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A Note on Finite Element Interval Analysis

(Part 1 Linear stiffness equation)

AR XMW 5 7 — b GE—# SR #X)

Shigeru NAKAGIRI*

A

1. Introduction

This paper proposes a method to estimate the interval of
structural responses that arises from fluctuation involved in
a structural system analyzed by the finite element method.
Koyluoglu succeeded to demonstrate the validity of the
technique of interval computation and linear programing for
the interval mapping in structural mechanics in problem of
linear stiffness equation of the finite element method". His
concerns are related to conservative estimation of the
interval of each component of the nodal displacement
vector affected by the uncertain components of the stiffness
matrix and external loads of a static system.

Some components of the stiffness matrix are correlated
with each other through the constitutive law of material and
displacement function employed for the finite elements so
that the components of the nodal displacement vector are
also correlated with each other in order to make the stiffness
equation hold, in other words, to satisfy the condition of
stress equilibrium. This hints that interval analysis had
better be carried out so as to satisfy the stiffness equation,
especially in case that interval analysis of stresses in the
structure is aimed at. This paper deals with the finite
element interval analysis, in which consistent interval of the
nodal displacements, in the sense that the stiffness equation
is satisfied, is evaluated with respect to prescribed system

variables.
2. Statement of problem

The followings are premised in this study concerned with
a linear, elastic stiffness equation.
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1) Such system parameters can be identified that govern
the variability of a structure. The system parameters stand
for uncertain variables in case of stochastic structural
analysis or design variables in case of structural shift
synthesis.

2) We have a baseline structure prescribed by nominal
system parameters, and the variability of the structural
response with respect to the system parameters under
interest can be estimated by the finite element sensitivity
analysis.

3) The system parameters vary around their nominal
value and are confined in a domain that their variability is
conceived. The domain can be represented by a convex
hull®. The range of the system parameter change is not so
large as to change the nature of the structure.

Then, the problem is to estimate the upper bound and
lower bound, in the other word, interval of the structural
responses that is consistent with the stiffness equation and
convex hull. In doing so, the interval is estimated by
searching the earmark value of the system variables that
specifies the interval on the convex hull.

3. Finite element sensitivity analysis

Suppose that a linear, elastic stiffness equation after
treatment of boundary conditions is given by Eq. (1),

[K]{U} = {F} ()

where [K] denotes the N-dimensional stiffness matrix, {U}
the nodal displacement vector, and {F} the nodal load
vector. It is assumed that their variability can be approxi-
mated by the Taylor series expansion with respect to M
system variables &, assigned to structural parameters p,, in
the form of Eq. (2), in the vicinity of the nominal structural
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parameters and truncated at the first-order as given by Eqs.
(3) and (4).

Pm = ;’m (I + &n) )
K] = [K] + 3 [Kh] & (3)
(F) = (F) + 33 {Fh)} & )

The upper bar indicates quantity evaluated at the nominal
structural parameters, and the superfix / and suffix m stand
for the first-order sensitivity with respect to m-th variable.
In Egs. (3) and (4), [K%] and {F!} are known.

The variability of the nodal displacement vector {U} is

assumed in the similar manner with the stiffness matrix as
Eq. (5).

V) = {(0) + 2 {Uh} & 5)

The unknowns {U} and {U.,} are solved by substituting
Egs. (3), (4) and (5) into Eq. (1) as follows by the
perturbation technique so as to satisfy the stiffness equa-

tion.
(U) = [K]' {F} (6)
(U} = [K]7" ({Fn} = [Kn] {U)) (7)
4. Choice of interval index

Now that the sensitivity analysis of the nodal displace-
ment vector is carried out, the variability of quantity under
interest can be estimated based on the sensitivity analysis.
The characteristics of a displacement field is reflected in the
strain energy stored in the field S so that it is possible to
define an interval of global quantity such as the strain
energy S subject to the system variable change. The
first-order approximation of the variability of the strain
energy S is given by Eq. (8) based on the results of Eqs. (6)
and (7).

25 = (U} [K] {U} = (U} [K] (U}
+ 35 (—{U) [KLHD)) &

=2(S+ 3 8, &) (8)

m=1
On the other hand, if local interval of each displacement,
that is, the n-th component U, of the nodal displacement
vector {U} is needed, its first-order approximation is given
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by Eq. (8).
UII = f]ll + ﬁ, U{I"I 8'71 (9)

Equation (8) means that a consistent index related to the
strain energy can be devised, by which the interval of global
structural response is specified in the form that the stiffness
equation is satisfied approximately, whereas Eq. (9) is valid
for straight estimation of the interval of local structural
response.

5. Estimation of interval index by linear programing

The interval of the index representing structural re-
sponses can be estimated by the convex model®, when their
variability evaluated in terms of the sensitivity analysis
forms convex function of the structural parameters whose
conceivable domain is input as a convex hull, since the
maximum and minimum of a convex function confined in a
convex hull lie on the hull boundary. The approximate
variability of the strain energy of Eq. (8) is convex function,
linear with respect to &,,, as well as that of each displace-
ment of Eq. (9). Suppose that the conceivable domain of the
system variables is given in the form of siding conditions Eq.
(10),

= Cim = Em = Cym (10)

where ¢, and c,, are positive constant standing for the
lower bound and upper one of g,. This domain of
rectangular prism forms a convex hull. Then, the search for
the interval is stated in this simple case as
find
max. and. min. of objective function S or U,
subject t0 — ¢y = En = Cum
and can be carried out by the technique of linear program-
ing. The earmark value of the system variables is obtained
as the solution of the linear programing. Such case that the
prescribed convex hull is quadratic will be discussed
together with how to cope with the deficient first-order
approximation later in the subsequent notes.

6. Numerical Example

Figure 1 illustrates an elastic bar under tension and
discretized by two elements of unit length, the nominal
spring constant EA /[ of which is taken equal to unity
without loss of generality. The left end is fixed, and the right
end is subject to unit tension, giving rise to nominal
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Figure 1 Finite elements of bar under tension

displacements of U, =1 and U, = 2. Two system para-
meters are taken for the variability of spring constant of the
two elements. The variability of the stiffness matrix is given
by Eq. (11) exactly in this case, and that of the nodal
displacement vector is computed as given by Eq. (12). The
variability of the strain energy in the bar is summarized in
the form of Eq. (13).

[K]_'2—1_+'1 0 +_1—1_ i

Tl P P . T )
1 =1 0

{U} = 2 + —1 &1 + _1 & (12)

28=2—-—¢ — & (13)

Figure 2 shows the convex hull by broken line and
decisive contours of the index of S by solid line, which
coincides with that of U,, and the index of U; by chain line.

2S and Uz=l. 8

d

2S and U,=2.2

2

Figure 2 Convex hull and contours of interval index

The amplitude of the system variables is taken equal to 10
% for both & and &. The values of the contour of 25, U,
and U, are added in the figure. In this case, it is easily seen
that the minimum and maximum of the objective function of
the global strain energy S or the largest displacement U,
take place at the same apex of & and &, (0.1, 0.1) and
(—0.1, —0.1) respectively, that is, the earmark value of the
system variables. It is because both indices of S and U, are
governed by the spring constants of the elements A and B
under the given loading system, whereas the index of U; is
affected by & only, as shown by Eq. (12). U, is governed by
the spring constant of the element A. It means that the
earmark value of ¢, is determined for the interval of U;, but
that of & cannot be determined as shown by the parallel
contour of U, to the edge of the convex hull in
Figure 2.

Figure 3 illustrates the range of the displacements of U,
and U, by matted area. The solid circle indicates the
nominal value of U, and U,. The parenthesized figures stand
for the value of & and & on the apex of the convex hull.
Two apexes marked by blank circle are calculated exactly by
reanalysis of the stiffness equation whose stiffness matrix is
determined by the earmark value of the system variables.
The other two apexes without any mark correspond to the
relevant apexes of the convex hull. It can be said from this
figure that, in case if the concept of interval is applied
forcibly to vector, the consistent interval of the nodal
displacement vector ranges from {1.11111, 2.22222)7 to

U (-0.1,-0.1)

(0.1,-0.1)

0 0.9 1.0 1.1 Uy

Figure 3 Intervals of displacements U, and U,
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{0.90909, 1.81818}" corresponding to the value of the
system variables of (—0.1, —0.1) and (0.1, 0.1) earmarked
by the index of the strain energy. The superfix 7" denotes
transpose of vector. The consistent interval mentioned
above enables us to derive the individual interval of U; and
U, and calculate that the interval of the strain term, that is,
U;~0 and U,-U,; in two elements ranges from [1.11111,
1.11111] to [0.90909, 0.90909]. On the other hand, when
attention is paid to the interval of a particular displacement,
for instance U, through the index picked up from Eq. (9),
what we can know is that the interval of U, is [0.90909,
1.11111] from the earmark value of & of 0.1 and —0.1. The
interval of U, cannot be specified in this example because
the earmark value of &, is not determined. Consequently,
the estimation of interval of strain term is left impossible.

If interval of a particular displacement is needed, it can be
estimated through the particular component picked up from
Eq. (9), but is so local that the interval of stress may not be
evaluated duly by the combination of such local intervals of
displacements. Instead of tiresome choice of the interval of
proper displacements under the influence of the system
variables included, it is recommended to employ the strain
energy as the index for the determination of the earmark
value of the system variables that bounds the interval of
structural responses, because the effect of all the system
variables is taken into account in the computation of the
global strain energy.
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7. Conclusion

A formulation is presented to estimate the interval of
global strain energy, each displacement and strains with
respect to the imposed variability of the system variables
taken. The finite element sensitivity analysis is carried out in
order to constitute the first-order approximation of the
variability of the strain energy. The variability of the system
variables is expressed by a convex hull. The earmark value
of system variables that bounds the strain energy is searched
on the boundary of the convex hull by the technique of
linear programing in the case of linear convex hull. The
numerical example shows that the interval of the global
strain energy, the largest displacement and strain terms in
two. elements can be estimated consistently from the
earmark value of the system variables.

How to cope with the deficient first-order approximation
of the structural variability and quadratic convex hull will be
presented in the subsequent notes.

(Manuscript received, August 18, 1995)
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