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Abstract

Parallel and distributed computing in Wide-area environments is complicated by connectivity issues
like NATs/firewalls, and dynamic changes in the available resources. Therefore, programming in
these environments requires substantial support from programming frameworks. Such frameworks can
help resolve low-level concerns while providing abstractions to implement applications more easily.
Meanwhile overlay networks, which create their own network on top of the internet using UDP/TCP
links, have become popular communication mediums for frameworks in these environments as they
transparently enable communication even in wide-area networks. Thus, high-performance overlays are
crucial in this context. This paper presents one such programming framework and a high-performance
overlay whose goal is to serve as its communication layer.

The first proposal designs and implements an overlay-based programming framework for large-
scale wide-area computing by minimally extending distributed object-oriented models for maximum
generality and flexibility . Aside from introducing constructs to facilitate parallel computation and to
handle runtime process joins/leaves, the framework automatically creates and manages an overlay to
enable communication across WANs with minimal user intervention. In the framework, parallelism is
expressed via asynchronous method invocations to distributed objects for a natural transition from
sequential programs. To make parallelism manageable, the framework introduces an implicit seri-
alization semantics on objects to relieve programmers from explicit synchronization, while avoiding
deadlock problems. In the implementation, participating nodes automatically construct an overlay,
and relieve the users from manual configuration and managing the overlay as it dynamically changes
during the computation. This framework, gluepy is implemented as a library for Python to allow
rapid development of complex workflows and to maximally leverage the richness of its libraries. For
evaluation, this work shows, on over 900 cores across 9 clusters with complex networks (involving
NATs and firewalls), how applications with dynamic node joins/failures can be expressed simply and
executed easily.

The second proposal presents the design and implementation of a high-performance overlay net-
work that attains the throughput performance of the underlying wide-area network. The addressed
core issue is a flow control problem where intermediate overlay nodes have limited buffer memory,
while the forwarding must yield full network throughput exceeding Gbps. Implementing a naive flow
control, however can deadlock the overlay. The proposed overlay presents a deadlock-free overlay that
couples TCP connections and fixed intermediate buffer memory. The method fully takes advantage
of TCP’s flow control and implements a simple flow control scheme by creating dependencies among
connections in an overlay path. Meanwhile, the proposal adapts a deadlock-free routing algorithm for



heterogeneous wide-area networks, so deadlocks among communication can be avoided without sac-
rificing performance. The proposal also incorporates overlay construction and routing optimizations
that account for underlying network latency and bandwidth information. This work demonstrates,
via simulation on 13 clusters (515 nodes) and by evaluation on 7 clusters (170 nodes), that the pro-
posed deadlock-free routing poses negligible overhead in comparison to deadlock-unaware routing, and
comparably with direct communication. It further demonstrates that for certain collective commu-
nications, the proposed overlay even out-performs direct communication by mitigating or completely
avoiding network contention. This is shown on systems ranging from a single-switch cluster with 36
nodes to a Grid environment with 4 clusters and 291 nodes.
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Chapter 1

Introduction

1.1 Background

1.1.1 Computation in wide-area environments

The performance increase of commodity computers and wide-area networks has widened the field of
application, as well as increased the scale for parallel and distributed computation. Notable platforms
for such computation include TeraGrid [13] in the United States, the Grid5000 in France [5], the
DAS-3 [3] in the Netherlands, and InTrigger [7] in Japan. These environments are Grids, and are
composed of clusters. Intra-cluster compute nodes are connected in local area networks (LANs), and
clusters are connected over a wide-area network (WAN). Until recently, wide-area computing has been
reserved to applications that require large amounts of computation but coarse-grained and minimal
communication like volunteer computing [4, 20] and embarrassingly parallel computation. However,
with the emergence of these platforms and high-speed wide-area network backbones [10, 11], parallel
and distributed computing has also become increasingly more prevalent [39, 55]. Such applications, in
addition to requiring intensive computation, require fine-grained and closely coupled communication
among participating computers [25, 42, 65].

1.1.2 Issues with computation in large-scale wide-area environments

Though these Grid platforms can potentially deliver unprecedented scales of computation and appli-
cation, they introduce problems particular to wide-area networks.

connectivity: In many cases, clusters belong to different administrative domains. Thus, security
and management policies can differ greatly across clusters used. For network environments, this
manifests itself in the form of firewalls and private IPs/NATs (Network Address Translations).
These barriers hinder 2 arbitrary compute nodes from directly communicating to each other.
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1.2. MOTIVATION

This may happen symmetrically, where the node pair cannot communicate directly at all, or
asymetrically, where communication may only be initiated from one side.

heterogeneity: While compute nodes in LANs are interconnected via low-latency, wide-bandwidth
networks such as Gigabit-Ethernet, Myrinet [27], and Infiniband [6], WAN communication in
contrast has high-latency and tends to have narrow-bandwidth. Thus communication in WANs
must endure large discrepancies in latency (in the order of [us] to [ms]), and in bandwidth (in the
order of 10[Mbps] to 10[Gbps]). Heterogeneity across different clusters must also be accounted
for. Each cluster is subjected to different policies and resource management software. Because of
this, users are forced to adapt to a variety of tools and rules to utilize resources on multi-cluster
environments.

scalability: In clusters of clusters computation, the scale of computational resource can reach hun-
dreds and even thousands of compute nodes. This is challenging especially for communication
due to scalability limits of stateful routers, file descriptor and/or memory liminations of individ-
ual computing processes, and network bottlenecks.

dynamicity: Because the scale of computation and network resources is large, and each portions of
the environment are affected by varying policies and problems, resources in a large-scale wide-
area environment are dynamic. Network and compute node failures are a given. Wide-area
networks are unstable by nature, and even entire clusters may go down for maintenance.

1.2 Motivation

1.2.1 Motivation Overview

Problems introduced above make parallel and distributed computing in large-scale wide-area environ-
ments very complex from the programming standpoint. Therefore, programming in these environ-
ments requires substantial support from programming frameworks. These frameworks must resolve
such low-level concerns transparently from the programmer. They must also provide good abstractions
and programming models to express parallelism easily, while not being being too rigid to limit their
application.

These programming frameworks in turn, require a high-performance communication medium so
they can maximize the performance and scalability of the applications above. Meanwhile, overlay
networks are gaining popularity in wide-area environments, because they can address WAN connec-
tivity issues as well as scalability with respect to network resources. They are particularly suitable for
implementing the above frameworks as they can easily provide connectivity and communication trans-
parency to the user. Thus, the performance of these overlays in these environments are of particular
concern.

The remainder of this section discusses these two motivations in more depth and clarify the neces-
sary qualities. They will serve as an outline in understanding the contributions of this work.
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1.2.2 Parallel and distributed programming frameworks for wide-area en-
vironments

The foremost task of programming frameworks for these environments is to provide comprehensive
programming models and abstractions to express computation and parallelism so the above complex-
ities are made manageable in a simple and uniform framework. Thus, a programming framework for
large-scale wide-area environments must address (among others) the following characteristics:

• Allow processes to simply and seamlessly communicate across sites despite the complexity of
underlying networks

• Incorporate dynamically joining processes into the computation while providing means to handle
node and network failures

• A programming model to express and handle parallelism simply and concisely

A common approach has been to design a framework that hides these issues, but in doing so,
restricts the programmer to stick to a very rigid model. Good examples are systems and frameworks
for embarrassingly parallel applications [8, 24, 62] and their extensions to express dependencies among
tasks [2, 12]. They normally require no programming effort for coordinating parallel execution on a
distributed environment. A slightly more general approach has been to design programming frame-
works specific to certain application domains [31] and coordination models [33]. These frameworks
hide communication and dynamic resource concerns, and are perfect when the problem at hand nat-
urally fits their model. However, all of the above approaches usually provide no or limited means
for individual tasks to communicate with each other. Implementing the coordination among subtasks
must frequently resort to using “out-of-band” means (e.g., file transfer, ad-hoc CGI, etc.), making
the code awkward and error-prone. The users’ programming flexibility as a result, is sacrificed and it
becomes hard to design a wide range of parallel and distributed applications.

1.2.2.1 This paper’s approach: Framework that retains programming flexibility

Another approach, which is pursued in this paper, is to leverage a general-purpose programming lan-
guage and conventional parallel/distributed programming concepts, and minimally extend them for
issues in large-scale wide-area environments. Extending on such languages retains the users’ program-
ming flexibility. Object-oriented languages are particularly suitable for this purpose, as they have a
general and an accepted model of communication (i.e., remote method invocation or RMI for short).

Yet existing parallel RMI-enabled frameworks [37, 64] do not sufficiently address the aforemen-
tioned issues (connectivity, scalability, and dynamic processes). Furthermore, managing parallelism
and asynchroneity with distributed objects is still not trivial, and race-conditions and deadlocks are
commonplace. Thus, this work designs and implements a new programming framework with addressing
these issues as its primary objective.

1.2.3 Application level overlays for wide-area parallel and distributed com-
putation

The internet realizes point-point communication between nodes by IP routing. Application level
overlays in contrast, shown in Figure 1.1 use such point-point communication as links for another

3
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TCP/UDP Overlay

NAT ClusterUnderlying 
Network Cluster

Figure 1.1: Application-level overlay

network built on top of the internet. Specificly, they create another network graph where each link is
a TCP or UDP link, which in turn is realized by the IP layer. Overlays perform their own application
level routing independently of that of the underlying internet. In wide-area environments, application
level overlays have been adopted to overcome communication NATs/firewalls restrictions [47]. 2 nodes
that cannot direct communicate to each other can find a common node, to which it is connected
to on the overlay, and route communication via that common node. They have also been utilized to
address scalability limits of stateful routers, and file descriptor and/or memory limitations of processes
by purposefully creating a sparse connection graph for all point-point communication rather than a
complete graph had direct communication been required [55].

1.2.3.1 Overlays for wide-area parallel and distributed programming frameworks

Application level overlays are particularly important in the context of wide-area parallel and dis-
tributed computing. Overlay networks enable computing nodes distributed across multiple clusters to
communicate with each other. Overlays are also important because in wide-area distributed compu-
tations, the number of computing nodes are large and thus the communication scalability becomes a
critical concern. Moreover, overlays are favorable because distributed programming frameworks can
implement them to enable transparent communication over WANs and shelter the application pro-
grammer from the low-level communication and connectivity concerns. Thus, overlays are becoming
indispensable communication mediums for large-scale parallel and distributed computing on wide-area
environments.

1.2.3.2 Performance incentives to adopt overlays

Until recently, overlays have largely been viewed as necessary workarounds used only when nodes are
otherwise unable to communicate because they introduce extra hops and overhead. But in the context
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of high performance parallel and distributed computing, overlays will become necessary not only to
enable communication among otherwise blocked node pairs, but also to deliver better performance
than that by making as many direct connections as possible. Improved communication performance
by overlays has been demonstrated in other contexts other than parallel and distributed computing
[18, 19, 45, 51], but their primary motive was to avoid bad paths by the underlying IP routing, and
ensure that the communication will take IP layer paths that deliver smaller latencies using a series of
UDP/TCP links. As it will be shown in this work, overlays can achieve performance improvements
by purposely holding back concurrent communication, and mitigate or completely avoid traffic con-
tentions. This is especially important for parallel and distributed computing as overlays can yield
significant performance improvements for commonly used collective communication operations. This
is not reserved to wide-area/heterogeneous environments, but even for networks with high speed inter-
connects like a LAN. Thus, the design and implementation of high-performance overlays will become
a very important topic in the context of high-performance parallel and distributed computing.

1.2.4 High performance overlays for wide-area computing

1.2.4.1 Problem of achieving high throughput in overlays

In order for overlays to replace raw sockets as the communication medium for high-performance par-
allel and distributed computing, it must provide (among others) high throughput performance in
LAN/WAN-mixed environments. Yet one issue that must be addressed in any overlay, but has largely
been overlooked, is flow control and memory management for router nodes in the overlay. Specifi-
cally, it refers to an algorithm for the router nodes that feed and forward incoming traffic to transfer
data from the source to the destination node. The standard “select-loop”, which receives all readable
data and buffers them in memory until the outgoing connection becomes writable, is prone to buffer
memory overflow. This issue is becoming increasingly critical in high speed networks, where 10[Gbps]
links can fill as much as 1GB memory in a second, and in local/wide-area mixed computation where
discrepancies among input/output link bandwidths are everywhere.

There have been some efforts to implement flow control schemes for overlays, but they are complex
and do not yield high performance. All previous schemes in effect, first build an unreliable overlay
and implement TCP-like end-to-end flow control on top [16, 23, 38]. Such schemes may be natural
if the overlay uses unreliable underlying transports (such as UDP). This choice is in turn natural if
the overlay does not provide reliability to its user; deadlock can be easily avoided in such frameworks
(at least superficially) by dropping packets at intermediate nodes when buffer memory is full. To
provide congestion avoidance or reliability, they introduce additional overhead by requiring periodic
communication among nodes to secure the correct behavior of the protocol. In addition, they require
non-trivial parameter tuning to adjust to the performance and conditions of underlying networks,
essentially reimplementing what TCP already provides.

1.2.4.2 Deadlocks problems with simple flow control schemes

A very simple flow control solution is to use back-pressure, which is to block the sender nodes when the
intermediate buffer becomes full. Such a solution, if naively implemented, is prone to communication
deadlock within the overlay. Such deadlocks are cases where a set of data transfers on the overlay
can no longer make progress. This is possible when there is a cyclic dependency among the set of
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data transfers. For example, a data transfer A blocks because buffers for subsequent nodes in the
overlay path are full. This can be caused by a different data transfer B, whose data is occupying those
buffers. In such a case, transfer A cannot proceed until transfer B makes progress and makes room
at buffers that A needs, and thus transfer A is dependent on transfer B: denoted here as A → B. In
a general overlay, where multiple transfers co-exist, there are multiple dependencies among transfers.
It is possible that such dependencies result in a cycle, where for example 4 transfers A, B,C,D have
dependency as follows: A → B → C → D → A. None of the 4 transfers can no longer make progress,
they have created a deadlock.

Despite its importance, this problem has been paid surprisingly little attention in the context of
overlays. This is presumably because routing has been conceived as something that should be avoided
as much as possible, and because only simple topologies (such as having a single hub node for all
inter-cluster communications) , which need no sophisticated solutions to avoid deadlocks, have been
employed. The situation is changing however, as we now commonly have three or more clusters, and
more nodes within each cluster [3, 5, 7].

1.2.4.3 This paper’s approach: Deadlock-free high performance overlay using TCP

In high performance computing, using TCP as an underlying transport, in comparison to using UDP
and completely reimplementing what TCP provides onto the overlay, is a more natural choice because
it gives reliability as well as high-performance point-to-point flow control [47, 55]. It has been well-
tested to work well on a wide variety of systems and networks, ranging from modem lines to 10[Gbps]
Myrinet and Infiniband links. Yet, naively using TCP for overlays is either memory overflow- or
deadlock-prone. So this leads to the question: is it not possible to retain the advantages provided by
TCP itself, while making the transition from direct communication to application overlays? For certain
fixed communication patterns such as broadcast, coupling TCP connections with fixed intermediate
node buffers can achieve flow control across multiple dependent TCP connections [44, 63]. The
missing formula is how to prevent communication deadlocks for general unknown traffic patterns,
while delivering high performance of the underlying transport to the application as much as possible.

To this end, this work present how a flow controlling overlay can be implemented using TCP
and deadlock-free routing [28, 30, 57]. Simply deploying deadlock-free routing on an arbitrary TCP
overlay, however, is not sufficient to address performance issues for parallel computation. It presents
the following challenges.

Considerations for the underlay: The overlay and the routing must take the underlying network
topology and bandwidth into consideration during construction.

Overhead: While deadlock-freedom is imperative, the extra overhead of using deadlock-free routing
must be minimal.

1.3 Contributions of this Work

The contributions of this work come in 2 folds as presented below. The goal of this work is to present
a simple and flexible programming framework for parallel and distributed computation in a large-
scale dynamic wide-area environment, with a high throughput underlying communication layer that
accounts for the heterogeneity of wide-area networks.
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1.3.1 gluepy: A distributed programming framework for wide-area envi-
ronments

This work presents gluepy, a Python distributed object oriented programming framework. The frame-
work enables simple, concise, and flexible parallel and distributed programming in large-scale wide-area
environments with seamless communication even in environments with NATs/firewalls and with dy-
namically joining/leaving processes. The core aim of this work is to provide a simple scripting library
to glue together processes for parallel and distributed computing and to overcome network barriers
and compute resource dynamics, while still giving access to the wealth of libraries and the simplicity
of Python programming.

The framework comes with the following contributions:

• Objects have implicit serialization semantics. Parallelism is expressed via asynchronous proce-
dure/method calls, using primitives commonly known as futures [61]. Yet the semantics eliminate
the need for explicit synchronization code. The underlying execution model is still based on pas-
sive objects + threads familiar to many programmers. The proposed design thus does not suffer
from the self-recursion deadlocks that some active object-based models do [14, 37].

• An object signalling mechanism that provides simple means by which asynchronous events, such
as new process joins, may be handled. It is designed so as to retain the comfortable programming
style of using asynchronous method invocations to manage and schedule tasks without resorting
to low level event-handling loops.

• A TCP overlay network is built among participating nodes to realize scalable and seamless com-
munication among all participating nodes. By default, the framework requires no configuration
and builds a connected overlay for WANs. To incorporate resources only reachable via SSH,
it can use SSH port forwarding where specified. The necessary configuration for this change is
minimal, merely 1 line in the configuration file.

The experimental platform includes 9 clusters with over 900 CPU cores. Many of them perform
IP filtering to various degrees, and some only have private addresses. It also includes an almost
completely confined cluster that can be reached only by first logging in to its gateway via SSH, then
logging in to a cluster frontend via SSH, and finally submitting jobs via a batch scheduler. The setting
required for collectively using all resources in the environment was 3 lines in a configuration file.
The main result of this work is a simple scripting environment that can coordinate processes spread
across such complex environments. With little effort, a combination optimization problem solver was
implemented and deployed on a platform of over 900 CPU cores. The core of the solver is an optimized
sequential program written in C++ that won the 3rd Grid Plugtest Contest [1]. Python code in the
proposed framework merely schedules the underlying C++ processes and exchanges solutions found
among participating processes. The glue code is very concise and has only 250 lines, the core of which
is shown in Section

1.3.2 High-performance wide-area overlay using deadlock-free routing

This work proposes a wide-area, network locality-aware overlay network, and uses a simple deadlock-
free forwarding mechanism to straightforwardly attain the throughput performance of the underlying
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network for point-point communication, while avoiding network contention and congestion to de-
liver performance improvements for collective communication. The aim of this work is to provide a
high-performance communication medium for large-scale wide-area parallel and distributed applica-
tions/middlewares.

Specificly, it makes the following contributions:

• show a simple and high performance implementation of deadlock-free overlay routers that works
with constant memory per connection and can straightforwardly attain the performance of the
underlying reliable transport (TCP in this paper).

• show the implemented scheme actually achieves the bandwidth close to the underlying TCP over
a range of environments including GbE, and 10G Myrinet.

• propose an algorithm for choosing good routing paths in heterogeneous wide-area environments,
as well as one for choosing overlay links in the first place, given suitable information about the
underlying network [48, 58]. As a result, deadlock-prone routing and deadlock-free routing paths
have very little performance differences.

• demonstrate such an overlay scheme outperforms direct connections when contentions occur at
bottlenecks (even in LAN).

The evaluation was conducted both by simulation and on real wide-area environments. On 515
simulated nodes (13 clusters) from the InTrigger platform [7], it was demonstrated that the pro-
posed deadlock-free mechanism has very little overhead in comparison to deadlock-unaware routing.
The overlay was constructed on cluster environments with various network throughputs (100[Mbps],
1[Gbps], 10[Gbps]), on a 7-cluster heterogeneous wide-area environment, and demonstrated that its
throughput and latency is comparable to that of direct communication. Furthermore for gather and
all-to-all collective communications, the overlay outperformed direct communication on environments
ranging from a single switch LAN with 36 nodes to a 4-cluster environment with 291 nodes.

1.4 Organization of this Paper

The rest of the paper is organized as follows. Chapter 2 discusses related work with respect to both
programming frameworks and application overlays in large-scale wide-area environments. Chapter 3
presents the proposed programming framework. Chapter 4 presents the proposed deadlock-free routing
overlay. Evaluation for both the programming framework and the overlay are given in Chapter 5.
Finally, concluding remarks and future works are presented in Chapter 6.
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Chapter 2

Related Work

2.1 Programming Frameworks for Wide-area Computing

Programming frameworks in a wide-area environment must handle complex tasks: enabling flexible
interaction among processes, accommodating dynamic process joins and leaves, and overcoming net-
work communication barriers. Moreover, these frameworks must not only accomplish this, but also do
so in a way that requires minimal work and constraints on the framework user.

2.1.1 Flexible Inter-process Interactions

2.1.1.1 Grid-enabled batch scheduler frameworks

In order to address a large range of applications on the wide-area computing, programming frameworks
need to provide a simple yet flexible means by which processes may interact. Grid-enabled batch
schedulers [24, 62] has been used conventinally, to distribute work in clusters, and cluster of clusters
environments. Users create self-contained script files which describe what he or she wants done on
a compute node; this may be a shell script file, or a scheduler specific file format. The script files
are submitted to the scheduler, and it determines on which node to distribute the task, based on its
scheduling policy. This automatically distributes work for the user. However, this comes at a price
that it is hard to express a distributed application that spans multiple such nodes; one may try to
manually divide up the application into seperate scripts so that portions of the whole applications will
be distributed across all nodes, yet there is no guarantee that they will be run concurrently. Some
batch schedulers allow users to express a DAG inter-task dependency graph in a simple script file [2].
The scheduler automatically dispatches jobs whose dependencies have been satisified. Yet still, this
does not address how tasks can pass data across each other, as in the case with parallel and distributed
applications. For inter-task communication, tasks must output data to temporary files to passed to
dependent tasks.

2.1.1.2 Master-worker frameworks

The master-worker model creates a hierarchy where a master process distributes work to numerous
worker processes. The master takes a problem and divides it into subtasks to be distributed to worker
nodes. The model takes a very simple communication pattern where the master first sends a subtask to
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a worker, and gets the results when the subtask is done. The master controls how to divide up the tasks
and to which worker a job is distributed. It is an accepted paradigm for its simplicity [15]. As such,
many frameworks specialize in this type of application [22, 46, 49, 59]. However, the model becomes
complicated when the application requires frequent communication and interaction among nodes, as
in the case with general distributed applications. The model only provides 2 types of communication:
send a subtask, return the results. If the master and its workers require frequent interaction, the
assigned tasks must be artificially broken into smaller subtasks. Some frameworks [22, 49] enable
messages to be sent between the two parties to resolve this issue, but this often results in cluttered
code.

2.1.1.3 Divide-and-conquer frameworks

Satin [66] and distributed-Cilk [34] are frameworks for distributed divide-and-conquer computation,
where a single large task can recursively be divided into smaller subtasks. The computation first
initiates at one compute node where the single target problem is computed. The problem is spawned, or
expanded into smaller subtasks. Idle compute nodes steal an un-attended subtask from another node,
where it too recursively compute and spawn more subtasks. This effectively turns the target problem
into a tree, where tree nodes correspond to subtasks. When a compute node steals an unattended
subtask, it becomes responsible of working on the subtree of the problem rooted at the subtask.
Eventually all compute nodes will obtain some subtasks and the work is automatically distributed.
Completed subtasks are returned to the parent task, which is syncing or blocking for all children tasks
to return. A parent task uses all children results to complete its task, and returns to its parent task.
The advantage of this model is that a subtask corresponds to a single function call, and the user
can program the applications by solely using recursive function calls, and the runtime automatically
distributes the function call across computing nodes. However, this model’s effectiveness is reserved to
applications that can be expresed using recursive function calls (e.g.: calculating Fibonacci number,
FFT, sorting, N-queen, etc). Other application types must somehow be modified to fit the spawn-sync
recusive sub-dividing model, which is in itself hard and makes the application awkward.

2.1.1.4 Distributed object-oriented Models

This work argues in favor of distributed object-oriented programming models. These models extend on
the general-purpose object-oriented languages where methods are invoked on objects for computation.
The difference is that the model now introduces distributed objects. Distributed objects are dispersed
among processes on different computing nodes. Methods may be invokes in them, as in the original
programming language, and when an invocation on a remote distributed object occurs, the method
and its arguments are serialized into a byte array and sent to the computing node which hosts the
target object. There, the computation of the method is done and when it completes, the return
notification and any results are again serialized and sent back to the invoker. It appears like a simple
method invocation on an object but the implementation carries out the necessary communication
transparently. This is shown in Figure 2.1(a). They are called RMIs (Remote Method Invocations),
and serve as a good abstraction of communication and delegation of work to a remote compute node.

It is also possible to make RMIs asynchronously so that the invoker does not wait for their com-
pletion. The invoker by doing so, can make numerous RMIs to different objects concurrently, and
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effectively express parallelism.
The advantage of this model is that it simply extends on general-purpose programming languages.

Thus, it does not restrict the programmer to a particular programming style specific to parallel and dis-
tributed computing, and the transition from sequential programming is smoother. More importantly,
it retains the programming flexibility of general-purpose programming languages.

2.1.2 Managing Parallelism for distributed objects

Extending an exisiting object oriented programming language for distributed computing is a popular
approach. With Java, Ibis RMI [64] and ProActive [37], with Python, DisPyte [35] are notable
examples. In these frameworks, parallel is expressed via asynchronous RMIs, where the invocation is
made non-blockingly and a callback is invoked when the invocation results become available. However,
as shown in Figure 2.1(b), RMIs can often result in race-conditions: 2 concurrent invocations may occur
on the object, or the callback may be invoked concurrently with operations by the invoker. This makes
it necessary to use mutual exclusion inside methods for distributed objects.

The active object [37] model takes an approach such that each object has a dedicated thread for
execution. The advantage is that processing of all invocation requests are done sequentially and there
can be no race-conditions. Yet this can easily induce deadlocks. This happens when the dedicated
object thread blocks, either doing an synchronous RMI or waiting for results for a previously done
asynchronous RMI. If the very invocation it has made calls back on the object, the dedicated thread
is blocking and cannot handle the invocation. In such a case, no more progress can be made. An
example is shown in Figure 2.1(c).

This work proposes a novel synchronization semantics for objects where at most 1 thread can
operate on an object at any given time. When a thread performs an invocation on the object, it
must first acquire its ownership. This implicitly achieves mutual exclusion. This itself is similar to
active objects, but when the owner thread blocks in the object’s context, the ownership is temporarily
released. This prevents deadlocks that troubled active objects.

2.1.3 Handling process joins/failures with ease

On large-scale wide-area computing, where resources fluctuate constantly, it is paramount that han-
dling of process joins and leaves is made simple for the user.
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Satin [66], which utilizes the divide-and-conquer model, transparently performs load-balancing via
Random Work-Stealing [26], where idle compute nodes steal unattended tasks from randomly selected
other nodes. In these divide-and-conquer programming model where each resursively called function
compose a subtask, each compute node computes subtasks in a depth-first manner just as calling
functions in any procedural language. Thus, many subtasks closer to the root in the task tree are
left unattended. Because tasks closer to the root are larger tasks (i.e.: it has a larger task subtree),
and because these tasks will be stolen by other nodes, Random Work-Stealing performs analytically
efficient load-balancing. This method effectively makes node joins trivial as that node only has to steal
an idled task. Satin also transparently handles node failures as well. When a compute node fails, it is
assumed that the task tree rooted at that compute node is lost, and lost tasks are simply re-executed
on a different node. The advantage of applications that can be expressed in the divide-and-conquer
model is that computing a subtask does not have any side-effects on other tasks, and re-execution
is trivial. Though the divide-and-conquer model can handle node joins and failures effectively, its
methods are specific to the model and is very difficult to apply it to other models.

Master-worker frameworks like Jojo2 [22] handle worker joins/leaves via event handlers. The user
implements handlers that will be invoked on the master object in case of such events. Yet, node
joins and failures are asynchronous events from the master, and in order to avoid race-conditions,
mutual exclusion is essential. It is possible to avoid this if the master node’s code is modified into
an event-driven loop; a single master thread unblocks on each event (e.g.: node joins, node failures,
task job completion) to execute corresponding operations (e.g.: distributing new tasks, re-enqueuing
failed tasks). This is very simple for a generic master-work application, but if a general parallel and
distributed application were to be implemented in this fashion, the code will quickly become hard to
understand, not the mention the required synchronization.

This paper’s proposal presents, in conjunction with the new synchronization semantics, a signaling
mechanism for each object, which unblocks an arbitrary thread blocking in the object’s context. When
a thread is unblocked and starts running after it gains exclusive access to the object, it can handle
operations necessary for the node join. Thus it is possible to handle asynchronous events such as node
joins while adhering to the proposed implicit synchronization semantics. Additionally, process failures
are abstracted as exceptions to method invocations. These exceptions can be caught as in any other
generic exceptions, and the procedures to handle node failures can be written there. Thus, this widely
accepted semantics nicely integrates failures into conventional programming. The contribution of these
constructs is that handling node joins and leaves can be implemented in code without disrupting the
main processing code of the application.

2.1.4 Resolving connectivity on dynamic wide-area networks

Realizing communication on WANs, where connectivity is limited by NATs and firewalls, in a scalable
manner is a difficult task. Communication scalability is particularly crucial on large-scale environments
when resource is limited. Such resources may be file descriptor limits and memory usage at compute
nodes, and/or state information at intermediate switches and routers. Furthermore, the overlay must
tolerate dynamic changes to the network as compute nodes join and leave. Yet in resolving these
issues, programming frameworks must only require minimal configuration burden and restrictions on
the user.
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PadicoTM [32] enables distributed computing using CORBA on various network hardware, yet
does not take connectivity issues into account. ProActive [37] requires users to hand write descriptor
files that specify connectable points. Realistically however, the programmer cannot specify how all
connections are established when the scale of the computation is large, and in a dynamic environment
connectable points change on a day to day basis. This is a high burden on the user. Jojo2 [22] combines
SSH to reach all cluster head-nodes, and UDP broadcast among intra-cluter nodes to create a 2-level
hierarchy to achieve connectivity. Yet the system requires users to configure all individual cluster head
nodes. SmartSockets [47] attempts to establish connectivity on WANs by transparently attempting
various methods to establish TCP connection(s), but requires users to setup router nodes manually.
Moreover, because it will establish direct socket connections for all directly connectable points, this
does not address scalability issues. None of the above except [22] take into account of connection
scalability and dynamic changes to the network.

This work proposes to construct an overlay network over which communication is routed transpar-
ently. Each processes establishes a small number of connections, and address the connection scalability
issue. Nodes may join and leave the overlay during runtime, also long as the overlay does not become
partitioned, and the routing adapts to the changes. By default it does not require any user configura-
tion and, the overlay construction scheme at each node chooses random peer nodes to yield a connected
overlay graph by a high probability. For special cases like firewalls and multiple private networks/-
NATs, the user can concisely direct the framework to modify peer selection and/or connection type
(raw or SSH-forwarded TCP connection).
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2.2 Application Overlays for Wide-area Distributed Comput-
ing

Applications overlays for parallel and distributed computing, in addition to providing reliable commu-
nication, must be able to deliver performance comparable to raw sockets with respect to both latency
and throughput. Communication latency on wide-area overlays is mainly dictated by what kind of
overlay graph is constructed and how point-point communication is routed; data must not take round-
about hops on the overlay for minimal latency overhead. Throughput, on top of the above, is also
governed by the flow-control and buffer management scheme on the overlay; while it is important that
data is forwarded as fast as possible for maximum throughput, it must not unreasonably overload the
intermediate nodes or cause memory overflow. Not only must overlays create an underlying network
aware graph and paths, but also implement an efficient flow-controlling algorithm.

2.2.1 Existing overlays that deploy on wide-area networks

There have been research to improve communication performance and reliability in WAN environ-
ments [45, 51], but the implementation of flow control have been secondary. RON [19] is an overlay
architecture that establish UDP links among all nodes on the overlay. Its aim is not to resolve connec-
tivity, but to give resilience to internet path outages and better communication performance. Even if
there is a physical outage on the path taken by a direct IP-layer path, RON can use multiple link hops
to route around the problem. Additionally in WANs, there are even cases where the direct internet
path does not give optimal performance, both in latency and bandwidth. RON overlay nodes monitor
the performance of all links and routes packets so as to maximize a certain metric; the direct link
is not necessarily taken depending on its quality compared to multi-link paths. RON however only
exposes a UDP-like API to the user, so reliability and flow control is delegated to the user.

DiskRouter [41] is a data transfer overlay across WANs, whose primary objective is a file-transfer
middleware between distributed tasks in the Condor batch scheduler. It can provide multiple overlay
paths between the source and destination via intermediate DiskRouters, and provides resilience to path
outage and performance boosts by striping the data across all paths. In its simplest form, a DiskRouter
is a store-and-forward device and receives and buffers data locally until it can be sent on the next link.
This can potentially require a very large buffer space, especially in heteroeneous environments, and
so it uses local memory and disk to buffer all data. However, unlimited buffer is unacceptable for
performance and load on DiskRouters, so it is possible to set a pre-defined threshold for buffers. If
a threshold is reached for the buffer, it may be configured to back-pressure its predecessor. The
back-pressure among multiple transfers can cause the overlay communication to deadlock, if multiple
transfers co-exist.

2.2.2 Flow control protocols for overlays

Some research that aim at designing flow control for overlays have the system provide explicit con-
gestion feedback to the sender so as to adjust its send rate [16, 38, 43]. In these works, the sender
receives notifications as to any congestions in links that it is using. Kar et al. [38] proposed to have
the number of congested links returned to the sender in the form of ACK packets. The sender then
adjusts its send rate accordingly.
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Amir et al. [16] proposed a global flow control scheme where all overlay nodes are updated on
congestion status of all links in the network. According to how much data is pending in a link’s
user-level send buffer, a “cost” is assigned to it. Each node is given a predefined amount of credits
per epoch, and it can only send packets along a path when it can buy up costs of all the links it uses.
Otherwise, the node has to wait until it accumulates enough credits. This scheme realizes flow control
using a demand and supply feedback for the link’s bandwidth capacity. However this is unrealistic in
a large-scale wide-area environment as it would requireperiodic broadcast among all nodes.

Experiments were conducted with Spines [17], an available implementation of [16] in a Gigabit-
Ethernet LAN. However, the overlay was only able to utilize 300[Mbps] throughput for point-point
transfer. This experiment demonstrated for us that in reality, it is difficult to have these protocols fully
adapt to the network environment at hand. This work does away with explicit congestion notifications
by taking advantage of TCP. Using TCP makes maximizing throughput utilization trivial, as so much
work has already gone into TCP for this purpose. Flow-control is implemented by back-pressure
between dependent connections in a path.

2.2.3 TCP and fixed-buffer coupling for peer-to-peer multicast

It is also possible to implement flow control across multiple TCP connections by coupling TCP con-
nections and fixed intermediate buffers. In this method, as shown in Figure 2.2(a), each node reserves
a fixed user-level send buffer queue per TCP connection. Any received data packet that needs to be
forwarded is immediately appended to the send buffer queue of the next TCP connection. If this send
queue becomes full due to congestion, the node will stop receiving packets from the preceding connec-
tion. TCP will also block the send on the preceding node and back-propagate the congestion implicitly.
This method is outlined in Figure 2.2(b). The advantage of this method is that it requires no overhead
other than the flow-control scheme by TCP, and can be implemented very efficiently. Some multicast
overlays adopt this mechanism to achieve flow control from the root to leaf nodes [44, 63]. However,
unlike in multicasts where there exists only one pre-known flow, naively adopting this on overlays for
general unknown traffic pattern will result in a deadlock. This work resolves this problem by adopting
deadlock-free routing.

2.2.4 Deadlock-free routing

Deadlock-free routing algorithms [21, 29, 30] have been proposed for communication networks for
message passing concurrent computers. These algorithms prevent deadlocks for switches that route
packets between computing nodes, by imposing restrictions on the used path routes. In particular,
they ensure that there can be no cycles in the link dependency graph. Many previous work focused on
deadlock-free routing algorithms for high-performance interconnects with specific topologies like k-ary
n-cubes (e.g.: hypercubes and tori).

More recent algorithms [28, 40, 57] do not assume any form of network topology and prevent dead-
lock on arbitrary networks. This approach is applicable to achieving flow control by coupling TCP and
fixed-buffers without causing deadlocks. However, current algorithms do not account for heterogeneity
on WANs, and they can impose deadlock-free contraints with large performance degradations. For
example, 2 intra-cluster node pairs may be forced to use inter-cluster wide-area overlay links simply
because of poor constraints. This work proposes heuristics that adapt deadlock-free algorithms to such
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networks. It also shows how its routing table can be computed distributedly by extending Dijkstra’s
shortest-path algorithm.

2.2.5 Utilizing underlay information for overlay

There are also previous work that incorporate the underlying topology information to improve the
overlay performance. RON [19] creates a complete graph of all overlay nodes, and probes each link pe-
riodically to dynamically decide which path to take. In certain instances, a roundabout path may yield
better performance than a direct one. However, the all-to-all probing hinders scalability. PLUTO [50]
is an underlay information query service on PlanetLab [9]. The service probes the L3 information of
the network and presents AS-level connectivity information to the user, which can be used to plan the
overlay construction and paths [51]. Though it is highly useful, it is not available beyond PlanetLab.
This work, to improve the quality of the overlay, utilizes the latency matrix among peers and band-
width values for TCP connections established. The bandwidth values can be computed at run-time,
and [55] shows a way to create approximate latency matrices only using few measurements, thus all
necessary information can easily be obtained by the user.

2.2.6 Performance-aware connection management for overlays

Besides NAT/firewall concerns, it is not desirable to aggressively establish connections, due to the
large number of nodes in large-scale wide-area environments. TCP connections, especially wide-area
connections, consume large amounts of memory per host because large enough send/receive buffers
have to be reserved to meet the bandwidth-delay product. In addition, WANs introduce many bottle-
neck links and creating fewer connections does not reduce performance by large factors. In fact,
aggressively communicating on many WAN sockets concurrently is even harmful, and can even reduce
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performance by inducing large amounts of packet-loss. With this in mind, it is possible to reduce the
number of connections in the overlay, while still retaining communication performance on the overlay.
In an MPI implementation by Kielmann et al. [39], a gateway node is selected per cluster, and
connections are established among all gateway nodes: all inter-cluster communication goes through
gateway nodes. However, this can be unnecessarily prohibitive and introduces bottlenecks at gateway
nodes. Additionally, with the rise of 10[Gbps] WAN backbones, a single 1[Gbps] connection cannot
saturate the available bandwidth. Saito et al. [55] proposed to create a locality-aware connection
scheme where each node establishes connections to closer nodes densely, while spaserly to far-away
nodes. This heuristics realizes scalability bounding the order of connections to O(N log N) from
O(N2), where N denotes the number of nodes, while minimizing communication overhead to closer
nodes sensitive to performance. This work will show that the proposed overlay can be improved by
employing this. Young et al. [68] proposed to establish connections along k interleaved spanning trees,
where k is a user defined constant. Effectively, this will establish more connections among close nodes.
This in spirit is similar to what this work intends to do.
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Chapter 3

gluepy: A Distributed
Programming Framework for
Wide-area Environments

This chapter presents the model and the implementation of the proposed programming framework for
large-scale wide-area parallel and distributed computing. The framework addresses the complexities of
large-scale wide-area environments and allows parallel and distributed application to be implemented
straightforwardly using a general-purpose programming language.

3.1 The Framework Programming Model

This work proposes a distributed Python object-oriented framework that operates in a NAT/firewall-
prone environment with dynamically joining/leaving nodes. To the user, it provides a seamless view
of the underlying environment, and present a set of simple interfaces by which nodes communicate
via RMIs, new nodes may join, and failing nodes are detected. Like other distributed object-oriented
frameworks, the proposed model provides remote objects, and communication among them are ab-
stracted in the form of RMIs [37, 64]. However, it addresses a number of topics important to Grid-
enabled programming that were not, or only partially discussed before.

3.1.1 Synchronization and asynchronous event handling

3.1.1.1 Motivation for the model

In the context of parallel computing, parallel and asynchronous RMIs are crucial, as they are good
abstractions for distributing computation among nodes. Yet, manipulating asynchronous RMIs is still
a non-trivial task. Some implementations allow the users to define callbacks for when the results are
available. However, this requires using locks to handle critical data. To resolve this issue, there are
future primitives that allow the invoking thread to block for results when they become necessary; the
invoking thread may perform other computation in the mean time. Its advantage is that a single
thread is in control of the entire flow, and the transition from sequential programming is natural.

This does not resolve the issue on the RMI handler’s standpoint. Since a remote object may

18



3.1. THE FRAMEWORK PROGRAMMING MODEL

receive an incoming invocation handled by an independent thread at any time, the programmer must
use locks for objects that might receive incoming RMIs. To resolve this problem, some models [37]
have implemented active objects where there is a dedicated thread for each object. The dedicated
thread handles all incoming RMIs sequentially. However, this model easily creates deadlocks when an
RMI handler also is an RMI invoker.

Yet another issue arises when the program has to handle asynchronous events, such as new node
joins. The RMI-based model alone cannot handle these events. One possible approach is to handle
RMI callbacks, node failures, and node joins all in one single event driven loop, like in many other
master-worker frameworks. The obvious advantage is that a single control thread does all operations,
eliminating locks and conditional variables. However the programmer must take care so that event
handlers do not block, and the natural flow derived from sequential programming is completely lost.

The qualities favorable in a distributed object-oriented model is summarized below.

• provides future primitives for expressing parallelism

• allows objects to be accessed mutually exclusively without explicit locks

• avoids unpleasant deadlocks induced by implicit serialization semantics above

• may handle asynchronous events without low-level event handling models

3.1.1.2 Model and API

In the proposed model, at most one thread may run on an object at a time. For a thread to invoke
a method of an object, it must first implicitly acquire the object’s ownership. The thread keeps the
ownership for the duration of the method invocation, and releases it when the invocation ends. This
is equivalent to using a lock to serialize accesses to a critical region, and accesses to an object by
multiple threads are serialized as in Figure 3.1(a). While in the scope of the method, it is possible for
the owner thread to block, as defined below:

• a synchronous object invocation

• waiting for the results of an asynchronous object invocation

When the owner thread blocks, it temporarily releases the ownership and another pending thread
is permitted to run, as shown in Figure 3.1(b). When there are more than one pending thread, an
arbitrary thread is scheduled, and acquires the ownership. After the blocked thread unblocks, it joins
the group of pending threads waiting on the object as in Figure 3.1(c), and resumes execution only
after re-acquiring the ownership. The model supplies future primitives by which threads may block
for results. Finally, it provides a signaling mechanism for each object, by which a thread blocking on
future primitives in the object’s context is made to unblock.

Specific APIs for asynchronous invocations and synchronization is as follows. When an asyn-
chronous RMI is performed, the invocation returns immediately with a future object. To do an RMI
fib on an object foo, do the following.

future = foo.fib.future(args)

In order to obtain the results for the asynchronous RMI, do
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Figure 3.1: Proposed serialization semantics

result = future.get()

If the results are not available, the call will block until they are. For scheduling, it is also very common
that one waits for an array of future objects simultaneously, until any result becomes ready. To this
end, the model provides a global wait primitive that takes a list of future objects, blocks until at least
one of the futures’ results are available, and returns a list of futures whose results are available.

ready = wait(futures)

Finally, each object is provided with a signaling primitive invoked by

obj.signal()

This forcefully unblocks a thread that is blocking on wait in the object’s context. If no threads are
blocking at that time, the next thread that calls on wait in its context will be woken. The woken
thread will contest for and reaquire the object ownership, after which the unblocked wait primitive
will return None.

3.1.1.3 Model rationale

This serialization semantics eliminates the need for explicit locking. This is similar to that of active
objects, adopted in some object-based languages [37]. Active objects, however, easily lead to an
unpleasant behavior called self-recursion deadlocks. In contrast, the proposed model allows another
thread to run on an object when the current thread blocks in the midst of a method execution
(a synchronous RMI, call on wait, or future.get). This property prevents deadlocks due to such
recursive calls. With respect to atomicity, a thread is guaranteed to have exclusive control in between
potentially blocking operations. Thus, the object’s state may be modified without worrying about
races conditions.

Furthermore, a special method signal allows to unblock a thread currently waiting on the object.
This is similar to the semantics of UNIX signals, which unblocks threads blocking on some I/O system
calls (e.g., read). This can be used to wake a blocking thread for handling of some event(s).

3.1.2 Failure semantics and bootstrapping nodes

For RMI failures and object lookups, the model utilize the semantics widely accepted in existing
RMI frameworks. Node failures are commonplace on large-scale environments, and simple means
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for handling them must be presented to the programmer. To this end, node failures are abstracted
as exceptions for RMIs to objects on failed nodes. The user may catch such exceptions for failure
handling. Aside from uncaught application-level exceptions in an RMI, when any of the below failures
occur during an RMI, a RemoteException is raised on the caller side. In all cases, they may be handled
by the invoker to perform recovery or evasive measures in the regular Python semantics.

1. The communication route between the caller and the callee nodes is broken

2. The callee node fails during execution

Another crucial issue for wide-area computing with dynamically joining nodes is bootstrapping a
node. In distributed object-oriented models, this translates to obtaining the first reference to a remote
object. In the proposed framework, any remote object may be published with a human readable string
name as follows:

object.register("any-name")

A process may obtain a reference to a published object using the name.

ref = RemoteRef("any-name")

This way, the newly joining node may obtain the reference to an existing object and thus join the
computation by notifying existing members of its joining.

3.1.3 Sample code

Using the proposed programming model, one can easily implement applications using dynamic pro-
cesses. One of such examples is shown in Figure 3.2(a), a simple yet complete template for master-
worker applications. The master initiates work on each worker via asynchronous RMIs, and results
are collected using futures. The nodeJoin method, invoked by workers, uses the signal primitive to
unblock the master and add new workers into the workers list. Node failures are handled by catch-
ing exceptions for respective RMIs, and re-submitting the work. It is noteworthy that locks are not
necessary, and that by using futures, the master’s flow resembles that of a sequential program. With
the active object model, where locks are also unnecessary, maintaining this flow is impossible as the
master object is in method run the entire time; workers will never have a chance to run nodeJoin. In
comparsion, Figure 3.2(b) shows the code for a typical master-worker framework. A handler, indepen-
dently invoked on each event, has to branch of each event type, and the loop must perform explicit
mutual exclusion. The event-driven code also destroys natural sequential flow of control.

3.1.4 Discussion

In the proposed object semantics, atomic blocks do not encompass an entire method block, but rather
between potentially blocking operations within a method. Yet this is acceptable semantics for the
following reasons. Atomic sections in real life applications are very short (e.g., checking if a given
value exists in a map before insertion). Moreover, users are aware of blocking operations in advance
(synchronous RMIs, access to futures, calling wait). Also, as common practice, it is not favorable to
design atomic blocks such that they encompass blocking operations.
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c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . n o d e s = [ ]
s e l f . j o b s = j o b s

d e f n o d e J o i n ( s e l f , n o d e ) :
s e l f . n o d e s . a p p e n d ( n o d e )
s e l f . s i g n a l ( ) # n o t i f y j o i n

d e f r u n ( s e l f ) :
a s s i g n e d = {}
w h i l e T r u e :

# d i s p a t c h w o r k t o a v a i l a b l e w o r k e r s

w h i l e l e n ( s e l f . n o d e s )>0
a n d l e n ( s e l f . j o b s )>0:

n o d e = s e l f . n o d e s . p o p ( )
j o b = s e l f . j o b s . p o p ( )
# a s y n c h r o u s R M I t o w o r k e r

f = n o d e . w o r k . f u t u r e ( j o b )
a s s i g n e d [ f ] = ( n o d e , j o b )

# w a i t f o r a n y r e s u l t s

r e a d y s = w a i t ( a s s i g n e d . k e y s ( ) )

# i f g o t s i g n a l , l o o p b a c k

i f r e a d y s == N o n e : c o n t i n u e

# r e a d r e a d y r e s u l t s

f o r f i n r e a d y s :
n o d e , j o b = a s s i g n e d . p o p ( f )
t r y :

p r i n t ”done : ” , f . g e t ( )
s e l f . n o d e s . a p p e n d ( n o d e )

e x c e p t R e m o t e E x c e p t i o n , e :
# i n c a s e o f a f a u l t , r e r u n j o b

s e l f . j o b s . a p p e n d ( j o b )

c l a s s W o r k e r :
d e f w o r k ( s e l f , j o b ) :

# d o w o r k o n j o b . . .

r e t u r n r e s u l t s

d e f r u n ( s e l f , m a s t e r n a m e ) :
# o b t a i n r e f e r e n c e t o m a s t e r a n d j o i n

m a s t e r = R e m o t e R e f ( m a s t e r n a m e )
m a s t e r . n o d e J o i n ( s e l f )

c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . j o b s = j o b s

s e l f . w o r k e r s = [ ]
s e l f . t a b s = {}
s e l f . l o c k = L o c k ( ) # f o r m u t e x

# i n v o k e d o n n e w e v e n t w i t h a r g . e

d e f h a n d l e E v e n t ( s e l f , e ) :
# n e e d m u t u a l e x c l u s i o n

s e l f . l o c k . a c q u i r e ( )
t r y :

# g i v e j o b t o n e w n o d e

i f e . t y p e == N E W _ N O D E :
n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# h a n d l e r e s u l t a n d g i v e - o u t a n e w j o b

e l i f e . t y p e == J O B _ D O N E :
p r i n t ”done : ” , e . r e s u l t

n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# re - e n q u e l o s t j o b o n n o d e f a i l u r e

# d o n o t re - e n q u e u e w o r k e r

e l i f e . t y p e == F A I L U R E :
n o d e = e . n o d e

j o b = s e l f . t a b s . p o p ( n o d e )
s e l f . j o b s . a p p e n d ( j o b )

f i n a l l y :
s e l f . l o c k . r e l e a s e ( )

a. The core for a simple Master-Worker Program. b. Master-Program template in
Classes for the Master and the Worker are shown. a typical master-worker framework

Figure 3.2: Sample code and comparison with typical master-worker framework

In the semantics however, livelocks may still occur, like in cases where a thread infinitely loops in a
method without blocking. This is arguably as hard to debug as deadlocks. Currently, this is deferred
as future work.

The proposed signal mechanism sends the signal to objects rather than to threads. This design
decision was motivated by the fact that in a distributed non-active object model, threads are ephemeral
existences only used to gain parallelism. Thus, the programmer is more concerned about interacting
with objects, than threads.

Finally, the proposed model can address a wide range of applications beyond the master-worker
model shown in the sample code. For example, more P2P-like applications like distributed island-GA
applications, where each node performs GA and periodically do crossovers with other peer nodes, can
also be easily expressed using RMIs to each other’s object. Yet another example is a P2P application
that compute PageRank for large number of documents in a parallel and distributed fashion [53]. In
this application, each compute node exchanges PageRank information for locally stored documents
with random peers to improve the accuracy of the overall scores. Such P2P applications are on the
rise, can be naturally expressed using the general distributed object-oriented model as in the proposed
framework.
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¶ ³
# for all peers whose IP address pattern matches <src-pat>,
# connections to peers whose IP address match <dst-pat> will
# use SSH-portforwarding with SSH user <user>

require <src-pat> <dst-pat>, prot = ssh, user = <ssh-login-user>

µ ´
Figure 3.3: gluepy connection configuration file syntax

3.2 The Framework Implementation

The following section discusses how the framework implementation copes with the physical issues of
large-scale wide-area environments. In particular, the implementation had to resolve three issues:
point-to-point communication in a WAN setting (NATs, firewalls), allowing nodes to join with ease,
tolerating abrupt node failures.

3.2.1 Overlay network construction

The framework, to realize point-to-point communication among all nodes, automatically construct an
overlay using TCP connections. Each participating node establishes connections with a small number
of nodes chosen at random (about 20 connections). Analysis has shown that such a scheme will
create a connected graph of all participating nodes with high probability [36]. However, some cluster
completely filter incoming and outgoing packets, and thus there are no means by which these resources
may be connected. For these cases, the scheme automatically perform SSH portforwarding over which
TCP connections are forcefully established. Only for these cases, the scheme requires the user to
specify the points between which SSH portforwarding is done. However, adjusting the scheme to use
portforwarded connections between 2 groups of nodes only requires one line in a configuration file as
in Figure 3.3.

Over this overlay, a routing layer adapted from a reactive routing protocol, AODV [54] is imple-
mented. It adapts well to dynamic graph changes and fits the setting where nodes join and leave at
will; the lazy routing path construction does not entail broadcast storms in face of high churn. The
routing metric is the RTT latency for each TCP link.

3.2.2 Dynamic node join

For nodes to join the computation, it must first become connected with the overlay. In order to do
so, it needs a set of bootstrap peer node information, or endpoints, with which it will first connect.
In a TCP overlay, this entails obtaining a set of initial (IP, port) pairs. The framework thus provides
an endpoint server that all nodes access before joining. Each node obtains a set of endpoints. It then
adds its own endpoint to the server so that other nodes may connect to itself. A number of options
are available for this server. One is an HTTP server, the other is a server built on top of GXP 1[60], a
Grid shell. Using GXP, one may log into hundreds of remote servers via SSH and execute commands

1http://www.logos.ic.i.u-tokyo.ac.jp/gxp/
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on them in parallel. It also provides a mechanism with which all nodes may communicate via SSH
tunnels. Because all communication is done via SSH, this mechanism can be used even for resources
that are not accessible by any other means.

3.2.3 RMI fault detection

In the context of an overlay network, a communication route between 2 points may constitute more
than 1 TCP connection, and thus is not trivial to detect RMI faults. It is assumed that when a node
fails, it closes all established TCP connections. An RMI is realized by two protocol messages, the RMI
Request and the RMI Return message. Additionally, each RMI is identified by a globally unique id,
an RMIID. In the implementation, an RMI failure is defined as when either the RMI handler node
fails, or any of the TCP connections that the RMI Request message has traversed fails.

3.2.3.1 RMI Invocation and Return Implementation

First, the process of an RMI invocation is shown in Figure 3.4(a). On method invocation, an RMI
Request Message is sent towards the object hosting node. Each RMI Request Message contains the
following.

RMIID: globally unique ID for the RMI

path: list of nodes it has visited, starting from the invoking node

Before a node sends/forwards the message, it does the following operation.

1. using the RMIID as the key, locally store the path traveled by the RMI Request Message as the
return path

2. using the RMIID as the key, locally store a path pointer, which is a pointer that points to the
connection to which the message will be forwarded

3. add itself to the path in the RMI Request Message

On the other hand, after the method invocation has been handled by the object hosting node, an
RMI Return Message is returned towards the invoker. The message along with the RMIID is forwarded
along the path on which the RMI Request Message came. As a node receives the message, it does the
following operation.

1. remove the locally stored return path and path pointer for the RMIID

2. return the message along the path, if a connection to the next hop exists

3. if no connection to the next hop exists, simply drop the message

As it follows the path in reverse, all intermediate nodes erase the path pointer for the RMIID. If the
node to which the message has to be returned does not exist due to node failure, the RMI Return
Message can be ignored because of the clean-up operation triggered by that node failure. This is
described below.
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Figure 3.4: RMI messaging implementation

3.2.3.2 Clean-up operation in case of intermediate node failure

When a node fails, all nodes connected to it will detect a connection failure. Each neighbor node
finds out if any RMI path pointer points to the failed connection. For all such existing pointers, the
node deletes the pointer and sends an RMI Return Message carrying a failure exception, back along
the stored path. If the node to which the message must be sent is unavailable due to yet another
node failure, the message can simply be ignored again. This is because the clean-up operation would
have been triggered by this node failure as well. As long as the RMI invoker node has not failed, it
is guaranteed to receive an RMI Return Message carrying either the RMI returns, or an RMI failure
status. By doing so, the intermediate node can notify the RMI invoker of the RMI failure, and the
path created by the RMI Request message is effectively torn down. An image of the entire process is
shown in Figure 3.4(b).
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Chapter 4

Deadlock-free Overlay for
Wide-area Networks

This chapter presents the proposed wide-area overlay that performs deadlock-free routing for all point-
point communication in a locality-aware manner. The overlay can be used as the underlying communi-
cation layer for parallel and distributed programming framworks, so they may be deployed in wide-area
environments to resolve connectivity and scalability concerns.

4.1 Overlay Overview

Our overlay system consists of 2 components: overlay construction, and deadlock-free routing table
construction. The system first constructs an arbitrary TCP overlay, where each participating process
establishes TCP connections to an arbitrary set of other participating processes. Using this graph of
TCP connections, a deadlock-free routing table is computed distributedly. An arbitrary routing metric
can be chosen for the computation: latency, hops, etc. Afterwards, point-to-point messages between
processes are simply forwarded via intermediate processes, each using fixed buffer memory. The overlay
guarantees reliability, and FIFO for all overlay communication while achieving flow control. It also
assures reliability for the overlay nodes in the sense that there can be no memory overflow. In return,
the overlay makes very few assumptions; all that is required is that the TCP overlay be a connected
graph.

4.2 Forwarding Procedure on Overlay Nodes

This section describes the overlay node I/O procedure. All point-point communication is conducted in
the form of messages. A messages corresponds to a continuous string of characters submitted by the
application to be sent to a destination. Before transmission, each message is segmented into packets of
predefined lengths, and they are sent in FIFO. The order of packets within a message is preserved while
packets are forwarded to the destination, and no packets are dropped by intermediate overlay nodes.
The packets are reassembled into one continuous message at the destination node before delivery. A
graphical overview of a message transmission is shown in Figure 4.1(a)
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Figure 4.1: Graphical representation of the forwarding procedure

A node performs all I/O operations non-blockingly. The set of all connections for a node refers to
all the established TCP connections the node has. For each connection c, the following are defined.

• 1-packet receive buffer

• finite send buffer

• connection wait queue

Because receives are carried out non-blockingly, bytes received from a connection may only constitute
a partial packet. Such a partial packet is temporarily stored in the connection’s 1-packet receive buffer.
Once a partial packet becomes a full packet after subsequent receives, it will be removed and be either
delivered to the user, or forwarded to the next connection. A full packet also remains in this buffer if
the next connection’s send buffer is full; in such a case receives on the connection is blocked.

Each connection has a finite send buffer, where packets are sent in FIFO. Sends are done non-
blockingly, and packets that could not be fully sent are returned to the head of the send buffer. If the
send buffer is full, a packet from another connection will fail to append it onto the buffer. In such a
case, the failed connection will enter the wait-queue of the connection, and receives on it will stop.

A connection’s wait-queue is a FIFO queue of connections waiting for the its send-buffer to become
non-full. Whenever a packet is removed and full sent from its send-buffer, the connection’s wait-queue
is checked and any pending connections are popped and its pending packet is appended on the send
queue. Once a connection is removed from a wait-queue, receives on it will resume.

The overlay node follows the I/O procedure shown in Figure 4.2. In the figure, packets that could
not be fully sent non-blockingly by send is returned. The overview of the procedure at each node is
graphically shown in Figure 4.1(b) The procedure effectively implements the back-pressure mechanism
using TCP connections and fixed buffer queues. The system does not deadlock thanks to deadlock-free
routing.
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attributes for each connection c:
c.buffer: queue of strings to be send on connection c
c.waitqueue: queue of connections waiting on connection c
c.packet: partial packet from connection c, initially empty string

io loop() {
RS = set of all connections;
WS = {};
while ( true ){

R,W = block and get set of readable/writable
connections from RS and WS;

foreach ( c ∈ R ){
c.packet = c.packet + recv packet from c;
if ( c.packet is partial ) continue;
if ( destination of c.packet is here ){

deliver c.packet to user;
}else{ /* if need to forward */

n = get next hop connection for c.packet;
if ( n.buffer is full ){ /* c needs to wait */

n.waitqueue.enqueue(c);
RS = RS \ {c}; continue;

}else{ /* pass packet to next send buffer */
n.buffer.enqueue(c.packet);
WS = WS ∪ {n};

}
}
c.packet = ””; /* reset receiving packet */

}

foreach ( c ∈ W ){
p = c.buffer.dequeue(); /* get a packet to send */
p′ = send p on c; /* get remainder in p′*/
if ( p′ 6= ”” ){ /* return remainder to queue */

c.buffer.enqueue head(p′); continue;
}

/* waiting connections pass-on its packet and become active again */
while ( c.waitqueue is not empty and

c.buffer is not full ){
w = c.waitqueue.dequeue();
c.buffer.enqueue(w.packet); w.packet = ””;
RS = RS ∪ {w}; /* re-activate the waiter */

}
if(c.buffer is empty){WS = WS \ {c}}

}
}

}

Figure 4.2: I/O thread procedure
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Figure 4.3: An example of 4 transfers in a deadlock

4.3 Deadlock-free Routing

4.3.1 Deadlocks in computer networks

This section describes how a deadlock can occur when each node has a finite buffer. First, a simple
example of a deadlock is presented. In an undirected graph, such as a TCP overlay, a finite send buffer
is allocated for each link. Packets must be copied here before being sent on the link. If a node needs
to forward a packet to a different node, the packet must be copied to a corresponding send buffer.
If the send buffer is full, the node cannot receive the packet from the preceding link, since no buffer
space is available. Consider an example scenario of 4 nodes in Figure 4.3(a) and let each link have
a 1 packet send buffer. If any overlay paths have loops, then it is trivial that a deadlock can occur.
Consider 4 transfers, A → B → C, B → C → D, C → D → A, D → A → B that yield shortest paths.
If they happen concurrently, each transfer will fill the send buffer for links A → B, B → C, C → D,
D → A respectively. However the next node will be unable to receive any packets as its send buffer,
to which they need to be copied, is full. None of the transfers can make progress, and thus, a deadlock
is reached.

Formally, consider the network as a directed graph where C denotes the set of unidirectional links.
Bidirectional links (such as TCP connections) are replaced by 2 opposing unidirectional links. Given
a transfer path that utilizes links e1, e2, · · · , en (ei ∈ C) in that order, there is a link dependency
between links ei and ei+1 because until the send buffer for ei+1 becomes non-full, no packets from ei

can be received. Denote this dependency as ei → ei+1 (i = 1, 2, · · · , n − 1). When there is a cycle in
this link dependency graph, a deadlock can potentially occur. This is possible when there are loops
in the overlay path, or when multiple indepenent transfers occur concorrently. Thus, in the previous
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Figure 4.4: An example of ordered-link routing

example, a deadlock occured due to the cyclic dependencies among links as shown in Figure 4.3(b):
1 → 2 → 3 → 4 → 1.

4.3.2 Deadlock-free routing basic concepts

The concept of deadlock-free routing is to compute transfer paths so that there can be no cycles in the
link dependency graph. Earlier routing works relied on using regular topologies (such as hypercube
or torus) to achieve deadlock-freedom [29, 30]. Here, only algorithms that can be applied to arbitrary
irregular topologies are considered.

4.3.3 Ordered-link routing

Ordered-link Routing [28] extracts spanning trees with undirected links. Starting from the set of all
bidirectional graph links, this method extracts best-effort spanning trees until no links are left. It is
best-effort because some trees may not be able to span across all nodes. The best-effort spanning-trees
are labeled by ranks in ascending order. A rank assignment example is shown in Figure 4.4(a). In
order to remove deadlocks, a path, having used any link from a spanning tree of rank r, cannot use
any links from spanning trees with rank less than r. Given a network with n nodes and e links, d e

ne
ranks will be assigned. Reachability is guaranteed because any source can reach any node only using
the spanning tree of the lowest rank. An ordered-link path example is shown in Figure 4.4(b). Because
there can be no cyclic dependency between links of differing ranks, and because there can be no cycles
within a spanning tree, there can be no deadlock. This method leaves room as to in which order links
are assigned to a spanning tree. By default, un-assigned link are chosen at random to form spanning
trees in ascending rank.

4.3.4 Up/Down routing

Up/Down routing is the most popular routing scheme currently used in commercial networks [27, 57].
This method assigns a direction to each bidirectonal link in the network and creates a DAG. For
a given path, if the path traverses the link along the direction assigned to the link, the path goes
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Figure 4.5: An example of Up/Down routing

up (and otherwise down). A direction assignment example is shown in Figure 4.5(a). To remove
deadlocks, a path cannot go up a link after it has gone down any links. An Up/Down path example
is shown in Figure 4.5(b). To ensure reachability, the created DAG must be have a single root sink
node. When considering the network to be a directed graph, each undirected link becomes 2 opposing
unidirectional-links: one labeled up, the other down. Thus, the algorithm constructs 2 seperate DAGs:
one composed of up links, and the other composed of down links. The up DAG is used first, and then
the down DAG. No cycling dependencies are possible between up and down unidirectional links, and
no dependency cycles exist within each DAG .Thus, there can be no deadlocks. To assign up directions
to each link, a root node is assigned, and the network graph is traversed, assigning numerical ids in
ascending order. The link direction are assigned towards the node with a smaller node id. The graph
traversal is usually done breadth-first [57], but this creates very restrictive constraints, and paths may
be prohibited unnecessarily to prevent deadlocks. A depth-first traversal has also been studied to
mitigate this effect [56].

4.3.5 Locality-aware Up/Down routing

Traversing the graph breadth-first to assign node ids in Up/Down routing is especially prohibitive for
heterogeneous wide-area environments composed of clusters of clusters. In a sparse overlay network,
non-adjacent nodes must be reached using 2 or more links. Thus, destinations that are unreachable
only using down links must be reached by first going up, and then heading down. This situation is
troublesome for nodes that have relatively small ids within a cluster; due to the nature of breadth-first,
going up for these nodes implies using inter-cluster wide-area links. But to reach other intra-cluster
nodes, it must then come down and re-enter its own cluster. This is illustrated in Figure 4.6(a). The
deadlock-free contraints must not restrict route to such paths. Thus, this work proposes the following
heuristics to improve path quality for such heterogeneous networks.

• Id assignment graph traversal will be performed depth-first, giving priority to child with greatest
proximity
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Figure 4.6: Up/Down routing in heterogenous networks

The rationale is to remove “sibling” relationships between intra-cluster nodes, where the other node
can only be reached by first traversing a common parent node. In an overlay where intra-cluster nodes
are densely connected, the likelihood of all intra-cluster nodes having a single anscestory chain is high,
and they can be accessed by only traversing up or down links. This removes deadlock-free contraints
that force intra-cluster nodes to traverse inter-cluster links. Applying the above heuristic yields much
more favorable results for the same example, which is shown in Figure 4.6(b).
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4.4 Routing Table Construction

The Bellman-Ford algorithm can find optimal routes for Up/Down routing, and approximate ones for
ordered-link routing [28]. This work proposes a new deadlock-free routing table computation algorithm
that finds optimal routes for both methods in a unified way by extending on Dijkstra’s shortest-path
routing.

4.4.1 Overview

The problem with directly applying Dijsktra’s shortest-path algorithm is the fact that deadlock-free
paths depend not only on the current node, but also on history on how the current node was reached.
This can be resolved by introducing an integer state i for each node: for Up/Down routing it represents
if down links have been previously traversed (0 if no and 1 if yes), and for ordered-link routing it
represents the largest link-ranking that have been used so far. Thus, one can envision a routing
problem for tuples of node and state value i. Initially, all nodes exchange link states among each
other; this can be done scalably using a spanning tree. Next, each node can compute its routing table
independently with its node set as the source.

4.4.2 Algorithm

The algorithm takes an arbitrary undirected overlay graph G = G(N,E), where N denotes the set of
all nodes and E the set of all bidirectional edges, and modifies it. For all n ∈ N , create r node tuples
(n, i) (i = 1, · · · , r) where r = 2 for Up/Down routing and r denotes the total number of ranks for
ordered-link routing. Denote the set of node tuples as Ñ . For all bidirectional edge e ∈ E, replace it
with 2 opposing directional edges ẽ1, ẽ2 and label them in the following:

Up/Down: label the edge in the up direction 1, and the one in the down direction 2

ordered-link: label both ẽ1 and ẽ2 as i where i is the rank of edge e

Denote new edge set as Ẽ. The node and edge modification is shown in Figure 4.7. As for node
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Algorithm 1 LeveledDijkstra(Ñ , Ẽ, r, src)
1: // initialize Distance, Predecesor, and source tuples
2: for all ñ ∈ Ñ do
3: Dist[ñ] ← ∞
4: Prev[ñ] ← NULL
5: end for
6: for i = 1 to r do
7: Dist[(src, i)] ← 0
8: end for
9:

10: Q ← Ñ
11: while |Q| > 0 do
12: (n, i) ← deleteMin(Dist,Q)
13: // iterate over all reachable neighbors of node n
14: for all ẽ ∈ outEdges(Ẽ, n) do
15: m ← ẽ.dst
16: j ← ẽ.label
17: for k = i to r do
18: // do not consider nodes with
19: // label smaller than edge label
20: if i ≤ j ≤ k then
21: d ← Dist[(n, i)] + ẽ.dist
22: if d < Dist[(m, k)] then
23: Dist[(m, k)] ← d // decreaseKey(Dist, Q)
24: Prev[(m, k)] ← (n, i)
25: end if
26: end if
27: end for
28: end for
29: end while
30: return Prev

connectivity, the following rule is established:

• For all ẽ : ns → nd ∈ Ẽ with label i, where ns, nd ∈ N , ẽ connects all (ns, j) to (nd, k) such that
j ≤ i ≤ k.

The procedure is shown in Algorithm 1. ẽ.dst and ẽ.label denote the destination node and label
for unidirectional edge ẽ ∈ Ẽ. As shown in the algorithm, the proposed algorithm only make slight
changes to Dijkstra’s algorithm. The difference is that the algorithm treats all node tuples ñ ∈ Ñ

as independent nodes, and that reachable neighbors of a given node is determined based on the
connectivity rule explained above. Each node solves it own routing table by setting src to itself and
initializing distance to (src, i) to 0. The returned Prev table can be used to extract paths to each
n ∈ N .

4.4.3 Complexity

Using a Fibonacci heap, the complexity of Dijkstra’s algorithm is O(|N |(log |N | + degree)), where
degree denotes the average degree of all nodes. The proposed algorithm obtains a new directed graph
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G̃ = G̃(Ñ , Ẽ) where |G̃| = r|G| and |Ẽ| = 2|E|. Because of the connectivity rule and the replication
of nodes, each node’s degree increases r folds. Thus, the complexity becomes O(r|N | log |N |+ r2|E|).
For Up/Down routing r is a constant so the complexity becomes O(|N | log |N |+ |E|). For ordered-link
routing, r = |E|

|N | , thus O(|E| log |N |+ |E|3
N2 ). For the worst case, a complete graph, they reduce to |N |2

and |N |4 respectively. Compared with the Bellman-Ford algorithms that are O(|N ||E|) per node, this
is an improvement for Up/Down routing. Though in the worst case this can be worse than ordered-link
routing, this algorithm yields optimal paths rather than approximates [28].
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4.5 Utilizing Underlying Network Information

Because the proposed overlay utilize deadlock-free routing algorithms that work on irregular topologies,
it functions correctly with arbitrary graphs. But to yield higher performance in LAN/WAN mixed
environments, the proposal includes considerations for the underlying network.

4.5.1 Connection selection

The proposed overlay create a locality-aware overlay based on [55] where it utilizes the latency matrix
among all nodes. Each node sorts all other nodes in ascending distance. Given n total nodes and a
parameter d that determines the connection density, each node attempts to connect to the following
nodes:

• all first d closest nodes

• uniform-randomly select d nodes from [dk + 1, dk+1]-th closest nodes for k = 0, 1, · · · , logd(n)

Each node densely connect with close nodes, while sparsely with distant nodes. This scheme reduces
WAN connections and thus communication contention in WANs for concurrent communication. This
is demonstrated in the evaluation.

4.5.2 Routing metric

LAN/WAN mixed environments are complex in the sense that low latency and bandwidth may come
in trade-off of each other; maximizing for one may degrade the other. Thus choosing a suitable routing
metric requires further investigation. This is beyond the scope of this paper. In the proposed system,
sum of the inverse bandwidth of the links is the metric for a path.
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Chapter 5

Experiment Results

This section presents evaluation results for the proposed programming framework, and the proposed
deadlock-free routing overlay. They were both evaluated in multi-cluster environments connected over
a WAN. The detailed descriptions of the environments for the two proposals are given independently.

5.1 Programming Framework Applications on a Large-scale
Wide-area Environment

By using the program shown in Figure 3.2(a) as the base, the evaluations to follow show that parallel
and distributed applications can be expressed simply in Python using the proposed framework. It
shows that the applications can be deployed in a large-scale wide-area environment with minimal
effort despite NATs/firewalls, and dynamic fluctuations in compute node resources.

5.1.1 Experiment Condition

First, the details of network environment is outlined. Figure 5.1 and Table 5.1 show the clusters used
for the evaluations. It is noteworthy that each cluster has different network administration settings.
For example, due to the NAT configuration, most nodes in cluster kyoto and imade are not accessible
from outside. Cluster kototoi has global IPs, yet due to the firewall at the gateway router, no
incoming connections can be accepted. However, all nodes in all clusters were utilize without any
manual configuration; the bootstrapping scheme in Section 3.2.2 automatically bootstrapped all nodes
to the peer-to-peer overlay. Exceptions are cluster istbs and tsubame, in which all its incoming and
outgoing packets on most ports are filtered for security reasons. At the time of the experiment, all
communication to istbs cluster required an SSH-portforwarding via a node inside the cluster. All
communication to tsubame compute nodes required a 2-hop SSH portforwarding: first via the cluster
gateway node, and then to a node inside the cluster. The overlay configuration was setup so as to use
SSH-portforwarded TCP connections to these clusters and incorporate them into the overlay network.
Once this was realized, communication among all nodes was done without hindrance. The SSH-
porforwarding connections to these clusters were initiated from nodes in cluster hongo, and all other
nodes within istbs, and tsubame used raw TCP connections to intra-cluster nodes. The gateway node
in tsubame cluster was further configured to establish SSH-porforwarding connections to intra-cluster
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Figure 5.1: Experiment cluster settings denoted by core counts¶ ³
# hongo nodes use SSH to reach istbs nodes
require hongo istbs, prot = ssh, user = <ISTBS-USERNAME>

# hongo nodes use SSH to reach tsubame-gateway node
require hongo tsubame-gw, prot = ssh, user = <TSUBAME-USERNAME>

# tsubame-gateway node uses SSH to reach tsubame compute nodes
require tsubame-gw tsubame-compute, prot = ssh, user = <TSUBAME-USERNAME>

µ ´
Figure 5.2: Connection configuration file used for experiment

compute nodes. The configuration file is shown in Figure 5.2

5.1.2 Fault-Tolerance

The evaluation will show that a simple piece of code as shown in Figure 3.2(a) can carry out a very
simple master-worker application despite node insertions and abrupt failures. A single Master object
dynamically distributes 10,000 tasks to Worker objects. For node addition, the method described in
Section 3.2.2 is used. For node failures, processes on corresponding nodes are simply killed abruptly
without warning. The sequence of insertion/deletion is as follows:

0 sec: Initially bootstrap with clusters hongo, chiba, suzuk, okubo, kyoto, kototoi (510
workers)

60 sec: Added cluster istbs (203 workers)

280-830 sec: Added cluster tsubame (65 workers), but most of them are lost due to slow
communication
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Table 5.1: Specifications of each cluster

Name CPU Nodes Network
(Cores)

chiba Pentium M 1.86GHz 70 (70) global IP
Core2 Duo 2.13GHz 58 (116)

hongo Pentium M 1.86GHz 70 (70) global IP
Core2 Duo 2.13GHz 14 (28)

(firewall)
imade Core2 Duo 2.13GHz 30 (60) private IP
okubo Core2 Duo 2.13GHz 14 (28) global IP
suzuk Core2 Duo 2.13GHz 36 (72) global IP
kyoto Core2 Duo 2.13GHz 35 (70) private IP
mirai Xeon E5410 2.33GHz 6 (48) global IP
hiro Xeon E5410 2.33GHz 11 (88) global IP
istbs Xeon 2.40GHz 158 (316) global IP

(blocked)
tsubame Dual Core - (64) global IP

Opteron 2.40GHz (blocked)

980 sec: Reinserted cluster tsubame (65 workers)

1320 sec: All nodes in cluster chiba are killed (-169 workers). Some workers whose path
between the Master uses cluster chiba nodes are also lost.

1800 sec: All nodes in cluster chiba are reinserted (+169 workers)

1950 sec: All nodes in cluster istbs are killed (-202 workers)

2350 sec: All nodes in cluster istbs are reinserted (+202 workers)

No tasks were lost during this experiment. The time series for the number of Workers running, and
the number of tasks allocated by the Master to each Worker is shown in Figure 5.3. The figure
shows that as the number of workers fluctuates, the master detected task losses and redistributed
jobs accordingly. The failure detection latency was in the order of milliseconds. All fault detection
is done at the programmer level by detecting faults as exceptions as in Figure 3.2(a). Moreover, it is
noteworthy that all participating nodes are interconnected on a TCP overlay and direct connection is
not necessary for fault-detection due to the scheme in Section 3.2.3.

5.1.3 Real-life Application

Many real-life parallel and distributed applications require parallel tasks to interact with each other.
An example of such applications is a problem solver that uses branch-and-bound. In these applications,
it is imperative that all parallel solvers share the latest bound information for efficient computation;
these are applications that require periodic communication among nodes. Such applications are im-
possible to express in programmingless frameworks where inter-task communication is not permitted,
or in divide-and-conquer type frameworks where communication is limited to immediate parent and
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Figure 5.3: Active workers/assigned nodes for FT master-worker

children tasks. As discussed in [15], such applications can be expressed naturally in master-worker
models, but there are virtually no frameworks that can handle the hostile network environment (NATs,
firewalls, and IP filtering) in the given experimental settings.

As a case study one of such problems, the Permutation Flowshop Scheduling Problem (P-FSP),
was taken and its parallel solver was implemented using the proposed framework. P-FSP is a problem
where n jobs have to be processed on m machines in the same order. Only permutation (of jobs)
schedules are considered, which means that all jobs have to be processed by machines 0 . . .m − 1 in
that order. The goal of this problem is to find a schedule which minimizes the makespan (execution
time) with proof. This entails going through the search space of all possible job permutations to find
the order with the minimal makespan.

The solver does a parallel branch and bound in a master-worker model, where each worker receives
a small section of the search space. The master and the worker programs, which won the 3rd Grid
Plugtest Competition [1], had already been implemented in C++. Each node ran a Python program
with the framework, and the program communicated with its local Master/Worker C++ program using
pipes. The bulk of the computation was delegated to the C++ programs, and the Python program
did the master/worker flow control and the necessary communication. Thus, the proposed framework
served as the glue to integrate the two and deploy it on the experiment environment.

The flow of the computation is expressed in Figure 5.4(a). When a worker first joins, it first receives
a task to solve via an asynchronous RMI. The worker and the master periodically (every 60 seconds)
exchange bound information used for the branch-and-bound. The master stores the worker bound
information if it is better. Other nodes will update its own latest bound if the query to the master
yields better bounds than before. When a worker finishes or aborts its given task, the asynchronous
RMI returns and the master gives it its next task. For simple load-balancing, when the master runs out
of tasks to distribute, it takes an already assigned task and divides it into smaller tasks to distribute.
This is done because the computational size of a task cannot be predetermined; they are simply inferred
by how long they have been worked on and become targets for redistribution. The worker aborts its
current task if its task has been made into smaller tasks and redistributed to other workers.
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Figure 5.4: Evaluation of the Permutation Flowshop Solver

The study shows that the proposed framework allows the programmer to program such applica-
tions with minimal expansion to the conventional master-worker application. The only noticeable
addition to Figure 3.2(a) is where the worker queries the master periodically using an extra RMI
exchange_bound(). Because the computation could take months (perhaps years), fault-tolerance was
a crucial part of the design. However this is already built into the base sample code in Figure 3.2(a),
and failed workers are handled by catching RMI fault exceptions; no additional code was necessary.
Moreover, the code required no mutual exclusion and all communication was done in the form of RMIs.
The entire code in Python took merely about 250 lines.

Though the modification is simple, it is not necessarily a straightforward modification with other
frameworks. Blindly using distributed objects will cause race-conditions at the master node [64], and
thus explicit mutual exclusion is required. It will deadlock if the active-object model were used as this
is a recursive invocation between the master and the worker [37]. Some master-worker frameworks
allow master/workers to send messages to each other [22, 49], and task distribution and bound updates
can be done via this way, but this makes the flow and the semantics of the program harder to discern.
In the models above, failures cannot be handle at all, or they have to be implemented via seperate
failure handlers [22].

The solver was executed on three different configurations:

A: only cluster chiba: 168 cores

B: clusters chiba, hongo, kototoi, okubo, suzuk, imade, and kyoto: 569 cores

C: clusters chiba, hongo, kototoi, okubo, suzuk, imade, kyoto, istbs, and tsubame: 948 cores

The only necessary network configuration, in the 948 core case, was to specify the SSH portforwarding
settings for clusters istbs and tsubame, which is shown in Figure 5.2. The rest of the deployment
was taken care of automatically and successfully created a connected graph of all processes.

An evaluation using a relatively small randomly generated problem instance of (n = 28, m = 20)
is shown here. To measure the performance of the framework, rather than of the algorithm, the
computation efficiency is shown. The computation efficiency is calculated as C

NT , where N , T , and
C resepctively denote the core count, the completion time, and the cummuative computation time
across all cores. The results are shown in Figure 5.4(b). With 948 cores across 9 sites, 88% efficiency
is maintained.
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Figure 5.5: Experiment Environment

5.2 Deadlock-free Routing Overlay in Wide-area Networks

This section provides evaluation results for the proposed deadlock-free overlay. In simulation and in
large-scale WANs, the evaluation shows that the overhead of using this deadlock-free overlay over
deadlock-unaware overlays and direct raw socket communication is very small. The evaluation also
shows that the proposed overlay can deliver performance boosts over using direct raw sockets for
certain collective communications.

5.2.1 Experiment Condition

Experiments were conducted in both simulation and in a real wide-area environment. The environment
consisted of 8 clusters mostly from the InTrigger platform [7]. All nodes use GbE interfaces. The
clusters with node counts and its WAN topology information is shown in Figure 5.5. For the evaluation
using 10Gbps Myrinet interfaces, the T2K platform [52] was also used. All compute nodes used Linux
2.6.18 and thus, the BIC TCP congestion control algorithm [67].

5.2.2 Deadlock-free Routing Overhead

The evaluation here shows that utilizing the proposed locality-aware Up/Down routing heuristics add
very little overhead with respect to deadlock-unaware routing by comparing the following.

path hops: overlay path hop count

bandwidth ratio: bandwidth obtained by using the path in comparison to the direct path

Comparsion for path latency is shown with the point-point experiment to follow. Routing tables for all
node pairs were computed by simulation on an overlay of 13 clusters (515 nodes) from InTrigger. The

42



5.2. DEADLOCK-FREE ROUTING OVERLAY IN WIDE-AREA NETWORKS

overlay was constructed using the locality-aware scheme with varying connection density. Deadlock-
unaware shortest-path routing is also shown as a comparison. Figure 5.6(a) shows that the path
lengths between deadlock-unaware and deadlock-free routing is on average minimal. The proposed
Up/Down routing heuristics is denoted by updown-dfs. Even when the longest path length for all
pairs is compared in Figure 5.6(b), though ordered-link routing exhibits very long paths, the proposed
Up/Down heuristics yield roughly the same path length as deadlock-unaware routing.

The ratio of bandwidth obtained by using the proposed overlay against that by direct socket
communication is also compared. For overlay connection densities including and above 0.03, the
average ratio of bandwidth obtained by overlay paths over direct raw sockets exceeded 0.99 for all
deadlock-free algorithms. The minimum bandwidth ratios are shown in Figure 5.6(c). Ordered-link
routing and Up/Down routing yields some paths with anemic bandwidth for sparse overlays. Analysis
showed that these were intra-cluster node pairs who were forced to use narrow inter-cluster links due
to the deadlock-free contraints. Because the proposed Up/Down routing heuristics avoid inter-cluster
communication for intra-cluter nodes, such poor bandwidth usage is avoided, and is comparable to
deadlock-unaware routing.

5.2.3 Point-Point Communication Performance

Evaluation here demonstrates that the proposed deadlock-free overlay performs comparably against
direct point-point communication, both for latency and bandwidth utilization. To measure the true
round-trip time latency for all paths, the overlay was run on 7 clusters (170 nodes): hiro, istbs,
okubo, suzuk, hongo, kototoi, and chiba. Using the locality-aware overlay construction, 8% of all
possible connections was established. Figure 5.7 shows the CDF of the round trip latency ratio of all
node pairs in comparison to when a complete graph was established. As indicated by the horizontal
line, 95% of all pairs have latency ratios less than 1.72, 1.51, and 1.48 for ordered-link, updown, and
the proposed updown heuristics respectively.

Some overlay paths however traverse inter-cluster links for intra-cluster communication, and expe-
rience very large latency stretch factors. This is shown in the distribution of latency on the overlay
with respect to that of direct raw sockets in Figure 5.8(a), (b). Such paths arise not because of the
deadlock-free constraints, but because of the routing metric selection: sum of inverse link bandwidths.
Clusters istbs, hongo, chiba, and suzuk have 1[Gbps] connections to each other and inter-cluster
connections for these yield bandwidth comparable to intra-cluster ones. Thus, these inter-cluster
links were selected in exchange for fewer hops. Figure 5.9(a), (b) illustrate that changing the routing
metric to the latency over the path yields latency comparable to raw socket communication, given
the constructed overlay and the deadlock-free routing constraints. It should be noted here that in
Figure 5.9(a), Up/Down routing still forces intra-cluster communication to traverse inter-cluster links
because of its deadlock-free constraints does not take network locality into account. The proposed
Up/Down routing algorithm in Figure 5.9(b) avoids creating such constraints and yields the latency
of the underlying network.

Figure 5.10(a),(b),(c) show the bandwidth utilization for long message transfers over varying overlay
hops on 3 different environments: (1) within istbs cluster (940[Mbps]), (2) across istbs and keio

clusters (95[Mbps]), (3) within T2K (7[Gbps]). The figures in the parenthesis indicate throughput
attainable by direct TCP sockets. The results show that comparable bandwidth, even for multiple
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hops and widely varying interconnects , can be achieved simply by coupling TCP and fixed buffers.
Though multiple hops on Myrinet is not up to par, this in reality is not a problem as the locality-aware
overlay achieves fewer hops for LAN nodes.

5.2.4 Collective Communication Performance

Not only can using the proposed overlay provide latency and throughput performance equal to direct
communication, it can improve performance for certain collective communication operations when
there is network contention. For all evaluation below, unless otherwise noted, the proposed Up/Down
heuritics for routing was used.

5.2.4.1 Gather Communication

Gather is one of many basic collective communications, and using overlays improves gather time, even
in high speed networks like a LAN, by removing contention at the switch. In a very simple single
cluster of 36 nodes, connected to 1 GbE switch, the collective gather time to a single node for direct
communication and the proposed overlay was measured. Evaluation was done with a random graph
overlay with varying connection density and with varying message sizes. As in Figure 5.11(a), using
the overlay yields higher performance than direct sockets. This is because packets are dropped at the
LAN switch as many concurrent packets arrive to be send on the same port. The sender thus has
to retransmit the packet after the TCP retransmission timer expires. This is demonstrated by the
gather completion time in Figure 5.11(b). The completion time diverge in increments of 200[ms], the
default TCP retransmission timer. TCP’s fast-retransmission algorithm mitigates this slow down by
immediately retranmitting the dropped packet when it receive a duplicate ACK 1 from the receiver.
Yet it fails, as in the case here, when the packet lost was the last packet to be sent (no duplicate
ACKs to trigger it), or when the fast-retransmitted packet is lost again. When using an overlay to
perform gathers, the number of senders to a destination at any given time is restricted, thus reducing
packet loss at the switch. To demonstrate this, Figure 5.11(b) shows that sparser overlays yield higher
performance.

In multi-cluster environments, contentions at LAN switch by concurrent packet arrivals is mitigated
due to a larger distribution in latency, but nonetheless still degrades performance for direct raw sockets.
The same operation was done for 291 nodes in 4 clusters: istbs, chiba, suzuk, and kototoi, where
all data was collected at a node in suzuk cluster. As in Figure 5.11(c), even in this multi-cluster
environment, the same phenomenon occurs for short message sizes. The overlay equally or out-performs
direct communication constantly.

5.2.4.2 All-All Communication

The performance benefit of using overlays over direct sockets are magnified for intensive communication
patterns in network environments where bottlenecks exist. This is true for both LAN environments and
LAN/WAN mixed environments. The all to all communication time in a single cluster, istbs of 177
nodes was measured. This cluster, as shown in Figure 5.12, is connected hierarchically, where there are
14 to 20 nodes per leaf switch. The bottlenecks in this case are the inter-switch Ethernet links shared

1duplicate ACKs convey consecutive ACKs with the same packet sequence number to indicate the oldest packet that
was lost in transit
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by communication across switches. The overlay was made by the locality-aware scheme, thus fewer
connections are made across switches. In this environment, the inter-switch links become the bottleneck
and the source of congestion. This is a typical cluster configuration, but Figure 5.13(a) shows that
even in such settings, sparse overlays that account for locality can achieve higher performance.

When the WAN-interconnect is used, the performance difference magnifies. The same operation was
conducted for 291 nodes in 4 clusters: istbs, chiba, suzuk, and kototoi. Results in Figure 5.13(b)
arise because much larger number of nodes now contend for much narrower cluster gateway and WAN
bottlenecks. This dramatically increases packet loss, and manifests itself in the large performance gap
for shorter messages, which are much more vulnerable to packet-loss.

The evaluation here also shows the benefit of using locality-aware overlays as opposed to random
graphs. Figure 5.13(c) compares the 10[KB] all to all communication performance difference when the
overlay connection selection method is changed to random, instead of locality-aware. The performance
diverges as the overlay gets sparser. This arises because the locality-aware scheme eliminates WAN-
connections first, while the random graph does not differentiate between LAN/WAN connections. This
causes the latter to select a much larger proportion of WAN-connections, and thus giving rise more
packet-loss and less performance.
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(a) Average Path Hops

(b) Max Path Hops

(c) Min Bandwidth Ratio

Figure 5.6: Simulation results with varying density
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Figure 5.7: Overlay RTT ratio to direct communication

a. Up/Down b. proposed Up/Down

Figure 5.8: RTT ratio with sum of inverse bandwidth metric

a. Up/Down b. proposed Up/Down

Figure 5.9: RTT distribution with latency metric
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(a) Within istbs cluster

(b) Between kototoi and keio cluster

(c) Within T2K nodes

Figure 5.10: Point-Point Long Message Throughput
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(a) Performance ratio for 1 cluster

(b) Gather time in 1 cluster

(c) Performance ratio for 4 clusters

Figure 5.11: Gather Performance
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1Gbps
14 14 14 14 14 20 20 20 20

4Gbps

4Gbps

Figure 5.12: Switch topology of cluster used in all to all communication
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(a) Performance ratio for 1 cluster

(b) Performance ratio for 4 clusters

(c) Performance comparison by overlay construction scheme

Figure 5.13: All-All Performance
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work presented 2 contributions to parallel and distributed programming in wide-area environ-
ments.

The first proposal presented a programming framework that aims at simple and flexible program-
ming in a large-scale wide-area environment with limited network connectivity, dynamic node joins,
and node failures. The framework provides simplicity, without the loss of generality, by extending
a widely accepted object-oriented language, Python for wide-area parallel computing. Parallelism is
expressed in the form of RMIs with the aid of futures for a natural transition from sequential programs.
Using a new invocation serialization semantics, accesses to objects are implicitly serialized without the
fear of deadlocks, effectively eliminating locks. The framework introduced simple mechanisms at add
nodes to ongoing computation. Node failures are tolerated by abstracting them as RMI exceptions,
which can be catch and handled. For connectivity and scalability in WANs, the framework’s un-
derlying communication utilizes an automatically constructed TCP overlay, which tolerates dynamic
adjustments for node joins and failures. Using the framework, this work demonstrated that:

• the overlay enables computation across 9 clusters with a variety of network environments includ-
ing NATs and firewalls using minimal user configuration

• the node join/leave features allow whole clusters to be added and removed repeatedly, and the
computation will still complete correctly

• taking a branch-and-bound optimization application as an example, the framework enables quick
and effective development of parallel applications in large-scale wide-area environments with 900
cores, despite network hindrances like NATs and firewalls

A prototype for gluepy is currently available from its homepage:
http://www.logos.ic.i.u-tokyo.ac.jp/˜kenny/gluepy.
The second proposal presented a wide-area, network locality-aware overlay network with a flow

control scheme that realizes high transfer throughput for wide-area overlays. The scheme can be
implemented straightforwardly by coupling TCP connections with fixed buffer memory and applying
deadlock-free routing, thus avoid reimplementing reliability and flow control already provided by TCP.
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6.2. FUTURE WORK

The simplicity of the scheme allows the overlay to attain straightforwardly the throughput performance
of the underlying network. Recognizing the challenges of deadlocks and of using conventional deadlock-
free routing to heterogeneous wide-area networks, this work proposed heuristics to adapt deadlock-free
routing on the proposed overlay in a heterogeneous wide-area environment. By experiment, this work
demonstrated that:

• the proposed deadlock-free routing algorithm imposes a very small latency and throughput per-
formance overhead with respect to deadlock-unaware routing, given suitable information on the
underlying network

• the proposed flow control scheme achieves throughput close to that attained by directly using
TCP on environments ranging from 100[Mbps] to 10[Gbps] networks

• on certain collective communication, the proposed overlay out-performs standard direct commu-
nication by mitigating or completely avoiding network contention

6.2 Future Work

Future work for the proposed high-performance wide-area overlay includes investigating automatic
overlay connection management schemes that establish minimal connections to achieve near optimal
performance. Such a scheme will no longer require heuristics for locality-aware connection manage-
ment. Another direction is to implement wide-area applications/libraries using this overlay communi-
cation layer, including MPI implementations and distributed file-systems.

The goal of this collective work is to present a programming framework that enables wide-area
parallel and distributed computation with node joins/leaves using a simple programming model, com-
bined with a high-performance overlay layer that yields high-performance communication in WANs.
Thus, future work for this area is to adapt the routing scheme to accommodate dynamic changes to
the overlay. In order to allow overlay node joins and failures during computation, the deadlock-free
routing needs to be modified.
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