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lntroduction

In dynamic analysis of soil-structure interaction, one of

the key tasks is modeling of unbounded soil. In conven-

tional study, this can be achieved, by considering soil as a

continuous medium and solving a mixed-boundary value

problem corresponding to semi-infinite region. If the

geometry of the medium is assumed to be simple,

analytical solution is available. While, the boundary

element method in frequency domain will be an efficient

tool (1, 2), when the boundary condition is not considered

to be simple. The solution of a mixed-boundary value

problem gives relation between force and displacement of

semiinfinite medium or soil resistance. This relationship

is called dynamic stiffness or impedance function in which

the energy radiation to infinity is implicitly incorporated.

In actuality, however, soil is a porous medium and in

saturated condition, is composed of solid and liquid

phases. Thus, the resistance of soil will be modified due to

relative motion between these two phases. This paper

extends the approach by Novak (3), which determins the

resistance of a rigid cylinder extending infinitity in an

infinite medium to one for a porous medium based on

Biot's theory (4), and the effects of pore pressure and

mass coupling on resistance for vertical, torsional, rock-

ing, and horizontal motion are discussed.

l  Equations of motion for porous medium in

cylindrical coordinate.

Based on Biot's theory, the equation of a porous

medium is rewritten in cylindrical coordinate. In his

theory, the effect of dampirig of a porous medium is just
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considered to be due to diffusion of liquid phase through

porous solid. In actual case, however, inelastic deforma-

tion of granular fabric causes hysteretic type damping.

This effect can be taken into account, if the real values of

Lame's constants for solid phase are replaced by the

complex numbers. The equations in terms of displace-

ment potentials can be written in the followinq form:
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In the above equations e , Hi, are related to the solid

phase displacement potential and tp , G,, are related to

the relative motion of liquid phase displacement poten-

tial. On the other hand E and ry'r denote volumetric waves

and H,, G;, shear wave.

By finding the eigenvalues and eigenvectors of the

coefficients ofeq. (1) for steady state case, it is possible to

decouple E and tp. By solving the uncoupled equations,

the final results will be obtained as:
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/r=Lame's constants, K^:the second modified complex

Bessel function of order m, da:hystersis danrping ratio,

1:porosity, Kr:bulk modulus of fluid, .p' :density of

solid, py =density of fluid, ot:2ln-1. is foiuosity for

sphere shapes, b:gnzp1 /k is diffusive coeificient,
g=ground acceleration, ft:permeability of soil,

O :(-n) p"*npy is density of soil, a;:frequency of

motion, a;*:ip1r6, where J: I,2,3,76:12fli11s of the disk

and p=pore pressure.

2. Comparsion between resistances of porous {nd
continuous models of saturated soil for differeint

motions

The material properties used for cornputation are as

follows:
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)'=lt:667 kgflcm2, n:0.3, KF20000 kg/cm2,

pFro-u, p":2.2x10-6 kgf. s2lcm

2.1 Motion in axial direction

when medium undergoes this kind of axisymetrical

motion: uo : u, = 0, u" : u (r, to), the dynamic stiffness

will be:

K-; : 2nu\*ida\ a^* 
Kr(at*) 

16)--cP 
Ko (a'*) \"/

Fig. 1 shows the ratio of the real part of eq. (6) to the one

of a continuous medium for f : 1. The ratio is kept almost

constant over a wide range of dimensionless frequgncy (a
:arslv"), when damping ratio (da) is small, while it

decreases with an increase of dimensionless frequency in

case that (da) is fairly large.
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Fig. 1 Variation of ratio of real part factor of porous

to continuous medium for motion in axial direc-

tion motion (f:1) with dimensionless freq.

2.2 Torsional motion

For a disk undergoing harmonic rotation around its

vertical axis u,: u. : 0 and ue : u (r, ar), the dynamic

stiffness of porous medium is:

^ r K" (a,*) r
K"o:2npr'( l+ida)l2Ia3a --* l  (7)'  ' \  -  K t ( a t * ) l  "

The ratio of the imaginary part of eq. (7) to the one of a

continubus mediurn for f :0.001 is shown in Fig. 2. These

lines are steeply downward to the right, and converge to
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Fig. 2 Variation of imaginary part of porous to con-

tinuous medium with dimensionless freq. for

torsion :rnotion (f:0.001)
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unity. The bigger the damping ratio is, the bigger the

value is.

2.3 Rocking motion

When the disk vibrates in the vertical drection, in an

antisymetdc manner ur: uo = 0 and u. = u (r, 0, a), the

dynamic stiffness is:

^ /  K^ (a,*) r
K ,o= n t f  ( l+ ida)  l1*43+_*  |  (8 )'  ' \  -  K r ( a r * ) l  ' - '

Eq. (8) is very similar to eq. (7) and the ratios show

similar variation.

2.4 Horizontal motion

When a disk undergoes harmonic horizontal motion in

drain boundary condition:

u, -- u (r, 0, a), us : v (r, 0, a); u. -- 0, p (ro, 0, a)=9,

the dynamic stiffness of porous medium is:

`″ =巧“(α3*)2R2/R3

Where:                   j
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( i = 1 , 2 )
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Fig:3 shoWs the ratios of imaginary and real parts of

Cq.(9)tO thOSC Of colltinuois medium,respediVCly,for

f=0.001 (undrainё d condition) Their ratios incrcase

alinost linearly with increasing value of diinensionless

frequency On the other hand,thc ratios changes drasti―

cally,when f=1(drain condition),aS ShOwn in Fig.4 As

for the real part,the ratio decreases with frequency and

bccomes evcn ncgative,Concerning the imaginary part,

the ratiO tends to a constant value

conclusion

Based on Biot's thcory,the dynanlic stiffness of porous

mediunl for four kinds of wave frontshapcs are computed
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Fig. 3 Variation of ratio of imaginary and real part fac-

tor of porous to continuous medium for horizon-

tal motion (f=0.001) with dimensionless freq.
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Fig. 4 Variation of ratio of imaginary and real part fac-
tor of porous to continuous mediurn for horizonal
motion (f:1) with dimensionless freq.

in closed form. The results obtained through parametric

study shows that the pore pressure generation has a major

effect on the dynamic stiffness and the mass coupling

plays a secondary role. These flnding are particularly

important in the estimation of dynamic soil stiffness

associated with radiation of waves with various front

shapes. (Manuscript received, May 14, 1993)
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