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1. Introduction

Two—dimensional (2D) confinement of carriers in quan-
tum wires (QWRs) is an important phenomenon in physics,
and is expected to bring a significant improvement to lasers
and other functional devices™?. Recently, several types of
quantum wires of high quality have been realized by metal
organic chemical vapor deposition (MOCVD)»~9. The
QWRs of our group exhibited clear blue shift of photo-
luminescence (PL) peak with the reduction of the lateral
width of the QWRs®. In addition, an anisotropic effect of
magneto-PL7 confirms the QWR effect. The experimental
data of the magneto-PL can be analyzed by numerical
calculations. However, the analytical solution is obtained
only for isotropic harmonic potentials®-).

In this paper, we describe the analytical solution of
energy levels of a one-dimentional (1D) electron gas
confined by an anisotropic 2D harmonic potential in the

presence of a magnetic field.
2. Analytical Solution of the System

The Hamiltonian of a single particle in a harmonic
potential and a magnetic field is

A P+gA)? 1 1
H=‘%*7m*wﬁz+7m*w3ﬁ

)
where w,(w,) is the oscillator frequency of the harmonic
potential along the x (y) direction, m* is the effective mass

and g is the electric charge.

*3rd dept. Institute of Industrial Science, University of Tokyo

bz
L

n % B

Here we discuss properties of a carrier along the (x, y)~
plane with a magnetic field B along the z axis using a gauge

with the vector potential

A=B(—w?, v’x, 0), 2)

where
v=Vo o, +0), 3)
w=Vo/(@-+), 0]

In case of wz=0 and w,+0 (&, n=x, y), the analytical
solution of the Schrédinger equation is known!®. In this

case, the wavefunction is given by

P=H, (§)exp(—&>/ 2+ipsbin), ©)
where H,(¢) are the Hérmite polynomials
_[m] — 1Y — 1\ n r e n2r
H() =3 (-1 @r 1)..( 2r)2 aC (6)
and
" wo Px@W,
Vo + ey (@70) ™
b= mag pywe
N == T (@=0),
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w, is the cyclotron frequency, and p; is the momentum of
plane wave along the & axis. The wavefunction has the

eigenenergy

p §2 “’52

E

. (10)

1
= (I’l +7)hw0+ 25

*
2m g

where n=0,1,2, . . . is the order of the Hermite polyno-
mials.
When w,w,#0, we substitute variables as follows.

X = vx Vm*wy/h, (11)

Y = wyVm*wy/h. (12)

Then, the Hamiltonian is described as

2 82
= EO{VZ(_aXZ +X2)+W2(_a 7y}
—2ivw E, (Xﬁ —Y—a%) , (13)
where
Ey=hwy /2, (14)
E,=ho,/2. (15)

Moreover, we assume an eigenfunction of the form

W= exp(—X 2/2-Y */2), (16)

The Schrodinger equation AW (x, y)=EW (x, y) is trans-
formed into H,®=(E—Ey)®, where

0 iV k
iVk 0 —iVk-1V 2
iVk—1V 2 0.
B,= iVk—=2V'3
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Hy = Eov ( B 2XaX) oW (aYZ oY
wwE, | X 2 Y 8 ) 17
2ivw C( oY ax) 17
Furthermore, the wavefunction can be expanded by base
functions
u - Hm(X)Hk~m(Y) (18)
bm e NV ml(k—m)!
(k=1,2, ...; m=0,1,2, . ... k). Then Hamiltonian H,

are given by matrices ({uy, | A1 | ux,;)) with dimension

(k+1)x(k+1) as follows
Hl = E()Ik - (V2 - WZ)EOAk - VWEch: (19)
where
k
k
k'\
[,= \\\k
k
= . (20)
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k=2
k=4 _
A= T
? —k+2
—k
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—-iVk-2V'3 __
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The eigenergies E; ,, of the Schrédinger equation can be

found by diagonalizing the matrices:
Eem= 1+ Kk)Eq+ (k= 2m)E;, (23)

where Eg=(i2) Vo +(o+a,)?, Ei=(2)Vol+(o—o,).
The eigenergies can be written by quantum numbers
=0,+1,x2, ..., rn=0,1,2,..., as

E,;=Q@n+1+]|INE,+ IE, (24)

In the isotropic case of w,=w,, the eigenvalue is equal to
the value given by Fock etc.®?

Figure 1 shows the configuration of energy levels, where
AE_=E4—E|, AE,=Ey+E;, and AEy=2E,. Dependence
of these energies Eqo, £y, AE_, and AE, on w,, ,, and w,is
shown in figure 2, where contours of normalized Eg, Eq,
AE_, and AE, are described. «, B, y, and 6 denotes
Ey(hwJ2), E/(hw/2), AE_/(iwn/2), and AE,/(AwJ2),
respectively.

The first excited level is

E,=o;--1= E;tAE_. (25)

If w,+w, and w, are fixed, the first excited energy is smaller
for the structure with more anisotropic confinement (i.e.
either w, or w, is small). At the limit of high anisotropy,
AE _ (y) approaches zero. In addition, as the magnetic field
B is increased compared to 2D confinement potential

(w>w,, wy), the energy levels are closer to Landau levels.

[
P y_ —— =1
Q| E-F= a4, = — =13
w — — A — (22)
= =13 CANE= 5
— B3 (1.-2) = T2 (g‘;}}: '
- — {T?]' {1:.1)“: (1.1} 20
501-1;3_'— o7 19 4Eg y
| (0,0} 2 AEq/2
+

Energy Levels

Fig. 1 Distribution of energy levels. (n, ) denotes quantum
riumbers which indicates E,, ; of Eq. (24).

(b) o

Fig. 2 Contours of (a) energy components of Eq. (24) E, (solid
line), E, (dashed line), and (b) energy separations AE_
(solid line), AE, (dashed line), which depend on the
oscillator frequency of the harmonic potentials (®,,0,)
and the cyclotron frequency (@.). &,B,7, and S denotes
normalized energy component and separation: Ey/(fiw,/
2), EJ(hw2), AE_I(hw 2), and AE./(fiw/2), respec-
tively.

3. Summary

In summary, we have analytically solved for the energy
levels of a 1D carrier gas in an anisotropic 2D harmonic
potential and a magnetic field. Moreover, we have discussed
anisotropic effects of harmonic potentials. As the anisot-
ropy increases, the excitation energy to the first excited level

is closer to zero.
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