dexterous
manipulation planning (DMP) from human demonstration.
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Why PbD? . . . not Analytic Approach

This is a frequency asked question. Which approach is more appropriate to
teach object manipulation for multi-finger robot hand? Is not there are a lot
of researches about dexterous manipulation in an analytic approach? We also
do not know the answer exactly on these questions. However, our decision
on using programming by demonstration is done based previous literatures
in grasp choice, and dexterous manipulation planning.

A study on static prehensile movement of human hand by Napier [2],
suggested that one of important factors that influences human which type of
grasp to use, is an intended activity. He raised an example of human grasping
a wooden rods, and suggest that between two possible type of grasp, which
will be adopted by human depends solely the purpose of use of that wooden
rods.

Cutkosky [3] has similar statement on this. He built an expert system,
which decided semi-automatically on which grasp should be utilized, par-
ticularly in manufacturing task. The system worked well based on machin-
ists feedback, which gave an information about task requirement and object
shape to the system. Cutkosky also gave some concerns about a performance
of analytic approaches, which based on many estimated physical model, out-
side of the controlled-environment laboratory.

When someone wants to grasp a knife from the table, it is obvious to
grasp at the dull side, not at the sharp side. If we use an analytic approach,
this would definitely be one of the constrain we have to consider. With
the same manner, when someone wants to regrasp a knife, they have to
choose a path of the hand which make sure that contact points are not at
the shape part, or a path which results in an object trajectory that would
not hurt anyone. These conditions also have to be considered as constrains
on analytic path planning as well. These are just an simple example, but
imagine when we consider everyday object manipulation task, how many
these constraints would increase? This assumption is actually correspond to
one literature by Kudoh [6], which claimed that in manipulation in everyday
life, it is important to imitate the type of grasp as well as to imitate the
motion of a manipulated object.

1.3.1 System’s Breakdown

Our system model may look very similar to Kang’s system [13][5], but taking
into consideration a dexterous manipulation has changed some characteristics
of the system. As a result, some components already proposed in the previous
system may not be able to use here. In this section, we list all necessary
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components we need, and give more informations to the components, which
need to be revised.

Figure 1.5: Object manipulation system’s breakdown

Figure 1.5 shows all necessary components in our system. It starts from
observing human demonstration using data acquisition components. This
can range from a motion capture system of a hand, to a real-time stereo
camera system that can reconstruct a hand model. At a very least, the
observed data should consist of a hand posture, a hand location, and an
object location. If an object considered is a rigid body object, its geometry
may be observed prior to the demonstration.

Once a data is captured, the system must be able to extract sequence
of predefined task primitives out of the stream of data. The present of task
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primitives can be referred from their basic skill-parameters, which are their
initial grasp, final grasp, and the grasped object. Therefore, to recover a
sequence of task primitives, or in other words a task model , we need to
segment a stream of captured data and recognize type of grasps together
with an object, or, in short, dynamic grasp and object recognition system.

Bernardin [15] proposed a method to recognize continuous human-grasp
sequences from human demonstration. With a use of hand shape and contact
point information which acquired from data glove and tactile sensors, he
managed to segment and classify human grasp into pre-defined grasps using
hidden Markov model recognizer. Although in our system, pre-defined grasps
are defined based on each particular objects or each particular category of
objects, once the grasping object is recognized, the method can be applied
easily.

After grasps and object are recognized, we can build task model based on
that information. To reproduce whole object manipulation in target robot
system, further skill parameters for each task primitives is necessary. For
instance, a grasp planning is required to reproduce grasping and releasing
task primitives, object trajectories is needed if a homogeneous manipulation
is about to implement. In our study, we proposed a method of dexterous ma-
nipulation planning from programming by demonstration, which are required
skill parameters when reproducing dexterous manipulation task primitives.

In our dexterous manipulation planning, we try to find intermediate grasp
states that connect between the initial grasp and the final grasp of the dex-
terous manipulation, shown in figure 1.4. We do this by first segmenting a
sequence of human demonstration into smaller subsequences using a segmen-
tation criteria, which will be mentioned later on in subsection 1.3.2. Then,
we will define our intermediate grasp states as the points which connect
between these subsequences. These intermediate grasp states are very im-
portant information. They would be used as a clue for further extraction
of the necessary skill parameters for the reproduction in the target system.
The detail information of how they would be utilized are out of the scope of
this thesis, and it would be mention later in Chapter 5 as a future work.

Since these intermediate grasp states can be considered as one type of
the grasps because an object is still being hold in the hand, one might argue
that this planning has no different from a continuous grasp recognition system
which we used earlier to segment a stream of data to create a task model.
However, this is not true, and we would like to emphasize a difference here.

As for a continuous grasp recognition, it first try to recognize pre-defined
grasps and then segment the data into subsequences. On the other hand,
our dexterous manipulation planning segment a sequence of data, in order
to find those intermediate grasp states. The difference that we would like
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to mention, is not an order on which is done first between recognition or
segmentation, but it is something that these two discovered. A continuous
grasp recognition are build to discover type of grasps which are predefined.
On the other hand, our dexterous manipulation planning are build to discover
intermediate grasp states. Although these are also some types of grasps, they
are not predefined grasps.

Number of Transitions and System Completion

In our system, we define a finite number of grasps that can be employed
by a hand to grasp a particular object or a particular category of similar
objects. For example, for object A or a category of objects similar to object
A, only n type of grasps can be employed at the hand; Grp A1, Grp A2,
Grp A3, . . . , Grp An. Theoretically, a total number of transition between
these grasps and the empty grasp is n+1P2 (indirect grasp). It seem that
this number is too much when you want to teach the robot to dexterously
manipulate among them until the system is completed. However, this is not
true because in normal everyday life, some transitions are never occurred.
Therefore, to teach a robot until it can do all dexterous manipulation for a
particular object or a particular category of similar objects, we only need to
teach all necessary transitions between all grasps. One of possible example
is as shown figure 1.6, when we assume 8 types of grasps for Object A.

Figure 1.6: One possible example of grasp transitions graph for Object A
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1.3.2 Segmentation’s Criteria

Segmentation mentioned in the section is about a segmentation of the se-
quence of hand postures demonstrating a dexterous manipulation. The
segmentation is conducted in order to extract or detect intermediate grasp
states. An ideal criteria for this segmentation would be a detection of the
change of contact relation between a grasping hand and the object. If the
change and the position of all contact points can be recovered, we can then
represent a planning of dexterous manipulation easily with these informa-
tion. However, there are a few limitations on current technologies of a tactile
sensors, which don’t allow us to measure these information. One of the major
limitation would be a size of each sensors, which leads to a discrete prop-
erty of overall tactile sensor system. This is very important factor because
we do not know exactly how dense the tactile sensors should be, in order to
recognize a change of contact relation for grasping a particular object. More-
over, the more dense the system of tactile sensors are, the more sensitive and
complicate of the recognition system would turn out to be. As a result, in
our system we propose a method to detect the change of contact relation by
considering a movement of finger of the manipulative hand.

Figure 1.7: Transition of contact relation in assembly task; Takamatsu [1]

Takamatsu [1] has proposed a technique to recognize an assembly task
from observation. In his work, he models his system based on contact rela-
tion of the objects. Although there are unlimited number of possible contact
relations in an assembly task as you can imagine, he manages to categorize
both a characteristic of contact relations and the transitions among them in
to a limited number. What we are interesting in their work is the transi-
tions among their category of contact relations. Although there are quite
a few number of types of the transition, they are all based on two main
characteristic: transition and rotation of the object as shown in figure 1.7.

In our study, if we look through the sequence of hand postures during
dexterous manipulation, we can notice that at the moment where a major
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change or major transition of contact relation initially occurs, all joint angles
of the grasping hand are also changing the way how they are moving together.
In other word, we are saying that when all joint angles of the hand are moving
coordinately in some pattern and suddenly change the pattern, it is a signal
that the hand is about to change its contact relation with the object.

Figure 1.8: Criteria for segmenting a stream of hand postures demonstrating
a dexterous manipulation

In our system, we segment the stream of dexterous manipulation based on
the assumption given above. That is, we try to detect the points where the
change of the coordinative movement of the hand occurs, and segment the
stream at those points. The segmented point then will become our interme-
diate grasp states, which will later be used as the points where their contact
relations considered to be important for dexterous manipulation planning.

A highly coordinated manner of joint angles of the hand during grasps has
been validated in many previous studies [16][17]. At this point, it may look
unclear what does it mean by saying that there is the coordinative movement
of the joint angles of the hand, and also how to detect the change of them. As
for a introductory of our technique, brief procedures are given below. More
detail information could be found in chapter 3.

First, a dimension of joint angles of hand posture in the captured sequence
will be reduced to three dimension using principle component analysis. The
coordinate movement of the projected joint angles can be observed by an
approximately linear relation in the new 3D joint space. Then, a curvature
property will be used to detect the change of coordinative movement of a
hand. The points where the change of coordinative movement occur are our
intermediate grasp states.
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1.4 Thesis Organization

In chapter 2 we introduce related works of the research. Firstly, we refer to a
few researches to describe the characteristic of human hand. Then we move
on to describe method currently used to extract intermediate grasp states of
an dexterous manipulation.

In chapter 3, a detail definition of our system is given. Then our proposed
method for intermediate grasp states extraction is explained. In chapter 4,
three experiments have conducted to prove the efficiency of the proposed
method. Another three approaches are also briefly introduced and conducted
using the same data sets, in order to compare and evaluate the method.

Finally, in chapter 5 a summary of the thesis is given together with some
ideas to improve and extend this research in the future.



CHAPTER 2

Related Works

In chapter 1, we have described various characteristics of our system, which
we use for teaching a object manipulation task to a robot. There are many
components in the system, which have to be implemented. However, as
described earlier, we only consider a dexterous manipulation planning com-
ponent, whose turn out to be an extraction of intermediate grasp states from
stream of human demonstration.

In this chapter, a few previous studies on a characteristic of the hand pos-
ture during grasping are first reviewed. This should serve as a introduction
and at the same time, give more detail information about human’s hand.
Then, previous studies about intermediate grasp states recognition are re-
viewed, based on two approaches: hand postures based approach and tactile
sensors based approach.

2.1 Characteristic of Prehensile Movements

Grasp, or sometimes referred as prehensile movements, is defined as hand
postures in which an object is seized and held within the hand. Many at-
tempted has tried to explain and categorize these hand postures. However,
there is not one that has been perfected. That is, there is always an exception
for such explanations. Therefore, a few examples are given and reviews here,
in order to give an overview of what has happened in this area of research.
Some attempts has also considered a relation between a type of grasp and a
manipulated object. We will try to convey them here as well.

13
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Napier, J. R. [2]

This study characterized human prehensile movements into two categories:
power grasps and precision grasps. Power grasp is a grasp which the object
is hold inside a palm and opposition fingers, which exert a pressure it. It
is utilized when stability and security a grasped object is required. On the
other hand, if the object is held with the tips of the fingers and thumbs,
where sensitivity and dexterity are dominated, it would referred as precision
grasp. However, the study also stated that the two concepts are not mutually
exclusive in some prehensile activities.

Figure 2.1: Power grasp (l) and Precision grasp (r); Napier[2]

Factors which influence the postures of the hand are also proposed in this
study. It suggested that certain type of physical factors such as the weight,
the texture, the temperature of the object may influence the type of grasp
employed. However, in normal circumstance where any type of grasps can
be employed, which postures would be adopted will depends solely upon the
purpose to which the object to be hold for. In other words, intended activity
has great influence on which type of grasps would be employed.

Kamakura et al. [8]

This study classified static prehension of hands into 14 patterns of prehen-
sion under four categories (Please refer to original work for pictures). The
classification is based on position of fingers and contact area at the fingers.
The underlying concept is that common patterns exist in finger use, so grasps
should be able to classified regardless of the activities or objects.

As for a choice of grasp, the study believed that most of the time human
would choose a type of grasp based on the specific group of objects they
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Category Class Notation

Power Grips Power Grip-Standard Type PoS
Power Grip-Hook Type PoH

Power Grip-Index Extension Type PoI
Power Grip-Extension Type PoE

Power Grip-Distal Type PoD
Mid-Power- Lateral Grip Lat
Precision Grips Tripod Grip-Standard Type Tpd

Tripod Grip-Variation I TVI
Tripod Grip-Variation II TVII

Precision Grips Parallel Mild Flexion Grip PMF
Circular Mild Flexion Grip CMF

Tip Grip Tip
Parallel Extension Grip PE

Thumbless Grips Adduction Grip Add

Table 2.1: Kamakura’s Grasp Taxonomy [8]

about to hold. This suggest that for specific type of objects, human have
particular type of grasp for it.

Cutkosky, M. R. [3]

This study focused on how to select a suitable grasp for robot multi-fingered
hand in manufacturing tasks. Cutkosky believed that by given an initial
information about the task requirements and object shape, a question about
choosing a good grasp might able to be resolved. An expert system had
been constructed based on the grasp taxonomy. While having a feedback
information from machinists, the system will travel along the tree of the
taxonomy and made a decision for a grasp.

After some revisions of the system, the study suggested that a prediction
on how people would grasp parts and tools in particular environment can
be done. However, the system itself is far from complete, and may never
complete. The study also suggested that the taxonomy has been useful, but
it has limitations. One of which is that, it is incomplete. An effective way
to extend it, is to considered a concept of virtual finger [16]

The study also discussed about the problem of choosing a grasp based on
analytic approaches. Cutkosky suggested that when an experiment have to
been done in uncontrolled environment, the approach may have a problem
of measure and modeling some properties of a grasp.
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Figure 2.2: Grasp taxonomy used by Cutkosky’s expert system[3].

Arbib, M. A. and Iberall, T. et al. [16][18]

Arbib et al.[16] introduces a concept of virtual finger. Virtual finger is an
abstract representation, which combine physical fingers or hand surfaces into
a unit. One unit of virtual finger represents those individual fingers or hand
surfaces that work together as a unit and apply same direction of force or
torque at the object. This virtual finger insists a belief that there is high
correlation of among fingers during human’s static prehensile movement.

Iberall et al.[18] proposed a concept of opposition space. Opposition force
refer to forces that oppose to each other at the object during human’s pre-
hensile movement. These forces can be created by either virtual finger or the
palm. Iberall suggests that there are three type of opposition forces, which
are pad opposition, palm opposition, and side opposition. These oppositions
are primitives in the opposition space. Human’s prehensile postures will be
defined in opposition space as a combination of these opposition primitives.

Santello et al. [17]

In this study, human hand postures during grasp were analysed statically.
Each hand postures is represented with 15 joint angles measured by data
glove. Subjects were asked to shape their hand as they are grasping an object.
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Figure 2.3: Virtual finger and three basic oppositions (figure [4])

Five subject, and 57 test objects were used. Three techniques in static were
used for analysing the data; discriminant analysis regression analysis, and
principal components analysis (PCA).

PCA indicated that 80 percents of variances of the data could be covered
by the first two or three principle components. In other words, 15 dimensions
of joint angle which originally represents hand postures, can reasonably be
reduced to two-three dimensions, with a small amount of loss data.

Result of this study revealed that for static hand postures grasping various
objects, all joint angles are not controlled independently, but they are rather
have high correlation among them. In the same manner, it might could be
believed that static prehensile movement of human are not classified into
discrete representation as other grasp taxonomy, but rather a continuous
representation in this principle analysis space.

Figure 2.4: Hand postured in reduced joint angle space (2D)
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2.2 Intermediate Grasp State Extraction

In this section, we review some previous researches which have been proposed
to segment a demonstration stream of dexterous manipulation. Although
there are so many researches about segmenting and recognizing grasp from
human demonstration, but only a few are about segmenting a dexterous ma-
nipulation. The segmentation approach can be divided into two groups; hand
postures based approach, and tactile based approach. We will review them
separately. Note the some techniques mention here are also from researched
proposed to solve grasp segmentation problem, but the techniques might be
of used to understand the less of the techniques.

2.2.1 Hand Posture Based Approach

Kang, S.B. and Ikeuchi, K. [5]

Kang [5] proposed a technique to segment human hand motion in object
manipulation. In the study, an object manipulation are composed of many
subtasks, where each subtasks is combination of pre-grasp phase, grasp phase,
manipulation phase, place object phase, and depart phase sequentially.

(a) Features used in segmentation (b) Example of experimental data

Figure 2.5: Temporal segmentation for object manipulation; Kang [5]

To segment each subtasks, an analysis of the three main features are
used, which are the fingertip polygon area, the speed of hand movement, and
volume sweep rate. Fingertip polygon area can be easily calculated when the
position of fingertips (except thumb) are known. A speed of hand movement
is captured using motion capture system, and volume sweep rate is a product
of fingertip polygon area and volume sweep rate.
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Zacksenhouse, M. and Moestl, T. [19]

Zacksenhouse [19] proposed a technique to segment dexterous manipulation
movements. In the study, human dexterous manipulation movements were
classified as either simultaneous or sequential[7]. Simultaneous movements
are movements where all participating joints move in the same pattern si-
multaneously. Sequential movements are movements which is a combination
of multiple simultaneous movements.

Two most active joints defines phase-plane for each movements. In the
phase-plane, it is believed that the trajectories of simultaneous movements
would be approximately linear. Their segmentation technique of sequential
movements is based on this feature.

(a) Sequential Movements (b) Complex Manipulation

Figure 2.6: Experimental results of Zacksenhouse’s segmentation technique

The experimental result shows that the technique work well in sequen-
tial movements, which are a multiple of same simultaneous movements. An
example of such movements are screw & unscrew, close a cap etc. However,
when it came to more complex manipulation, which in this experimental is
cap pinching movement followed with cap closing movement, the technique
cannot segment the movement effectively. This is because during complex
manipulation, many more joints may participate in the movement, and only
single phase-plane may not enough to analyse this. Zacksenhouse had sug-
gested that multiple phase-plane may be of used in this case.

2.2.2 Tactile Sensor Based Approach

Kudoh et al.[6]

In this research, a whole framework for learning everyday object manipu-
lation from observation is proposed. Dexterous manipulation phase is also
considered. In the study, possible dexterous manipulation between 14 Ka-
makura grasp taxonomy [8] are segmented and planned.
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Data glove with 13 tactile sensors is designed in order to record human
demonstration. A segmentation technique is performed based on the belief
that only one contact point changes in between one step of transition of
dexterous manipulation. Although the results are mapped and reproduced
in target robot, a segmentation process is still lack of automation. The
study has shown some result captured from 13 tactile sensors, but it has not
proposed a effective method to measure change whether the particular sensor
is in contact with object or not.

(a) 13 tactile sensors configuration

(b) Segmentation and reproduction result from PMF grasp to Tpd grasp

Figure 2.7: Data acquisition and experimental result; Kudoh[6]



CHAPTER 3

Intermediate Grasp States Extraction

In this chapter, we explain about the method we use to segment a stream of
dexterous manipulation. The method is explained in details together with
the reason why it should be effective. Principle component analysis and
curvature are two fundamental techniques that have been utilized in the
proposed method.

Before we can get to method’s details, the formation of the system is
given below. It specified the overall system, including our grasp taxonomy,
data acquisition system etc.

3.1 System Formation

Object manipulation tasks we are interested in this study are those tasks in a
human painting activity. During painting, a lot of objects and tools are used.
This leads to a result that there are a lot of object manipulation occurred,
e.g. grasping, releasing. Moreover, since for one particular object there are
many types of grasp employed depending on the purpose of painter, a lot of
transitions between those grasps (or more formally, dexterous manipulation)
are also taking place during the painting process.

To be more specific, in this study we focus on dexterous manipulation of
the paint brush or some other tools with similar usability e.g. pen, pencil.
Object’s geometry, e.g. size or weight, seems to effect how human would
grasp and manipulate the object [2]. However, these factors will not be
taking into consideration. In this study, we consider only the paint brush
which size and weight are reasonably relative to demonstrator’s hand, and
would not effect demonstrator’s ordinary manipulation movement.

21
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Figure 3.1: Object manipulation during painting activity.

One interesting issue is that paint brush used in demonstration and in
reproduction with robot hand are also different in geometry. This may seem
peculiar, but there is also a supporting reason. In planning, the output we are
expecting is a kinematics property of a hand, not a dynamic one. Moreover,
in real robotic hand, we also assume that the hand should be designed in
order to cope with average forces and pressures in its environment.

In addition, according to Napier [2], grasps are also affected by other
physical factors like the texture, the temperature, wetness of the object etc.
It is true that in this study we would like to plan a dexterous manipulation
planning to imitate human movement and intention, but as for preliminary
step, those extreme cases are considered.

3.1.1 Defining Grasp Taxonomy

Grasp taxonomy defined in this study does not follow any other previous
studies. Since we are interesting in grasps and dexterous manipulation of a
paint brush in human painting activities, we went to observe and ask profes-
sional artists directly. There are six types of grasp in our taxonomy. They
are only grasps which used with paint brush or some similar tools. This is
done based on previous study [8], which suggests that human do have a spe-
cific type of a specific category of hand posture to grasp some specific tools
or objects. Our taxonomy is divided and shown in figure 3.2-3.4 based on
their purpose of use.
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Drawing Grasps

There are mainly two types of grasp for drawing. The main different is that
type 1, shown in figure 3.2 on the left, uses the movement wrist and fingers
to draw, but on the other hand type 2 uses the movement of whole arm in
order to draw.

(a) Drawing grasp type 1; D1 (b) Drawing grasp type 2; D2

Figure 3.2: Grasp used for drawing and painting

Measuring Grasps

In measuring, most artists use two types of grasp. Type 1, shown on the left
of figure 3.3, are hold tightly by three fingers. This is because a stability is
needed. On the contrary, only two fingers are used to hold type 2 in order to
enable flexibility, which sometimes needed when the artist wants to use this
type of grasp to draft a slightly thin line.

(a) Measuring grasp type 1; M1 (b) Measuring grasp type 2; M2

Figure 3.3: Grasps used for measuring

Other Grasps

Apart from drawing and measuring grasps, artists also have another two
types of grasp for a paint brush; holding and resting. The objective of these
two grasps are very similar. While holding grasp is employed by either hands
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in order to enable another hand or finger of holding hand to be available for
other tasks, the purpose of resting grasp is, just like its name implied, only
for resting a hand.

(a) Holding grasp; H1 (b) Resting grasp; R1

Figure 3.4: Grasp used for other purposes

3.1.2 Data Acquisition System

In our system, a combination of two system are used to capture human
demonstration.

• CyberGlove: A 18-sensor data glove provides information about hand
posture. 18 joint angles of the hand is measured and fed back in real
time. We can represent this using 18 dimensions vector.

• Polhemus FASTRAK : An industry standard motion tracking system
offers six degree of freedom; three for position and three for orientation,
in real-time. In the system, three receiver sensors are used to provide
information about hand and object location.

A combination of the two system provides us a data up to the resolution
of 110 frames per second in real-time. A system setup is shown in figure 3.5

3.1.3 Task Primitives Segmentation & Recognition

There are many object manipulation (grasping, manipulating, releasing) oc-
curred during painting activities. Many kind of objects were used, for in-
stance a paint brush or a pencil, a ruler, a rubber etc. In section 1.3.1, we
have already explained that in order to build a task model, pre-defined task
primitives has to be segmented and recognized out of a stream of human
demonstration.

Since our main interest is not task primitive segmentation or recognition,
we decide to do this manually. In other words, in actual system we demon-
strate and record each transitions between each pair of grasps separately.
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Figure 3.5: System setup of a data acquisition system

By doing all of these manually, we have raised another important problem.
We could not know which translation are necessary in real life, which would
prohibit us from creating a graph of grasp transition as shown in figure 1.6.
However, this is also out of the scope of this thesis.

Although we have not constructed a segmentation system, we have built
a static grasp recognition. This is done with a purpose to identify type of
grasps, together with the type of transitions.

Static Grasp Recognition

The grasp recognition system is constructed. Six types of grasp in figure
3.2-3.3 are classified using support vector machine. Each hand postures are
represented with 18 dimension vector, where each of which is corresponded
to each joint angles of the hand. Five data sets are captured. Each of which
contains around 290 sample data. Each one are used as training data and
testing data exchangeable, and experimental results are shown in figure 3.6.

Note that a recognition is also tested on three dimensions data of hand
postures as well. They are a reduced version of original 18 dimensions of
joint angles using principle component analysis. For more detail about how
to reduce the dimension of hand postures, please refer to section 3.2.1.

3.2 The Proposed Method

In this section, we explain about how we extract intermediate grasp states
from a sequence of hand postures of a dexterous manipulation. Before going
into more details about the techniques proposed, we would like to start by
defining the problem more precisely.

In each frames of data captured from data acquisition system, it composes
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Figure 3.6: Experimental results of static grasp recognition using SVM

of two part; one from data glove, and the other from motion tracking system.
In this section, we only consider the data from data glove, which represents
joint angles of the hand posture. Our data glove can measure up to 18 joint
angles of the hand. Therefore, any hand posture can be represented as

p =
[

θ1 θ2 θ3 . . . θ18

]

∈ R
18 (3.1)

,which is a 18 dimensional vector in 18 dimensional joint space. Then, a
stream of dexterous manipulation demonstration can be written as a sequence
of hand postures as

S = p1,p2,p3, . . . ,pT (3.2)

where pt; t ∈ 1, . . . , T refers to a hand posture at time t and T is the number
of frames in the sequence.

Therefore, we can now define our intermediate grasp states extraction as
a problem of finding hand postures pi1, . . . ,piN ; i1, . . . , iN ∈ 1, . . . , T that
divide sequence S into subsequences, where each subsequences represents a
coordinative movement of the hand.

After the problem is clearly describe, we can now start off with the pro-
posed method. Since there are many procedures in our proposed method,
we first give the overview of it below, and the detail explanation of each
procedures in the following subsection.

1. Reducing the 18 dimensional vector of the hand posture to three di-
mensional vector using principle component analysis (PCA).

(a) Forming new 3D coordinate space using the first three principle
components (eigenvectors) as basis.
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(b) Projecting a sequence of 18 dimensional vector of hand postures
into newly created 3D coordinate space, which will result in re-
ducing the dimension of original data to three dimension. This
means that the input sequence of 18 dimensional vector of hand
postures has turned to be a sequence of three dimensional vector
of data.

2. Calculate curvature of a sequence of three dimensional vector of data,
and detect intermediate grasp states as the local maximum in curvature-
time graph. This is done based on our assumption that if we project a
sequence of hand posture which represents a coordinative movement of
the hand into a reduced three dimensional joint space creating by PCA,
it would result in an approximately linear trajectory of a sequence of
projected hand postures.

3.2.1 Dimensional Reduction using PCA

Principle component analysis has widely used as a technique to reduce a
dimension of highly dimensional data. It has just been first introduced and
applied to highly dimensional data of joint angles of hand posture in the last
decade [17]. Recently the technique has been applied in the research field of
grasp planning and referred as eigengrasp [20]. In this subsection, we first
revise a technique called eigengrasp, and then explain how we apply this
technique as part of our proposed method.

For all d joint angle hand postures pi =
[

θ1 . . . θd

]

and N is number
of hand postures, we calculate their principle components [21] by

1. Calculate average (mean) hand posture p̄ =
[

θ̄1 . . . θ̄d

]

, and subtract
each hand postures by the mean; p − p̄

2. Calculate the covariance matrix Cd∗d, when consider each joint angles
as one dimension. As the name implied, each elements of the matrix are
represented with the covariance of two joint angles, Cij = cov(θi, θj)

3. Calculate eigenvectors and eigenvalues of the covariance matrix, then
rearrange the order of eigenvectors based on their corresponding eigen-
values from high to low. We refer to them as e1, . . . , ed and λ1, . . . , λd,
where (ei, λi) pair is a d-dimensional eigenvector and its corresponding
scalar eigenvalue. This is where the name eigengrasp comes from, when
eigengrasps are referred to these eigenvectors which are the principle
components of input hand postures.
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The technique to calculate eigengrasp is described above. There might be
some minor difference on what kind of input hand postures are used, which
sometimes effects the fraction of variance of input hand postures accounted
by each eigengrasps. A fraction of variance accounted by eigengrasp ei is
given by

λ̃i = λi/
d

∑

k=1

λk (3.3)

, and accordingly a variance accounted by the first b eigengrasp is given as
∑b

k=1
λ̃k.

Santello [17] used a huge amount of static hand postures, when subjects
were asked to shape their hands as they were grasping various kind of objects.
His result shows that the first two eigengrasps could account for more than
80% of the variance. On the other hand, Dejmal [22] used all hand postures
in multiple cycles of a simultaneous hand movement as an input to create
eigengrasp. Her result suggests that the first eigengrasp accounts around
91.7 ± 7.0% of the variance.

In our proposed method, we use all hand postures in a stream of dexter-
ous manipulation demonstration, p1, . . . ,pT . This is different from Dejmal
[22] that in our stream of dexterous manipulation, it is not only the multiple
cycles of one simultaneous hand movement, but it may compose of many
kind of hand movement included simultaneous hand movement. From our
experiment, which three different kind of dexterous manipulation demonstra-
tions are considered, it had shown that on average the first three eigengrasps
account at least 90% of the variance of original hand posture in the input
stream.

As for the reason given above, we decide to reduce the dimension of our
input hand postures to three dimensions. This can be done by

1. Forming a new coordinate space using the first three eigengrasps as
basis. For the sake of simplicity, we will refer to this as 3D-eigengrasp
space.

2. Projecting original mean-adjusted hand postures, pi−p̄, to 3D-eigengrasp
space. This results in the representation of all original hand postures
in this subspace, which becomes

pi =
3

∑

k=1

yi,kek (3.4)
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, where yi,k is an amplitudes of the hand posture pi along eigengrasp
ek. In other words, we can express each dimensional-reduced hand
postures as three dimensional vector of the amplitudes,

yi =
[

yi,1 yi,2 yi,3

]

∈ R
3 (3.5)
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Figure 3.7: Example of trajectory of hand postures in 3D-eigengrasp space

An example of trajectory of sequence of projected hand postures is shown
in figure 3.7. Axes of the graph are e1, e2, e3 respectively.

3.2.2 Extract Grasp States using Curvature

Consider carefully, it might be able to notice that in figure 3.7 the trajectory
is composed of many linear portions connecting together. They may not be
a straight line, but we can approximate them roughly as linear relation. This
assumption supports and gives up some hint on how to extract intermediate
grasp states.

As explained in section 1.3.2, our intermediate grasp states are the mo-
ments in the stream of dexterous manipulation, where the change of the
coordinative movement of the hand and also the change of contact relation
between the hand and object initially occur. Note that, by saying coordina-
tive movements of the hand, we refer to a period that all joint angles of the
hand are moving together in the similar pattern at the whole period of time.

If we look through experimental result in Dejmal [22] carefully, we may
notice that their simultaneous hand movements are also some kind of coor-
dinative movements of the hand. Furthermore, each of those simultaneous
hand movements can also be considered as a line in 3D space, since 90%
of hand postures in the movement can be accounted by its first eigengrasp.
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Although in our system we don’t consider only those simultaneous hand
movements [7], we may generalize from Dejmal’s experimental result that
each of coordinative movements of the hand are also behaved as a line or
some kind of linear relation in 3D-eigengrasp space. Therefore, in order to
extract intermediate grasp states of the dexterous manipulation, we have to
find the points of trajectory of the dexterous manipulation in 3D-eigengrasp
space where two continuously linear lines intersect.

Although it may seem similar to straight lines connecting together in
figure 3.7 by human judgement, it is very difficult for computer to interpret
where they intersect. Therefore, instead of trying to map those linear-liked
sub-trajectories to lines and find there intersects, we decide to consider a
curvature of the trajectory. A curvature is the amount which imply how much
the trajectory or curve is deviated from being straight. In our system, we
would like to find the points where lines are intersect, or in other word, where
the corners occur because the trajectory or curve is changing its direction.
This can also be interpreted as points where their curvature are high. To
sum up, in the context of curvature, our intermediate grasp states are those
points in the trajectory where their curvature is higher then some given
threshold, and it would be considered as a local maximum if we plot the
graph of curvature of every points of the trajectory.

For parametric curve r(t) = (y1(t), y2(t), y3(t)) ∈ R
3, curvature k(t) is

defined as

k =
d

ds
T =

dT/dt

ds/dt
=

Ṫ

|ṙ|
(3.6)

, where T = ṙ/|ṙ| is unit tangent vector. Curvature is the rate of change of
T with respect to arc length. It tells us how fast the unit tangent vector is
changing and in which direction. In our system, we are only interested in
how fast the unit tangent vector is turning, which is the magnitude of the
curvature given above. Moreover, our data is discrete and the sampling rates
between each pair of consecutive hand postures are also equals, so we can
simplify the calculation of curvature.

Given three time-consecutive projected hand postures as points in 3D-
eigengrasp space yt−1, yt, and yt+1: a magnitude of the curvature at time t
is defined as the size of an outer angle in degree between vector −−−−→yt+1yt and
vector −−−−→ytyt−1. The geometric interpretation of this is shown in figure 3.8,
and the mathematic representation is written as

|k(t)| = arccos
−−−−→yt+1yt ·

−−−−→ytyt−1

|−−−−→yt+1yt||
−−−−→ytyt−1|

(3.7)

. By calculating the magnitude of curvature as shown in figure 3.8, we can
easily apply the concept of scale space to handle noisy data as well. This
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Figure 3.8: Simplified version of how to calculate curvature

can be done by considering points yt−s, yt, and yt+s instead when calculate
|k(t)|, and changing scale s until achieving a reasonable result.

Figure 3.9: Curvature of trajectory in figure 3.7, in 10 different scales

An example of the curvature calculation of trajectory in figure 3.7 is given
in figure 3.9. After some preprocessing with the trajectory, a curvature is
calculated for s = 1, . . . , 10.





CHAPTER 4

Experiment and Evaluation

An experiment is done on three different streams of dexterous manipulation.
Another three different methods which approaches similar problem are also
briefly introduced. Results from all methods (experimental setup), including
ours, are compared and evaluated. Then, some discussions is given at the
end of the chapter.

4.1 Experimental Data and Setups

Three different movement of dexterous manipulation are considered as our
experimental data. Each of them is classified as a movement that occurs in
human usual manipulative movement[7]. However, how they are conducted
may be different in person.

(a) Dynamic tripod (b) Rock

Figure 4.1: Sketch of dynamic tripod and rock movements; Elliott[7]

33



34 ⊲ 4.1. Experimental Data and Setups

1. Dynamic tripod : In this experiment, a drawing grasp type 1 is employed
at the pen, and the hand is moved as it is writing. Each data sets
composes of this movement eight times back and forth.

2. Rock : In this experiment, both hands grasp a Rubic cube, and the right
turns it counter clockwise five times in a row. Only the movement of
the right hand is considered and captured.

3. Interdigital step: In this experiment, at first a drawing grasp type 1 is
employed at the pen. Then the hand try to change type of grasp to a
drawing grasp type 2. A Sketch of this movement is shown in figure
4.2, but in the real situation the step in between is a little different.

Note that in experiment 1 and 2, they do not follow the system formation
given in section 3.1. In experiment 1, this type of movement will be consid-
ered only as a homogeneous manipulation, not a dexterous manipulation,
because type of grasp is not changed at all (according to our painting grasp
taxonomy). In experiment 2, both the object and type of grasp employed are
both different and not defined in section 3.1. However, two of these exper-
iment are conducted in order to compare our result with the other method
which claim to be able to achieve them. Moreover, in experiment 2, we in-
tentionally choose different object, because we also want to show that our
proposed method can also be utilized with various objects.

Figure 4.2: Sketch of interdigital step movement; Elliott[7]

To deal with inconsistency, we capture around 5-10 data sets of each
movements. All are captured with the highest capacity of the acquisition
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system; 110 frames per second. Video is used for visualization of the data.
However, the acquisition system and the video are not 100 percents synchro-
nized, rather they are matched manually.

We conduct each experiments with the experimental setup given in sub-
section 3.2: reducing dimension of hand postures using PCA, and extracting
intermediate grasp states using curvature. However, we add some variations
here in the process before projecting hand postures to 3D-eigengrasp space,
which we describe them below.

Exp. Setup 1
This experimental setup do not vary from the proposed method ex-
plained in section 3.2. It is all same. 3D-eigengrasp space is created
using by taking all eighteen joint angles as input. Then, all input data
are projected into the eigengrasp space, and the intermediate grasp
states are extracted using curvature.

Exp. Setup 2
This experimental setup has a small variation from Exp. Setup 1. The
different is that 3D-eigengrasp space is created using all data sets in
the experiment. In other words, we project all hand postures in one
movement, not it own principle component space, but to the principle
component space of the movements of the similar kind. We know that
this might seem awkward, because when we want to adjust the mean of
our input trajectory, we may get confuse which one to use between the
average of the input trajectory or the average of the trajectories that
used to create 3D-eigengrasp space. However, we try this variation in
order to see whether there would be any different from the variation,
because using only one input data sets seem a little risky.

Exp. Setup 3
This experimental setup has the most variation from the proposed
method explained in 3.2. All processes that have to be done are same,
but the input are different. Instead of consider only eighteen joint an-
gles as each frames of the input, we also include speed of each joint
angles at that particular time.Therefore, each frames of input data be-
comes p =

[

θ1 . . . θ18 θ̇1 . . . ˙θ18

]

∈ R
36

Note that value of speed of the joint angles are very small, compared
to the value of joint angles. Therefore, in the real situation when we
calculate PCA of all the data, we also magnify the speed by some scales.
Otherwise, the 3D-eigengrasp space will not have any different from the
one in Exp. Setup 3.
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The reason why we set up this experiment like this is that, we add one
assumption to the characteristic of intermediate grasp states. That is,
intermediate grasp states are those points where most joint angles and
joint speeds do not changes their value, or in other words, a brief stop
of a hand. This is the main reason why we add speed of the joint angles
to our input.

Despite the fact that after the reduction of dimension of the combi-
nation of joint angles and joint speeds the meaning of principle com-
ponents and curvature are not clearly understood, we consider local
minimums as intermediate grasp states because they are points in the
trajectory where joint angles and the speed of the joint angles does not
change. (While local minimums are estimated as brief stop of hand ,
local maximums are very difficult to interpret. It could be understood
as points where either joint angles or joint speeds change their value.)

In our experiment, although their are very few researches concentrating
on the same topic, we also try to compare our result with others. Another
variation of our experimental setup is given below, and it is an implementa-
tion that based no an assumption given by Zacksenhouse [19].

Exp. Setup 4
In this experimental setup, we consider two most active joint angles
from eighteen joint angles. Zacksenhouse does not specify exactly how
to do this, so we select them manually based on our observation. Then
the second step is to extract intermediate grasp states. Originally,
zacksenhouse to suggest that when consider a graph using the two most
active joint angles as axis (called phrase-plane), coordinated movements
would generate a trajectory that is piece-wise approximately linear.
Therefore, she segments at points that break the trajectory into sub-
trajectory that are approximately linear. Since her assumption is very
similer to how er extract intermediate grasp states from 3D-eigengrasp
space, we also use curvature to find her segment points in trajectory in
the phase-plane.

4.2 Experimental Results

In each experiments, only one out of all captured streams are used as the
input data. The experimental result of our proposed method (Exp. Setup
1) is first shown in detail. Then, it is compared with the results from other
experiments setup one by one. Finally, a conclusion is given for each experi-
ments.
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4.2.1 Experiment 1 : Dynamic Tripod of the Pen

Figure 4.3: Exp. 1: Snapshot of hand movements in frame 69th-150th
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In this experiment, dynamic tripod movement of the pen is considered. The
subject were asked to perform the movement eight time consecutively. Figure
4.3 shows some portions of the movement.

3D-eigengrasp space is created using PCA on the 18 joint angles trajectory
data. Figure 4.4 shows that more than 90% of variance of original data can
be accounted by the first three eigengrasps.

Figure 4.4: Exp. 1: Accumulative variance accounted by each eigengrasps

The 18 joint angles trajectory is projected into 3D-eigengrasp space. After
some post-processing, likes smoothing, it is plotted and shown in figure 4.5
together with its curvature. Note that red dots in the trajectory are frames
where its curvature are high, as shown in the corresponding dash line in figure
4.5(c).

It could be noticed that in some viewpoints, we can see the linear rela-
tion of sub-trajectory which connecting together as a whole trajectory. The
curvature shown in the graph are calculate from scale s = 1, ..., 10. It can
be noticed that there are a few points marked as noises in the beginning and
the end. The reason is that at those periods, hand was staying still when we
were preparing to capture the data. Therefore, when the hand postures are
plotted into 3D-eigengrasp space, they become too close to each others and
cause some unreasonable results.

Example of some extracted intermediate grasp states are shown in figure
4.6, together with their references both in 3D-eigengrasp space and curvature
graph. Some descriptions of the corresponding movement of those grasp
states are described below.

Frame 74th At this frame, the hand starts to bend toward the palm, causing
the writing end of the pen to move down.

Frame 95th The hand stops moving in the same pattern described in frame
74th, and starts to move in the opposite direction. This means that most
joint angles at the finger tend to move away from the palm, causing
the writing-end of the pen to move up.

Frame123rd The hand stops moving in the same pattern described in frame
95th, and starts to move in the same direction described in frame 74th.
Then, the movement keeps on going like this another seven times.
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Figure 4.5: Exp. 1: Projected trajectory and its curvature
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Comparison

To compare the results among different experimental setups, their curva-
tures are shown in figure 4.8. It can be seen that most experimental setups
give similar results. We analyse and compare each of them separately with
experimental setup 1.

Compare with Exp. Setup 2: In Exp. Setup 2, 3D-eigengrasp space is
created from hand postures captured in all data sets. The results have
not shown much different in the 3D projected trajectory, curvature,
and their extracted intermediate grasp states.
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(b) Projected trajectory in Exp. Setup 4

Figure 4.7: Exp. 1: Projected trajectory in other experimental setups

Compare with Exp. Setup 3: In Exp. Setup 3, 36 dimension vector
data are used as an input data. Using PCA, the dimension is reduced
to three dimensions. The dimensional reduced trajectory is shown in
4.7(a). When we consider the curvature of the trajectory, it does not
have much different throughout the trajectory as the range is swung
between 25 to 60 degree. Although the shape of curvature graph is
different from Exp. Setup 1, unsurprisingly there are correspondence
between them. We can notice that its local minimums correspond to
the local maximums of Exp. Setup 1, which both are considered as
intermediate grasp states. When mapping these local minimums back
to the movement stream, they are corresponded to the brief stop of the
hand. Other the other hand, the local maximums in this experiment
are the moments where the same-pattern movements of the hand are
at their highest speed.
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Compare with Exp. Setup 4: In Exp. Setup 4, we choose middle finger
middle point and thumb outer joint as two most active joints, and
consider them as phrase-plane. The trajectory in this phrase-plane is
shown in figure 4.7(b). We can see that the graph have highly linear
relation in their sub-trajectory. After we calculate the curvature and
find the local maximums, they seem to correspond to those points in
Exp. Setup 1.

Conclusion

All experimental setups seem to work well to segment the repetition of dy-
namic tripod movement. Experiment setup 3 may have some problems when
an automatic extraction is required, since the amplitude of the curvature
graph are not very intense, even we have amplify the curvature calculation
with scale s = 10.

We find out that the maximum number of frames per second (110 fps) in
the data acquisition system is preferred, in order to segment the movement
correctly. This might be because the movement seem to be a quick movement,
or in other word the period between each intermediate grasp states seem to
be very short.
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(a) Curvature from Exp. Setup 1

(b) Curvature from Exp. Setup 2

(c) Curvature from Exp. Setup 3 (local minimums)

(d) Curvature from Exp. Setup 4

Figure 4.8: Exp. 1: Comparison of curvatures with all other experimental
setups
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4.2.2 Experiment 2 : Rock the Rubik Cube

Figure 4.9: Exp. 2: Snapshot of hand movements in frame 63rd-144th
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In this experiment rock movement is performed at Rubik cube five times
consecutively. Figure 4.9 shows some portions of the movement.

PCA is used against 18 joint angles trajectory data in order to create
3D-eigengrasp space. The similar result is shown in figure 4.10; more than
90% of variance of original data is accounted by the first three eigengrasps.

Figure 4.10: Exp. 2: Accumulative variance accounted by each eigengrasps

After some data pre-processing likes re-sampling, 18 joint angles trajec-
tory is projected into 3D-eigengrasp space. The smoothed trajectory is shown
in figure 4.11 together with its curvature. The red dots are frames where their
curvature are high and are extracted as intermediate grasp states.

Similar to experiment 1, in some viewpoints the linear relation of sub-
trajectory can be noticed. Curvatures shown in figure 4.11(c) are calculated
from scale s = 1, . . . , 10, and noisy data causing from preparation period are
also segmented.

Total of 10 intermediate grasp states are extracted. Example of them are
shown in figure 4.12, together with their references both in 3D-eigengrasp
space and curvature graph. Some descriptions of the corresponding move-
ment of the grasp states are describes below.

Frame 72nd The hand grasps Rubik cube and starts to turn it counter-
clockwise. During frame 72nd and frame 92nd, all joint angles tend to
move in the same pattern with the purpose to turn the Rubik cube
counterclockwise.

Frame 92nd At this frame, all joint angles stop turning the Rubik cube,
release it, and start changing the contacts as to prepare for next turn.
During frame 92nd and frame 112th, all joint angles move in the same
pattern as to prepare a hand posture for turning a Rubik cube.

Frame112th The hand grasps Rubik cube again and starts to repeat the
action in frame 72nd.

The hand continues this iteration until the Rubik cube is turned five times.



46 ⊲ 4.2. Experimental Results

EigenGrasp 1

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Ei
ge

nG
ra

sp
 2

-0.8
-0.6

-0.4
-0.2

0.0
0.2

0.4

E
ig

e
n
G

ra
sp

 3

-0.2

-0.1

0.0

0.1

0.2

0.3

(a) Projected 3D trajectory view 1

Ei
ge

nG
ra

sp
 1

-0.8
-0.6

-0.4
-0.2

0.0
0.2

0.4

0.6

EigenGrasp 2

-0.8
-0.6

-0.4
-0.2

0.0
0.2

0.4

E
ig

e
n
G

ra
sp

 3

-0.2

-0.1

0.0

0.1

0.2

0.3

(b) Projected 3D trajectory view 2

(c) Curvature of 3D trajectory in many scales

Figure 4.11: Exp. 2: Projected trajectory and its curvature
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47Figure 4.12: Exp. 2: Example of some extracted intermediate grasp states
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Comparison

To compare the results among different experimental setups, their curvature
are shown in figure 4.14. Extracted intermediate graph states from each
experimental setups similar. We analyse and compare each of them with
experimental setup 1.

Compare with Exp. Setup 2: As expected, the results have not shown
much different between using 3D-eigengrasp space created from its own
trajectory and the average of all captured data sets. 3D projected tra-
jectory looks similar, which results in the similarity of their curvatures
and their extracted intermediate grasp states.
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(b) Projected trajectory in Exp. Setup 4

Figure 4.13: Exp. 2: Projected trajectory in other experimental setups

Compare with Exp. Setup 3: In Exp. Setup 3, 36 dimension vector
data are used and reduced to three dimension vector. The dimen-
sional reduced trajectory is shown in figure 4.14(b). Compared to the
one in experiment 1 (dynamic tripod movement), the trajectory shows
more linear relation in its sub-trajectory. In curvature graph, its local
minimums also correspond to those local maximums of Exp. Setup 1.
This is because the intermediate grasp states in this movement are also
a brief stop of the hand.

Please not that in this experimental setup, we magnify the speed of all
joint angles by 1000. This is because the speed is too small that without
doing this, the graph in this experimental setup will be exactly same
as the one from experimental setup 1. We do not have particular rules
for choosing this, but we notice from the mean of all hand postures.
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Compare with Exp. Setup 4: In Exp. Setup 4, we choose thumb rota-
tion and thumb-index abduction as two most active joints. The trajec-
tory in this phrase-plane is shown in figure 4.13(b), which also have
highly linear relation in each sub-trajectory. In average, an extracted
intermediate grasp states are similar to those extracted from Exp.
Setup 1.

Conclusion

Similar to dynamic tripod movement, all experimental setups work well to
segment the repetition of rock movement. A re-sampling of the captured
trajectory is required as to reduce the frame per second of data acquisition
system. Since the movement is done in slow manner, too high data rate may
effect the extracted results as they create more noise in the calculation.
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(a) Curvature from Exp. Setup 1

(b) Curvature from Exp. Setup 2

(c) Curvature from Exp. Setup 3 (local minimums)

(d) Curvature from Exp. Setup 4

Figure 4.14: Exp. 2: Comparison of curvatures with all other experimental
setups
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4.2.3 Experiment 3 : Interdigital Step of the Pen

Figure 4.15: Exp. 3: Snapshot of hand movements in frame 16th-124th
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In this experiment, interdigital step movement of the pen is considered. It
is considered as one of the sequential manipulative movement classified in
Elliott [7], which is more complicate than simultaneous movements. Only
one cycle of this movement is captured and shown in figure 4.15.

Although this trajectory is not a repetition of some movements, there is
a good sign after applied PCA on 18 joint angle trajectory data to create
3D-eigengrasp. Figures 4.16 shows that more than 90% of variance of original
data can be accounted by the first three eigengrasps.

Figure 4.16: Exp. 3: Accumulative variance accounted by each eigengrasps

The 18 joint angles trajectory is down-sampled, and projected into 3D-
eigengrasp space. After some smoothing process, the dimensional reduced
trajectory is plotted as shown in figure 4.18, together with its curvature.
The red dots are extracted intermediate grasp states, where their curvature
are high in curvature graph.

The linear relation in the trajectory may not as clear as prior experiments
which are a repetition of some movement, but it can be seen in some correct
perspectives. The curvature are calculated from scale s = 1 to s = 10,
and shown in figure 4.18(c). The intermediate grasp states are extracted
as local maximums in the curvature calculated using highest scale. Four to
Six of them are extracted, depending on which frames are consider to be the
beginning and the end of the trajectory. Five of hand postures of an extracted
grasp states are shown in figure 4.19, together with their references both in
3D-eigengrasp space and curvature graph. Their descriptions are given below.

Frame 20th This frame is a beginning frame where thumb, index and middle
finger start to stretch out to to create room for manipulating a pen.
During frame 20th and frame 45th are all devoted for this stretching.

Frame 45th After the space is created, thumb tries to move its tip to the
under position where it can push the pen up. During the thumb move-
ment, index and middle are stay still maintaining the pen while ring
and little finger stretch out a little bit.

Frame 70th While all other fingers stay still, thumb starts to use its tip to
push a pen forward. Before it stops, the thumb slides a little bit to the
side of the pen preparing for next movement.
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Frame 95th Thumb starts to use its side to push the pen against middle
finger, which causes the writing end of the pen to move up. At the
same time, index finger and ring finger tend to bend backward to give
space to the pen which is moving.

Frame 135th The pen are stopped when the hand fully employs the pen
with drawing grasp type 2. During frame 135th and frame 164th, while
graping the pen tightly, the wrist rotates to the final position.

Frame 164th This is the frame where the hand stop its movement com-
pletely. It can be noticed that there are some frames afterward, be-
cause a delay occurred before stop capturing. This can be solved easily
be better segmentation system.

Note that during frame 70th and frame 95th, there should be another
intermediate grasp state in frame 86th. This is the frame where the thumb
actually stops pushing a pen forward, and start to slide to the side of the pen.
The proposed method miss to extract this point because of the loss of data
in the smoothing process. Figure 4.17 shows the projected trajectory both
before and after smoothing. We can see in the grey circle in figure 4.17(a) that
there are still some more points which can be extracted as intermediate grasp
states, because they connect between two linear sub-trajectory. However,
these points are disappear after the trajectory is smoothed. This problem
might be resolved by using better smoothing techniques.

(a) Projected trajectory before smoothing (b) Projected trajectory after smoothing

Figure 4.17: Exp. 3: Data loss due to trajectory smoothing



54 ⊲ 4.2. Experimental Results

EigenGrasp 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 Ei
ge

nG
ra

sp
 2

-0.4
-0.2

0.0
0.2

0.4
0.6

E
ig

e
n
G

ra
sp

 3

-0.8

-0.6

-0.4

-0.2

0.0

(a) Projected 3D trajectory view 1

EigenGrasp 1

-1.5

-1.0

-0.5

0.0
0.5

1.0

EigenGra
sp

 2

-0.4

-0.2

0.0

0.2

0.4

0.6

E
ig

e
n
G

ra
sp

 3

-0.8

-0.6

-0.4

-0.2

0.0

(b) Projected 3D trajectory view 2

(c) Curvature of 3D trajectory in many scales

Figure 4.18: Exp. 3: Projected trajectory and its curvature
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Figure 4.19: Exp. 3: All extracted intermediate grasp states
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Comparison

To compare the results among different experimental setups, their curvatures
are shown in figure 4.21. However, in this experiment two experimental setup
4 are conducted using different phrase-planes. Therefore, their results are
shown instead of the one from experimental setup 2 which is omitted. We
analyse and compare each of them separately with experimental setup 1.

Compare with Exp. Setup 2: As expected, the 3D projected trajectory,
curvature ,and the extracted intermediate grasp states are very similar
to those in Exp. Setup 1.

Compare with Exp. Setup 3: In Exp. Setup 3, 36 dimension vector
data are used and reduced to three dimension vector using PCA. Cur-
vature are calculated and shown in figure 4.21(b). It can be seen that
there are some correspondences between the local minimums in Exp.
Setup 3 and the local maximums of Exp. Setup 1, which both are the
extracted grasp states in each Exp. Setups. This is because Exp. Setup
3 extracts all brief stop points in the demonstration stream. However,
since the meaning of dimensional reduced trajectory is not clear, it is
very difficult to compare and explain what is the different between each
local minimums which have different curvature’s values.

Please note that with the same reason given in experimental 2 (rock
the Rubik cube), we also magnify the speed of all joint angles by 1000.
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(a) Projected trajectory in Exp. Setup 4
(Thumb rotation – Thumb index abduction)

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Thumb outer joint

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

In
d
e
x
 f

in
g
e
r 

m
id

d
le

 j
o
in

t

Zacksenhouse Manual

(b) Projected trajectory in Exp. Setup 4
(Thumb outer joint – Index finger middle
joint)

Figure 4.20: Exp. 3: Projected trajectory in experimental setup 4, when
considered two different phrase-planes
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Compare with Exp. Setup 4: In Exp. Setup 4, two different phrase-
plane are considered. In each phrase-plane, two most active joint an-
gles are chosen manually. Both their trajectories are plotted and the
curvatures are calculated.

Figure 4.20(a) and 4.21(c) show the trajectory and curvature when con-
sider thumb rotation and thumb-index abduction as most active joint
angles. We can see that the trajectory in this phrase plane shows very
high linear-relation in their sub-trajectory. The curvature is computed
and the local maximums are extracted as intermediate grasp states.
When we compare the result with the one from Exp. Setup 1, they
seem to be corresponded to each others. The result from this Exp.
Setup 4 even gives better result around frame 95th, where Exp. Setup
1 suffered from data loss due to trajectory smoothing. However, when
we look around frame 135th, Exp. Setup 4 seems to give incorrectly
results as they extract frame 122nd and 155th instead. This result is
understandable, since during these period the joint angles that are ac-
tive are not those of the thumb which considered as phrase-plane, but
they are joint angles of index finger and the wrist.

To verify our assumption above, another phrase-plane is considered. In
the second experiment of Exp. Setup 4, we choose thumb outer joint
and index finger middle joint as the most active joint angles. The
result is shown in figure 4.20(b) and 4.21(d). We can see that this
phrase-plane give correct result at frame 135th where the index finger
is active, but it give incorrect results elsewhere. This is because index
finger actually move at those frames, but it is not the main joint angles
that play an important role in manipulating the pen.

Conclusion

In this experiment, we consider more complex movement. There are some
differences among each experimental setups.

Exp. Setup 1 and Exp. Setup 2 seem to suffer from information loss dur-
ing the smoothing processing of 3D trajectory. While Exp. Setup 3 provides
similar results with Exp. Setup 1, the explanation of both the trajectory
and curvature are still unclear, and a further analysis of the meaning of the
principle components is necessary. In Exp. Setup 4, it shows a reasonable
result when the phrase-plane is chosen correctly. However, more than one
phrase-plane may be necessary in the complex movement when there are
many active joint angles in the manipulation.
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(a) Curvature from Exp. Setup 1

(b) Curvature from Exp. Setup 3 (local minimums)

(c) Curvature from Exp. Setup 4 (Thumb rotation – Thumb index abduction)

(d) Curvature from Exp. Setup 4 (Thumb outer joint – Index finger middle joint)

Figure 4.21: Exp. 3: Comparison of curvatures with other experimental
setups
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4.3 Discussion

Three different movements of dexterous manipulation have been considered in
order to to verify our proposed method. We have conducted four experiment
setups, including the proposed method, to order to compare the results. We
find out that in the repetition of simple movement, like those in section 4.2.1
and 4.2.2, the result from all experiment setups are very similar. However,
it is not the case when the manipulative movement becomes more complex,
like the one in section 4.2.3.

Furthermore, when the movement are more complex and not the rep-
etition of simple movement, we have to admit that we still lack of more
systematic measurement for evaluation. Although we have tried many meth-
ods to extract intermediate grasp states in order to compare the results, the
final judgement that decides which results are good or bad is still based on
the experimenter himself/herself.

Based on our segmentation’s criteria given in section 1.3.2 and the fact
that the only evaluation we have now for the complex movement is the ex-
perimenter’s judgement, we describe some characteristics that would effect
the results of each experimental setups.

Exp. Setup 1 (the proposed method) and Exp. Setup 2 seem to have
similar result in all experiments. This mean that it does not matter whether
to use its own trajectory or the average trajectory of same movements to
create 3D-eigengrasp space. The results of both Exp. Setup 1 and 2 are also
affected by very small changes in the movement. The problem for this is that
when the trajectory is projected into 3D-eigengrasp, these small changes will
be represented by a short linear sub-trajectory, and then when the smooth-
ing techniques is applied on them, they disappear. This problem might be
resolved by a better smoothing techniques.

Exp. Setup 3 also shows good results in all experiments, especially in ex-
periment 1 and 2. The downside of this method is that when the dimension
of input data are reduced using PCA, the meaning of each principle compo-
nents becomes ambiguous, and it becomes more difficult when the analysis of
the extracted grasp states is needed. Furthermore, since the assumption of
this method is to detect the brief stops in the stream of demonstration, it is
still doubtful about its performance when the movement are pretty fast, like
the one in experiment 1. Therefore, in order to extract intermediate grasp
states in fast movement, faster data acquisition system might be necessary.

The method used in Exp. Setup 4 is actually implemented based on
Zacksenhouse [19]. It also has good results in all experiments. However, the
criteria for choosing two most active joints is necessary, since the phrase-
plane that performs well in each manipulative movements are still different.
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Moreover, when the movement become more complicated and each groups
of joint angles effect in different small movement like the one in experiment
3 (interdigital step), an analysis of more than one combination of two active
joints may be necessary. However, by doing so it may bring up another
difficult problem which is to choose the intermediate grasp states among
different phrase-planes.

In all Exp. Setups, the results are still highly affected by some parameters.
For example, a number of appropriate frames per second required for each
particular methods and movements, or smoothing parameters used in Exp.
Setup 1 which effect a detection of small movement etc. This means that a
good approach for choosing these parameters is needed in order to automatize
both the proposed method and others.

From all above, rather than using a subjective evaluation, a more concrete
method to evaluate the result is necessary. Otherwise, we will not be able to
tell which results are good, and which is not.



CHAPTER 5

Conclusion

This thesis describes a preliminary step towards automatic dexterous ma-
nipulation of robot from observation. Firstly, an object manipulation in the
context of programming by demonstration is briefly explained. Then dex-
terous manipulation is introduced into the existing system[5]. We suggest
that a first step for dexterous manipulation planning in programming by
demonstration is to segment a stream of human manipulative movement into
shorter meaningful sequences.

Normally, segmenting meaningful sequences in dexterous manipulation
would refer to defining the moments in the manipulative movement where
contact relation between hand and grasping object is changing. However,
there is a limitation to detect and recognize those moments due to the current
technology of tactile sensors. Therefore, a method to detect the moments
where contact relation is changing by considering a movement of the hand is
proposed. This is considered to be the main contribution of this thesis.

A segmentation is done based on the assumption that contact relation be-
tween hand an grasping object would change when a coordinative movement
of the hand changes. By saying a coordinative movement of the hand, we
refer to a period when all joint angles of the hand are moving coordinately
in some particular pattern without changing throughout the movement. A
segmentation is done in the reduced dimensional joint space of the hand.
Principle component analysis is used to reduce a highly dimensional joint
space into three dimensional space. In this reduced space, a trajectory of
coordinative movements of the hand is turn out to be approximately linear.
A local maximums in curvature of the dimensional-reduced joint trajectory
is points where trajectory dramatically changes its direction. These points
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can equally refer as the moments where there are a change in the pattern
of a coordinative movement of the hand. Therefore, curvature property of
the joint trajectory in reduced three dimensional joint space is used as a
segmentation criteria.

As for an evaluation, three dexterous manipulative movements are con-
sidered as experimental data. Two of which are the repetition of the short
movement which referred as simultaneous hand movement, while the other
is more complex movement that is usually referred as a type of sequential
manipulative movement. Each experimental data is processed with the pro-
posed method and another three different segmentation methods. All results
are compared and discussed.

5.1 Future Works

Future works can be divided into two separate groups; an improvement of
current method and a future direction of research.

As for an improvement of current proposed method, the future work is
already discussed and proposed in 4.3 that a better measurement to evaluate
the results is necessary, especially for a complex manipulative movement.
This should be considered as a first priority to improve the efficiency of the
proposed method, because without the measurement, it is impossible to judge
whether the segmentation results is correct or not.

As for a future direction of research, there are two directions we would
like to proposed.

Research Direction 1

Based on the belief that human has particular type of grasp for specific
type of objects [8], we may be able to further extend this concept with
human movement as well. For a specific type of objects or category of
objects, human may have particular manipulative movements for them.
If this is true, we may be able to use these movements to create a global
3D-eigengrasp space for specific category of objects.

What is special about this is that, the performance of the proposed
method may increased by doing this. Referring back to section 4.2.3,
there is some movements that is cancelled out in the smoothing pro-
cessing after the trajectory is projected into 3D-eigengrasp space. The
smoothing techniques may not be the only reason for it. Another rea-
son might be because the cancelled out movement may only create a
tiny change when it is projected into 3D-eigengrasp space.



Chapter 5. Conclusion ⊳ 63

Figure 5.1: A difference in length after projection

Figure 5.1 shows that lines with equally length can be different after
projection. It can be seen that AB is in the direction of projection
axis, so that after projection the length of its projection, ab, does not
change when compare to AB. However, on the other hand the length
of line ac is considerably short when compared to AC. This is because
direction of AC is not along the projection axis.

The same understanding can be applied in the joint space as well. If
the hand postures of the movement has affected in the creation of 3D-
eigengrasp space, when a movement is projected into 3D-eigengrasp
space, the initial and final hand postures of the movement may result
in a longer trajectory.

Once after the above condition is archived, we may change to different
type of objects. As it might notices that in our experiment, we con-
sidered greatly about pen-like objects. We believe that our proposed
method should be able to applied in any kind of objects. Therefore, as
for this research direction a variation of objects should also be further
explored.

Research Direction 2

An automation of dexterous manipulation from observation is also an-
other interesting topic. To enable a robot to solely observe human
demonstration and perform a dexterous manipulation on it own with
least human intervention , the following steps might be necessary.

1. A method to choose appropriate parameters in our proposed method.
It might be thought that our proposed method for intermediate
grasp states extraction can be used without human intervention.
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However, there are a lot parameters that is still manually setted
by the operators, for example parameters for smoothing process,
number of suitable frames per second, threshold to decides a local
maximums of curvature curve etc.

2. After the intermediate grasp states have been discover, a more
appropriate representation than a joint angles of the hand postures
is necessary. The most appropriate representation for this would
be the contact relation between a hand and the grasping object.
An approach for this is to utilize all information getting from
a current sensors (hand posture, hand and object position) and
map them into a pre-defined model, and then estimate the contact
relation out of it. The pre-defined model can also be a simulation,
which would allow more of the visualization. However, if this is
still not enough to decide where exactly the contact points are,
one might consider adding a position pre-defined tactile sensors
into data acquisition system.

3. Finally, before mapping the contact point representation we ex-
tracted from human demonstration to the real robot hand, we may
have to consider physical constraints. This is because it cannot be
guaranteed that a degree of freedom of the target hand would be
able to perform exactly as the representation tell it to do. As for
this problem, the contact point representation may have to be re-
vised in order to connect the physical world with the planning, or
another layer of representation, like virtual finger [16], may have
to be considered.
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