HIMMING
<

半導体ヘテロ界面におけるバンド不連続の人為的制御

Artificial Control of Heterojunction Band Discontinuities

生駒俊明*・橋本佳男**・斎藤敏夫*** Toshiaki IKOMA, Yoshio HASHIMOTO and Toshio SAITO

1. はじめに

分子線エピタキシー (MBE) や有機金属気相堆積法 (MOCVD) などの結晶成長技術は、原子レベルで平坦 であり、結晶性や不純物濃度を制御し、異種の半導体の 接合した構造(ヘテロ構造)を成長することを可能にし た. 半導体ヘテロ構造は, 高電子移動度トランジスタ (HEMT)や、量子井戸レーザなどに応用されているの みならず,半導体微細構造を応用した新しいデバイス1) を開発するためにも不可欠な技術である.一方,これら のヘテロ接合の電子物性を支配する最も重要な量として 伝導帯および価電子帯端のバンド不連続量を挙げること ができる、伝導帯および価電子帯のバンド不連続は、そ れぞれ電子や正孔の閉じ込めや伝導に関与する. さらに, これらのバンド不連続量が適切な値になるように設計さ れたヘテロ構造を用いることによって、高性能なデバイ スを作ることができる. これまでは GaAs/AlGaAs な どの半導体混晶のヘテロ接合を用い、混晶の組成比を変 えることによってバンド不連続量を調節してきた.とこ ろが、この方法では価電子帯と伝導帯の不連続量を同時 に変えてしまうだけで、同じ組み合わせのヘテロ接合に おいて、価電子帯と伝導帯の不連続量の分配を変えるこ とはできない. 価電子帯や伝導帯のバンド不連続量を自 在に制御する技術を確立すれば、ヘテロ構造を利用した デバイスの設計自由度がふえ,その性能を大きく向上さ せることが期待される.たとえば、価電子帯と伝導帯の 不連続量の分配を変えることは電子と正孔を利用したデ バイス(レーザなど)に応用できる。また、たとえば組 成を変えずに伝導帯の不連続量を大きくすることで、電 子デバイスにおいてより大きい電子密度を得ることが期 待される.

*東京大学生産技術研究所 第3部付属機能エレクトロ ニクス研究センター **東京大学生産技術研究所 第3部(日本学術振興会) ***東京大学生産技術研究所 第3部

2. バンド不連続の制御のコンセプト

バンド不連続を制御する方法として, ヘテロ界面に異 種の原子層を挿入する方法^{2)~5)}や, ヘテロ界面の両側 に *p* 形および *n* 形のドープ層を形成する方法⁶⁾などが提 案されている.

GaAs/GeやGaAs/Siのような価数の異なる半導体の ヘテロ接合では、ヘテロ界面の状態(すなわち、界面で の Ge 原子の占める格子位置) によって大きくバンド構 浩が変化するものと考えられる²⁾、さらに、これを応用 して、GaAs/AlAs (100) または (111) ヘテロ界面に 2原子層のGeを挿入すると、Ge層中にダイポールを 形成しバンド不連続量を変化させることが理論的に示さ れた³⁾. これは、一方の Ge 原子がⅢ族格子位置を、も う一方の Ge 原子が As 格子位置を占める場合に,それ ぞれの Ge 原子がプラスおよびマイナスに帯電しダイ ポールを形成するためである.図1にGaAs (100)面, および (110) 面上に Si 2 原子層および AlAs を成長し た構造におけるバンド構造の概念図を示す.図1(a)のよ うに GaAs の Ga 安定化面(最表面が Ga 原子層で終わ るように成長された GaAs) 上に Si および AlAs を成 長した場合は価電子帯のバンド不連続量が大きくなり、 As 安定化面上に Si および AlAs を成長した場合には価 電子帯のバンド不連続量が小さくなる.これに対し, Ga と As の双方が界面に存在する(110)面では Si 層 を挿入してもバンド不連続量の変化は小さい. このよう に、 ヘテロ界面に挿入された原子層の作るダイポールの 大きさは結晶面方位に強く依存することがわかる.

3. GaAs/AIAs ヘテロ界面への Si 原子層の挿入の効果

Sorba らは GaAs/AlAs (100) ヘテロ界面に Si を 0~2 原子層挿入した場合のバンド不連続量をX線光電子分光 法 (XPS) により調べ, 価電子帯のバンド不連続量が 最大0.4eV 変化することを報告した⁴⁾. この結果は Si 原子層膜厚が0.5層以下の場合には界面ダイボールを生

速

研

究

図1 GaAs/Si/AlAs 構造における界面の原子配列と Si によるダイポールポテンシャルの大きさお よびエネルギーバンド図. (a)は Ga 安定化 (100) 面, (b)は As 安定化 (100) 面, (c)は (110) 面をそれぞれ表す.

成している場合の理論予測値⁵⁾とよく合う.ところが, 界面に挿入された Si 原子は Ga 格子位置に入り,ド ナー不純物として振る舞う傾向にある.さらに,Siド ナーから供給された電子は表面準位により捕獲されるた め,ヘテロ界面はプラスに,表面はマイナスに帯電し, この間に発生する電界により,バンド構造が曲がってし まう可能性がある.図2に,GaAs/AlAs および,ヘテ ロ界面に Siドナーが挿入されたGaAs/AlAs 構造のエ ネルギーバンド図を示す.Si がドナーとなっている場 合には,XPS によって求められたバンド不連続量は GaAs 層,AlAs 層それぞれの層における価電子帯端の 平均位置間のエネルギー差となり,本来のバンド不連続 量に変化がない場合でも測定値が変化してしまう.

そこで、GaAs/Si 挿入層/AlAs 構造における Si 原子 の効果がバンド不連続の制御なのか表面近傍でバンドを 曲げているのかを明らかにするため、次の実験を行った. すなわち、Si 層を成長する直前の結晶面を GaAs (100) As 安定化面、(100) Ga 安定化面、(110) 面、および、 (311) A 面と変えて成長された AlAs/Si/GaAs 構造で の(見かけ上の)バンド不連続量、 ΔE_v^{η} 、を XPS に より測定し、前節に述べた面方位依存性の有無を調べ た^{8),9)}.

図 3 に示すように,(100)(As および Ga 安定化面), (110),および (311) A 面についてどの場合でも Si を 挿入した AlAs/Si/GaAs 構造で ΔE_o はほぼ面方位に関 係なく減少し,Si 膜厚が約0.4原子層以上ではほぼ一定 の値(約0.04eV)になる.この結果は界面ダイポール の形成から予想される変化(図中の破線)と大きく異な

図2 (a)GaAs/AlAs 構造および, (b)GaAs/Si/AlAs 構造のエネルギーバンド図. いずれも表面近傍数 nm のみを示しているが, XPS ではこの領域を観察する. GaAs 層は1×10¹⁶ cm⁻³の n 形ドーピングがなされている.

図3 GaAs/Si/AlAs 構造における Si 膜厚による見かけ上のバ ンド不連続量 ΔE_vの変化の結晶面方位依存性. 破線は Si 層中にダイボールが形成されている場合の理論値を,実 線はヘテロ界面と試料表面の間(AlAs 層)にバンド曲 がりが発生している場合の理論値を示す. なお, バンド 曲がりの大きさは Si ドナーの密度の関数であり, 挿入さ れた Si 原子の5%がドナーになっているとしている.

45巻11号 (1993.11)

報

究 速

り、理論的に予想される大きさのダイポールが形成され ていないことを示す. 一方, Si 原子層が n 形ドープ層 となっていると考えると、この変化はうまく説明される. 図3の実線は挿入されたSi原子の5%がドナーとなっ ている(Siの活性化率が0.05)と仮定した場合の見か け上のバンド不連続量の変化を示し、これは実験結果を よく説明する. さらに、AlAs/Si/GaAs 構造の XPS ス ペクトルにおいては、Al2p準位のシグナルは約 400meV シフトするのと同時に、ピークの幅が増大する ことから、AlAs 中のバンドの曲がりの存在を示してい る. また, AlAs/Si/GaAs 構造で AlAs の膜厚を変化さ せると、 ΔE_n は約100meV変化し、バンド曲がりを考 えたモデルとよく合う.以上から、図2(b)のようにこの ヘテロ界面に Si を挿入しても単にバンドが曲がってい るだけだと考えられる.

つぎに、なぜこの構造においてバンド不連続の制御が できていないのかについて考えてみたい. GaAs 中に挿 入された Si 原子はたとえ1原子層分の Si しか供給され ていなくても、約3原子層程度にわたって分布すること が示されている¹⁰⁾. これは,図1(a)および(b)のように As 格子位置の Si および Ga 格子位置の Si を成長する ことによって界面ダイポールを形成する場合の原子配列 とは大きく異なる.そこで,Si原子が3原子層にわ たって分布する場合のバンド構造の変化を理論的に考察 する.図4はセルフコンシスタントな理論計算により求 めた、GaAs/AlAs および GaAs/Si/AlAs 構造における 静電ポテンシャルの変化である⁹⁾. GaAs/Si/AlAs 構造 については、Si 原子が正確に2原子層を占める(Ga サ イトと As サイト1つずつを Si が占める)場合(b)と, Si 原子が3原子層に分布する場合(GaAs (100) 面上 で As 格子面を半分 Si に置き換え,次のⅢ族格子面を すべて Si が占め、その上の As 格子面を半分 Si が置き 換えた上に AlAs を成長した構造)(c)について示す.Si 原子の占める格子位置を精密に制御できる場合には(b)の ように1eV 以上もの界面ダイポールを形成することが できるのに対し、たった1層だけでもSiの分布が広 がってしまうと(c)のようにほとんどバンド不連続量には 影響を与えなくなってしまう. したがって, Si 原子の 占めるサイトを制御できなければバンド不連続を制御す ることは困難である.

4. GaAs (311) A 面への Si デルタドーピングを利用 したバンド不連続の制御の試み

GaAs (311) A 面に MBE 成長された Si ドープ GaAs は伝導性を p形および n形に制御することができ る^{11),12)}. これは、Si 原子を GaAs 中の As サイトおよ

図4 (a)GaAs/AlAs および(b, c)GaAs/Si/AlAs 構造における 静電ポテンシャルの空間変化.(b)では Si 原子が界面の2 原子層を完全に占めているのに対し、(c)では Si 原子が As サイトの2分の1を置き換え、次のⅢ族格子面をすべ て占め、その上の As 格子面の2分の1を置き換えてい る場合を考えている.

び Ga サイトに選択的にドープできることを示す. また. 理論計算によれば、GaAs/AlAs (311) A ヘテロ界面に Si を挿入することにより、バンド不連続の制御が期待 できる¹³⁾. ここでは、(311) A 面でのこの制御性を利 用して、ヘテロ界面の両側にp形およびn形の δ ドー ピングを行うことで、ドーピング層の間にダイポールを 生成させ、バンド不連続を制御することについて検討し たい.

まず, GaAs に Si を δ ドーピングする場合に結晶成 長時の基板温度により伝導性が変化し,成長温度が 480°C以下では n 形となる¹²⁾. ここでは, GaAs (311) A基板上にp形のGaAs およびn形のδドーピングを 行いバンド不連続を制御する実験を行った. n⁺-GaAs

図 5 GaAs (311) A 面上に成長された AlAs (3 nm)/Si δ ドー プ層/p形 GaAs 層構造におけるバンド不連続量とバンド 曲がりの大きさのδドープ量依存性.

(311) A 基板に GaAs バッファ層 (1 µm), Si ドープ p 形 GaAs (50Å), Si δ ドープ層および AlAs (30-70Å) をMBE 成長し、Ga 3 d およびAl 2 p 準位間のエネル ギーを XPS 測定し、バンド不連続量 ΔE_n と AlAs 層で のバンド曲がり E_{BB}を調べた¹⁴⁾.

図5にSi ドープゥ形GaAs層のSi 濃度を1.5および $5 \times 10^{19} \text{ cm}^{-3}$ とした場合について Si δ ドーピングの量 による ΔE_{v} と E_{BB} の変化を示す. E_{BB} は AlAs 膜厚を 30Åから70Åへと増加させた場合のバンド曲がりの変化 から求め、 ΔE_v は XPS による内殻準位の変化から E_{BB} の寄与を差し引くことにより決定した. GaAsのp形の ドーピング濃度を5×10¹⁹cm⁻³とすることでバンド不 連続量 ΔE_n は約0.2eV 増大するが、 δ ドーピングの量 を変えても ΔE_v は一定で、 E_{BB} だけが変化することか ら、p形層とn形の δ ドープ層の間にダイポールが生成 され、挿入図のようバンド不連続が制御できていると考 えられる.ただし、 p形と n形のドーピング量が異なる と、バンドの曲がりの影響がおよぶため、ドーピングの 量をSiの活性化率をも考慮して一致させる必要がある.

5. ま ح め

GaAs/AlAs ヘテロ界面に Si を挿入しても、バンド オフセットを制御することはできず、単にバンドを曲げ ているだけである. さらに, Si 原子の占めるサイトを 制御することが、人為的な界面ダイポールの形成のため に最も重要なポイントである. GaAs (311) A 面への Si の δ ドーピングを利用することにより, Si 原子の占 める格子位置を Ga サイトおよび As サイトと制御でき,

これを応用することにより、バンド不連続の制御を実現 することが期待される.

辞

本研究にあたり多くの有益な討論や助力をいただいた, 平川一彦助教授,田中玄一氏,阿川謙一氏に感謝する.

また、本研究は文部省科学研究補助金および大型基礎 共同研究「メソスコピックエレクトロニクス」の援助の 下に行われた. (1993年8月25日受理)

考文献 怣

- 1) たとえば、生駒俊明、生産研究 45,67 (1993).
- 2) W. A. Harrison, E. A. Kraut, J. R. Waldrop, and R. W. Grant, Phys. Rev. B 18, 4402 (1978).
- 3) A. Muños, N. Chetty, and R. M. Martin, Phys. Rev. B 41, 1976 (1990).
- 4) L. Sorba, G. Bratina, G. Ceccone, A. Antonini, J. F. Walker, M. Micovic, and A. Franciosi, Phys. Rev. B 43, 2450 (1991).
- 5) M. Peressi, S. Baroni, R. Resta, and A. Baldereschi, Phys. Rev. B 43, 7347 (1991).
- 6) F. Capasso, A.Y. Cho, K. Mohammed, and P.W. Foy, Appl. Phys. Lett. 46, 664 (1985).
- 7) XPS によるバンド不連続量の測定法は K. Hirakawa, Y. Hashimoto, and T. Ikoma [Appl. Phys. Lett. 57, 2555 (1990)] を参照. XPS により測定されたバンド不連続量 は、不純物密度が低くバンド曲がりが無視できる場合に は正しい値を与えるが、ヘテロ界面の Si がドナーと なっている場合には実際のバンド不連続量とは異なる. この点を表すため(見かけの)バンド不連続量、ΔE_n と表記する.
- 8) Y. Hashimoto, G. Tanaka, K. Hirakawa, and T. Ikoma, Proc. 21st Int. Conf. Physics of Semiconductors, 725 (1992).
- Y. Hashimoto, T. Saito, K. Hirakawa, and T. Ikoma, 9) Inst. Phys. Conf. Ser. 129, (Proc. 19th Int. Symp. GaAs) 259 (1993).
- 10) S. A. Chambers and T. T. Tran, Phys. Rev. B 47, 13023 (1993)
- 11) W. Q. Li, P. K. Bhattacharya, S. H. Kwok, and R. Merlin, J. Appl. Phys. 72, 3129 (1992).
- 12) K. Agawa, Y. Hashimoto, K. Hirakawa, and T. Ikoma, Proc. International Symposium of GaAs and Related Compounds (Freiburg, Germany 1993).
- 13) T. Saito, Y. Hashimoto, and T. Ikoma, Proc. 6th International Conference on Modulated Semiconductor Structures (Garmisch-Partenkirchen, Germany 1993).
- 14) 橋本佳男, 生駒俊明, 応物学会93年春31 aD9.