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A Note on Finite Element Interval Analysis

(Part 2 Linear, Undamped Eigenvalue Problem)
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1. Introduction

Interval analysis techniques were applied not only to
estimation of charactersitics change of linear systems and
electrical circuits whose components have tolerance ™,
but also to evaluation of behavior fluctuation of structures
whose parameters are uncertain®. Interval analysis of
eigenvalue problems has not been carried out yet, however,
to the best of the author’s knowledge. This paper presents a
formulation of the finite element interval analysis in linear,
undamped eigenvalue problem of structural vibration based
on sensitivity analysis with respect to uncertain variables.
The formulation is based on the finite element sensitivity
analysis with respect to the system variables and is different
from that of Koyluoglu et al¥. which is based on the
technique of interval computation®.

2. Statement of problem

Suppose that we have a nominal design of an elastic
structure, whose linear and undamped eigenvalue problem
is given by Eq.(1) after treatment of the boundary

conditions,
([K]—=AM){gp}={0} 1)

where [K] and [M] denote the N-dimensional stiffness
matrix and mass matrix subject to the uncertain variables &m
defined by Eq.(2) for M structural parameters p, that
fluctuate uncertainly. A and {¢} denote the eigenvalue and

eigenvector of a single eigenmode, respectively.
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The upper bar means the quantity defined at the nominal
value of the structural parameters taken. It is assumed that
the stiffness matrix and mass matrix are differentiable by the
uncertain variables as well as the eigenpair.

The problem is to find the uncertain variables that
earmark the interval of the eigenvalue and eigenvector
components when a convex hull is specified as the domain in
which the uncertain variables are conceived to exist®. The
interval arising from the rounding errors of computation is

not dealt with in this note.
3. Finite element sensitivity analysis

Equations (3) and (4) are the Taylor series expansion of
the stiffness matrix and mass matrix with respect to the
uncertain variables and truncated at the first-order. The
superfix I and suffix m denote the first-order sensitivity with
respect to the m-th uncertain variable. Equations (5) and (6)
stand for the variability of the eigenpair of an eigenmode
under interest caused by the fluctuation of the stiffness and

mass matrices.

(K= [K]+ 3 [Kn'] & 3)
(M) = [¥] + 32 [My'] & )
=03 dl e ©)
(9} =18} +2 (o'} em (6)

The nominal eigenpair is determined by Eq.(1), to which
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o &
the nominal stiffness and mass matrices are input.
Substituting Egs.(3) through (6) into Eq.(1) and applying
the perturbation technique, we obtain the eigenvalue
sensitivity in the vicinity of the nominal structural para-
meters by Eq.(7),

A ={ @} ([Kn'] = AIM,']) (@)} 1 {0} [M] {9}
™)

where the superfix T denotes transpose of matrix. Now that
the eigenvector in this study is normalized so as to set
{¢}7 [M] {¢} always equal to unity, the eigenvector
sensitivity is obtained on the basis of Eq.(8), in which the
normalizing condition of eigenvector is added as an equality

constraint condition for the eigenvector”.
[ [K]—A[M]
2{¢}"[M]

_ [Km]]_i[MmI]—AmI[M] i
(4) T [M,1] i ©

}{%’}

4. Quadratic convex hull

The interval of the eigenvalue or eigenvector components
is searched for a given interval of the uncertain variables,
which can be constituted in various ways. The uncertain
variables dealt with in stochastic structural mechanics are
correlated more or less so that it is desirable to provide
convex hull that is able to take correlation between the
uncertain variables into account. Quadratic convex hull
meets this purpose. Consequently we suppose that the
conceivable domain of the uncertain variables is given in the

form of a quadratic convex hull expressed by Eq.(9),
2 {e} W] {e} -1=0 )

Expanse and shape of the convex hull are specified by the
parameter ¢ and matrix [W], respectively. These can be
chosen judiciously and analogously somehow to variances
and covariances of probabilistic variables.The matrix [W]
should be positive-definite for the purpose to set a convex
hull as the conceivable domain of the uncertain variables®.

5. Interval estimation by Lagrange multiplier method

The maximum and minimum of a convex function with
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respect to the variables confined in a convex hull take place
on the boundary of the convex hull. This means that the
maximum and minimum, whose difference is interval, can
be searched by the Lagrange multiplier method for
quadratic convex hull by constituting a functional s as stated

in the following®.
m={e}T{S}+v(c{e} [W]{e} - 1) (10)

In case that the interval of eigenvalue is estimated, the first
term of the right hand side of Eq.(10) stands for the
eigenvalue change of Eq.(5) so that {S} is the sensitivity
vector consisting of the eigenvalue sensitivities A,,”.

The stationary condition of the functional 7 with respect
to the unknowns &, and the Lagrange multiplier v results in
their nonlinear simultaneous equations (11) and (12).
Introducing a vector {q } defined by Eq.(13), we obtain { &}
of Eq.(14) that satisfies Eq.(11).

%:{5} + 2ve2 [W] (&) = {0} (11)
T = (e} W] {e} —1=0 (12)
{gy =W (S) ()
(e} =—{q}/2vc? (14)

The calculation of {q } is available because the matrix [W] is
positive-definite. Substitution of Eq.(14) into Eq.(12)
enables us to determine the Lagrange multiplier as given by
Eq.(15) and to earmark the uncertain variables as Eq.(16)
by substituting the Lagrange multiplier into Eq.(14).

v==V{q} ' [W]{q} /2 (15)

{e*}=F{a}/cV{q} [W]{q) (16)

Equation (16) earmarks the uncertain variables indicated by
asterisk. Then the maximum and minimum of the eigen-
value are calculated by reanalysis of the eigenvalue
problem based on the uncertain variables thus earmarked.
The interval of each component of the eigenvector can be
estimated by applying the process mentioned above to the
component whose sensitivity is derived from Eq.(8). The
interval of the eigenvalue and eigenvector components thus
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estimated satisfies the eigenvalue problem in the framework
of the first-order approximation.

6. Numerical Example

The effect of uncertainty of elastic resilience and mass on
the interval of the eigenpair of longitudinal vibration of an
elastic bar is investigated in this study. Figure 1 illustrates
the bar divided into two bar elements of unit length. In the
modeling, lumped mass matrix is employed.The nominal
spring constant and nominal half mass of each element are
taken as EA/l = 1 and pAl/2 = 1 without loss of generality,
respectively. The nominal eigenvalue problem of longitu-
dinal vibration is expressed by Eq.(17) under the boundary
condition that the left end of the bar is fixed. Two uncertain
variables are dealt with, that is, the first one & is assigned to
resilience of the element A and the second one &, to mass of
the element B. Equations (18) and (19) express the first-
order approximation of the change of the stiffness matrix

and mass matrix in the vicinity of the nominal matrices.

(= )@= )

1 1 01
[K]=[_f _iH; ole (19)

2 0 1 0
[M]=[0 1]+[0 1]82 (19)

The sensitivity analysis of the eigenpair of the first eigen-

mode results in the following equations,

A = 0.29289 + 0.25¢; — 0.21967¢&; (20)
¢ = 0.5 — 0.0088388¢, — 0.21339¢, 1)
¢, = 0.70711 + 0.125¢, — 0.22855¢, (22)

Fig. 1 Finite elements of bar under longitudinal vibration

where the first terms on the right hand side indicate the
nominal eigenvalue and two components of the eigenvector.
Suppose that the uncertain variables scatter in a circle of 0.1
in radius. The first-order approximation employed in
Section 3 seems to be sufficient for such a small circle. Then,
identity matrix is input as the matrix [W] that represents the
convex hull, and the parameter c is taken equal to 10.0.

Figure 2 depicts the conceivable domain of the uncertain
variables by matted area within the circle and the contours
of A, ¢y and ¢, that are determined by Egs.(20) to (22) and
the positive terms of Eq.(16), and come in contact with the
circular convex hull at (0.07512,-0.06600), (-0.03826, -
0.09237) and (0.04796,-0.08770), respectively. These coor-
dinates indicate the uncertain variables earmarked for the
maximum of the eigenvalue and eigenvector components,
while the minimum of them is determined by the negative
terms of Eq.(16) in this case.

Figure 3 illustrates the ellipse in which the eigenvector
components scatter corresponding to the uncertain resili-
ence and mass in and on the circle of Fig. 2. The solid circles
and squares in Fig. 3 indicate the intervals of ¢ and ¢,
calculated by Egs.(21) and (22) for the uncertain variables
earmarked by themselves, respectively. These are in good
agreement with the ellipse derived from the uncertain
variables on the circle of the small convex hull. The solid
triangles correspond to the interval of A due to the uncertain
variables earmarked by A itself. The intervals of the
eigenvalue and two eigenvector components due to the

uncertain variables earmarked in different ways are listed in

€
0.1

P~
—~ ~5{ 9,=0.52413
74\1
- ~

Fig. 2 Convex hull and contours of A ¢, and ¢,
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Fig. 3 Scatter of vector components ¢, and ¢,

Table 1. The first line of Table 1 lists the intervals of A, ¢4
and ¢, calculated by the uncertain variables earmarked for
the interval of the eigenvalue A, while the second line and
third line list the intervals of A, ¢; and ¢, calculated due to
¢1 and ¢,, respectively. The first column of Table 1 lists the
interval of A, the second column that of ¢y, the third column
that of ¢, calculated by the uncertain variables earmarked
for A, ¢; and ¢,, respectively. This table depicts that the
interval of a quantity under interest takes the largest value
at the uncertain variables earmarked for the change of the
quantity.

7. Conclusion

A formulation is presented to estimate the interval of
eigenvalue and eigenvector components on the basis of the
finite element sensitivity analysis for the first-order approx-
imation of the response changes under interest and the
quadratic convex hull of uncertain variables. Uncertain

variables are earmarked on the boundary of the input
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A [0.26104, 0.32777) [0.49311, 0.50870) [0.68324, 0.73223]
& [0.28350, 0.30324] [0.47786, 0.52413) [0.69192, 0.72349]
23 [0.26400, 0.32591] [0.48585, 0.51630] [0.68202, 0.73415])

Table 1 List of intervals of eigenpair.

convex hull for the interval of a quantity under interest.
Interval of the other quantities are calculated consistently
corresponding to the earmarked uncertain variables so as to
satisfy the eigenvalue problem to the accuracy of the first-
order approximation. The numerical example shows the
validity of the proposed formulation and indicates that the
estimated interval of a quantity takes the largest value at the
uncertain variables earmarked for itself.
(Manuscript received, September 22, 1995)
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