11

究速载

研

特

研

有限素法によるチャンネル乱流の LES (第2報)

Large Eddy Simulation of Turbulent Channel Flow Using Finite Element Method

小林敏雄*・坪倉 誠*・谷口伸行*・大島まり* Toshio KOBAYASHI, Makoto TSUBOKURA, Nobuyuki TANIGUCHI and Marie OHSHIMA

1. はじめに

Deardorff¹⁾により初めて平行平板間の乱流の数値解析 に適用された Large Eddy Simulation (LES)は、既存の Reynolds Averaged Numerical Simulation (RANS)と比 較して、乱流の非定常性を再現でき、かつより物理的に理 にかなったモデル化の手法を適用することから、より高度 な乱流モデルとして非常に注目されている。そして比較的 簡単な形状を有する乱流場に対しては、スペクトル法、差 分法によりその有用性は実証されてきた。

近年,計算機の性能の向上に伴い,このLESを工学が 対象とするより複雑な流れ場に適用しようとする動きがま すます大きくなりつつある.モデリングの分野においても Deardorff が用いた Smagorinsky モデルに対して,より複 雑な乱流場への適用を考慮したモデルが近年さかんに発表 されている^{2)~4)}.このような背景より,より複雑な形状 を有する流れ場に有利に対応できる有限要素法を LES に 適用することは非常に有意である.

一方,平行平板間流れのような一見単純な乱流場におい ても,LESの格子平均の概念から考えるとあまりアスペ クト比の大きな要素を用いるのは好ましくないと思われる. また,より正確な乱流強度の予測には壁近傍の組織構造を 正確に予測する必要がある.このためには,壁近傍,特に スパン方向に多くの格子を必要とし,その半面,流れ中央 では乱流の構造はかなり大きく,あまり多くの格子は必要 でなくなる.この問題に対しても非構造格子系の有限要素 法は有力な解決策になると言える.

われわれは以前,LES を有限要素法に適用する可能性 を示すため、スパン方向に6つの要素を用いた平行平板間 乱流の解析を行った⁵⁾.その結果,差分法に比べて計算時 間は要するものの,結果は平均流速,乱流強度,について 定性的に理にかなった解析結果が得られた.

本研究においては、スパン方向に32要素を用いて解析を 行った.その結果、平均流速、乱流強度、平均レイノルズ 応力についてかなりの改善がみられた.また、対流項に対 して3つの離散化手法を適用し、その有用性を確かめた. その結果、本研究で用いた対流項の1つが有限要素法に よってLESを行う上で、有力であることがわかった.ま た、壁近傍においてダイレクトシミュレーション (DNS)⁶⁾と比較するとやや大きな構造ではあるものの、い くつかの組織構造も再現できた.

2. 基 礎 式

本研究における基礎式は、フィルタリング操作を施した 連続の式と Navier-Stokes 方程式である.(解析対象は非 圧縮性ニュートン流体)

$$\frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{i}} = 0 \tag{1}$$

$$\frac{\partial u_{i}}{\partial t} + \frac{\partial u_{i}u_{j}}{\partial x_{j}} = -\frac{\partial}{\partial x_{i}} \left(\overline{p} + \frac{2}{3}q\right) + v \frac{\partial^{2} \overline{u_{i}}}{\partial x_{j}\partial x_{j}} - \frac{\partial}{\partial x_{j}} \tau_{ij}$$
(2)

$$\tau_{ij} = \left(\overline{u_i u_j} - \overline{u_i} \overline{u_j}\right) - \frac{2}{3} \,\delta_{ij} q \tag{3}$$

ここで、*v* は流体の動粘性定数, q は乱流の Sub-grid scale (SGS) のエネルギーである. また(2)式の右辺第3 項がモデル化を要する項で,本研究においては Deardorff がその先駆的研究に用いた Smagorinsky モデルを採用した. すなわち,

$$q = \frac{1}{2} \left(\overline{u_k u_k} - \overline{u_k} \overline{u_k} \right) \tag{4}$$

*東京大学生産技術研究所 第2部

$$\tau_{ij} = -\left(C_s\Delta\right)^2 \left(2\overline{S}_{ij}\overline{S}_{ij}\right)^{1/2} \overline{S}_{ij} \tag{5}$$

$$\overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$
(6)

ここで Cs は Smagorinsky 定数で,差分法において,平 行平板間流れに有効であるとされている0.1を本研究にお いても採用した.また, Δ は一般に格子スケールと呼ば れる変数で,本研究においては要素の体積の1/3乗として 与えた.なお,Smagorinsky モデルは渦粘性の壁近傍に おける漸近挙動を捕えることができないので,Van Driest 型の減衰関数⁷⁾ 1-exp(-y⁺/25)を渦粘性係数に乗じた.

3. 有限要素法による定式化と離散化

基礎式は重み付き残差法により弱形式化したのち,未知 変数である圧力と速度に対して近似関数を定義する.圧力, 速度の近似関数は以下のように与えられる.

$$\overline{\mathbf{p}} \approx \sum_{\alpha=1}^{Ne} (\overline{\mathbf{p}})_{\alpha} \Psi_{\alpha} \tag{7}$$

$$\overline{\mathbf{u}}_{i} \approx \sum_{a=1}^{Nn} (\overline{\mathbf{u}}_{i})_{a} \Phi_{a}$$
(8)

ここで、Ne, Nn はそれぞれ圧力、速度の定義点の数を あらわす.また括弧でくくられた物理量はおのおのの定義 点における離散値である.また、 Ψ_{α} は圧力定義点 α にお ける圧力の補間関数であり、 Φ_a は速度定義点aにおける 速度の補間関数である.すなわち各物理量の近似関数は、 定義点における離散値とその点での補間関数の積を全定義 点に対して足したものとして定義される.空間の離散精度

については速度に対しては一次の補間関数,圧力について は零次の補間関数(すなわち,要素内で圧力一定)を適用 した.本研究で用いた8節点要素と速度,圧力定義点を図 1に示す.

なお、本研究においては運動方程式の重み関数には、速 度の補間関数,連続の式に対しては圧力の補間関数を用い た.この方法は一般に Galerkin 法と呼ばれる.

時間積分については二次の Adams-Bashforth 法を用い た.

アルゴリズムには陽的解法である MAC 法を採用した. すなわち上記の方法により離散化した運動方程式と連続の 式に対して,行列計算をすることで圧力の Poisson 方程式 を求め,圧力を解き,陽的に次の時間ステップの速度を求 める.MAC 法に基づく有限要素行列式は以下のように与 えられる.

$$C^{t}M^{-1}C \cdot \overline{\mathbf{p}}^{n} = -\frac{1}{\Delta t}C^{t} \cdot \overline{\mathbf{u}}^{n} + C^{t}M^{-1}(1.5\mathbf{F}^{n} - 0.5\mathbf{F}^{n-1})$$
(9)

$$\bar{\mathbf{u}}^{n+1} = \Delta t \mathbf{M}^{-1} [\mathbf{C} \bar{\mathbf{p}}^n - (1.5 \mathbf{F}^n - 0.5 \mathbf{F}^{n-1})]$$
(10)

$$\mathbf{F}^{n} = \mathbf{N} \left(\overline{\mathbf{u}}^{n} \right) \overline{\mathbf{u}}^{n} + \mathbf{D} \left(\overline{\mathbf{u}}^{n} \right) \overline{\mathbf{u}}^{n}$$
(11)

ただし、太字はベクトル、その他はマトリックスを意味 している.ここに M, C, N, Dはそれぞれ質量、勾配、 対流、拡散マトリックスを表している.本研究においては 質量マトリックスに対しては対角化をおこなっている.な お、式(9)は共役勾配法を用いて反復的に解く.

4. 対流項の離散化⁸⁾

対流項に対しては以下に示す3つの離散化手法をテスト した.それぞれ順にscheme(a)~(c)とする.ただし左に 離散化前,右に定式化した後の式を示している.

$$\overline{U}_{j}\frac{\partial \overline{u}_{i}}{\partial x_{j}}, \int_{\Omega} \Phi_{\alpha} \Psi_{a}(\overline{U}_{j}) \frac{\partial \Phi_{\gamma}}{\partial x_{j}}(\overline{u}_{i})_{\gamma} d\Omega \quad \text{scheme}(a) (12)$$

$$\frac{\partial \overline{\mathbf{u}_{i}}\overline{\mathbf{u}_{j}}}{\partial \mathbf{x}_{j}}, \quad \int_{\Omega} \Phi_{\alpha} \frac{\partial \Phi_{\beta}}{\alpha \mathbf{x}_{j}} (\overline{\mathbf{u}_{i}}\overline{\mathbf{u}_{j}})_{\beta} d\Omega \qquad \qquad \text{scheme}(\mathbf{b}) \ (13)$$

$$\overline{\underline{u}_{j}}\frac{\partial u_{i}}{\partial x_{j}}, \quad \int_{\Omega} \Phi_{\alpha} \Phi_{\beta}(\overline{u}_{j})_{\beta} \frac{\partial \Phi_{\gamma}}{\partial x_{j}} (\overline{u}_{j})_{\gamma} d\Omega \qquad \text{scheme}(c) (14)$$

scheme (a) は輸送速度に対して圧力の補間関数を用いて 近似する方法である. 微分オペレータのかかった速度に対 しては, 要素の各節点で定義される速度の補間関数をその まま用いる. すなわち輸送速度に対しては圧力と同じ近似 精度になり, 微分オペレータのかかった速度は各節点にお ける速度と同じ近似精度になる. U は圧力定義点で定義

された速度である.離散化前の式は非保存形であるが,各 要素において輸送速度が一定になることから,各要素にお ける定式化においては保存形となる.

scheme(b)は保存形の対流項に対して,i方向の速度とj 方向の速度の積であるテンソルを,速度の補間関数を用い て近似をする方法である.すなわち速度と速度の積が,各 節点における速度と同じ近似精度になる.

scheme(c)は非保存形の対流項について,輸送速度,微 分オペレータのかかった速度,それぞれについて速度の補 間関数を用いた離散化手法である.

5.計算条件

計算領域を図2に示す. 主流方向, スパン方向, 壁に垂 直方向をそれぞれx, y, zとする. 用いた要素数はそれ ぞれ32, 40, 32である. なお, 主流方向とスパン方向には 周期境界条件, 壁上では no-slip 条件を課した.

レイノルズ数は,壁面摩擦速度とチャネル幅で無次元化 して360とした.これは,Kim 等による DNS と同じであ る.

時間刻みは $\Delta t = 0.001$ に設定した.

また,流れ方向に無次元化した圧力-2を与えることで流 れ場は維持されている.

6. 計算結果

6.1 対流項のテスト結果

上で述べたそれぞれの対流項を平行平板間流れに適用し た結果, scheme (a) については統計的に定常な結果が得ら れたが, scheme (b) については数千ステップの計算後,発 散した.またscheme (c) については定常解は得られたもの の,壁近傍で圧力の振動解がおこり,物理的に不自然な挙 動を示した.そこで,以下に scheme (a) で得られた解を 示す.

6.2 各統計量

図3に主流方向の平均流速を示す.破線は壁法則を示す.きめに評価される原因は、スパン方向の解像度に原因があ 対数域でやや低めの値を示すものの、ほぼ壁法則に従ったるものと思われる.

値となっているのがわかる.

図4に乱流強度を示す. 点線は Kim 等による DNS の 結果,破線は Kreplin 等による実験値⁹⁾を示している. 流 れ方向の値がやや大きいもののほぼ DNS と一致した値が 得られているのがわかる. なお,流れ方向の乱流強度が大 きめに評価される原因は,スパン方向の解像度に原因があ るものと思われる.

図5にレイノルズ応力の平均値を示す.壁近傍の分子粘 性が卓越する領域を除いて,ほぼ,圧力勾配とつり合って いるのがわかる.このことは,流れ場がほぼ統計的に定常 状態にあることを示している.

6.3 瞬時速度分布

図6に壁面近傍 y⁺ = 6.2における流れ方向の速度の等 高線図を示す. DNS などと比較してその間隔は粗いもの のストリーク構造が捕えられているのがわかる. ただしよ り精密な壁近傍の乱流の組織構造をとらえるには, スパン 方向の解像度を上げる必要があるものと思われる.

7. 結論と課題

有限要素法による LES を行った.流れ場としては平行 平板間乱流を解析した.解析結果は平均流速,乱流強度, 平均レイノルズ応力について理論値,DNSのデータとよ く一致した.壁近傍では乱流の組織構造を再現できたが, DNS などと比較するとその構造はやや大きく,特にスパ ン方向についてより多くの格子を必要とすることがわかっ た.

対流項に対しては3つの離散スキームをテストした. scheme (a) については統計的に定常な解が得られたものの, scheme (b) については定常解が得られなかった.また scheme (c) については定常解は得られたが,壁近傍で圧力 振動がおこり,不自然な挙動がみられた.このことに対す る解決策としては,特に壁近傍の格子をより細かく切る, 時間ステップをより小さくする,など計算を安定化させる 方法が考えられるが,高周波が減衰しなかった原因として は乱流粘性項の離散化手法が大きくかかわっているものと 思われる.すなわち乱流粘性係数((5)式において Sij に かかる項)は速度の一階微分の形をとっており本来,要素 の各節点で定義されるべきものであるが,本研究において は要素内で平均化して圧力の補間関数で近似している.こ れは scheme (a) において輸送速度に対して行う操作と同 じである.このことから,本研究に適用した乱流粘性係数 の離散化手法を用いる場合, scheme (b), scheme (c) にお いて Cs 値,格子スケール Δ などについて,最適化する必 要があると考えられる.

なお,この対流項の計算は,scheme (a) から (c) へと順 に大きくなり,(c) は (a) のほぼ80倍の計算時間を必要とす る.このことからも (a) は有限要素法でLESを行う上で有 力な離散化手法であるといえる.

ー般に有限要素法は差分法などと比較してより多くの計 算容量と計算時間を必要とし,離散化においては上で述べ た対流項に対する操作のような簡略化がしばしば行われる. (9),(10)式に見られる質量マトリックスMに対する対角 化もその一例であり,このような簡略化が流れ場,特に高 レイノルズ数においてどのような影響を及ぼすかというこ とは今後の重要な課題になると考えられる.また,本研究 で用いた対流項の離散化手法については,結果的には scheme(a), scheme(c), scheme(b)の順に,エネルギー の保存則をよりよく満たしていると言えるが,この点につ いてはより定量的な議論ができるよう,今後の課題とした い.(1994年11月15日受理)

参考文献

- 1) Deardorff, J. W., J. Fluid Mech. 41, part 2, pp. 453 (1970)
- 2) Yoshizawa, A., Phys. Fluids, A3(8), pp.2007 (1991)
- Germano, M., Piomelli, U., Moin, P. and Cabot, W. H., Phyus. Fluids A3, pp.1760 (1991)
- 4) Horiuti, K., Phys. Fluids, A5, pp.146 (1993)
- 5) Kobayashi, T., Tsubokura, M., Taniguchi, N. and Oshima, M., 生産研究46巻2号, pp.65 (1993)
- Kim, J., Moin, P. and Moser, J. Fluid Mech. 177, pp.133 (1987)
- 7) Van Driest, E. R., J. Aero. Sci. 23 (1956)
- Kobayashi, T., Tsubokura, M., Taniguchi, N. and Oshima, M., 日本機械学会流体工学部門講演会'94, pp.349
 9) Kreplin, H. and Eckermann, H., Phy. Fluids 22 (7), pp.1233 (1979)