UNIVERSITY OF INTERNATION OF

研究速報

レーザー顕微鏡を用いた破壊過程の in situ 観察装置と SiC 繊維強化 ガラス複合材料の破壊過程の観察への応用

Development of Equipment for *in situ* Observation of Fracture Process and Application to Fracture Process of SiC Fiber-Reinforced Glass Matrix Composite

香 川 豊*・本 田 紘 一**・アンカナー ジャロンウオララック** Yutaka KAGAWA, Kouichi HONDA and Angkhana JAROENWORALUCK

1. はじめに

複合材料では強度や破壊靱性などの力学的特性は材料自 体の破壊過程に依存することが大であることが知られてい る. したがって、材料の力学的特性を評価、解析する際に は材料の変形-破壊の過程を十分に把握することが必要で ある. 複合材料の変形-破壊の過程を in situ に観察する手 法としては走査型電子顕微鏡 (SEM) での観察あるいは 光学顕微鏡 (OM) での観察などがすでに行われており, 複合材料の破壊過程を理解するための有用な結果を提供し ている. SEM での in situ 観察は数1000倍までの大きな倍 率での観察が可能であるが、通常、観察対象となる破壊箇 所をあらかじめ決定しておかなければならないなど試験片 全体を観察するようなマクロな観察には不適当である. さ らに、真空中での観察が必要であり、試験に用いられる治 具等に制約も多い. これに対して OM での観察は大気中 でマクロな観察から1000倍程度の観察まで可能であるが、 顕微鏡の本質的な問題点として焦点深度が浅く試験的に凹 凸が生じたりすると十分に鮮明な観察が不可能になったり する欠点がある.このような観察方法に関するレビューは 文献¹⁾に整理されている.

これらの方法に対してレーザー顕微鏡(LOM)を用い る方法は大気中でマクロから1600倍までの観察が可能であ り、しかも焦点深度が深いので凹凸に富む材料の観察も可 能である.しかし、LOMを用いた in situ 観察試験装置や その材料破壊挙動の観察への応用に関して、著者らの知る 範囲では報告は見当たらない.そこで、本研究では LOM を用いた複合材料の in situ 観察試験機を作製し、その試 験機を SiC 繊維強化ガラスの破壊過程の観察に応用した

*東京大学生産技術研究所先端素材開発研究センター

**東京大学生産技術研究所 第4部

結果について報告する.

2. In situ 観察装置

本研究で試作した in situ 観察装置は(i)レーザー顕微鏡, (ii)横型油圧サーボ式試験機(島津製作所製,特別試作品), (iii)画像処理装置の三つから構成されてる.Fig.1は試験装置を(i),(ii)の部分を中心に模式的に示したものであり, Flg.2は外観を示したものである.以後,それぞれの装置 について概略を説明する.

(i) レーザー顕微鏡

レーザー顕微鏡は鏡筒の部分が可動になったものであり, 鏡筒の部分はステップモータにより電気的に制御する構造 とした.レーザー顕微鏡の光源には He-Ne(6327Å)の レーザー光源を用いている.レーザー顕微鏡の倍率は10か ら1000倍の範囲である.

レーザー顕微鏡の視野を大きくし,試験片のどの部分で も観察が行えるようにレーザー顕微鏡を可動範囲が 100mmの水平方向の移動が可能なテーブルを作製しテー ブル上に設置した.このテーブルの移動は二軸が独立のス テップモータにて行った.また,レーザー顕微鏡のテーブ ル上への設置時にはテーブル上に防震台を乗せ,その上に レーザー顕微鏡を設置した.

(ii) 横型油圧サーボ式試験機

試験片に負荷を加えるためのものであり,最大荷重は± 1 kN (動的),±1.5kN (静的)の最大ストロークは± 25mmのものである.また,油圧サーボ式試験機は負荷状 態を単一負荷,繰り返し負荷の両者ともに可能である.こ の試験機の試験片取り付け部分は前後におよそ100mm程 度移動が可能であり,試験片取り付け時には試験片を取り 付けるフレームを手前に引き出せる構造になっている.ま た,横型サーボ式試験機自体は油圧制御によりランダム波

Fig.1 試作した in situ 観察装置の概略図

Fig. 2 試作した装置の外観

形を負荷できるようになっている.また,ひずみ制御,荷 重制御の両者ともに可能である.

(iii) 画像処理装置

レーザー顕微鏡からの画像をコンピュータ(マッキン トッシュ, Quadra 950)に取り込み種々の画像解析を行 うための装置である. 画像の取り込みには Image Grabber, 画像処理用として IP Lab Spectrum を使用した.

3. 観察結果

観察には一方向連続 SiC 繊維 (NicalonTM) 強化ガラス (Pyrex, CGW \ddagger 7740)を用いた. 複合材料はホットプレ ス法により作製されたものであり, 複合材料中の繊維の平 均体積率は \approx 0.4である. 複合材料の特性に関してはすで に報告されている²⁾. なお, 複合化前の繊維表面に炭素を 130nm コーティングしたものを用いた. 複合材料を機械 的に1mm角の断面を持ち,長さ60mmの引っ張り試験片 に加工した. その後,すべての表面はダイヤモンドペース トを用いて鏡面研磨した. この試験片をアルミニウムのタ ブを用いて油圧サーボ式試験機に取り付けた. 複合材料の 引っ張り試験はゲージ長さ20mm,室温,大気中にて行い, 引っ張り速度は5×10⁻⁶ m/sとした. 複合材料の引っ張 り試験時に任意に選択したレーザー顕微鏡下にある表面を 観察した.

Fig.3は引っ張り試験時に観察された複合材料中のマト リックスの部分に生じるクラックの in situ 観察結果の一 例を示したものである.写真中に示した矢印の部分はマト リックスに生じたクラック,図中の応力は複合材料に加え られた引張応力を示している、これらの写真に見られるよ うに本実験装置を用いることにより複合材料中のミクロな 損傷の様子が観察できる. Fig.3の観察例では複合材料の 破壊は、マトリックスの部分から生じるがその破壊過程は 繊維間隔の広い部分では小さな荷重からクラックが生じや すく,荷重の増加につれていったん,マトリックスに生じ たクラックからクラックが成長して複合材料中を貫通する クラックを形成することが明らかとなった.また、最初に クラックが生じる応力は ACK 理論³⁾, MCE 理論⁴⁾あるい はマトリックス中の残留熱応力を考慮した BHE 理論⁵⁾で 予測される応力値よりもはるかに小さなものであることが 明らかになった.

に報告されている²⁾. なお, 複合化前の繊維表面に炭素を なお, SiC 繊維強化ガラス系複合材料では画像処理を行

窑

速 報

Fig. 3 SiC (NicalonTM) 繊維強化ガラス (Pyrex[®]) の引っ張り試験時のマトリックスクラッキングの発生状況 (数 字は材料に加えられた負荷応力)

わなくてもクラックの発生と成長を十分に観察することが 可能であった.しかし,画像処理を用いればクラックの生 じている部分をさらに強調して観察することが可能であっ た.現状ではすべてがオンラインであるわけではなくレー ザー顕微鏡からの画像情報を一度ビディオテープに録画し てから画像処理を行う必要があるという問題点が残されて いる.

4. ま ح め

レーザー顕微鏡、サーボ式試験機、画像処理系からなる 破壊試験時の in situ 観察装置を試作し, SiC 繊維強化ガ ラスの破壊過程を観察した.その結果,試作した試験装置 は破壊過程の観察には十分であり、従来は十分な検討が行 われていなかった複合材料のマトリックスの微視破壊過程

23

46巻9号(1994.9) 468

謝

研 究 速 を明らかにすることができた. 参

辞

本実験装置を組み立てるにあたりレーザー顕微鏡の移動 ステージの設計と試作をしていただいた東京大学生産技術 研究所試作工場のスタッフに感謝いたします. (1994年7月5日受理)

考 文 献

- 1) K. Ahlborn, Y. Kagawa and A. Okura: Fracture Mechanics-of-Ceramics, Vol. 10, Eds. by R. C. Bradt-et-al., Plenum Press, (1992), 47.
- 2) Nippon Carbon Catalog, Tokyo Japan, (1994).
- 3) J. Aveston, G. A. Cooper and A. Kelly: The Properties of Fiber Composites, IPC, (1971), 15.
- 4) D. B. Marshall, B. N. Cox and A. G. Evans: Acta Metall, 33 (1985). 2013.
- B. Budiansky, J. W. Hutchinson and A. G. Evans: J. 5) Mech. Phys. Solids., 34 (1986), 164.