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2. SYSTEM OF THE BASiS FUNCT:ONS

The main difficulty in formulation of the Galerkin

spectral method for calculation of 3D flows in cylindrical

as well as in spherical coordinate systems (r, E, z) is

connected with discontinuity at r=0. Vector and scalar

Laplace operators contain terms proportional t" + +.r "  @ '
which are in general non-integrateable. This discontinuity

is imposed mathematically and has to be overcomed with

some special means.

Basis functions for velocity in cylindrical coordinates

satisfying 2n-periodicity conditions may be defined as

vijk = vif(z) exp(i kq) (1)

where integer number k changes from -o 1e f o, and

k=0 corresponds to axisymmetric state. Functions v'.,p

have to satisff the continuity equation which may be

written using (1) as

[1 i l rui*) ik d(*i i r) ' l  , . \v.v111= 
lf.-;: * tu,j* + 

liJexp(r k<p)=0 \z)

where (u, v, w) are r-, E-, and z- components of v,,u

Since three components of the velocity basis are

connected with eq. (2) there will be only two independent

basis systems in (r, z) plane for lk l>0, and only one

independent basis system for k:0. We define these basis

system following [2] as (summation in repeating indices is

supposed):

v = A;;U 1.;(r,z) +(B ;.;1V ;;(r,z)+C ;;r.W u(r,r) exp(i ktp) 13;

where functions U1.; describe axisymmetric part of 3D

motion in (r, z)-plane, and functions V;; and W1; describe

remaining parts of motion in (r-9) and (E-z) planes. Ai,*,

Bi;1, and Ci;p are unknown scalar coefficients to be

obtained npmerically. Functions U1.;, Vi; and W1; have

correspondingly E-, z-, and r- components equal ro zeto.
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ガラーキン法を用いた円筒容器内3次元流れの計算のための試行関数系について

1 .  INTRODUCTION

In several experimental and numerical investigations of

fluid flows in circular cylindrical domains a threshold from

axisymmetric to asymmetric motion was reported (see for

example, ref. [1-6]). Numerical investigation of such

thresholds is usually carried out with direct straight-

forward solution of 3D equations with use of 2D flow as

initial state. On the other hand the use of stability theory

may provide more precise values of critical parameters as

well as valid values of unstable azimuthal modes, but the

instability analysis is carried out, as a rule, for problems

with analytically known initial state. One of the simplest

examples is Rayleigh-Benard convective instability in

vertical cylinders heated from below, for which several

experimental and theoretical investigations reported a

theshold from quiescent state to 3D convective flow if the

ratio height/radius of the cylinder is larger than 1 (see ref.

11,, 2, sl).
Application of linear stability analysis to investigation

of instability of fluid flows leads to an eigenvalue problem

of very high order. As it was shown in [7] for convective

problems in rectangular regions the order of the eigenva-

lue problem (equal to the number of scalar modes used by

a numerical method) may be reduced if the Galerkin

method with divergent-free basis satisfying all the bound-

ary conditions is applied. The present paper deals with a

possibility to construct such a bases for numerical solution

of hydrodynamical problems in confined circular cylin-

ders. Problem of Rayleigh-Benard instability in a cylinder

heated from below is used to illustrate the applicability of

the constructed bases.
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Using (1) the following formulae flor A v may be

evaluated (case kJ0):

△・=1争+♀午+ギ・1参+子学}XpC ko
\(x) = cos[ n arccos(2x-1) ],

UnO)=
Sin[(n+1)arCCOS(2x-1)]

sinI arccos(2x-1 )]

g i j =

Coefficients a1, b;r, c;r, d.;1, e1, f;r, are used to satisfy linear

homogeneous boundary conditions at r:L, and z=0, L

(see ref. [7] for details). Because of connection between

Chebyshev polynomials T, and U" (d/dx)T"*1(x)=

2(n+l)U,(x) bases (5-7) satisfy the continuity equation

(2).

In the case of non-uniform axisymmetric rotation

around the axis a basis for axisymmetric E-component of

velocity must be added to bases (5-7). This component

may be approximated in the following way:

N.  N,

v9=e6,z)+ r L I O;;(t)[T(r)+ cr,T;*1(r)lx ._^.Y  i = 0 j = 0  ( l U )

x [r,fI + Frit.r(i) * Pat.z(l

And in the case of thermal convection the temperature

may be approximated as:

N. N,

0 = C(r,z) + qft,r) 
re .X, t;ltt) [r,tr) + tTi*r(rlx

x 
[r,(l 

+ 4,,r,*r() + s4r"lf { ex(ircq) (11)

q(k,r) = j kr, if k+O; q(O,r) = 1

In (10) and (11) functions @ (r, z) and G (r, z) are used

to satisfy non-homogeneous boundary conditions' Coef-

ficients a;, yi, Fir arrd 61 are used to satisfy remaining

homogeneous linear boundary conditions for the series in

(10) and (11).

Using bases (51 , 10, 11) all the inner products

necessary for realization of the Galerkin method may be

calculated analytically. Orthogonal properties of the

Fourier exponents used as bases in azimuthal direction

will lead to separation of instability problem for each

azimuthal number k when linear stability analysis is

applied. So, analysis of threshold from axisymmetric to

asymmetric state needs 3N.N, velocity modes and N.N'

modes for a scalar function for each azimuthal number k,

where N, and N" are number of functions used in r- and z-

directions.
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Tn and Un are thc Chじbyshcv polynonlials of the lst and

2nd typC:
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As it is seen from (4) in the case of k=1 terms

proportional to r-2 in expressions for dv, and /vr may be

omitted. So, r- and E- components of velocity basis

corresponding to the first azimuthal mode (k=1) may

have non-zero values at the axis. At the same time

non-zero value of v, at the axis must be included in

axisymmetric part of the basis coresponding to k=0.

These requirements do not influence completeness of the

basis, because values of functions at the axis do not

depend on the azimuthal coordinate and may be included

in any azimuthal mode.

Now we can define polynomial bases for U1;, V;.; and Wi;

for a cylinder of radius I and height L using linear

superpositions of Chebyshev polynomials as it is de-

scribed in pl:
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3. TEST CALCULATIONS

Rayleigh-Benard problem for a cylinder heating from

below was used for testing the bases (5-7). Cylinders with

aspect ratio A:radius/height equal to 0.5, 1, and 2 were

considered. In these cases (see [2]) the most unstable

azimuthal mode is known to be k:0 for A=1, and k:1

for A:0.5 and 2. In Table 1 critical Rayleigh numbers

Ra". for all three values of the aspect ratio and k:0, 1, 2,

5, and 10 are reported for truncation increasing from 4x4

to 10x10 modes in (r-z) plane. Bold lines correspond to

the most unstable azimuthal mode. As it is seen from the

table values of Ra., show rather rapid convergence.

Digits coincide for 8x8 and 10x10 truncations are

underlined. Obtained values of Ra", for the most unstable

azimuthal modes are in a good agreements with results

Table 1-3 Critical Rayleigh numbers for Rayleigh-Benard instability in a finite cylinder with

conductind side wall.

RノL = 2 4 x 4
f u  n c t i o n s

6 x 6
f u  n c t i o n s

8 x 8
f u n c t i o n s

10x10 Resul t  f rom
t 1 l

k=0

k = 1

k=2

k=5

k=10

19048573

1908.4141

19048643

2395 7431

5877.3254

1886.2003

1879.2309

1895 2507

23775358

5662.7037

1 8 8 6 . 0 7 3 9

1 8 7 8 . 9 6 2 1

1 8 9 5 . 1 3 6 8

2 3 7 6 . 5 9 5 0

5 6 5 6 7 6 6 3

18860721

1878.9589

1895.1328

23765088

5656 1979

1883

Table 4 Critical Rayleigh numbers and critical frequencies for Rayleigh-Benard instability in a

rotating finite cylinder with stress-free horizontal and insulating side boundaries.

Ta kcr 4 x 4
func t i ons

6 x 6
f u n c t i o n s

8 x 8
f u n c t i o n s

10x10

Functions

金制r―
solution
[ 4 , 6 1

l RacF :5360:
79596

1535.8732

7.5919

15358742
7959201

1 5 3 5 8 7 4 2

7● 5920:

1535_87
796

2 Racr 1990 109
86735

19902565
9.675701

:99025647

86757057

199025647

86757066

199026
8 6 8

3 Racr 3945677

12 171
39453082
1221503

39453010

12215057

3 9 4 5 3 0 1 0

1 2 2 1 5 0 5 8

3945.30
!222

Racr 18:48 0

21 902

1762283
22.6563

176206698

2268997

176204804

22690305

1762048

2269
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R/L 4 x 4
f u n c t i o n s

6 x 6
i l c t i o n s

8 x 8
r . t i .

1 0 x 1 0

n r t i n n q

Resul t  f ro ln
.  l ) l

k=0

k = 1

k=2

k=5

k=10

i : 7 2 2 5 4 1

8014.8416

16780008

10825558

75873990

1 1 7 1 5 6 0 5

8 0 0 8 . 5 3 2 8

1 6 7 5 8 9 8 9

1 0 6 9 0 9 : 4 2

7 3 2 6 3 9 9 2

1 1 7 1 5 1 9 8

8 0 0 8 . 3 5 9 7

1 6 7 5 8  1 8 9

1 0 6 8 6 7 6 2

7 3 1 8 5 7 8 9

1 1 7 : 5 1 6 0

8 0 0 8 . 3 5 5 4

1 6 7 5 8  1 4 9

1 0 6 8 6 6 2 3

7 3 1 7 5 1  7 1

8012

R/L = 1 + x +
r c t i (

6 x 6
f u  n c t i o n s

8 x 8
n c t i o n s

10xl() Resul t  f rom
I ' I

k=0

k=1

k=2

k=5

k=10

2546.1855

2906 1968

33775722

10026 115

54098 874

2544.4156

2901 5954

3371 0596

99240082

52251 306

2544.4003

2901 5377

3371.0317

9921 1643

52206535

2544.3997

2901 5352

33710307

9921 1284

52201 096

2545
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obtained in [2].
Only results corresponding to the cases k=0, 1 are

compared with other numerical results in tables 1-3.

Since velocity bases for k>1 are different from those for

k:0, 1, additional testing of the case k)1 is necessary. To

testify bases (5-7) for k>1 a problem of Rayleigh-Benard

instability in a rotating cylinder was considered. It is

known for this problem (see [+6]) that the azimuthal

number K", corresponding to the most unstable azimuthal

mode grows with the growth of the Taylor number Ta,

and the oscillatory convective instability of quasi-solid

rotating fluid takes place. In the case of stress-free

conditions at the top and the bottom of a cylinder the

Rayleigh-Benard problem may be solved analytically (see

[a, 6]), what provide very good data for testing of a

numerical method. Convergence of critical values of the

Rayleigh number and frequency of oscillations are re-

ported in the Table 4. As it ts seen from the table all the

results show good convergence and are in complete

agreement with the analytical solution. With growth of

the Taylor number convergence becomes slower, but in

the case of Ta:500 the described numerical method still

provides at least 4 right digits for 10x10 truncation.

4 .  CONCLUSIONS

The proposed bases allow to realize the Galerkin

spectral method for numerical simulation of 3D hydrody-

namical flows in confined circular cylinders. Results

obtained for the Rayleigh-Benard problem show that the

proposed bases provide good approximation of linear

terms of the Navier-Stokes and heat transfer equations.

Further calculations have to be carried out for analysis

of convergence of the proposed method for investigation

of threshold from initially unknown axisymmetric flow to

asymmetric one, as well as for calculation of 3D 2n-

periodic flows. (Manuscript received, May 26, 1993)
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