特 集 6 研 究 速 報

油圧アクチュエータを用いたアクティブ・パッシブ 切換え型マスダンパの風・地震応答観測

Mesurement of Wind and Earthquake Responses of Hybrid Mass Damper with Convertible Active and Passive Modes Using Hydraulic Actuator

鎌 田 崇 義*・藤 田 隆 史*・正 木 信 男**・北 村 春 幸***
Takayoshi KAMADA, Takafumi FUJITA, Nobuo MASAKI and Haruyuki KITAMURA

1. は じ め に

近年,風や地震の際の高層建物での居住性を向上させるものとして,アクティブ・マスダンパの実用化が進んでおり¹⁾,現在国内において約20棟の建物に設置されている.著者等は,風や頻繁に起こる小地震に対してはアクティブ・マスダンパとして積極的に性能の良い制振を行い,アクティブ制御の能力を越えるような中・大地震に対しては制御を切換えてパッシブ・マスダンパとして許容変位内で有効な制振を行うアクティブ・パッシブ切換え型マスダンパの研究,開発を行い,多段積層ゴムと油圧アクチュエータを用いたタイプ^{2).3)}を1993年8月に竣工された日本長期信用銀行本店ビルに実用化した⁴⁾.

設置されたマスダンパは風や地震による揺れを検知して 稼動を始め、同時にセンサ設置階での建物の応答変位、速 度、加速度、マスダンパの動き、制御力、制御状態等の データが記録される。本報告では、風および地震の際に得 られた建物、マスダンパ系の観測データを基に解析モデル を用いたシミュレーションを行って、非制振の場合との比 較を行ってマスダンパの制振効果について検討している。

2. 建物・マスダンパの概要

2.1 建物の概要

図1が日比谷にある日本長期信用銀行本店ビルである. 8階以上の高層部が南北に張り出したT字型の形態をしており、高さ約130 m、総質量約40,000 t である. 実地震の際の非制振状態での応答観測データによって同定された建物の長辺方向(X方向),短辺方向(Y方向)の1~3次のモーダルパラメータを表1に、応答値と同定値を用い

^{**(}株)ブリヂストン

図1 日本長期信用銀行本店ビル

表1 建物パラメータ

	X 方向			
モード	固有振動数 (実測値)Hz	固有振動数 (同定值)Hz	減衰比%	
1次	0.42	0.42	1.2	
2次	1.22	1.15	2.0	
3 次	2.76	2.72	1. 2	
227	Y方向			
モード	固有振動数 (実測値)Hz	固有振動数 (同定值)Hz	減衰比%	
1次	0.39	0.39	0.6	
2次	1.31	1.31	1.4	
3 次	2.76	2.65	2.0	

^{***(}株)日建設計

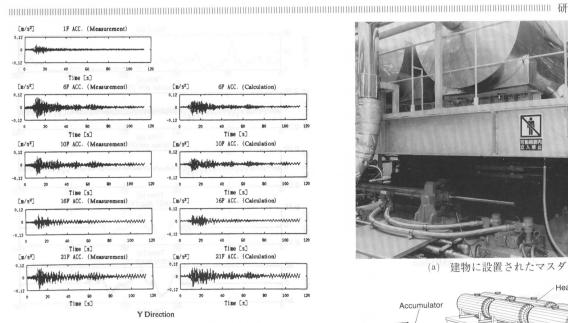
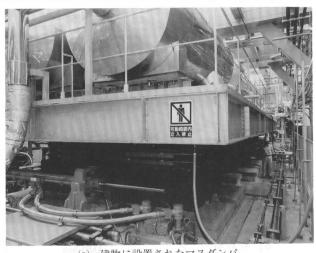
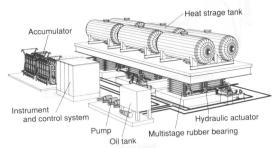


図2 実地震に対する建物の応答(非制振)


たシミュレーションとの比較を図2に示す.

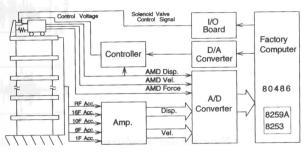
2.2 マスダンパの概要


図3が建物に設置されたマスダンパである. 質量194.9 tで建物の1次モード質量の約0.65%にあたり、可動質量 の一部には蓄熱槽を利用している. 支持機構は6基の多段 積層ゴムで、アクチュエータは1方向あたり2本の油圧ア クチュエータを用いている.油圧系はアキュムレータ、ポ ンプ,減衰機構等からなり、ポンプは4台あり、アクティ ブ制御開始時に4台駆動し、以後油圧系の状態にあわせて 台数調整をして効率的な運用を行う.減衰機構はリリーフ 弁を利用してアクチュエータに摩擦ダンパに似た機能を持 たせるものであり、リリーフ圧力は3段階の設定が可能で、 電磁弁でこれを切換えて減衰の大きさを変化させることが できる. 表2にマスダンパおよび油圧系の仕様を示す.

2.3 制御システム

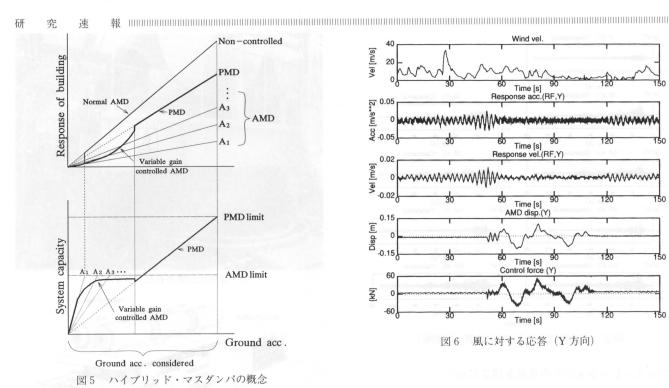
制御システムを図4に示す. センサ設置階は1,6,10,16, 屋上階で、10階が2次モードの腹、6,16階が3次モード の腹にあたる. センサはサーボ型加速度計で、測定値をア ンプで積分して建物の絶対速度および絶対変位をアナログ データとして取込む.制御ではこれらのデータから1階に 対する相対速度, 相対変位を求め, モーダルフィルタを用 いて 1.2 次成分を取出している. 処理は32bitCPU (80486DX) で行い、サンプリングタイムは10 ms である.

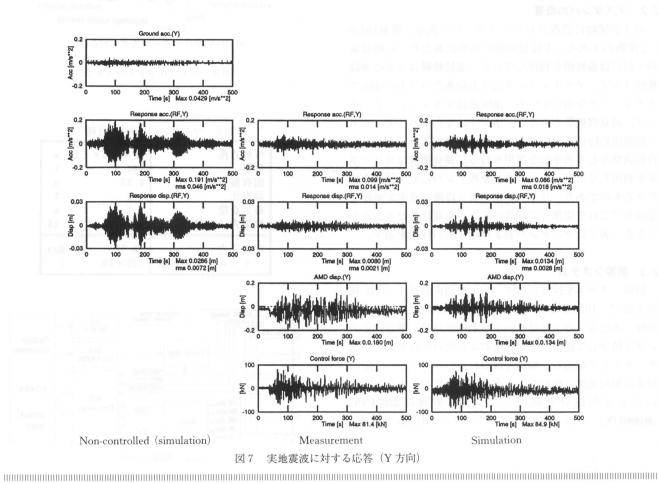
建物に設置されたマスダンパ



(b) ハイブリッド・マスダンパの構成

図3 ハイブリッド・マスダンパ


マスダンパ・油圧系仕様 表 2


外形寸法	$18 \times 6.5 \times 4.5^{H}$	m
質量	194.9	t
固有振動数	0.33	S
減衰比	3.0	%
最大変位	1.0	m
制御力 (一軸)	147×2	k N
定格圧力	13.72	Mpa
アキュムレータ容量	120×20	1

义 4 制御システム

552

3. 制 則

本マスダンパでは、図5にその概念を示すように、可変 ゲイン制御則、アクティブ・パッシブ切換え方式を適用し, さらにパッシブモードにおいてリリーフ弁の設定圧力の切 換えを行っている. 可変ゲイン制御則はより大きな外乱に までアクティブ制御を続けるために適用し,システム圧力, マスダンパの変位、制御力に基づいてファジィ切換えを行 う. そして,システム圧力,マスダンパ変位がアクティブ 制御の能力限界を越えそうな時にはパッシブモードに切換 え、その後アクティブ制御が可能になればアクティブモー ドに戻す. パッシブモードではマスダンパ変位が制御装置 の限界を越えないように設定圧力の切換えを行う. また, センサ異常や不測の原因によるマスダンパの誤動作を防止 するためのフェイルセーフ機構も組込まれている⁵⁾.

制御は地震によって地下5階と地上階の加速度がともに $1.5 \times 10^{-2} \,\mathrm{m/s^2}$ を越えた場合,および風によって16,屋 上階の速度がともに最上階加速度に換算して1.5×10⁻² m/s^2 を越えた場合に始まる.

4. 観測結果と考察

図6は風に対する応答である.上から屋上階での風速, Y方向の屋上階絶対加速度,相対速度,マスダンパ変位, 制御力である. 建物の形状から風による揺れはほとんど Y 方向にしか起こらない. 非制振状態から50秒すぎに制 御に入っており、制御開始後マスダンパが2~3ストロー ク動いただけで建物の振動をほとんど抑えてしまっている. 屋上階加速度では制御中に油圧ポンプや他の設置機器によ る高振動数のノイズが入っているが、相対速度に注目する とかなりの制御効果があることが確認できる.

図7に1994年12月28日の三陸はるか沖地震の際の応答を 示す. 震源は八戸市の東方約200 km の地点で, マグニ チュード7.5. 東京での震度は2であった. 図は上から地 動加速度,屋上階加速度,屋上階変位,マスダンパ変位, 制御力で、左が非制振の場合、中央が実測値、右が解析モ デルによるシミュレーションで、Y方向についてのデー タである. 実測値とシミュレーションの比較ではシミュ レーションの屋上階応答にパルス的な高調波が数ヶ所載っ ているが、その他はよく一致しており、屋上階加速度を最 大値で約50%, RMS 値で約30%にまで低減している. な お、マスダンパは常にアクティブモードであった、図8は, このときの地上階加速度に対する屋上階加速度の応答倍率 である. 実線がアクティブ制御を行った場合, 点線が非制 御の場合(理論値)で、制御を行っている1,2次モード

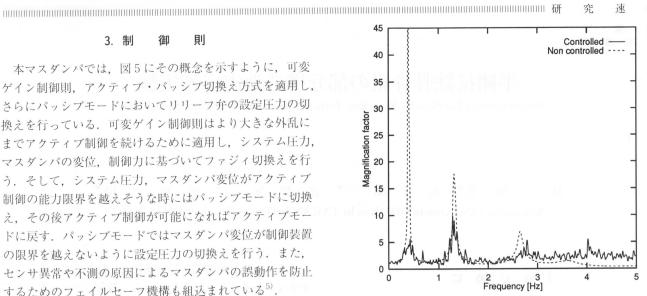


図8 屋上階加速度 (Y方向)

の応答がよく抑えられていることがわかる.

5. ま

本報告では, 多段積層ゴムと油圧アクチュエータを用い たアクティブ・パッシブ切換え型マスダンパを設置した日 本長期信用銀行本店ビルの風・地震応答観測結果を基にマ スダンパの制振効果について検討し、風・地震に対して十 分な制振性能があることを確認した.

(1995年8月17日受理)

考文献

- 1) たとえば、永田、ほか5名:みなとみらい21ランドマー クタワーの制振装置, 日本建築学会学術講演梗概集, 885-885, 1990.
- 鎌田、藤田、正木:多段積層ゴムと油圧アクチュエータ を用いた高層建物制振用アクティブ・パッシブ切換え型 マスダンパの研究 (第一報), 日本機械学会論文集, 61-581, C(1995), 22-29.
- 3) 鎌田,藤田,正木:多段積層ゴムと油圧アクチュエータ を用いた高層建物制振用アクティブ・パッシブ切換え型 マスダンパの研究 (第二報), 日本機械学会論文集, 61-582, C(1995), 507-512.
 - 藤田、鎌田、ほか6名:多段積層ゴムと油圧アクチュ エータを用いた高層建物制振用アクティブ・パッシブ切 換え型マスダンパの実用化, 日本機械学会論文集, 60-580, C(1994), 4107-4115.
 - 藤田,鎌田:高層建物制振用アクティブ・マスダンパン パの誤動作防止方法について (その1), (その2), 生産 研究, 46(10), 517-524, 1994.