45巻10号(1993.10)

特 集 7 研究解説 UDC 539.42:681.3:65.012.122

破壊素過程の計算機シミュレーション

Comuter Simulations of Crack Extension from an Atomistic Viewpoint

澤村明賢^{*}・山本良一^{**} Akitaka SAWAMURA and Ryoichi YAMAMOTO

材料の破壊は微視的には原子間結合の破断や組み替えであるから、クラックの進展の原子レベルでのシミュレーションがマイクロメカニクスや有限要素法等の手法とならんできわめて重要な研究手法となっている。本稿ではクラック進展の計算機シミュレーションのレビューを行うとともに、SICの中のクラック挙動のシミュレーション結果について述べる。

1. はじめに

材料の強度や破壊の問題は、原子レベルから構造物レベルまで広い範囲に及んでいる.しかし、現実の材料の 強度や破壊の問題は非常に複雑であるため、主に Griffith¹¹に始まる連続体力学的な取り扱いがなされて きており、この方面の研究は転位論マイクロメカニクス などの理論や有限要素法などの数値計算法、AE 波解析 などの実験技法と結合して、多大な発展を遂げている.

その一方,材料の破壊は,微視的には原子間結合の破 断や組み替えであるから,本質的な理解のためには原子 レベルでの取り扱いも重要である.このため表1に示し た目的で,原子レベルでクラックの挙動の計算機シミュ レーションが行われている.そこで本報告では,これら のシミュレーションの歴史を辿るとともに,筆者らの 行った研究についても述べたい.

クラックをモデル化する方法は表2に示したように大 きく分けて3つある.1つは原子構造模型で,クラック

表1 原子レベルでのクラック進展のコンピュータシミュレー ションの目的

(1)	クラックが安定に存在し得る外力の範囲 (lattice trapping の
1.00	範囲)の決定。
(2)	クラック進展に対するエネルギー障壁を求める。
(3)	クラック先端の近傍における有効な K値の評価。
(4)	J積分などの経路独立積分の評価。
(5)	対象物質が本質的に脆性か延性かの検討。
(6)	クラック先端からの転位の放出、クラック先端付近の構造の
	変化をシミュレートする。
(7)	伝播速度や先端の分岐などクラックの動的性質を調べる。
(8)	温度による脆性-延性転移をシミュレートする。
(9)	複数モードの負荷における破壊挙動を調べる。
(10)	クラック進展に対する不純物原子の影響を調べる。

*住友電気工業(株)

**東京大学生産技術研究所 第4部

表2 クラックを原子レベルでモデル化する方法

- (1a) 微結晶体の内部にクラックを導入。
 (1b) 微結晶体の表面からにクラックを導入。
 (2) 格子力学に基づき、無限大の結晶中で、仮想的な 原子間結合の切断によりクラックを導入。
 (3) マクロな連続体中に非常に長いクラックを考え、
 - クラック先端のみを原子領域として扱う。

図1 非常に大きい連続体中にマクロなクラックを考え、その 先端のみを原子領域として扱うモデルの模式図.図はモー ドIの負荷の場合を示しており、2cはクラックの長さで ある.文献4)より.

を導入した微結晶体を取り扱う. 周期的境界条件を適用 する場合もある. この方法は簡単だが,境界の影響の問 題があり,連続体力学で取り扱った場合との関連付けが 難しい. 第2の方法は格子力学理論²⁰に基づく方法であ る. 無限大の格子の原子間結合を仮想的に切断すること によりクラックを導入する. クラック長は有限であるが, 原子変位が解析的な形で求められることが長所である. 第3の方法は図1に示したように,マクロな連続体中に 平坦なクラックを考え,その先端のみを原子領域として 扱う方法である. 原子レベルでの現象を弾性論と関連付 けて考察することが容易になる. なお,実際には平面歪 の場合のみが扱われている. ここではこの手法を"埋め 込み法"と呼ぶことにする. 連続体領域と原子領域とを 接続する方法(境界条件)により,この手法は幾つかに 分類される.

なお、[ABC] (DEF) クラックとは、それぞれクラッ クフロントが [ABC] 方向、クラック面が (DEF) 面 であることを示し、(ABC) [DEF] クラックとは、そ れぞれクラック面が (ABC) 面、クラック進展方向が [DEF] 方向であること、[ABC] クラックとは、ク ラックフロントが [ABC] 方向であることを意味する ことにする.また特に断わらない限り、クラックはモー ド I、先端の形状は直線状であるとする.通常、大文字 で書かれた応力拡大係数 (K値) は小文字で書かれた k値の $\pi^{1/2}$ 倍で、文献では両方が用いられているが、本報 告では後者は前者の K値に換算し、単位も Pam^{1/2}に統 ーした.

2. 従来のクラック進展素過程の計算機 シミュレーション

原子レベルでクラック進展の素過程を解明しようとす るシミュレーションは、1970年代に入る直前に始められ た.それ以降、ほぼ1970年代半ばまでがシミュレーショ ンそれ自体の立ち上がりの時期であるといえる.そして 1980年代に入り、シミュレーションが実際に何らかの問 題解明のために行われるようになった.ここでは紙面の 都合上、これらシミュレーションの中でも、特に破壊力 学で重要なパラメータである K値と関連付けた取り扱 いの可能な、上述の埋め込み法を用いた実例の一部につ いて概略を述べるにとどめる.なお、クラック進展のシ ミュレーション全般については、文献3)を参照されたい.

1970年代初頭から,Battel Memorial Institute のグ ループは、図1に示した手法を用いて α -Fe における一 連のモード I クラックの進展のシミュレーションを行っ ている^{4)~11)}.方位は〈100〉{100}である.境界条件につ いては、原子領域を囲む連続体中にも原子が存在すると 考え、これらの原子を線形弾性論¹²⁾の解に基づいて変 位させ、原子領域のみを緩和させる方法 ('fixed boundary condition',固定境界条件)と、原子領域の緩和の促 進のため、連続体領域をも同時に緩和させる方法^{13)~15)} ('fixible boundary condition',柔軟境界条件)とが用い られている.

まず,臨界応力拡大係数 $K_{\rm C}$ をポテンシャルエネル ギーがクラック先端の位置に存在しなくなる場合の K値として求め, $K_{\rm C}=0.78 {\rm MPam}^{1/2}$ なる結果が得られ た⁴⁾. この値はポテンシャルと線形弾性論から求めた Griffith の臨界応力拡大係数 $K_{\rm G}=0.77 {\rm MPam}^{1/2}$ にほぼ

46

近い値であった.

しかし、クラック進展を始めるのに必要な K値に関 しては、意外な結果が得られた.連続体領域を等方弾性 論で記述した場合、 $K=3.1K_G$ で $\{110\}$ 面内のクラック の進展が⁷⁾、異方性弾性論を用いた場合 $K=2.78K_G$ で $\{100\}$ 面内のクラック進展が見られた⁸⁾のである.離 散的なモデルではがある K値の範囲でクラックが進展 も後退もせず安定に存在するため¹⁶⁾、 K_G の3倍の負荷 でクラック進展が生じたとしても、必ずしも異常ではな い.しかし意外な結果であることに変わりはなく、原因 の可能性としてシミュレーションでは不純物原子がない ことや熱振動の影響を考慮していないことが挙げられて いる⁸⁾.

このため,クラックが進展を開始するに要する負荷は 原子レベルの立場から本当に K_Gの3倍程度なのか否か, 論争が始まった.

Battel Memorial Institute のグループからやや遅れて, Sinclair $6^{17)^{-20}}$ は一連のダイヤモンド型物質の [011] (111) クラック進展のシミュレーションを行った. そこ ではまず, ダイヤモンド, Si, Geの中のクラックも K_{G} 付近の負荷で安定に存在できることが示された^{17),18)}.

続いて独自の柔軟境界条件²²⁾により,Si中のクラッ クが安定に存在できる K 値の上限と下限(それぞれ K_{min}, K_{max})が求められた²⁰⁾. その結果,原子間ポテ ンシャルの選択により, K_{min} は K_{G} の0.34倍から0.99 倍, K_{max} は1.2倍から2.5倍になることが示された. 但 し, K_{G} =0.727MPam^{1/2}である.したがって,Battel グ ループ^{7).8)}の結論は、手法の不完全さに起因する誤りで ある可能性が高まったが、決着がつくのは1980年代で あった.

1970年代半ばから,具体的な物質を念頭においてシ ミュレーションの空白期が続く.しかし,1980年代前期 から新しい手法を取り入れたシミュレーションが行われ 始めた.クラックのシミュレーションが可能であること を示すための研究から,何らかの問題解決を目的とした 研究へ比重が移ってきたのもこの頃である.

その代表といえるのが,原子レベルのモデルに有限要 素法を組み合わせた Mullins ら^{23) - 26)} や Kohlhoff ら²⁷⁾ による一連のα-Fe中のクラック進展のシミュレーショ ンである.それ以前のシミュレーションでは,連続体領 域は線形弾性論に従うとされ、しかもクラックのモード はモード I に限られていた.これに対し,連続体領域を 有限要素法で扱うことにより,原子領域と併せてモデル 全体を十分緩和することができ,結果の信頼性が向上す るほか,混合モードのクラックが扱えるようになるのも この方法の利点である.

その結果,まず [010] (001) クラックが安定に存在で きる K 値の下限と上限は、それぞれ0.78K_Gと1.42K_G、 [110] (001) クラックにおいてはそれぞれ0.88 $K_{\rm G}$ およ び1.12 $K_{\rm G}$ であった²³⁾.ただし、[010] (001) および [110] (001) クラックについてはそれぞれ $K_{\rm G} =$ 0.6905 $MPam^{1/2}$, $K_{\rm G} = 0.7070 MPam^{1/2}$ である。両者の 結果にある程度の差はあるものの、いずれの方位におい ても、クラック進展開始に要する K値は $K_{\rm G}$ の3倍に は及ばない値である.

この結果によって,緩和が十分なされるならば,少な くとも α-Fe においては K_G に近い大きさの負荷でク ラックが進展を開始することが示されたため,クラック 進展のシミュレーションの信頼性が確立され,具体的な 問題解決に応用する機運が盛り上がった.たとえばク ラック先端からおよそ格子定数の20倍を越えた領域では, 緩和後の原子配置は線形弾性論に基づく変位にほとんど 一致することが示された²³⁾, α-Fe 中の水素原子は脆化 の作用を有すること²⁵⁾が示された.

しかし、原子レベルのモデルに有限要素法を組み合わ せた手法の利点が大いに発揮された例として、次の2例 を挙げねばならない.その1つはクラック進展速度の上 限を評価するためのもので、一定負荷のもとで[101] (010) クラック進展の動的なシミュレーションが行われ た²⁴⁾.その結果、まっすぐに進展するクラックの速度 は ^{c2} (等方性を仮定した場合の横波速さ)の0.2~0.55 倍の範囲にあり、K値が1.8K_Gに達した場合には図2 のようなクラックの(101) 面への分岐が見られた.ク ラック進展速度が ^{c2} の約0.6倍を越える場合、応力が最 大となる方位はクラック面の法線方向でないことが、 Erdogan²⁸⁾による等方弾性論に基づいた計算から求めら れており、シミュレーションの結果はこれと一致してい る.高応力下でのクラックの分岐は実験的にも確認され ている²⁹⁰.

もう1つはモードΙとモードⅡとの混合応力下におけ る α-Fe の破壊のシミュレーション²⁶⁾で,クラックの方 位は [101] (010) である.この場合,モードⅠおよびⅡ

図 2 α-Fe における [ī01] (001) クラックの (101) 面への分岐. K=1.8K_G である. 文献24)より.

に対する臨界応力拡大係数は、それぞれ K_{IG} = 1.7070MPam^{1/2}および K_{2G} =0.7476MPam^{1/2}である. 負荷をさまざまに変化させてシミュレーションを行った 結果、モードIの負荷が支配的である場合クラックの脆 性的な進展が生ずるのに対し、モードIIの成分の増加に ついて転位または双晶が生成され、延性破壊が生ずる傾 向があることが示された.この結果を相図にしたのが図 3である.

Kohlhoff ら²⁷⁾ も原子レベルのモデルと有限要素法を 組み合わせた手法を用い, α-Fe における [001] (010), [101] (010) および [101] (101) クラックの進展のシ ミュレーションを行っている. 臨界応力ぎりぎりの負荷 から0.5K_G/ps で負荷を増加させ,原子領域を緩和する ことにより,クラック進展の動的なシミュレーションを 行っている.最初のクラックの方位では傾いた劈開が, 次の方位では完全脆性破壊が,最後の方位では転位の放 出と (121) 双晶の発生を見ている.

さて、今までのような変位によって境界条件を与える 手法では、原子領域内での原子のさまざまな挙動、特に 転位の生成が抑制されてしまう可能性が高い.このため、 境界上の原子に個々に一定の力を作用させることで境界 条件を課する手法が MIT のグループ^{30)~32)}により開発 されており(応力境界条件)、α-Fe および Cu における クラック進展のシミュレーションに利用されている.

その結果, α-Feのクラックは K_G/ps の0.8から1.2倍 の負荷のもとで安定に存在できること, 仮に固定境界条 件を用いた場合, 原子の変位が抑制され, クラック先端 付近に充分な負荷が作用しないことが明らかにされ

- 図 3 混合モードの負荷における α-Fe の [101] (010) クラック の挙動. 文献26)より.
 - A:構造の変化無し.
 - B: (010)面上の劈開.
 - C: (010) 面以外の面上の劈開.
 - D:転位の発生.
 - E:転位と双晶の発生。
 - F:転位または双晶の発生とこれに続く(010)面以外の面 上のクラック進展.

た³⁰⁾. このことから α -Fe でクラックが進展し始める K値は $K_{\rm G}$ 程度かその3倍前後かという論争に、明確な決 着がついたことになった. また、Cu 中のクラックでは $K=0.8K_{\rm G}$ のもとで転位が放出されたため、Cu は本質 的に延性物質であるとの結論も得られている³⁰⁾.

これに続いて Cheung らは α-Fe の温度による脆性-延性転移のシミュレーション³¹⁾を行い,その結果を Rice と Thomson³³⁾のクラック先端からの転移ループ発 生のモデルと関連付けて考察しており³²⁾,脆性-延性転 移が室温付近を境として生ずること,転移放出の活性化 エネルギーは5.1eV で,Rice と Thomson のモデルに基 づく値(81eV)に比べ非常に小さく,これにはクラッ ク先端の応力集中による局所的な弾性定数の軟化の影響 が大きいことが指摘されている.

Hoaglnd ら^{3(1),35)}は、クラックの線形弾性論を原子レベルのモデルを用いた結果と比較し、前者がどの程度微 視的な領域で成立するか確認する基礎的な目的から、 Al について 3 つの方位のクラックの進展と転位放出の シミュレーションを行い、結果を線形弾性論の結果と比 較し、Eshelby³⁶⁾の F積分と M積分の経路独立性の評 価を行った. クラックの方位は (010) [001], (110) [001], (110) [112] である.

その結果、K=0.4MPam^{1/2}ではどのモデルのクラッ クも安定であった。そこでクラック先端付近の原子変位 のx成分 u_x を用いてクラック進展・後退と有効なK値 の評価を行っており、弾性場の原点が元のクラック先端 位置さら 1 nm 程度後退したことと有効なK値が与えた K値の約70%であることを結果として述べている³⁴⁾. また、シミュレーションの結果に基づいてF積分とM積分を計算した結果、クラックが鋭い場合、F積分・M積分とも線形弾性論の予想にほぼ一致していることが 解った³⁵⁾.

3. β-SiC におけるクラック進展のシミュレーション

シミュレーションでは原子レベルのモデル化を行うた め、Tersoff の多体原子間ポテンシャル⁴¹⁾を用いた.こ れは共有結合を扱うために結合角に対する依存性を取り 入れたポテンシャルの中で、化合物を扱えるものである.

クラックのモデル化には、結果を K値で示された負荷と関連させて考察するため、図1のような埋め込み模型を用いた.原子領域と連続体領域の接続のため、問題に応じ固定境界条件または応力境界条件を用いた.このモデルに対し K値で示される一定の負荷を与え、分子動力学法での緩和により、結果を求める.なお、Tersoff ポテンシャルから求めた β -SiC の $K_{\rm G}$ 値は、[110](111)および[112](111)クラックについてそれぞれ1.597×10⁶Pam^{1/2}および1.589×10⁶Pam^{1/2}で、実験で求められた(111)面上の硬貨状クラックについての破壊

靱性値3.23×10⁶Pam^{1/242)}の約1/2である.

最初に, β-SiC 中の [110] (111) クラック進展の静的 なシミュレーションを行った^{46).48)}. クラックが安定に 存在できる K 値の範囲を求めるとともに,線形弾性論 がどの程度クラック先端の近傍まで成立しているか確認 することがその目的である. なお,固定境界条件を用い ており,境界の影響を避けるため4320個という多くの原 子を扱った.

その結果, $K_{\rm G}$ の0.6~3.4という広い負荷の範囲で, クラックが安定であることが示された.これは従来行わ れていた α -Fe に関するシミュレーションの結果と比べ て非常に広い.また, $K=3.5K_{\rm G}$ ではクラックは (111)面上を進展せず,(001)面上に向かった.図4に, $K=3.5K_{\rm G}$ における緩和後のクラック先端付近の原子 構造を示す.

この結果の妥当性の確認のため、クラック進展による ポテンシャルエネルギーの変化を近似的に計算した.

その結果、 $K=0.5K_{\rm G}$ では、クラック先端の移動に 伴うポテンシャルエネルギーの山がないのに対し、K=0.6 $K_{\rm G}$ では途中に山が発生しており、クラックが安定 に存在できる K値の下限について、シミュレーション

図 4 K*=3.5におけるクラック先端付近の原子配置. (a)緩和前.(b)緩和後.

図5 K=0.5KGにおける理想的なクラック進展に伴うポテン シャルエネルギー変化.

の結果は妥当であることが示された(それぞれ図5およ び図6). $K=0.5K_{G}$ でも $K=0.6K_{G}$ でもクラック後退 はエネルギー的には有利であるが、後者の場合クラック 後退過程は 3×10^{-10} J/m のエネルギー障壁を経由する 過程であることがわかる.

ー方,上限に関して、図7に示したように、エネル ギーの障壁は $K=3.2K_G$ で見られなくなった.この値 は上のシミュレーションでの値に比べやや小さいが、K= 3 K_G 程度という点で一致している.さらに、K=3.5 K_G で(111)面上の進展と(001)面へのクラック の偏向の2つの経路について、進展によるポテンシャル エネルギー変化を計算した.この結果、図4に示したよ うに、進展の初期過程においては後者が進展の初期過程 においては5×10⁻¹⁰J 程有利であることが示された. したがって上のシミュレーションの結果は妥当であると いえる.

また, *K*=*K*_G前後でも同様の計算を行い, クラックの進展と後退に対し中立な負荷は *K*_Gの1.1~1.2倍で,

図 7 K=3.2K_Gにおける理想的なクラック進展に伴うボテンシャルエネルギー変化.

その活性化エネルギーは1.4×10⁻⁹J/m であることがわ かった.この値に相当する分だけ表面エネルギーが本来 の値より大きいと仮定してクラック進展に要する元の $K_{\rm G}$ の1.4倍となり、 $K=3K_{\rm G}$ 程度でクラックが進展し たシミュレーションの結果と一致しない.このため、破 壊を議論する場合、無負荷あるいは中立な負荷を与えた 系の挙動から実際の破壊挙動を予想する方法には限界が あることがわかる.

線型弾性論がどの程度微視的な領域まで妥当性を有す るかは、破壊の議論の基礎として興味深ち問題である. そこでシミュレーションから得られた原子配置からク ラック先端位置のX方向の移動量と有効なK値の評価 を行った.シミュレーションの結果得られた原子iの変 位を \vec{u}_{i} , クラック先端のx座標が x_{adj} , 応力拡大係数が K_{adj} である場合に線型弾性論から求められる原子iの変 位を \vec{u}_{adj} として、最小化すべき目的関数 Eを

$$E = \sum |\vec{u}_i - \vec{u}_{iadj}|^2, \qquad (1)$$

で定義する. x_{adj} および K_{adj} を変化させることにより, 目的関数 $E \varepsilon$ 最小化する. Eが最小となるときの x_{adj} および K_{adj} が, それぞれクラック先端の有効な x 座標 x_{eff} および有効な K 値 K_{eff} である. この場合, $x_{eff} > 0$ はクラック進展, $x_{eff} < 0$ はクラック後退を意味する. また, K_{eff} が与えた K 値を上回っていればクラック先 端で線型弾性論の予測を越えた変位が発生していること になる. 下回っていれば何等かの緩和機構の作用で,負 荷が完全に伝達されなくなっていることが示唆される. また, 有効なクラック先端位置の図で,縦軸の正の方向 がクラック進展,負の方向がクラック後退を示す. 同様 に(b)には K_{eff} の与えた K 値からのずれ $\delta K_{eff} = K_{eff} - K$ を示す.

その結果, K=0.5K_Gではクラック先端位置が, 図 9に示したように, ほぼ格子の周期長程度後退している

ことが明らかとなった. $K=0.6K_G$ では,図10のよう に、クラック先端は殆ど動いていない.したがって、ク ラックの原子配置から $K=0.5K_G$ のクラックが後退し たとした見方は正しいことが裏付けられた.また、有効 な K値に関し、クラック先端から2×10⁻⁹m以内の領 域では有効な K値は上昇しており、その値は負荷によ り K_G の0.2~0.4倍程度という結果が得られた.図11お

図11 K=0.6K_Gにおける有効な K値の与えた K値からの変化。

図12 K=3.4K_Gにおける有効な K値の与えた K値からの変化.

よび12に、それぞれ $K=0.6K_{\rm G}$ および3.4 $K_{\rm G}$ における 有効な K値の与えた K値からの変化を示す. さて、図 13のように、 $K=3.4K_{\rm G}$ では、 $x_{\rm eff}$ は Rが小さくなる 程その絶対値が大きくなるような変化を示さず、むしろ Rの増加にしたがってあるところでピークに達し、そ の後減少に転ずる傾向を示している.言い換えると、ク ラック先端からある程度離れた領域が、先端から非常に 近い部分よりも負荷に敏感に反応している.これは以下 のように解釈できる. $K=3.4K_{\rm G}$ では負荷は中立な値 を上回っているため、クラック先端はポテンシャルの障 壁に捕えられながらも進展しようとする.しかし、与え た負荷が大きいためクラック先端に歪が激しく集中して

図13 K=3.4K_Gにおけるクラック先端位置の移動.

おり、原子間の結合が浅くなることから負荷がクラック 先端まで十分に伝達されない. このため, xeff からク ラック先端周辺の原子配置を考える限り、クラック先端 からある程度離れた領域が負荷に対して敏感に応答する. しかしこの結果は、歪の集中はクラック先端ほど激しい ことを考えれば、 δK_{eff} が $R < 2 \times 10^{-9}$ mの範囲でのみ 顕著に上昇していることと矛盾しない.したがって、ク ラック先端から2×10⁻⁹m以上離れた領域では線型弾 性論はほぼ妥当であると言えよう. 田中ら無機材研のグ ループが行った15R-サイアロン, Si および 6H-SiC に おけるクラック先端の原子レベルでの電顕観察43)~45) や、 α -Fe に関する Mullins 6^{23} のシミュレーション、 Al に関する Hoagland ら³⁴⁾のシミュレーションからも, クラック先端付近で線型弾性論がどの程度妥当か研究さ れており、クラック先端から1~4×10⁻⁹m 以上離れ た領域ではほぼ妥当であると結論されている.本研究の 結果も,オーダーとしてはこれらと一致している.

続いて, β-SiC 中の [110] (111) クラックの有限温度 での挙動を明らかにすることを目的としたシミュレー ションを,埋め込み模型と応力境界条件で行った^{46),47)}. 設定温度は300K から2000K である.クラック進展に要 する K 値に関し, 300K では K=3.2K_G, 1000K では K=2.8K_G, 1000K では K=2.4K_G でクラック進展が 見られた.静的なシミュレーションに比べ,クラック進 展に要する K値は低下している. $K=2.8K_{G}$ における クラック進展のエネルギー障壁は 3.1×10^{-19} J であるの に対し,温度1000K は 1 原子当り 2.1×10^{-20} J であり, 約1/15 に過ぎない.したがって,熱膨張による弾性定 数の低下があると考えられる.

またクラック進展挙動に関し、温度300K で負荷 K= 3.2K_Gの場合、クラック進展の初期過程においてはほ ぼ脆性的なクラックの進展が見られた.これ以外でク ラックが進展した場合、一見複雑な破壊挙動が見られて いるが、原子の移動から、ほとんどの場合(111)面に 交差する原子間結合の破断が見られている.負荷の緩和 の機構はクラック先端における2次的なクラックあるい はボイドであり、これらが元のクラックとつながること によってクラック先端が鈍化している.β-SiCにおける 脆性-延性転移の機構として、先端の鈍化が挙げられる.

最後に、β-SiC 中の [112] (111) クラック進展のシ ミュレーションを埋め込み模型で行った. [110] (111) クラックとの比較を目的として、[112] (111) クラック 進展のシミュレーションを行い、また、クラック進展に 対するエネルギー障壁を求めた. その結果、K=1.0KG では、図14に示したようにクラックが進展しており、こ のことは図15に示したクラック進展のポテンシャルエネ ルギー変化の計算結果にも反映している. この結果は [110] (111) クラックに関する結果とは大きく異なる. 実験的には β-SiC の (111) 面上に硬貨上のクラックが 発生することが確認されており⁴²⁾、特に進展方向の方 位依存性は報告されていない. このため、実際の進展過 程におけるクラックフロントは複雑な構造になっている 可能性が高い.

ここで紹介した β-SiC のクラック進展のシミュレーションを行うに当たり、日本クレイ(㈱の渡辺庸一氏には、同社のコンピュータを快く利用させて頂くと共に、数値 計算技法全般について適切な御教示を頂いた.ここに深 く感謝する次第である. (1993年7月15日受理)

図14 K=1.0K_Gにおけるクラックの進展挙動. 左から順に1×10⁻¹²sec 後, 1.2×10⁻¹²sec 後, 3×10⁻¹²sec 後.

図15 K=1.0K_Gにおける理想的なクラック進展に伴うポテンシャルエネルギー変化.

参考文献

- 1) A. A. Griffith; Phil. Trans. Roy. Soc. 221 (1920) 163.
- R. Thomson; *Solid State Physics*, edited by H. Ehrenreich and D. Turnbull, (Academic Press, New York, 1986), Vol. 39, p. 1.
- 3) 澤村明賢·山本良一; 日本金属学会報 31 (1991) 19.
- P. C. Gehlen and M. F. Kanninen; *Inelastic behavior of Solids*, edited by M. F. Kanninen, W. A. Alder, A. R. Rosenfeld and R. I. Jaffe, (McGraw-Hill, New York, 1970), p. 586.
- M. F. Kanninen and P. C. Gehlen; Interatomic Potentials and Simulation of Lattice Defects, egited by P. C. Gehlen, J. R. Beder and R. J. Jaffe, (Plenum, New York, 1971), P. 713.
- M. F. Kanninen and P. C. Gehlen; Int. J. Fract. Mech. 7 (1971) 471.
- P. C. Gehlen, G. T. Hahn and M. F. Kanninen; Scr. Met. 6 (1972) 1087.
- 8) P. C. Gehlen; Scr. Met. 7 (1973) 1115.
- A. J. Markworth, M. F. Kanninen and P. C. Gehlen; *Proc. Int. Conf. Stress Corrosion Cracking*, (France, June 12, 1973).
- J. K. McCoy and A. J. Markworth; Scr. Met. 20 (1986) 905.
- J. K. McCoy and A. J. Markworth; Scr. Met. 21 (1987) 1247.
- 12) G. C. Sih and H. Liebowitz, Fracture-An Advanced Treatise, edited by H. Liebowitz, (Academic Press, New York, 1968), Vol. 2, P. 67.
- 13) P. C. Gehlen, J. P. Hirth, R. G. Hoagland and M. F. Kanninen; J. Appl. Phys. 43 (1972) 3921.
- 14) J. P. Hirth; Scr. Met. 6 (1972) 535.
- 15) J. P. Hirth, R. G. Hoagland and P. C. Gehlen; Int. J. Sol. Struct. 10 (1974) 977.
- 16) R. Thomson, C. Hsieh and V. Rana; J. Appl. Phys. 42 (1971) 3154.
- 17) J. E. Sinclair and B. R. Lawn; J. Fract. Mech. 8 (1972) 125.
- 18) J. E. Sinclair and B. R. Lawn; Proc. R. Soc. Lond. A329 (1972) 83.
- 19) J. E. Sinclair; J. Phys. C5 (1972) L271.
- 20) J. E. Sinclair; Phil. Mag. 31 (1975) 647.
- 21) G. I. Barenblatt; Adv. Appl. Mech. 7 (1962) 55.
- 22) J. E. Sinclair; J. Appl. Phys. 42 (1971) 5321.
- 23) M. Mullins and M. A. Dokainishi; *Phil. Mag.* A46 (1982) 771.
- 24) M. Mullins; Scr. Met. 16 (1982) 663.
- 25) M. Mullins; Acta Met. 32 (1984) 381.
- 26) M. Mullins; Int. J. Fract. 24 (1984) 24.

- 27) S. Kohlhoff and S. Schmauder; Atomistic Simulation of Materials-Beyond Pair Potentials, edited by V. Vitek and J. Srolovitz, (Plenum, New York, 1989), Vol. 2, p. 411; S. Kohlhoff, P. Gumbsch, and F. Ficshmeister; Phil. Mag. A64 (1991) 851.
- 28) F. Erdogan; *Fracture*, vol. 2, edited by H. Liebowitz, (Wiley, New York, 1968), p. 519.
- 29) H. Schardin; Fractuter, edited by B. C. Averbach, D. K. Felbeck, G. T. Hahn and D. S. Thomas, (Wiley, New York, 1959), p. 297.
- 30) B. deCelis, A. S. Argon and S. Yip; J. Appl. Phys. 54 (1983) 4864.
- K. S. Cheung and S. Yip; Phys. Rev. Lett. 65 (1990) 2804.
- 32) K. S. Cheung, A. S. Argon and S. Yip; J. Appl. Phys. 69 (1991) 2088.
- 33) J. R. Rich and R. Thomson; Phil. Mag. 29 (1974) 37.
- 34) R. G. Hoagland, M. S. Daw, S. M. Foiles and M. I. Baskes; J. Mat. Res. 5 (1990) 313.
- 35) R. G. Hoagland, M. S. Daw, S. M. Foiles and M. I. Baskes; Atomic Scale Calculations of Structure in Materilas, edited by M. S. Daw and M. A. Schlüter (Mat. Res. Soc. Symp. Proc. 193, Pittsburgh, Pennsylvania, 1990), p. 283.
- 36) J. D. Eshelby; Prg. Sol. State Phys., edited by F. Seitz and D. Turnbull, (Academic Press, New York, 1956), vol. 3, p. 79; J. Elasticity 5 (1975) 321.
- 37) 中谷彰浩・北川浩;日本機械学会第3回計算力学講演会 講演論文集(1990)83.
- 38) 北川浩; 第1回マリオニクス研究会予稿集(1991)73.
- 39) R. A. Johnson; Phys. Rev. 134 (1964) 1329.
- 40) M. W. Finnis and J. E. Sinclair; *Phil. Mag.* 50 (1984) 45; *Erratum ibid.* 53 (1986) 161.
- 41) J. Tersoff; Phys. Rev. B39 (1989) 5566; Erratum ibid.
 B41 (1990) 3248.
- 42) J. J. Petrovic and R. B. Roof; J. Am. Ceram. Soc. 67 (1984) C219.
- 43) H. Tanaka, Y. Bando, Y. Inomata, and M. Motomo; J. Am. Ceram. Soc. 71 (1988) C32.
- 44) H. Tanaka and Y. Bando; J. Am. Ceram. Soc. 73 (1990) 761.
- 45) 田中英彦・坂東義雄; セラミックス 27 (1992) 305.
- 46) A. Sawamura, Y. Watanabe, and R. Yamamoto; Computational Methods in Materials Science, edited by J. E. Glicksman, and S. P. Marsh, (Mat. Res. Soc. Symp. Proc. 278, Pittsburgh, Pennsylvania, 1992), p. 147.
- A. Sawamura, Y. Watanabe, and R. Yamamoto; Proc. of CAMSE'92, in press.
- A. Sawamura, Y. Watanabe, and R. Yamamoto; Proc. of CAMSE'92, in press.