
Master Thesis

Using Auxiliary Helper Key in Key
Insulated Public Key Encryption

補助鍵を用いた鍵隔離公開鍵暗号方式

指導教官 松浦　幹太　准教授

東京大学大学院情報理工学系研究科
電子情報学専攻

氏名

提出日

66438 ファン　ティ　ラン　アン

平成 ２０ 年 ２ 月 ４ 日

Contents

Acknowledgement iv

Abstract v

Chapter 1 Introduction 1

1.1 Background . 2
1.2 Contribution . 3
1.3 Thesis Organisation . 5

Chapter 2 Preliminaries 7

2.1 Factoring Problem and RSA algorithm 8
2.2 Discrete Log Problem . 10
2.3 Elliptic Curves . 10
2.4 Bilinear Maps . 13
2.5 Random Oracle . 14
2.6 Security Notions . 15

Chapter 3 Key Insulated Public Key Encryption (KIE) 19

3.1 Model . 20
3.2 Construction . 21
3.3 Security . 22
3.4 Related Works . 22

Chapter 4 Model and Security Definition of KwAH 27

4.1 Model: KIE with an Auxiliary Helper Key(KwAH) 28
4.2 Security Definition . 28

Chapter 5 KIE with Auxiliary Helper Key 32

5.1 IND-KE-CPA Schemes . 33
5.2 Strongly IND-KE-CPA Schemes . 51

Chapter 6 Chosen Ciphertext Secure Construction 54

– i –

Contents

6.1 Construction . 55
6.2 Security and Proofs . 57

Chapter 7 Conclusions 59

Bibliography 61

Publications 63

– ii –

List of Figures

2.1 Elliptic curves . 11
2.2 Adding two points in elliptic curve 12

– iii –

Acknowledgement

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis.

First of all, I would like to thank my supervisor, Prof. Kanta Matsuura, for encour-
aging and guiding me a lot in research and life in Tokyo for two years.

I am deeply indebted to Dr. Goichiro Hanaoka from National Institute of Advanced
Industrial Science and Technology and Ms. Kumiko Hanaoka from NTT Docomo, Inc,
whose help, stimulating suggestions and encouragement helped me in all the time of
research.

Thanks is due to all members of Matsuura laboratories for their kindness and help
for my research. Especially, for Mr Peng Yang, a doctor senior, and for my second
year master friends, who are always willing to share with me experience in doing
research, writing reports or preparing for the seminars.

I would like to express my deep and sincere gratitude to all member of “IBE-learning
group” in National Institute of Advanced Industrial Science and Technology, Akiba-
hara, for their suggestions, guidence, supports, valuable hints and encouragement
from the first time I attended the group.

On a more personal note, I would like to thank my parents and my dear sister
for their unconditional support. I also own thanks to my husband, for his warmly
encouragement to me to do research and finish this thesis.

– iv –

Abstract

To deal with the problem of secret key exposure, Dodis, Katz, Xu and Yung [11]
proposed a key-insulated public key encryption (KIE), which uses the secure helper
key to update the secret key more often and helps to minimize the damage overall.

We take this idea further in improving the helper key security by introducing an
auxiliary helper key besides of the main helper key. The auxiliary helper key is used
less than the main helper key and can help the system to reduce the damage even in
case of helper key exposure.

This thesis give two different schemes of KIE with auxiliary helper key. There are
trade-offs between public key length and ciphertext size, as well as between encryption
algorithms and decryption algorithms in these two schemes. With these trade-offs,
it is flexible to choose an efficient one to implement in reality. We also show con-
crete constructions with chosen-ciphertext security. The formal security proofs for all
schemes are given in this thesis, based on the CBDH assumption [5] in the random
oracle model.

Key words: Key Insulated Public Key Encryption, auxiliary helper key, IND-KE-
CCA

– v –

Chapter 1

Introduction

1.1 Background Chapter 1 Introduction

1.1 Background

It is widely known that the technology era as today has invented many technological
devices to provide substantial information. This is increasingly interested by the
adversary. Up to now, most cryptosystems rely on possession of single totally secret
entity, normally called secret key, to perform various complex tasks. It should also
be remembered that security is much more under the end-users, who do not only
really understand how to protect the system from the attacks but also not aware of
the risks. Stealing the secret information such as credit card number or passwords, is
increasing common, and it is considered to be much easier than breaking the system
under the cryptography.

Dodis, Katz, Xu and Yung [11] proposed a new paradigm called key-insulated public
key cryptosystem (KIE) which gives “resilience” to key exposure by using helper key
to change or “evolve” the secret key over time. Therefore, even if the current key
is exposed, the security of the system with unexposed keys is still guaranteed. The
helper key is kept in a very secure place, which is only connected to the network
at updating time. However, the more often we update, the more often we have to
connect with the helper key. The helper key, as a result, can be taken by the adversary.
Besides, if the helper key and the secret key in one time period are exposed, all the
past and future secret keys will be computed easily. This suggests the need to reduce
subsequent damages once the helper key is exposed.

Furthermore, in compared with forward secure encryption, the KIE is more expen-
sive in the updating process. To reduce the cost, it is necessary to allow users to
update them more easily.

Hanaoka et al. [17] proposed parallel key-insulated public key encryption schemes
to reduce the damage. In their schemes, there are two helper keys, and these keys
are used alternatively for updating of a secret key, one after the other. Therefore, a
user can update his secret key more frequently, and significantly reduce the damage
of exposure of a helper key. However, since these two helper keys are required to be
used with the same frequency and security, it may be not convinient for a user to take
care of these two keys which are stored at different places.

– 2 –

1.2 Contribution Chapter 1 Introduction

1.2 Contribution

In this thesis, we propose new schemes of KIE with improved helper key security.
We introduce an auxiliary helper key besides of the main helper key. This auxiliary
helper key can help the system to be able to reduce the damage once the helper key
exposure happens.

We can use the main helper key and auxiliary helper key as follows: These two
helper keys are kept in different devices and never used at the same time. The main
helper key is used in a shorter interval of time, while the auxiliary helper key is used
after a longer one. Therefore, the auxiliary helper key is used less frequently than the
main helper key. For example, we can use the main helper key to update the secret
key everyday and after one month, instead of main helper key, we use the auxiliary
helper key to update. Since the auxiliary helper key is used less often than the main
helper key, we can keep it in a safe place and do not need to take care about its
security as frequently as the main helper key. It means that in our proposed scheme,
we just only need to pay attention to one helper key’s security, which is the same as
in the original KIE developed by Dodis, Katz, Xu and Yung [11]. However, in case
of one helper key exposure, as in the example given above, the damage is reduced to
less than one month, which is much smaller than in the normal KIE.

We propose two different schemes with different public key length and ciphertext
size. The first scheme has longer public key length compared with the second one’s.
However, the ciphertext size is shorter than in the second one. One more different
point is that, the encryption and decryption algorithms in these two schemes are in
different level of efficiency. In the first scheme, the encryption algorithm has two
pairing computations, which costs much more than the only one pairing computation
in the second scheme’s encryption algorithm. But it happens inversely in the decryp-
tion algorithm between the two schemes. These two schemes with these trade-offs
can give more flexibility to choose an efficient one to implement. In this thesis, we
give both the chosen-plaintext secure schemes and chosen-ciphertext secure schemes.
Especially, we give the formal security proofs for all these schemes under the CBDH
assumption [5] in the random oracle model.

Unlike [17] where both helper keys need to be carefully kept and used with the same
level, normally a user utilizes his main helper key to update in our proposed schemes.
Hence, we only need to take care of main helper key while storing auxiliary helper
key in a safe place. Although the damage of main helper key exposure is larger than

– 3 –

1.2 Contribution Chapter 1 Introduction

that in [17], the damage of auxiliary helper key exposure here is significantly small.
Initialization in our schemes involves providing main helper device Hmain and aux-

iliary helper device Haux with a main helper key mk and an auxiliary helper key ak,
respectively, and the user’s terminal with a stage 0 user secret key usk0. Similarly to
the original KIE, user’s public encryption key pk is treated like that of an ordinary
encryption scheme with regard to certification, but its lifetime is divided into stages
i = 1, 2, ..., N(= n · `) with encryption in stage i performed as a function of pk, i

and the plaintext, and decryption in stage i performed by the user using a stage i

user secret key uski obtained by the following key-update process performed at the
beginning of stage i:

• If i 6= k · ` for k ∈ Zn, Hmain sends to the user’s terminal over a secure channel,
a stage i helper key hski computed as a function of mk and i,

• If i = k ·` for k ∈ {1, 2, ..., n}, similarly to the above, Haux sends hski computed
as a function of ak and i,

the user computes uski as a function of uski−1 and hski, and erases uski−1. Like
the original KIE, our schemes also address random access key update [11] in which
the user can compute an arbitrary stage user secret key (that could also be a past
key). Note that it is reasonable to assume that mk and ak will not be exposed
simultaneously as they can be managed separately.

The security intentions are:

1. Similarly to the original KIE, if none of the helpers is compromised, then
exposure of any of user secret keys does not compromise the security of the
non-exposed stages,

2. even if one of Hmain and Haux is compromised, security is still guaranteed
unless other secret information is exposed as well,

3. if mk and uski are compromised for some i (k · ` ≤ i ≤ (k + 1) · ` − 1), then
security of stages k · `, ..., (k + 1) · ` − 1 are compromised,

4. if ak and uski are compromised for some i (k · ` + 1 ≤ i ≤ (k + 1) · `− 2), then
security of stage i is compromised, and

5. if ak and uski are compromised for some i(= k · ` − 1 or k · `), then security
of stages k · ` − 1 and k · ` are compromised.

Similar to the original KIE, we can further address the case when all of the helper
keys are exposed:

6. Even if both helpers Hmain and Haux are compromised, security of all stages

– 4 –

1.3 Thesis Organisation Chapter 1 Introduction

remain secure as long as user secret key (of any one stage) is not compromised
as well.

Application. We can give an application of our proposed scheme in real life. Many
of us are familiar with the following setting: a user with his portable device, such a
device can be a laptop computer or a cell phone, either way, a portable device which
he carries around with him daily where all his secret transactions such as decryption
take place; needless to say, risk of leakage of sensitive data inside his device whether
by accident or malicious intent is always an issue to him. As an application of our
schemes, we can let the laptop be the main helper Hmain where he stores the main
helper key mk, and a dedicated smart card or the auxiliary helper Haux in which the
auxiliary helper key ak is stored and also managed securely (preferably at somewhere
reasonably safe like home) when it is not in use. Laptop, i.e. Hmain, is the one
mainly being used to update his secret key just like in the original KIE, and only
occasionally, his smart card, i.e. Haux, and by doing so can prevent further spreading
of the damage that may be caused by key exposure even if Hmain is ever compromised.
To make things more clear, let us consider the next example: daily key updating is
carried out on his laptop PC, and “safety guard” updates with his smart card at the
first day of each month. As you can see, even if both the master helper key mk and
a user secret key (for example, 12/24 user secret key) are exposed at the same time,
still, the damage is kept to the minimum by losing only the security of a month of
December and the rest remain secure. Also, even if the auxiliary key ak is exposed,
the harm cause is merely for a day. End users are ultimately responsible for securing
information more than ever before and this is a simple and effective way for the users
to give added proof to their system.

1.3 Thesis Organisation

The rest of the thesis is organised as follows: In chapter 2, we will revise some pre-
liminaries of cryptography, included some hard problem like RSA algorithm, discrete
log problem etc. We also look at elliptic curves and some mathematical problems in
this curves. Security definitions are also revised in this chapter.

Chapter 3 will be devoted to the notion of key insullated public key encryption
(KIE) and some related works. Chapter 4 are intended to provide the definition of
model, security notions of KIE with auxiliary helper key.

The construction of KIE with auxiliary helper key will be described in chapter 5.
Here the CPA secure and strong CPA secure schemes and their security proofs are

– 5 –

1.3 Thesis Organisation Chapter 1 Introduction

given. The CCA secure schemes and proofs are described in chapter 6.
Chapter 7 is the conclusion, where we will summerise our work within this thesis.

The last part of this thesis comprises the references and publications.

– 6 –

Chapter 2

Preliminaries

2.1 Factoring Problem and RSA algorithm Chapter 2 Preliminaries

In this chapter, we will look at some preliminaries related to cryptography. Some
one-way functions such as factoring, discrete log probelm, which are easy to compute
in one direction but difficult to do in the opposite direction, will be revised. Also, the
definition of elliptic curves, the security assumption, as well as the security definition
will be described in this section. This was summerized from [22, 23, 28].

2.1 Factoring Problem and RSA algorithm

Factoring is the act of splitting an integer into a set of smaller integers which, when
multiplied together, form the original integer. Prime factorization is to spilt an integer
into factors that are prime numbers. Multiplying two prime integers together is easy,
but factoring the product of two prime numbers is much more difficult.

There is no efficient algorithm to factoring a number. Factoring is presumably
a hard problem upon which several public-key cryptosystems are based. The most
famous is based on RSA algorithm. The security of RSA algorithm depends on the
factoring problem being difficult and the presence of no other types of attack.

The algorithm was publicly described in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman at MIT. The letters RSA are the initials of their surnames. The
keys for the RSA algorithm are generated the following way:

1. Choose two distinct large random prime number p and q.
2. Compute n = pq.
3. Compute ϕ(n) = (p − 1)(q − 1).
4. Choose an integer e such that 1 < e < ϕ(n) and e and ϕ(n) share no factors

other than 1. e is considered as the public key exponent.
5. Compute d to satisfy de ≡ 1(mod ϕ(n)). d is kept as the private key exponent.

To encrypt a message m, the sender computes the ciphertext C = me mod n. The
receiver, after receiving C, will decrypt C to get the plaintext m by computing
Cd mod n = m.

A number n with large prime factors is more difficult to factor than a number
with small prime factors. This is why the size of the modulus in the RSA algorithm
determines how secure an actual use of the RSA cryptosystem is. Namely, an RSA
modulus is the product of two large primes, with a larger modulus, the primes become
larger and hence an attacker needs more time to factor it. The two primes, p and q,
which compose the modulus, should be roughly equal length. This makes the modulus
harder to factor than if one of the primes is much smaller than the other. If a 758-bit

– 8 –

2.1 Factoring Problem and RSA algorithm Chapter 2 Preliminaries

modulus is chosen, the primes should each have length approximately 384 bits.
To choose the best size for a modulus, we must consider the security needs in our

system. The larger the modulus, the greater the security, but also the slower the RSA
algorithm operations. We should choose a modulus length upon consideration of the
value of the protected data and how long it needs to be protected. Also, we need to
care about how powerful the potential threats might be.

RSA laboratories currently recommends key sizes of 1024 bits for corporate use
and 2048 bits for extremely valuable keys like the root key pair used by a certifying
authority. Several recent standards specify a 1024-bit minimum for corporate use.
Less valuable information may be encrypted using a 768-bit key, as such a key is still
beyond the reach of all known key breaking algorithms.

It is also noticed that the key of an individual user expires after a certain time. This
gives an opportunity to change keys regularly and to maintain a given level of security.
Upon expiration, the user should generate a new key being sure to ascertain whether
any changes in cryptanalytic skills make a move to longer key kengths appropriate.
Of course, changing a key does not defend against attacks that attempt to recover
messages encrypted with an old key, so key size should always be chosen according to
the expected lifetime of the data.

As for the slowdown caused by increasing the key size, doubling the modulus length
will, on average, increase the time required for public key operations (encryption and
signature verification) by a factor of four, and increase the time taken by private
key operations (decryption and signing) by a factor of eight. The reason public key
operations are affected less than private key operations is that the public exponent
can remain fixed while the modulus is increased, whereas the length of the private
exponent increases proportionally. Key generation time would increase by a factor of
16 upon doubling the modulus, but this is a relatively infrequent operation for most
users.

The RSA system is currently used in a wide variety of products, platforms, and
industries around the world. It is found in many commercial software products and
is planned to be in many more. The RSA algorithm is built into current operating
systems by Microsoft, Apple, Sun, and Novell. In hardware, the RSA algorithm can
be found in secure telephones, on Ethernet network cards, and on smart cards. In
addition, the algorithm is incorporated into all of the major protocols for secure Inter-
net communications, including S/MIME, SSL, and S/WAN. It is also used internally
in many institutions, including branches of the U.S. government, major corporations,
national laboratories, and universities.

– 9 –

2.2 Discrete Log Problem Chapter 2 Preliminaries

2.2 Discrete Log Problem

First, we take a brief detour through group theory. Le G be a finite group. For any
element g ∈ G, define < g >= g0, g1, g2, ... and call this the subgroup of G generated
by g. Note that, since G is finite, the sequence g0, g1, ... will eventually start repeating
(cycling). In particular, since we have g|G| = 1, the sequence can have at most |G|
distinct terms in it and we can write < g >= g0, g1, .., g|G|−1. Of course, some G will
cycle before this. If < g > is the entire group G we say that g is a generator of G. If
a group G has a generator, we say that G is cyclic. Note that just because a group
G is cyclic does not mean that every element in G is a generator.

The discrete logarithm problem applies to mathematical structures called groups.
The discrete logarithm problem is as follows: given an element g in a finite group G

and another element h in G, find an integer x such that gx = h.
Like the factoring problem, the discrete logarithm problem is believed to be difficult.

For this reason, it has been the basis of several public-key cryptosystems. The discrete
logarithm problem bears the same relation to these systems as factoring does to the
RSA system: the security of these systems rests on the assumption that discrete
logarithms are difficult to compute. Although the discrete logarithm problem exists
in any group, when used for cryptographic purposes the group is usually Z∗

n.
The discrete logarithm problem has received much attention in recent years. The

best discrete logarithm algorithms have expected running times similar to those of
the best factoring algorithms. In general, the discrete logarithm in an arbitrary group
of size n can be computed in running time O(On) [25], though in many groups it can
be done faster.

Some cryptosystems in which security depends upon the difficulty of a certain prob-
lem in G related to computing discrete logarithms are ElGamal encryption, Diffie-
Hellman key exchange, Digital Signature Algorithm etc.

2.3 Elliptic Curves

Elliptic curves are described by the set of solutions to certain equations in two
variables. Elliptic curves defined modulo a prime p are of central importance in
public-key cryptography.

Any elliptic curve can be written as a plane algebraic curve defined by an equation

– 10 –

2.3 Elliptic Curves Chapter 2 Preliminaries

Fig. 2.1 Elliptic curves

of the form
y2 = x3 + ax + b

which is non-singular; that is, its graph has no cusps of self-intersections. Elliptic
curves are illustrated in figure 2.1 for various values of a and b.

The set of points on such a curve can be shown to form an abelian group (with the
point at infinity as identity element). If the coordinates x and y are chosen from a
large finite field, the solutions form a finite abelian group.

Elliptic curves used in cryptography are typically defined over two types of finite
fields: fields of odd characteristic (Fp where p is a large prime number) and fields
of characteristic two (F2m). The points on an elliptic curve form an abelian group
(E(F),+) with 0, the distinguished point at infinity, playing the role of additive
identity. Given two points M1,M2 on E(F), there is a point, denoted by M1 + M2

on E(F) and the following relations hold for all M1,M2,M3

• M1 + M2 = M2 + M1 (commutativity)
• (M1 + M2) + M3 = M1 + (M2 + M3) (associativity)
• M1 + 0 = 0 + M1 = M1 (existence of an identity element)

– 11 –

2.3 Elliptic Curves Chapter 2 Preliminaries

Fig. 2.2 Adding two points in elliptic curve

• There exists (−M1) such that −M1 + M1 = M1 + (−M1) = 0 (existence of
inverses)

Suppose that two distinct points M1 and M2 are on an elliptic curve, and the M1

is not −M2. To add the points M1 and M2, a line is drawn through the two points.
This line will intersect the elliptic curve in exactly one more point, call P . The point
P is reflected in the x-axis to the point M3. The law for addition in an elliptic curve
group is M1 + M2 = M3. Adding result can be seen in the figure 2.2.

Elliptic curve cryptosystems are analogs of exsiting public key cryptosystems, in
which modular arithmetic is replaced by operations defined over elliptic curves. The
security of elliptic curve cryptosystems relies on the underlying hard mathematicl
problems. It is proven that elliptic curve cryptosystems have no practical advantage
over the RSA system, since their security is based on the same underlying problem,
namely integer factorization. The situation is quite different with elliptic curve vari-
ants of discrete log based systems. The security of such systems depends on the
following hard problem: Given two points M and N on an elliptic curve such that
M = kN , find the integer k.

Presently, the algorithm for computing the discrete log problem in elliptic curves
are much less efficient than those for factoring or computing conventional discrete
logarithms. As the result, the discrete logarithm problem on such elliptic curve groups
is believed to be more difficult than the corresponding problem in the underlying finite
field. Thus keys in elliptic curve cryptography can be chosen to be much shorter for a
comparable level of security. For example, elliptic curve cryptosystems with a 160-bit
key offer the same security of the RSA system and discrete logarithm based systems

– 12 –

2.4 Bilinear Maps Chapter 2 Preliminaries

with a 1024-bit key. As a result, the length of the public key and private key is much
shorter in elliptic curve cryptosystems.

In terms of speed, however, it is quite difficult to give a quantitative comparison,
partly because of the various optimization techniques one can apply to different sys-
tems. It is perhaps fair to say the following: Elliptic curve cryptosystems are faster
than the corresponding discrete logarithm based systems. Elliptic curve cryptosys-
tems are faster than the RSA system in signing and decryption, but slower in signature
verification and encryption [26].

2.4 Bilinear Maps

We give brief review of the bilinear maps. Throughout this thesis, we let G1 and
G2 be two multiplicative cyclic groups of prime order q, and g be a generator of G1.
A bilinear map e : G1 × G1 → G2 satisfies the following properties:

1. Bilinearity: For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
3. Computability: There is an efficient algorithm to compute e(u, v) for all u, v ∈

G1.

Note that a bilinear map is symmetric since e(ga, gb) = e(gb, ga) = e(g, g)ab.
Here, we consider two complexity assumptions related to bilinear maps: the Com-

putational Bilinear Diffie-Hellman (CBDH) assumption and the Gap Bilinear Diffie-
Hellman (GBDH) assumption.
CBDH Assumption. The CBDH problem [5] in 〈G1, G2, e〉 is as follows: given
a tuple (g, ga, gb, gc) ∈ (G1)4 as input, output e(g, g)abc ∈ G2. An algorithm Acbdh

solves CBDH problem in 〈G1, G2, e〉 with the probability εcbdh if

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εcbdh,

where the probability is over the random choice of generator g ∈ G1\{1}, the random
choice of a, b, c ∈ Zq and random coins consumed by Acbdh.

Definition 1. We say that the (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 if
no tcbdh-time algorithm has advantage of at least εcbdh in solving the CBDH problem
in 〈G1, G2, e〉.

GBDH Assumption. The GBDH problem in 〈G1, G2, e〉 is as follows: given a tuple
(g, ga, gb, gc) ∈ (G1)4 as input, output e(g, g)abc ∈ G2 with the help of a decision BDH
oracle O which for given (g, ga, gb, gc, T) ∈ (G1)4×G2, answers “true” if T = e(g, g)abc,

– 13 –

2.5 Random Oracle Chapter 2 Preliminaries

or “false” otherwise [24]. An algorithm Agbdh solves GBDH problem in 〈G1, G2, e〉
with the probability εgbdh if

Pr[AO
gbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εgbdh,

where the probability is over the random choice of generator g ∈ G1\{1}, the random
choice of a, b, c ∈ Zq and random coins consumed by Agbdh.

Definition 2. We say that the (tgbdh, εgbdh)-GBDH assumption holds in 〈G1, G2, e〉
if no tgbdh-time algorithm has advantage at least εgbdh in solving the GBDH problem
in 〈G1, G2, e〉.

2.5 Random Oracle

In cryptography, a random oracle is an oracle that responds to every query with a
truly random response chosen uniformly from its output domain, except that for any
specific query, it responds the same way every time it receives that query. Put another
way, a random oracle is a mathematical function mapping every possible query to a
random response from its output domain.

Random oracles are a mathematical abstraction used in cryptographic proofs. They
are typically used when no known implementable function provides the mathematical
properties required by the proof. A system that is proven secure using such a proof
is described as being secure in the random oracle model, as opposed to secure in the
standard model. In practice, random oracles are typically used to model cryptographic
hash functions in schemes where strong randomness assumptions are needed of the
hash function’s output. Such a proof generally shows that a system or a protocol is
secure by showing that an attacker must require impossible behavior from the oracle,
or solve some mathematical problem believed hard, in order to break the protocol.

In general, we simply do not know how to construct efficient schemes which are
provably secure based on standard cryptographic assumptions. Therefore, in order to
have efficient schemes, it is considered to use random oracle model and to prove the
security of cryptographic constructions in this model. Although a proof in this model
does not guarantee security in the real world, it is still provides a useful check that
our construction is not inherently flawed.

The random oracle model assumes the following:

• There is a public oracle that everyone (including all honest parties as well as
the adversary) has access to.

– 14 –

2.6 Security Notions Chapter 2 Preliminaries

• Random oracle implements a truly random function in the following sense: the
first time anyone asks the oracle a query x, it chooses a completely random
value y and returns this value. In the future, whenever someone asks query
x again, the same answer y is returned. Moreover, no information about y is
achieved if the query is different from x.

• In the real world, random oracles do not exist, and even if we wanted to im-
plement a random function we would be unable to for reasonable input/output
sizes. Therefore, what is done is that: design a scheme in the random oracle
model and prove the security of the scheme in that model. Then when im-
plementing, replace the random oracle by a cryptographic hash function (e.g.,
SHA-1 or MD5)

• If the hash function is “good” and really “garbles” its inputs, then it “acts like”
a random oracle. Thus a scheme secure in the random oracle model should also
be secure in the standard model when the random oracle is replaced by a “good”
hash function.

• All the terms of the previous paragraph (“good”, “acts like”, etc.) are vague;
in fact, there is no (known) way to replace a random oracle with any hash
function so that the resulting scheme is provably secure in the standard model.

2.6 Security Notions

In cryptography, in order to analyze the security of the system, a security notion is
defined. Normally, security notion is presented by using a game between an adversary
and a challenger, in which an adversary tries to win the game. The challenger will
simulate the real scheme, by calling the encrypting and decrypting oracles.

There are three normal types of attack: chosen plaintext attack, non-adaptive cho-
sen ciphertext attack and adaptive chosen ciphertext attack. Combining these types
of attack with security goal, we have the different levels of security.

There are many levels of security, and each level is defined by a different game.
The normal security notions are indistinguishability under chosen plaintext attack
(IND-CPA), indistinguishability under (non-adaptive) chosen ciphertext attack
(IND-CCA1) and indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2). IND-CPA is considered a basic requirement for most provably secure
public key cryptosystems, though some schemes also provide the other two. Security
under either of the latter definition implies security under the previous ones. Thus,
IND-CCA2 is the strongest of these three definitions of security.

– 15 –

2.6 Security Notions Chapter 2 Preliminaries

These three security properties above are in terms of indistinguishability, that is
no adversary, given an encryption of a message randomly chosen from a two-element
message space determined by an adversary, can identify the message choice (also
means that the adversary wins in the game with the challenger) with probability
significantly better than that of random guessing (1/2).

There are some other cryptographic goals besides indistinguishalibity, included se-
mantic security, non-malleability, plaintext awareness etc.

In proving the security of one system, it is normally depended on mathematical
assumption. For example, we say that one scheme is IND-CPA under the discrete
logarithm assumption. It means that if the discrete logarithm is difficult for the
adversary, then the adversary can not win the game with probability significantly
better than that 1/2 and the system is secure. There are many assumptions used
nowadays, such as decision Diffie-Hellman (DDH) assumption, computational Diffie-
Hellman (CDH) assumption, etc.

It is considered to be easy to develop a scheme with the lower security level (IND-
CPA) and use the Fujisaki-Okamoto transformation [15, 16] to achieve a strong secu-
rity level (IND-CCA).

We will look carefully about indistinguishability under chosen plaintext attack
(IND-CPA), indistinguishability under non-adaptive chosen ciphertext attack
(IND-CCA1), and indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2).

2.6.1 Indistinguishability Under Chosen Plaintext Attack

For a probabilistic asymmetric key encryption algorithm, indistinguishability under
chosen plaintext attack (IND-CPA) is defined by the following game between an ad-
versary and a challenger. For schemes based on computational security, the adversary
is modeled by a probabilistic polynomial time Turing machine, meaning that it must
complete the game and output a guess within a polynomial number of time steps. In
this definition E(pk,m) represents the encryption of a message m under the key pk.
sk is the secret key:

1. The challenger generates a key pair pk, sk based on some security parameter
k (e.g., a key size in bits), and publishes pk to the adversary. The challenger
retains sk.

2. The adversary may perform any number of encryptions or other operations.
3. Eventually, the adversary submits two distinct chosen plaintexts m0, m1 to the

– 16 –

2.6 Security Notions Chapter 2 Preliminaries

challenger.
4. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the

challenge ciphertext C = E(pk,mb) back to the adversary.
5. The adversary is free to perform any number of additional computations or

encryptions. Finally, it outputs a guess for the value of b.

A cryptosystem is indistinguishable under chosen plaintext attack if every prob-
abilistic polynomial time adversary has only a negligible “advantage” over random
guessing. An adversary is said to have a negligible “advantage” if it wins the above
game with probability (1/2) + ε(k), where ε(k) is a negligible function in the security
parameter k, that is for every (nonzero) polynomial function poly() there exists k0

such that |ε(k)| < |1/poly(k)| for all k > k0.
Although the adversary knows M0, M1 and PK, the probabilistic nature of E means

that the encryption of Mb will be only one of many valid ciphertexts, and therefore
encrypting M0, M1 and comparing the resulting ciphertexts with the challenge ci-
phertext does not afford any advantage to the adversary.

While the above definition is specific to an asymmetric key cryptosystem, it can
be adapted to the symmetric case by replacing the public key encryption function
with an ”encryption oracle”, which retains the secret encryption key and encrypts
arbitrary ciphertexts at the adversary’s request.

2.6.2 Indistinguishability Under Chosen Ciphertext Attack

Indistinguishability under non-adaptive and adaptive Chosen Ciphertext Attack
(IND-CCA1, IND-CCA2) uses a definition similar to that of IND-CPA. However, in
addition to the public key (or encryption oracle, in the symmetric case), the adver-
sary is given access to a ”decryption oracle” which decrypts arbitrary ciphertexts at
the adversary’s request, returning the plaintext. In the non-adaptive definition, the
adversary is allowed to query this oracle only up until it receives the challenge cipher-
text. In the adaptive definition, the adversary may continue to query the decryption
oracle even after it has received a challenge ciphertext, with the caveat that it may
not pass the challenge ciphertext for decryption (otherwise, the definition would be
trivial).

1. The challenger generates a key pair pk, sk based on some security parameter
k (e.g., a key size in bits), and publishes pk to the adversary. The challenger
retains sk.

2. The adversary may perform any number of encryptions, calls to the decryption

– 17 –

2.6 Security Notions Chapter 2 Preliminaries

oracle based on arbitrary ciphertexts, or other operations.
3. Eventually, the adversary submits two distinct chosen plaintexts m0, m1 to the

challenger.
4. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the

”challenge” ciphertext C = E(pk,mb) back to the adversary.
5. The adversary is free to perform any number of additional computations or

encryptions.
• In the non-adaptive case (IND-CCA1), the adversary may not make further

calls to the decryption oracle.
• In the adaptive case (IND-CCA2), the adversary may make further calls

to the decryption oracle, but may not submit the challenge ciphertext C.
6. Finally, the adversary outputs a guess for the value of b.

A scheme is IND-CCA1/IND-CCA2 secure if no adversary has a non-negligible
advantage in winning the above game.

– 18 –

Chapter 3

Key Insulated

Public Key

Encryption (KIE)

3.1 Model Chapter 3 Key Insulated Public Key Encryption (KIE)

KIE allows user to update the secret key overtime and it reduces the damage once
the secret key is exposed. This section will describe about the detail of KIE.

3.1 Model

In a (t,N)-key-insulated scheme, an adversary who compromises the insecure device
and obtains secret keys for up to t periods of his choice is unable to violate the security
of the cryptosystem for any of the remaining N − t periods. The model of KIE is
the following. User first registers a single public key PK. A master secret key SK∗

is stored on a device which is physically secure and hence resistant to compromise.
However, decryption is done on an insecure device for which exposure is expected to
be a problem. Protocol’s life time is divided into distinct periods 1,..,N (these time
periods’ length are suposed to be equal for simplicity).

Suppose user is in the period i − 1 and having secret key SKi−1. When the user
wants to update his secret key of the next period, he first connects with the secret
device (sometimes called helper device) to get the update information SK

′

i . Using
the update information SK

′

i and his own secret key at the moment, he computes the
new secret key SKi. He then uses this key in decrypting the message encrypted at
this period. The public key PK is kept unchanged during all the periods.

The detail of the model of the key-insulated public key encryption is as follows:

Definition 3. A key-updating (public-key) encryption scheme is a 5-tuple of poly-time
algorithms (G, U∗, U, ε,D) such that:

• G, the key generation algorithm: takes as input a security parameters 1k and
the total number of time periods N . It returns a public key PK, a master key
SK∗ and an initial key SK0.

• U∗, the device key-update algorithm: takes as input an index i for a time period
(1 ≤ i ≤ N) and the master key SK∗. It returns the partial secret key SK

′

i for
time period i.

• U , the user key-update algorithm: takes as input an index i, secret key SKi−1

and a partial secret key SK
′

i . It returns the partial secret key secret key SKi

for time period i and erase SKi−1, SK
′

i

• ε, the encryption algorithm: takes as input a public-key PK, a time i and a
message M . It returns a ciphertext < i,C >.

• D, the decryption algorithm: takes as input a secret key SKi and a ciphertext
< i,C >. It returns a message M or the special symbol ⊥.

– 20 –

3.2 Construction Chapter 3 Key Insulated Public Key Encryption (KIE)

It is required that for all messages M, DSKi(εPK(i,M)) = M

A key-updating ecnryption scheme is used as the following. A user begins by
generating (PK,SK∗, sk0) ← G(1k, N), registering PK in a central location, storing
SK∗ on a physically-secure device, and storing SK0 himself. At the beginning of time
period i, the user requests SK

′

i = U∗(i, SK∗) from the secure device. Using SK
′

i and
SKi−1, the user may compute SKi = U(i, SKi−1, SK

′

i). This key may be used to
decrypt message sent during time period i without further access to the device. After
computation of SKi, the user must erase SK

′

i and SKi−1.
One important feature of key updates is random-access, which allows user to update

from period j to i in “one shot”. The definition above implicitly fixes j = i − 1.

3.2 Construction

A generic construction of the KIE is written in the paper [11]. Here we will give the
scheme which is proved to be secure under the decision Diffie-Hellman assumption.

• G(1k): (g, h, k) ←− Gen(1k);
x∗

0, y
∗
0 , ..., x∗

t , y
∗
t ←− Zq

z∗0 := gx∗
0hy∗

0 ,, z∗t := gx∗
t hy∗

t

PK = (g, h, q, z∗0 , ..., z∗t)
SK∗ = (x∗

1, y
∗
1 , ..., x∗

t , y
∗
t); SK0 = (x∗

0, y
∗
0)

return PK,SK∗, SK0

• U∗(i, SK∗ = (x∗
1, y

∗
1 , ..., x∗

t , y
∗
t)) :

x
′

i =
∑t

j=1 x∗
j (i

j − (i − 1)j)
y

′

i =
∑t

j=1 y∗
j (ij − (i − 1)j)

return SK
′

i = (x
′

i, y
′

i)
• U(i, SKi−1 = (xi−1, yi−1), SK

′

i = (x
′

i, y
′

i)) :
xi = xi−1 + x

′

i

yi = yi−1 + y
′

i

return SKi = (xi, yi)
• ε(g, h, w, z∗0 , ..., z∗y)(i,M) :

zi =
∏t

j=0(z
∗
j)ij

r ← Zq

C := (gr, hr, zr
i M) return (i, C)

• D(xi,yi)((i, C = (u, v, w))) :
M := w/uxivyi

– 21 –

3.3 Security Chapter 3 Key Insulated Public Key Encryption (KIE)

return M

The above scheme is secure based on DDH assumption in standard model. There
is also another way to build a KIE scheme by using the Weil pairing which is used in
the [5]. The scheme in [5] is considered to be more efficient and therefore using the
weil pairing is much better. Therefore, in some next researchs, there are some works
that try to apply pairing and KIE in the same scheme [7, 17, 18]. However, building
a scheme with pairing in the standard model is still an open problem.

3.3 Security

Let first see the security attack model of this scheme. There are three types of
exposures that need to protect against: (1) ordinary key exposure, which models
compromise of the insecure storage (i.e, leakage of SKi); (2) key-update exposure,
which models compromise of the insecure device during the key-updating step (i.e.,
leakage of SKi−1 and SK

′

i ; and (3) master key exposure, which models compromise of
the physically-secure device (i.e., leakage of SK∗). It is needed to prove the security
of KIE under these three types of exposures.

The adversary is allowed to access a key exposure oracle, which, on in put i, returns
the temporary secret key SKi. Moreover, the adversary can access to a decryption
oracle that, on input (i, C), computes DSKi((i, C)). This models a chosen-ciphertext
attack by the adversary.

The detail of security proof can be seen in the paper [11].

3.4 Related Works

In this section, we look generally about some related works with KIE that have
been researched in recent years.

Strongly key-insulated security
Developed from the KIE, strongly key-insulated public key encryption (sKIE) en-

hances the security of the system in case of helper key exposure. In this scheme, the
security of the system is guaranteed even if the attacker can get the helper key, as
long as he can not get one of secret keys. It is not difficult to change from the KIE
scheme to sKIE scheme [11].

Key-insulated encryption with optimal threshold

– 22 –

3.4 Related Works Chapter 3 Key Insulated Public Key Encryption (KIE)

The work of Dodis et al. is then considered in terms of realization further towards
practice by presenting simple new schemes that provide benefits in terms of scalabil-
ity, performance and security. Bellare and Palacio [7] proposed a simple, practical,
scalable scheme that achieves the best possible security in their framework, based on
the Boneh-Franklin indentity-based encryption.

Relation with identity based encryption
In 1984, Shamir asked for a public key encryption in which the public key can be

an arbitrary string [27]. This is an original motivation for identity-based encryption.
This idea then formalized by Boneh and Franklin in 2001 [5]. The full paper is in [6].
In these papers, identity based encryption is built by using Weil pairing computation.
Cock also gave an identity based encryption scheme by using quadratic residue in
2001 [9].

According to the work of Boneh and Franklin, the arbitrary string is considered
to be the user’s identity, such as email address. When Alice wants to send Bob a
message, she can use Bob’s email address to encrypt the message without receiving
the public key authentication. Bob authenticates himself to the PkG in the same way
he would authenticate himself to a CA and obtains his private key from the PKG.
Bob can then decrypt the message sent by Alice.

It is easy to see that an ID-based encryption scheme may be converted an (N-1,N)-
key-insulated encryption scheme by viewing the period number as an ”identity” and
having the physically-secure device implement the trusted center. The converse is also
true. A (t,N)-key-insulated encryption scheme with a fully trusted device may be
viewed as a relaxation of ID-based encryption, where it is not insisted on t = N − 1.
Even though the model of ID-based encryption assumes a fully trusted center, it was
observered that the particular scheme in [5] -when viewed as an (N−1, N)−KIE- can
be very easily modified so that the secure device no longer needs to be trusted. This
almost immediately gives a fully secure KIE. However, these schemes are developed
under random oracle and there is still a problem of how to build a ID-based scheme
in a standard oracle. Some works have been researched without random oracle [3, 4],
but the weaker security notion, called “selective ID secure” was used instead of the
normal one. Water also gave a work of identity based encryption without random
oracle [29].

Forward-secure encryption
Forward-secure encryption (FSE) is also one kind of key evolution. First idea was

– 23 –

3.4 Related Works Chapter 3 Key Insulated Public Key Encryption (KIE)

given by [1] and the first efficient forward-secure public key encryption is provided
by Canetti, Halevi and Katz [10]. This scheme builds on the hierarchical identity
based encryption of Gentry and Silverberg [20], which in turn is based on Boneh and
Franklin’s identity-based encryption [5]. Besides, the forward-secure signature scheme
was also presented by Bellare and Miner in 1999 [8] and by Abdalla and Reyzi in 2000
[2].

The main idea of forward-secure encryption is that changing the secret key during
different time periods, while the public key is unchanged. It is different from KIE
that the updating process is done without the use of a secret device.

Trade-off relations between the KIE and FSE are discussed in the paper [19]. Ac-
cording to this paper, there is a trade-off between lifespan of using the key certificate
and simplicity of key updating process. While the updating process in FSE is very
simple, it is very costly in KIE as the need of connecting with the helper device.
However, with the help of helper device, once the secret key is exposed at one time
period, it has no effect on the other time periods’ keys. It is much different from the
FSE, because since one key is exposed, the security of the system has been broken
from that point of time.

Moreover, the FSE allows the past messages to be kept secret even in case of
exposure, while the KIE does not. When the adversary can get the helper key and a
secret key at the same time, he can compute all the messages sent at any time.

Last but not least, random-access key updates are impossible to achieve in the
forward-security model.

Instrusion-resilient public key encryption
Coming next after the forward security and key insulation is intrusion-resilience,

which was proposed as a means of mitigating the harmful effects that key exposure
can have [13, 14]. Like the forward-secure scheme and key-insulated scheme, the
public key is unchanged while the secret key is changed time after time.

Forward-secure schemes are advantageous in that the user is self-sufficient and need
not interact with any other device. On the other hand, the security provided by key-
insulated and intrusion-resilient schemes is better and these schemes might therefore
be used when interacting with a server is feasible and does not represent a seri-
ous drawback. Finally, although the intrusion-resilient model offers stronger security
guarantees than the key-insulated model, it is noted that solutions for the latter are
much more efficient. The choice of which type of scheme to use therefore depends
heavily on an assumption about the physical security of the server.

– 24 –

3.4 Related Works Chapter 3 Key Insulated Public Key Encryption (KIE)

Hierarchical strongly key-insulated encryption
Hierarchical strongly key-insulated encryption is developed by Hanaoka et al. [18]

in 2003. This scheme enhances the security of sKIPE by hierarchically structuring
the helper key with added identity-based property.

In this scheme, like the original KIE, a private device, which stores the helper key,
is not connected to the network except at each fixed time period when the decryption
key is updated. When updating, the user connects with the private device and uses
the helper key which is stored in it. All secret operations are done by the user alone.
The private device is divided into multiple levels forming a hierarchical structure to
improve its security.

Their proposed schemes are constructed by extending the hierarchical identity-
based encryption schemes (HIBE) [20]. As they proved in the paper, straightforward
extension of HIBE will be completely vulnerable for their attack model. They pro-
posed two secure constructions of IBE that can renew and update the decryption key
non-interactively: (1) a generic construction based on any HIBE, and (2) a specific
construction based on Gentry-Silverberg HIBE. Although being more efficient than
the generic scheme, the specific scheme is based on the bilinear Diffie-Hellman as-
sumption and flexibility may become a concern when designing new constructions in
terms of security.

Parallel key-insulated public key encryption
This is the scheme developed by Hanaoka et al. [17] in 2006. This work enhances the

security of the system by using two parallel helper devices, which are used alternately
to update the secret key. These helper devices are never used at the same time and
never stored at the same places.

The security of this scheme is as follows:

• If none of the helper keys is compromised, similar to the original KIE, exposure
of any of user secret keys does not compromise the security of the non-exposed
stages.

• Even if one of helper keys is compromised in addition to the exposure of any of
user secret keys, it still does not compromise the security of the non exposed
stages except for the ones whose corresponding user secret keys can be trivially
determined from the exposed keys.

• For the strong version, even if both helper keys are compromised, security of all
stages remain secure as long as user secret key is not compromised in addition

– 25 –

3.4 Related Works Chapter 3 Key Insulated Public Key Encryption (KIE)

to the helper keys.

Therefore, even in case of one helper device is attacked, another can be considered
to be safe. Moreover, the damage after being attacked is reduced to the minimum.

The detail scheme is built based on the work of Boney and Franklin [5], thus the
efficiency of this scheme can be said to be considerable with the scheme in [5]

Key-insulated signature
Besides of encryption schemes, key-insulation is also useful in developing the signa-

ture scheme, which is very important in transactions and e-commerce. In this global
communication environment, signature computation will be frequently performed on
a relatively insecure device (e.g., a mobile phone) that can not be trusted to com-
pletely maintain the secrecy of the secret key. In the effort to deal with the problem,
key-insulated signature is a good solution. This work is done in [12].

– 26 –

Chapter 4

Model and

Security

Definition of

KwAH

4.1 Model: KIE with an Auxiliary Helper Key(KwAH)Chapter 4 Model and Security Definition of KwAH

In this chapter, we will give the model of KIE with an auxiliary helper key (KwAH)
and the security notion. We follow by showing some of the characteristics of bilinear
maps. We then briefly review the related computational assumptions.

4.1 Model: KIE with an Auxiliary Helper Key(KwAH)

A KwAH scheme E consists of five efficient algorithms (KeyGen, ∆-Gen, Up-
date, Encrypt, Decrypt).

KeyGen: Takes a security parameter k and returns mk, ak, usk0 and pk. Public key
pk includes a description of finite message space M, and description of finite
ciphertext space C.

∆-Gen: Takes as inputs, mk and i, and returns stage i helper key hski if ` 6 |i, or ⊥
otherwise, and takes as inputs, ak and i, and returns stage i helper key hski if
`|i, or ⊥ otherwise

Update: Takes as inputs, uski−1, hski and i, and returns stage i user secret key uski.
Encrypt: Takes as inputs, pk, i and M ∈ M, and returns ciphertext C ∈ C.
Decrypt: Takes as inputs, pk, uski and C ∈ C, and returns M ∈ M or ⊥.

These algorithms must satisfy the standard consistency constraint, namely,

∀i ∈ {1, 2, ..., N}, ∀M ∈ M : Decrypt(pk, uski, C) = M where C = Encrypt(pk, i,M).

4.2 Security Definition

Here, we define the notion of semantic security for KwAH. This is based on the
security definition in the original KIE [11, 7]. It should be noticed that the definition
in [7] looks simpler than in [11] but they are essentially the same.

We say that a KwAH scheme E is semantically secure against an adaptive chosen
ciphertext attack under an adaptive chosen key exposure attack (IND-KE-CCA) if
no polynomially bounded adversary A has a non-negligible advantage against the
challenger in the following IND-KE-CCA game:

Setup: The challenger takes a security parameter k and runs the KeyGen algorithm.
He gives the adversary the public key pk and keeps usk0, mk and ak to himself.

Phase 1: The adversary issues several queries q1, · · · , qρ where each of the queries qi

is one of:
• Exposure query 〈j, class〉: If class = “user”, the challenger responds by

– 28 –

4.2 Security Definition Chapter 4 Model and Security Definition of KwAH

running the algorithms ∆-Gen and Update to generate uskj and sends
it to the adversary. If class = “main helper” or “auxiliary helper”, the
challenger sends mk or ak to the adversary, respectively.

• Decryption query 〈j, C〉: The challenger responds by running the algo-
rithms ∆-Gen and Update to generate uskj . He then runs Decrypt to
decrypt the ciphertext C using uskj and sends the result to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, · · · , qi−1.

Challenge: Once the adversary decides that Phase 1 is over, she outputs two equal
length plaintexts M0,M1 ∈ M and j∗ ∈ {1, 2, ..., N} on which she wishes
to be challenged. The challenger picks a random bit β ∈ {0, 1} and sets
C∗ = Encrypt(pk, j∗,Mβ). The challenger sends C∗ as the challenge to the
adversary.

Phase 2: The adversary issues additional queries qρ+1, · · · , qmax where each of the
queries is one of:
• Exposure query 〈j, class〉: Challenger responds as in Phase 1.
• Decryption query 〈j, C〉: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs her guess β′ ∈ {0, 1}. She wins the game if

β′ = β and
1. 〈j∗, C∗〉 does not appear in Decryption queries,
2. 〈j∗, “user”〉 does not appear in Exposure queries,
3. both 〈j, “user”〉, such that m · ` ≤ j∗ ≤ (m + 1) · ` − 1 and m · ` ≤ j ≤

(m + 1) · ` − 1 for some m (0 ≤ m ≤ n − 1), and 〈·, “main helper”〉 do not
simultaneously appear in Exposure queries,

4. both 〈j, “user”〉, such that j∗ = (m+1)·`−1 or (m+1)·` and j = (m+1)·`−1
or (m + 1) · ` for some m (0 ≤ m ≤ n − 1), and 〈·, “auxiliary helper”〉 do
not simultaneously appear in Exposure queries,

5. both 〈·, “main helper”〉 and 〈·, “auxiliary helper”〉 do not simultaneously
appear in Exposure queries.

We refer to such an adversary A as an IND-KE-CCA adversary. We define adversary
A’s advantage in attacking the scheme E as:

AdvE,A = Pr[β′ = β] − 1/2.

The probability is over the random bits used by the challenger and the adversary.

Definition 4. We say that a KwAH scheme E is (t, ε)-adaptive chosen ciphertext

– 29 –

4.2 Security Definition Chapter 4 Model and Security Definition of KwAH

secure under adaptive chosen key exposure attacks if for any t-time IND-KE-CCA
adversary A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CCA
secure.

As usual, we can define chosen plaintext security similarly to the game above except
that the adversary is not allowed to issue any Decryption queries. The adversary
still can adaptively issue Exposure queries. We call this adversary IND-KE-CPA
adversary.

Definition 5. We say that a KwAH scheme E is (t, ε)-adaptive chosen plaintext secure
under adaptive chosen key exposure attacks if for any t-time IND-KE-CPA adversary
A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CPA secure.

IND-KE-CCA is already a strong security notion, but its security can be enhanced
further to cover the compromise of both the helper keys. Concretely, as a constraint
on the above adversary’s Exposure query, we can modify 5. so that:

5′. 〈·, “main helper”〉, 〈·, “auxiliary helper”〉, and 〈j, “user”〉 do not simul-
taneously appear in Exposure queries for any j ∈ {1, 2, ..., N}.

Such modification allows the adversary A to obtain both mk and ak if A doesn’t ask
any of user secret keys. Let this adversary be a strong IND-KE-CCA adversary.

Definition 6. We say that a KwAH scheme E is (t, ε)-adaptive chosen ciphertext
secure under strongly adaptive chosen key exposure attacks if for any t-time strong
IND-KE-CCA adversary A, we have AdvE,A < ε. As shorthand, we say that E is
strongly IND-KE-CCA secure.

Similarly, we can define strong IND-KE-CPA adversary, and here as well, she is not
allowed to issue any Decryption queries.

Definition 7. We say that a KwAH scheme E is (t, ε)-adaptive chosen plaintext
secure under strongly adaptive chosen key exposure attacks if for any t-time strong
IND-KE-CPA adversary A, we have AdvE,A < ε. As shorthand, we say that E is
strongly IND-KE-CPA secure.

A Remark on the Security Notion: Exposure of the Helper Keys. In the
discussion we had so far, it may seem like we may have overlooked the exposure of
stage i helper key, but actually, we haven’t. It is obvious that if hski can be computed
from uski−1 and uski for any stage i, then exposure of hski can be emulated by using
the responses to the Exposure queries. So, the security definition so far given is

– 30 –

4.2 Security Definition Chapter 4 Model and Security Definition of KwAH

sufficient as it is even against exposure of stage i helper keys for any i, if we assume
that such property holds. As a matter of fact, all of our constructions satisfy this
property.

– 31 –

Chapter 5

KIE with

Auxiliary Helper

Key

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

In this chapter, we propose two different KwAH schemes and prove their security
under the CBDH assumption in the random oracle model. The trade-offs between
public key length and ciphertext size, as well as the difference between the encryption
and decryption algorithms’ efficiency in these schemes give flexibility to choose an
efficient one to implement.

The schemes in [5] are considered to be efficient by many researchers. Our schemes
are reasonably efficient since efficiency of our KwAH schemes can said to be compa-
rable to [5]. In our schemes, we let N = O(poly(k)).

The results in this chapter were written in publication P1, P2 and P3.

5.1 IND-KE-CPA Schemes

Let G1 and G2 be two groups of order q of size k, and g be a generator of G1.
Let e : G1 × G1 → G2 be a bilinear map. Let G, H be cryptographic hash functions
G : G2 → {0, 1}n for some n, H : {0, 1}∗ → G1, respectively.

5.1.1 KwAH1: IND-KE-CPA Construction

The first IND-KE-CPA scheme KwAH1 consists of the following algorithms:

KeyGen: Given a security parameter k, KeyGen algorithm:
1. generates G1, G2, g and e.
2. picks s1, s2 ∈ Z∗

q uniformly at random, and sets h1 = gs1 and h2 = gs2 ,
3. chooses cryptographic hash functions G and H,
4. computes d−1 = H(−1)s1 and d0 = H(0)s2 , and
5. outputs pk = 〈q, G1, G2, e, n, g, h1, h2, G,H〉, mk = s1, ak = s2 and

usk0 = d−1 · d0. The message space is M = {0, 1}n. The ciphertext
space is C = ZN × G∗

1 × {0, 1}n.
∆-Gen: For given mk and i ∈ {1, 2, ..., N}, ∆-Gen algorithm:

1. outputs ⊥ if i = 0 mod `,
2. outputs hski = H(i−1)−s1 ·H(i)s1 if i 6= m·`+1 for some m (0 ≤ m ≤ n−1),
3. outputs hski = H(i−2)−s1 ·H(i)s1 if i = m·`+1 for some m (0 ≤ m ≤ n−1).
For given ak and i ∈ {1, 2, ..., N}, ∆-Gen algorithm:
1. outputs ⊥ if i 6= 0 mod `,
2. outputs hski = H(i − `)−s2 · H(i)s2 otherwise.

Update: For given uski−1, hski and i, Update algorithm:
1. computes uski = uski−1 · hski,

– 33 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

2. deletes uski−1 and hski, and
3. outputs uski.

Encrypt: For given pk, i, and a message M ∈ {0, 1}n, assuming that m · ` + 1 ≤
i ≤ (m + 1) · ` for some m (0 ≤ m ≤ n − 1), Encrypt algorithm:
1. chooses random r ∈ Z∗

q ,
2. computes W = (e(h1,H(i)) · e(h2, H(m · `)))r if i 6= (m + 1) · `,
3. computes W = (e(h1,H(i − 1)) · e(h2,H((m

+ 1) · `)))r if i = (m + 1) · `,
4. sets C = 〈i, gr, G(W) ⊕ M〉, and
5. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. computes W ′ = e(c0, uski),
2. computes M ′ = c1 ⊕ G(W ′), and
3. outputs M ′ as a plaintext.

We show the correctness of this scheme. Through ∆-Gen and Update, the secret
key uski can be computed to be

uski =

H(i)s1 · H(m · `)s2 (if i 6= (m + 1) · `),

H(i − 1)s1 · H((m + 1) · `)s2 (if i = (m + 1) · `)

Therefore,

e(c0, uski) =

e(gr, H(i)s1 · H(m · `)s2) (if i 6= (m + 1) · `),

e(gr, H(i − 1)s1 · H((m + 1) · `)s2) (if i = (m + 1) · `)

=

e(g,H(i)s1 · H(m · `)s2)r (if i 6= (m + 1) · `),

e(g,H(i − 1)s1 · H((m + 1) · `)s2)r (if i = (m + 1) · `)

=

(e(gs1 , H(i)) · e(gs2 ,H(m · `)))r (if i 6= (m + 1) · `),

(e(gs1 , H(i − 1)) · e(gs2 ,H((m + 1) · `)))r (if i = (m + 1) · `)

e(c0, uski) =

(e(h1, H(i)) · e(h2,H(m · `)))r (if i 6= (m + 1) · `),

(e(h1, H(i − 1)) · e(h2,H((m + 1) · `)))r (if i = (m + 1) · `)

This means that, applying decryption after encryption produces the original message
M as required.

– 34 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

5.1.2 KwAH2: IND-KE-CPA Construction

The second IND-KE-CPA scheme KwAH2 consists of the following algorithms:

KeyGen: Same as that of KwAH1 except that it:
2. Picks s1, s2 ∈ Z∗

q uniformly at random, and sets h = gs1+s2 ,
5. Outputs pk = 〈q, G1, G2, e, n, g, h,G,H〉,

mk = s1, ak = s2, usk′ = gs2 and usk′
0 = d−1 · d0. The message space is

M = {0, 1}n. The ciphertext space is C = ZN × G∗
1 × {0, 1}n.

∆-Gen: Same as that of KwAH1 scheme.
Update: For given uski−1 = (usk′

i−1, usk′), hski and i, Update algorithm:
1. computes usk′

i = usk′
i−1 · hski,

2. deletes usk′
i−1 and hski, and

3. outputs uski = (usk′
i, usk′).

Encrypt: For given pk, i, and a message M ∈ {0, 1}n, assuming that m · ` + 1 ≤
i ≤ (m + 1) · ` for some m (0 ≤ m ≤ n − 1), Encrypt algorithm:
1. chooses random r ∈ Z∗

q ,
2. computes W = (e(h,H(i)))r

3. computes h3 = (H(i) · H(m · `)−1)r if
i 6= (m + 1) · `,

4. computes h3 = (H(i) · H(i − 1)−1)r if
i = (m + 1) · `,

5. sets C = 〈i, h3, gr, G(W) ⊕ M〉, and
6. outputs C as a ciphertext.

Decrypt: For given pk, usk′
i, usk′ and C = 〈i, h3, c0, c1〉, assuming that m · ` + 1 ≤

i ≤ (m + 1) · ` for some m (0 ≤ m ≤ n − 1), Decrypt algorithm:
1. computes W ′ = e(c0, usk′

i) · e(usk′, h3) if i 6= (m + 1) · ` ,
2. computes W ′ = e(c0, usk′

i) · e(h · usk′−1, h3) if i = (m + 1) · ` ,
3. computes M ′ = c1 ⊕ G(W ′), and
4. outputs M ′ as a plaintext.

The correctness of KwAH2 can be shown in the same way as that of KwAH1.
Through ∆-Gen and Update, the secret key uski can be computed to be

usk′
i =

H(i)s1 · H(m · `)s2 (if i 6= (m + 1) · `),

H(i − 1)s1 · H(i)s2 (if i = (m + 1) · `)

– 35 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Therefore,

e(h,H(i))r = e(gs1+s2 , H(i))r

= e(gr, H(i)s1+s2)

=

e(gr,H(i)s1 · H(m · `)s2) · e(gs2 , (H(i) · H(m · `)−1)r)

(if i 6= (m + 1) · `),

e(gr,H(i − 1)s1 · H(i)s2) · e(gs1 , (H(i) · H(i − 1)−1)r)

(if i = (m + 1) · `)

=

e(c0, usk′
i) · e(usk′, h3) (if i 6= (m + 1) · `),

e(c0, usk′
i) · e(h · usk′−1, h3) (if i = (m + 1) · `)

This fact shows that decryption after encryption will produce the message as required.

5.1.3 Trade-offs between Two Schemes

Public Key Size vs. Ciphertext Size. As can be seen from the KwAH2 above,
usk′ is used only in Decrypt algorithm and does not play any role in the Encrypt
algorithm. Moreover, even in case that the attacker can get usk′, he does not have
any more advantage in computing the plaintext itself, as it is difficult to get the usk′

i

from the public key, ciphertext and usk′ (CBDH assumption). Therefore, in fact,
the part usk′ of the private key uski does not need to be either kept secret or given
publicly. We can save it in a place and do not need to take care about its security. It
also means that the size of private key in KwAH2 can be considered to be the same as
in the KwAH1 scheme. However, if we let usk′ be a part of private key, then we can
see the trade-off between private key size and public key size of these two schemes.

For example, in case of the application we showed in the introduction, we can save
usk′ in the computer and write it in the smart card, so whenever we have the secret
key updated, we can get the information of usk′ very conveniently. Another way is
to keep this information in a card (any card is possible, as long as we have that card
when updating). Of course, we do not need to worry if the card is exposed to the
attackers. Therefore, it is very flexible for the users in keeping the information of
usk′.

The size of private key in KwAH2 is still the same with KwAH1’s, while the size
of public key is shorter. That makes it cost less when sending the information about
public key to the user after doing KeyGen algorithm. However, the size of ciphertext
in KwAH2 is longer than in KwAH1, so we can say that there is a trade-off between

– 36 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

ciphertext size and public key length.

Cost for Encrytion vs. Cost for Decryption. It can be seen from the above
schemes that there is a difference between the efficiency of Encrypt and Decrypt
algorithms in these two schemes. By looking in the details we can see that the encryp-
tion algorithm in KwAH1 is not as efficient as in the KwAH2, while the decryption
algorithm is different. Obviously, it takes more time to compute two bilinear maps
than one bilinear map, so in the KwAH1 schemes the sender needs to do much more
than the receiver. It means that it costs more for the sender in encrypting the plain-
text than the receiver in decrypting the ciphertext. In case of KwAH2, things are
different, because the encryption algorithm is much easier than the decryption algo-
rithm. Thus, there is another trade-off between the efficiency of encryption algorithm
and decryption algorithm in these two schemes. Depending on the computational
ability of receiver and sender, the system designers can choose which efficient scheme
to use.

5.1.4 Security and Proofs

Now, we prove that KwAH1 and KwAH2 are IND-KE-CPA under the CBDH as-
sumption in the random oracle model. Here, we briefly mention the technical hurdle
for the security proof. Since we consider adaptively chosen key exposure adversary,
the simulator has to deal with various types of key exposures, i.e. mixture of mk, ak,
and user secret keys, and moreover, it does not know the adversary’s strategy before
the simulation. Nevertheless, the simulator must provide successful simulation. This
makes the proof complicated.

Theorem 1. Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and
hash functions G and H are random oracles. Then, KwAH1 and KwAH2 are
(tkwah, εkwah)-IND-KE-CPA secure as long as:

εkwah ≤ 3qGN

2
εcbdh

tkwah ≤ tcbdh + Θ(τ(2qH + 3qE)),

where IND-KE-CPA adversary Akwah issues at most qH H-queries, qG G-queries and
qE Exposure queries. Here, τ is the maximum time for computing an exponentiation
in G1, G2, and pairing e.

Proof:
Proof for KwAH1. We show that we can construct an algorithm Acbdh that can

– 37 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

solve the CBDH problem in 〈G1, G2, e〉 by using an adversary Akwah that breaks
IND-KE-CPA security of our scheme. The algorithm Acbdh is given an instance
〈g, ga, gb, gc〉 in G4

1 from the challenger and tries to output e(g, g)abc using Akwah.
Let g1 = ga, g2 = gb, g3 = gc. The algorithm Acbdh works by interacting with Akwah

in an IND-KE-CPA game as follows:
Before we start the simulation, we let Acbdh flip a coin COIN ∈ {0, 1} such that

we have Pr[COIN = 0] = δ for some δ which we will determine later. If COIN = 0,
Acbdh simulates the responses to Akwah’s queries expecting that Akwah will never
submit 〈·, “main helper”〉 nor 〈·, “auxiliary helper”〉 as Exposure query. If COIN = 1,
Acbdh carries out the simulation expecting that Akwah will submit 〈·, “main helper”〉
or 〈·, “auxiliary helper”〉.

If COIN = 0, Acbdh responses to Akwah’s queries will be as follows:

Setup: Acbdh picks a random s ∈ Z∗
q . Also, Acbdh gives Akwah the system parameter

pk = 〈q, G1, G2, e, n, g, h1, h2, G,H〉,

where h1 = g1 and h2 = gs
1, and random oracles G, H are controlled by Acbdh

as described below.
G-queries: Akwah issues up to qG queries to the random oracle G. To respond to

these queries algorithm, Acbdh forms a list of tuples 〈W,x〉 as explained below.
We call this list Glist. The list is initially empty. When Akwah gives Acbdh a
query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then Acbdh

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Akwah issues up to qH

queries to the random oracle H. To respond to these queries algorithm, Acbdh

forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list Hlist. The
list is initially empty. When Akwah gives Acbdh a query i to the oracle H, Acbdh

responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then Acbdh

outputs H(i) = ui.
2. If i = α, Acbdh sets ui = g2 and rα = 0.
3. If i < α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
4. If i > α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gz
2 · gri , where

– 38 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

• z = 1 if α = 0 mod ` and i = 0 mod `,
• z = −s if α = 0 mod ` and i 6= 0 mod `,
• z = 1 if α = −1 mod ` and i 6= 0 mod `,
• z = −s−1 (s−1 is the inverse of s mod q) if α = −1 mod ` and i =

0 mod `,
• z = 0 otherwise,

5. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.
Challenge: Once algorithm Akwah decides that Phase 1 is over, it outputs a tar-

get stage i∗ and two messages M0, M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as:

c∗0 = g3

c∗1 = µ

where µ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Akwah.

Exposure queries: Akwah issues up to qE Exposure queries. When Akwah gives a
query 〈i, class〉, Acbdh responds as follows:
1. If class = “main helper” or “auxiliary helper”, Acbdh aborts the simula-

tion.
2. If i = α, Acbdh aborts the simulation.
3. Acbdh runs the algorithm for responding to H-queries to obtain 〈i, ui, ri〉

and 〈j, uj , rj〉, where j = i − 1 if i = 0 mod `, or j = L such that i − ` <

L < i, L = 0 mod ` otherwise.
4. Acbdh sets uski = h

ri−1
1 · hri

2 if i = 0 mod `, or uski = hri
1 · hrL

2 other-
wise. Observe that uski is the user secret key corresponding to the stage
i. Especially, when i > α,

u
logg h1

i−1 · ulogg h2

i =

(g−s

2 · gri−1)a · (g2 · gri)s·a

(if i = 0 mod `, α = 0 mod `)

(g2 · gri−1)a · (g−s−1

2 · gri)s·a

(if i = 0 mod `, α = −1 mod `)

– 39 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

u
logg h1

i−1 · ulogg h2

i =

ga·ri−1 · gri·s·a = h

ri−1
1 hri

2

(if i = 0 mod `, α = 0 mod `)

ga·ri−1 · gri·s·a = h
ri−1
1 hri

2

(if i = 0 mod `, α = −1 mod `)

u
logg h2

L · ulogg h1

i =

(g2 · grL)s·a · (g−s

2 · gri)a

(if i 6= 0 mod `, α = 0 mod `)

(g−s−1

2 · grL)s·a · (g2 · gri)a

(if i 6= 0 mod `, α = −1 mod `)

=

gs·a·rL · gri·a = hrL

2 hri
1

(if i 6= 0 mod `, α = 0 mod `)

gs·a·rL · gri·a = hrL
2 hri

1

(if i 6= 0 mod `, α = −1 mod `)

5. Acbdh outputs uski to Akwah.
Guess: When Akwah decides that Phase 2 is over, Akwah outputs its guess bit β′ ∈

{0, 1}. At the same time, algorithm Acbdh terminates the simulation. Then,
Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and computes

T =

(W

e(g1,g3)
rα−1)s−1

if α = 0 mod `,

(W
e(g1,g3)s·rA

) otherwise.(α − ` < A < α, A = 0 mod `)

Finally, Acbdh outputs T .

Claim 1. If i∗ = α and Acbdh does not abort, then Akwah’s view is identical to its
view in the real attack until Akwah submits W ∗ as a G-query, where

W ∗ =

{
e(g1, g3)rα−1 · e(g, g)s·abc if α = 0 mod `,
e(g1, g3)s·rA · e(g, g)abc otherwise.

We note that if i∗ = α,

e(g, g)abc =

(W∗

e(g1,g3)
rα−1)s−1

if α = 0 mod `,

(W∗

e(g1,g3)s·rA
) otherwise.

– 40 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Proof. It is obvious that the responses to G are perfect. The responses to H are also
as in the real attack since each response is uniformly and independently distributed
in G1. Interestingly, the responses to Exposure queries are perfect if Acbdh does not
abort. Finally, we show that the response to Challenge is indistinguishable from the
real attack until Akwah submits W ∗. Let the response to Challenge be C∗ = 〈α, c∗0, c

∗
1〉.

Then, c∗0 is uniformly distributed in G1 due to random logg g3(= c), and therefore are
as in the real attack. Also, since c∗1 = Mβ ⊕ G(W ∗), it is information-theoretically
impossible to obtain any information on Mβ unless Akwah asks G(W ∗).

Next, let us define by E1, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E2, an event assigned to be true if and only if a G-query
coincides with W ∗, and by Emsk, an event assigned to be true if and only if an
Exposure query coincides with 〈·, “main helper”〉 or 〈·, “auxiliary helper”〉.

Claim 2. We have that Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk].

Proof. Since α is uniformly chosen from {1, · · · , N} at random, E1 is independent
to Akwah’s view in the real world. Hence, we have Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ =
β|¬Emsk].

Claim 3. We have that Pr[β′ = β|E1,¬E2,¬Emsk] = 1/2.

Proof. Let the response to Challenge be C∗ = 〈α, c∗0, c
∗
1〉. Since c∗1 = Mβ ⊕ G(W ∗),

it is information-theoretically impossible to obtain any information on Mβ without
submitting W ∗ as a G-query. This implies that Akwah’s best strategy becomes a
random guess if E2 is false. Hence, we have Pr[β′ = β|E1,¬E2,¬Emsk] = 1/2.

Claim 4. We have that

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0]

≥ 1
qGN

· Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ appears
in Glist with probability Pr[E2]. Obviously, we have Pr[E2] ≥ Pr[E2, E1,¬Emsk] =
Pr[E2|E1,¬Emsk] Pr[E1|¬Emsk]
Pr[¬Emsk] and Pr[E1|¬Emsk] = 1/N . Hence, by choosing a tuple from Glist uni-
formly at random, Acbdh can correctly output e(g, g)abc with probability of at least
1/qG · 1/N · Pr[E2|E1,¬Emsk] Pr[¬Emsk].

– 41 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Finally, we calculate p0 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0] from the
above claims. Letting λ := Pr[β′ = β|Emsk] − 1/2, from Claims 1, 2 and 3, we have

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] +

Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= Pr[β′ = β|¬Emsk](1 − Pr[Emsk]) +

(
1
2

+ λ) Pr[Emsk] − 1
2

≤ Pr[β′ = β|E1,¬Emsk](1 − Pr[Emsk]) +

(
1
2

+ λ) Pr[Emsk] − 1
2

= (Pr[β′ = β|E1, E2,¬Emsk] Pr[E2|E1,¬Emsk]

+Pr[β′ = β|E1,¬E2,¬Emsk] Pr[¬E2|E1,¬Emsk])

·(1 − Pr[Emsk]) + (
1
2

+ λ) Pr[Emsk] − 1
2

≤ (Pr[E2|E1,¬Emsk] +
1
2
(1 − Pr[E2|E1,¬Emsk]))

·(1 − Pr[Emsk]) + (
1
2

+ λ) Pr[Emsk] − 1
2

=
1
2

Pr[E2|E1,¬Emsk] Pr[¬Emsk] + λ Pr[Emsk].

From Claim 4, we have

p0 ≥ 2
qGN

(εkwah − λ Pr[Emsk]).

Next, we discuss for the COIN = 1 case. If COIN = 1, Acbdh responses to Akwah’s

queries as follows:

Setup: Acbdh picks random s ∈ Z∗
q and b ∈ {1, 2}. Let b̄ be 1 (resp. 2) if b = 2

(resp. 1). Also, Acbdh gives Akwah the system parameter

pk = 〈q, G1, G2, e, n, g, h1, h2, G,H〉,

where hb = g1 and hb̄ = gs (we expect that Akwah asks ak if b = 1, or
mk otherwise), and random oracles G,H are controlled by Acbdh as described
below.

– 42 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

G-queries: Akwah issues up to qG queries to the random oracle G. To respond to
these queries algorithm Acbdh forms a list of tuples 〈W,x〉 as explained below.
We call this list Glist. The list is initially empty. When Akwah gives Acbdh a
query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then Acbdh

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Akwah issues up to qH

queries to the random oracle H. To respond to these queries algorithm Acbdh

forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list Hlist. The
list is initially empty. When Akwah gives Acbdh a query i to the oracle H, Acbdh

responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then Acbdh

outputs H(i) = ui.
2. If i = α − 1, b = 1, and α = 0 mod `, Acbdh sets ui = g2 and ri = 0.
3. If i = α, b = 1, and α = −1 mod `, Acbdh sets ui = g2 and ri = 0.
4. If i = α, b = 1, α 6= 0 mod `, and α 6= −1 mod `, Acbdh sets ui = g2 and

ri = 0.
5. If i = α, and b = 2, Acbdh sets ui = g2 and ri = 0.
6. Else, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
7. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Akwah decides that Phase 1 is over, it outputs a tar-
get stage i∗ and two messages M0, M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as:

c∗0 = g3

c∗1 = µ

where µ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Akwah.

Exposure queries: Akwah issues up to qE Exposure queries. When Akwah gives a
query 〈i, class〉, Acbdh responds as follows:
1. If b = 1 and class = “main helper”, Acbdh aborts the simulation.
2. If b = 1 and class = “auxiliary helper”, Acbdh returns s to Akwah.
3. If b = 2 and class = “main helper”, Acbdh returns s to Akwah.

– 43 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

4. If b = 2 and class = “auxiliary helper”, Acbdh aborts the simulation.
5. If i = α and class = “user”, Acbdh aborts the simulation.
6. If i = α − 1, class = “user”, b = 1 and α = 0 mod `, Acbdh aborts the

simulation.
7. If A ≤ i < A + `, class = “user”, and b = 2, where A ≤ α < A + ` and

A = 0 mod `, Acbdh aborts the simulation.
8. Else*1, Acbdh runs the algorithm for responding to H-queries to obtain

〈i, ui, ri〉 and 〈j, uj , rj〉, where j = i − 1 if i = 0 mod `, or j = L such that
i − ` < L < i, L = 0 mod ` otherwise.

9. Acbdh sets uski = h
ri−1
1 · hri

2 if i = 0 mod `, or uski = hri
1 · hrL

2 otherwise.
10. Acbdh outputs uski to Akwah.

Guess: When Akwah decides that Phase 2 is over, Akwah outputs the guess bit β′ ∈
{0, 1}. At the same time, algorithm Acbdh terminates the simulation. Then,
Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and computes

T =

W · e(g, g3)−s·rα if b = 1 and α = 0 mod `,

W · e(g, g3)−s·rα−1 if b = 2 and α = 0 mod `,

W · e(g, g3)−s·rA otherwise.

Finally, Acbdh outputs T .

Claim 5. If i∗ = α and Acbdh does not abort, then Akwah’s view is identical to its
view in the real attack until Akwah submits W ∗ as a G-query, where

W ∗ =

e(g, g3)s·rα · e(g, g)abc if b = 1, α = 0 mod `,

e(g, g3)s·rα−1 · e(g, g)abc if b = 2, α = 0 mod `,

e(g, g3)s·rA · e(g, g)abc otherwise.

We note that if i∗ = α,

e(g, g)abc =

W ∗ · e(g, g3)−s·rα if b = 1, α = 0 mod `,

W ∗ · e(g, g3)−s·rα−1 if b = 2, α = 0 mod `,

W ∗ · e(g, g3)−s·rA otherwise.

Proof. It is obvious that the responses to G are perfect. The responses to H are also
as in the real attack since each response is uniformly and independently distributed

*1 Notice that in this case, class is always “user”.

– 44 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

in G1. The responses to Exposure queries are perfect if Acbdh does not abort. Finally,
we show that the response to Challenge is indistinguishable from the real attack until
Akwah submits W ∗. Let the response to Challenge be C∗ = 〈α, c∗0, c

∗
1〉. Then, c∗0 is

uniformly distributed in G1 due to random logg g3(= c), and therefore are as in the
real attack. Also, since c∗1 = Mβ ⊕ G(W ∗), it is information-theoretically impossible
to obtain any information on Mβ unless Akwah asks G(W ∗).

Next, let us define by E3, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E4, an event assigned to be true if and only if a G-query
coincides with W ∗, by E5, an event assigned to be true if and only if an Exposure
query coincides with 〈·, “main helper”〉 if b = 1 or 〈·, “auxiliary helper”〉 if b = 2, and
by Emsk, an event assigned to be true if and only if an Exposure query coincides with
〈·, “main helper”〉 or 〈·, “auxiliary helper”〉. Notice that Emsk is identical to that in
the case of COIN = 0.

Claim 6. We have that
Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|Emsk].

Proof. Since α is uniformly chosen from {1, ..., N} at random, E3 is independent to
Akwah’s view in the real world. Hence, we have Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ =
β|¬E5, Emsk]. Due to symmetricity between E5 and ¬E5, we have Pr[E5|Emsk] =
Pr[¬E5|Emsk] = 1/2 and Pr[β′ = β|E5, Emsk] = Pr[β′ = β|¬E5, Emsk]. Therefore,

Pr[β′ = β|Emsk]

=
1
2

Pr[β′ = β|E5, Emsk] +
1
2

Pr[β′ = β|¬E5, Emsk]

= Pr[β′ = β|¬E5, Emsk],

and we finally have
Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|Emsk].

Claim 7. We have that Pr[β′ = β|E3,¬E4,¬E5, Emsk] = 1/2.

Proof. Let the response to Challenge be C∗ = 〈α, c∗0, c
∗
1〉. Since c∗1 = Mβ ⊕ G(W ∗),

it is information-theoretically impossible to obtain any information on Mβ without
submitting W ∗ as a G-query. This implies that Akwah’s best strategy becomes a
random guess if E4 is false. Hence, we have

Pr[β′ = β|E3,¬E4,¬E5, Emsk] = 1/2.

– 45 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Claim 8. We have that

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1]

≥ 1
2qGN

· Pr[E4|E3,¬E5, Emsk] Pr[Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ appears
in Glist with probability Pr[E4]. Obviously, we have

Pr[E4] ≥ Pr[E4, E3,¬E5, Emsk]

= Pr[E4|E3,¬E5, Emsk] Pr[E3|¬E5, Emsk] Pr[¬E5, Emsk].

Furthermore, we have Pr[E3|¬E5, Emsk] = 1/N , and Pr[¬E5, Emsk] = 1/2 ·Pr[Emsk].
Hence, by choosing a tuple from Glist uniformly at random, Acbdh can correctly output
e(g, g)abc with probability of at least 1/qG ·1/N ·1/2 ·Pr[E4|E3,¬E5, Emsk] Pr[Emsk].

Finally, we calculate p1 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1] from the
above claims. Letting η := Pr[β′ = β|¬Emsk]− 1/2, from Claims 5, 6 and 7, we have

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] +

Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= (
1
2

+ η) Pr[¬Emsk] +

Pr[β′ = β|Emsk](1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η) Pr[¬Emsk] +

Pr[β′ = β|E3,¬E5, Emsk](1 − Pr[¬Emsk]) − 1
2

– 46 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Pr[β′ = β] − 1
2

= (
1
2

+ η) Pr[¬Emsk]

+(Pr[β′ = β|E3, E4,¬E5, Emsk] Pr[E4|E3,¬E5, Emsk]

+Pr[β′ = β|E3,¬E4,¬E5, Emsk] Pr[¬E4|E3,¬E5, Emsk])

·(1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η) Pr[¬Emsk] + (Pr[E4|E3,¬E5, Emsk] +

1
2
(1 − Pr[E4|E3,¬E5, Emsk])) · (1 − Pr[¬Emsk]) − 1

2

=
1
2

Pr[E4|E3,¬E5, Emsk] Pr[Emsk] + η Pr[¬Emsk].

From Claim 8, we have

p1 ≥ 1
qGN

(εkwah − η Pr[¬Emsk]).

Claim 9. We have that εkwah ≥ λ Pr[Emsk] + η Pr[¬Emsk].

Proof. By the definitions of λ and η, we have λ+1/2 = Pr[β′ = β|Emsk] and η+1/2 =
Pr[β′ = β|¬Emsk], and consequently,

εkwah +
1
2
≥ Pr[β′ = β]

= (λ +
1
2
)Pr[Emsk] + (η +

1
2
)Pr[¬Emsk].

Hence, we have εkwah ≥ λ Pr[Emsk] + η Pr[¬Emsk], which proves the claim.

We note that in both cases of COIN = 0 and COIN = 1, simulations are perfect
until Akwah submits W ∗ as a G-query if i∗ = α and Acbdh does not abort. Hence,
the views of Akwah are identical for these cases.

Now, we calculate εcbdh := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc]. From Claim 9, we

– 47 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

have

εcbdh = δ · p0 + (1 − δ) · p1

≥ δ(
2

qGN
(εkwah − λ Pr[Emsk])) +

(1 − δ)(
1

qGN
(εkwah − η Pr[¬Emsk]))

≥ δ(
2

qGN
(εkwah − λ Pr[Emsk])) +

(1 − δ)(
1

qGN
λ Pr[Emsk])

≥ 1
qGN

(2δεkwah + (1 − 3δ)λ Pr[Emsk])

By letting δ = 1/3, we finally have

εcbdh ≥ 2
3qGN

εkwah.

From the above discussions, we can see that the claimed bound of the running-time
of Acbdh holds. This completes the proof of the theorem 1 for KwAH1.

Proof for KwAH2. The proof can be done in the same way with the proof for
KwAH1. We construct the responses of Acbdh as follows:

If COIN = 0, the simulation is as follows.

Setup: Acbdh picks a random s ∈ Z∗
q . Also, Acbdh gives Akwah the system parameter

pk = 〈q, G1, G2, e, n, g, h,G,H〉,

where h = gs+1
1 , and random oracles G, H are controlled by Acbdh as described

below.
G, H-queries: same as in KwAH1
Challenge: same as in KwAH1, except that C∗ = (i∗, h∗

3, c
∗
0, c

∗
1), h∗

3 ∈ {0, 1}n

Exposure queries: same as in KwAH1, except that:
5. Acbdh outputs (uski, gs

1) to Akwah.
Guess: same as in KwAH1 except that

T = W (s+1)−1

If COIN = 1, Acbdh responses to Akwah’s queries as follows:

– 48 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Setup: Acbdh picks random s ∈ Z∗
q and b ∈ {1, 2}. Let b̄ be 1 (resp. 2) if b = 2

(resp. 1). Also, Acbdh gives Akwah the system parameter

pk = 〈q, G1, G2, e, n, g, h,G,H〉,

where h = g1 ·gs (we expect that Akwah asks ak if b = 1, or mk otherwise), and
random oracles G,H are controlled by Acbdh as described below. Set hb = g1

and hb̄ = gs

G-queries : same as in KwAH1
H-queries :same as in KwAH1 but the Hlist and responses are as follows:

1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then outputs
H(i) = ui.

2. If i = α, Acbdh sets ui = g2 and rα = 0.
3. Else, Acbdh choose a random i ∈ Z∗

q and sets ui = gri .
4. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: same as in KwAH1, except that here
C∗ = (i∗, h∗

3, c
∗
0, c

∗
1)

Exposure queries: same as in KwAH1, except that:
10. Acbdh outputs (uski, gs

1) to Akwah.
Guess: same as in KwAH1 except that

T = W · e(g2, g3)−s

We can compute the advantage of Acbdh in this simulation and show that theorem 1
is right for KwAH2 in the same way as for KwAH1.

Security of KwAH1 and KwAH2 can also be proven under GBDH assumption with a
tighter security reduction.

Theorem 2. Suppose (tgbdh, εgbdh)-GBDH assumption holds in 〈G1, G2, e〉 and hash
functions G and H are random oracles. Then, KwAH1,KwAH2 are (tkwah, εkwah)-
IND-KE-CPA secure as long as

εkwah ≤ 3N

2
εgbdh

tkwah ≤ tgbdh + Θ(τ(2qH + 3qE)),

where IND-KE-CPA adversary Akwah issues at most qH H-queries and qE Exposure
queries. Here, τ is the maximum time for computing an exponentiation in G1, G2,
and pairing e.

– 49 –

5.1 IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Proof: The proof of Theorem 2 is similar to Theorem 1. We construct an algo-
rithm Agbdh that can solve the GBDH problem in 〈G1, G2, e〉 by using an adversary
Akwah that breaks IND-KE-CPA security of our scheme. The algorithm Agbdh is
given an instance 〈g, ga, gb, gc〉 in G4

1 from the challenger and can guess if a random
T ∈ G2 equals to e(g, g)abc or not by using decision BDH oracle. This Agbdh will
try to output e(g, g)abc using Akwah. We build two kinds of responses to Akwah,
corresponding to the cases of COIN = 0 and COIN = 1 the same as in the proof
of theorem Ṫhe advantage of the adversary Akwah is also computed in the same way
as in the proof of Theorem 1, except that Claim 4 and Claim 8 will be changed as
follows:

Claim 4′. We have that

Pr[Agbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0]

≥ 1
N

· Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ appears
in Glist with probability Pr[E2]. Obviously, we have

Pr[E2] ≥ Pr[E2, E1,¬Emsk]

= Pr[E2|E1,¬Emsk] Pr[E1|¬Emsk] Pr[¬Emsk]

and Pr[E1|¬Emsk] = 1/N . With the help of a decision BDH oracle O, Agbdh can
choose e(g, g)abc from Glist if E2 is true. Hence, Acbdh can correctly output e(g, g)abc

with probability of at least 1/N · Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Claim 8′. We have that

Pr[Agbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1]

≥ 1
2N

· Pr[E4|E3,¬E5, Emsk] Pr[Emsk]

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ appears
in Glist with probability Pr[E4]. Obviously, we have

Pr[E4] ≥ Pr[E4, E3,¬E5, Emsk]

= Pr[E4|E3,¬E5, Emsk] Pr[E3|¬E5, Emsk] Pr[¬E5, Emsk]

Furthermore, we have Pr[E3|¬E5, Emsk] = 1/N , and Pr[¬E5, Emsk] = 1/2 ·Pr[Emsk].
Hence, with the help of a decision BDH oracl O, Agbdh can correctly output e(g, g)abc

with probability of at least 1/N · 1/2 · Pr[E4|E3,¬E5, Emsk] Pr[Emsk].

– 50 –

5.2 Strongly IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

Using Claim 4′ and Claim 8′ instead of Claim 4 and Claim 8 in computing the
adversary’s advantage with the same way as in proof of theorem 1, we have

εkwah ≤ 3N

2
εgbdh

The bound of running time is the same as in Theorem 2.

5.2 Strongly IND-KE-CPA Schemes

We can build strongly IND-KE-CPA schemes KwAH1′ and KwAH2′ by only slightly
modifying KwAH1 and KwAH2, respectively.

5.2.1 KwAH1′: Strongly IND-KE-CPA Construction

The first strongly IND-KE-CPA scheme KwAH1′ is based on KwAH1. It consists
the following algorithms:

KeyGen: Given a security parameter k, KeyGen algorithm does the same as that
of KwAH1 except that it:

2. picks random, s1, s2, s3 ∈ Z∗
q , and sets h1 = gs1s3 and h2 = gs2s3 ,

5. outputs pk = 〈q, G1, G2, e, n, g, h1, h2, G,H〉, mk = s1, ak = s2 and
usk0 = 〈ds3

−1 · d
s3
0 , s3〉. The message space is M = {0, 1}n. The ciphertext

space is C = ZN × G∗
1 × {0, 1}n.

∆-Gen: Same as in KwAH1.
Update: For given uski−1 = 〈usk′

i−1, s3〉, hski and i, Update algorithm:
1. computes usk′

i = usk′
i−1 · hsks3

i ,
2. deletes usk′

i−1 and hski,
3. outputs uski = 〈usk′

i, s3〉.
Encrypt: Same as in KwAH1.
Decrypt: For given uski = 〈usk′

i, s3〉 and C = 〈i, c0, c1〉, Decrypt algorithm does
the same as that of KwAH1 except that it:

1. computes W ′ = e(c0, usk′
i).

The correctness of this scheme can be done in the same way as KwAH1.

5.2.2 KwAH2′: Strongly IND-KE-CPA Construction

The second strongly IND-KE-CPA scheme KwAH2′ is based on KwAH2. It consists
the following algorithms:

– 51 –

5.2 Strongly IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

KeyGen: Given a security parameter k, KeyGen algorithm does the same as that
of KwAH1 except that it:

2. picks random, s1, s2, s3 ∈ Z∗
q , and sets h = g(s2+s1)s3 ,

5. outputs pk = 〈q, G1, G2, e, n, g, h,G,H〉, mk = s1, ak = s2, usk′ = gs2

and usk0 = 〈ds3
−1 · ds3

0 , s3〉. The message space is M = {0, 1}n. The
ciphertext space is C = ZN × G∗

1 × {0, 1}n.
∆-Gen: Same as in KwAH2
Update: For given uski−1 = 〈usk′

i−1, usk′s3 , s3〉, hski and i, Update algorithm:
1. computes usk′

i = usk′
i−1 · hsks3

i ,
2. deletes usk′

i−1 and hski,
3. outputs uski = 〈usk′

i, usk′s3 , s3〉.
Encrypt: Same as in KwAH2
Decrypt: Same as in KwAH2

The correctness of this scheme can be done in the same way as KwAH2.

5.2.3 Trade-offs between Two Strongly IND-KE-CPA schemes

Developed from the two IND-KE-CPA schemes, these two strongly IND-KE-CPA
schemes still remain trade-offs between public key length and ciphertext size, as well
as between the costs of encryption and decryption computations, as discussed above
for the IND-KE-CPA schemes. This fact helps to provide the flexibility when imple-
menting these schemes.

5.2.4 Security and Proofs

We prove that KwAH1′ and KwAH2′ are strong-IND-KE-CPA under CBDH as-
sumption in the random oracle model. Even when two helper keys are exposed,
KwAH1′ and KwAH2′ are still secure as long as there is none query of private key.

Theorem 3. (Informal) Suppose CBDH assumption holds in 〈G1, G2, e〉 and hash
functions G and H are random oracles. Then, KwAH1′ and KwAH2′ are strong-
IND-KE-CPA secure.

Proof: We give the basic idea of proof for this theorem. We can construct an
algorithm Acbdh that can solve the CBDH problem in 〈G1, G2, e〉 by using an adver-
sary Akwah that breaks strong-IND-KE-CPA security of our scheme. The algorithm
Acbdh is given an instance 〈g, ga, gb, gc〉 in G4

1 from the challenger and tries to output
e(g, g)abc using Akwah. Let g1 = ga, g2 = gb, and g3 = gc. There are three cases

– 52 –

5.2 Strongly IND-KE-CPA Schemes Chapter 5 KIE with Auxiliary Helper Key

needed to be considered:

1. The adversary will never query for main helper key or auxiliary helper key.
(COIN=0)

2. The adversary will query just one of the two helper keys. (COIN=1)
3. The adversary will query both helper keys (of course, he can not query any

secret key in this case). (COIN=2)

For each case, we build the simulation, responses for the adversary’s queries. For the
first two cases, we can do the same as in theorem 1. Here, we consider the case of two
helper keys exposure. We construct the responses of Acbdh for KwAH1′ as follows:

Setup: Acbdh picks a random s, s1 ∈ Z∗
q . Also, Acbdh gives Akwah the system param-

eter

pk = 〈q, G1, G2, e, n, g, h1, h2, G,H〉,

where h1 = g1, h2 = gs
1 and random oracles G,H are controlled by Acbdh as

described below. Here, it is noticed that h1 = gs1·s3 , s2 = s · s1.
G-queries: Same as in case COIN=0 in theorem 1.
H-queries: Same as in case COIN=0 in theorem 1.
Challenge: Same as in case COIN=0 in theorem 1.
Exposure queries: The Acbdh responds are as follows:

1. If Akwah issues a query of private key, then Acbdh aborts the simulation.
2. If Akwah issues a query of “main helper key” then Acbdh outputs s1.
3. If Akwah issues a query of “auxiliary helper key” then Acbdh outputs s · s1.

Guess: Same as in case COIN=0.

The advantage of Acbdh in each simulation can be computed in the same way as the
proof of Theorem 1.
As noted before, in cases COIN=0, COIN=1, and COIN=2, simulations are perfect
until Acbdh submits W ∗ as G-query if i∗ = α and Acbdh does not abort. Hence the
views of Akwah are identical for these three cases.
Simulation for KwAH2′ can be done in the same way, using proof for KwAH2.

– 53 –

Chapter 6

Chosen

Ciphertext Secure

Construction

6.1 Construction Chapter 6 Chosen Ciphertext Secure Construction

In this chapter, we construct chosen ciphertext secure KwAH schemes by extending
KwAH1 and KwAH2 with Fujisaki-Okamoto padding [15, 16]. It should be noticed
that the proofs of security of our schemes cannot be straightforwardly done since the
model of KwAH significantly differs from the standard public key encryption. The
results of this chapter were written in publication P1, P2, P3.

6.1 Construction

We give constructions of the two IND-KE-CCA schemes, developed from KwAH1
and KwAH2.

6.1.1 KwAH3: IND-KE-CCA Construction

The first IND-KE-CCA scheme KwAH3 is developed from KwAH1. Let F,G,H

be cryptographic hash functions that F : {1, ..., N} × {0, 1}n ×{0, 1}λ −→ Z∗
q and G:

G2 → {0, 1}n+λ. H is the same as in KwAH1. The KwAH3 scheme consists of the
following algorithms:

KeyGen: Same as that of KwAH1 except that it:
3. choose cryptographic hash functions F,G,H.
5. Outputs pk = (q, G1, G2, e, n, g, h1, h2, F,G,H), mk = s1, ak = s2 and

usk0 = d−1 · d0. The message space is M = {0, 1}n. The ciphertext space
is C = ZN × G1 × {0, 1}n+λ.

∆-Gen: Same as in KwAH1.
Update: Same as in KwAH1.
Encrypt: For given pk, i, and a message M ∈ {0, 1}n, assuming that m · ` + 1 ≤

i ≤ (m + 1) · ` for some m (0 ≤ m ≤ n − 1), Encrypt algorithm:
1. chooses random R ∈ {0, 1}λ,
2. computes σ = F (i,M,R),
3. computes W = (e(h1,H(i)) · e(h2, H(m · `)))σ if i 6= (m + 1) · `,
4. computes W = (e(h1,H(i − 1)) · e(h2,H((m

+ 1) · `)))σ if i = (m + 1) · `,
5. sets C = 〈i, gσ, G(W) ⊕ (M ||R)〉, and
6. outputs C as a ciphertext.

Decrypt: Given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. output ⊥ if C 6∈ ZN × G1 × {0, 1}n+λ,
2. computes W ′ = e(c0, uski),

– 55 –

6.1 Construction Chapter 6 Chosen Ciphertext Secure Construction

3. computes (M ′||R) = c1 ⊕ G(W ′), and
4. outputs M ′ as a plaintext if c0 = gσ′

, or ⊥ otherwise, where
σ′ = F (i,M ′, R′).

The correctness of this scheme can be done in the same way as KwAH1.

6.1.2 KwAH4: IND-KE-CCA Construction

The second IND-KE-CCA scheme KwAH4 is developed from KwAH2. Here func-
tions F,G,H are the same as in KwAH3. The scheme consists of the following algo-
rithms:

KeyGen: Same as that of KwAH2 except that it:
2. Picks s1, s2 ∈ Z∗

q uniformly at random, and sets h = gs1+s2 ,
3. choose cryptographic hash functions F,G,H.
5. Outputs pk = 〈q, G1, G2, e, n, g, h, F,G,H), mk = s1, ak = s2, usk′ =

gs2 and usk0 = d−1 ·d0. The message space is M = {0, 1}n. The ciphertext
space is C = ZN × G1 × G1 × {0, 1}n+λ.

∆-Gen: Same as in KwAH2.
Update: Same as in KwAH2.
Encrypt: For given pk, i, and a message M ∈ {0, 1}n, assuming that m · ` + 1 ≤

i ≤ (m + 1) · ` for some m (0 ≤ m ≤ n − 1), Encrypt algorithm:
1. chooses random R ∈ {0, 1}λ,
2. computes σ = F (i,M,R),
3. computes W = (e(h,H(i)))σ

4. computes h3 = (H(i) · H(m · `)−1)σ if i 6= (m + 1) · `,
5. computes h3 = (H(i) · H(i − 1)−1)σ if i = (m + 1) · `,
6. sets C = 〈i, h3, gσ, G(W) ⊕ (M ||R)〉, and
7. outputs C as a ciphertext.

Decrypt: Given pk, uski and C = 〈i, h3, c0, c1〉, Decrypt algorithm:
1. output ⊥ if C 6∈ ZN × G1 × G1 × {0, 1}n+λ,
2. computes W ′ = e(c0, uski) · e(usk′, h3) if i 6= (m + 1) · ` ,
3. computes W ′ = e(c0, uski) · e(h · usk′−1

, h3) if i = (m + 1) · ` ,
4. computes (M ′||R) = c1 ⊕ G(W ′), and
5. outputs M ′ as a plaintext if c0 = gσ′

, or ⊥ otherwise, where
σ′ = F (i,M ′, R′).

The correctness of this scheme can be done in the same way as KwAH2.

– 56 –

6.2 Security and Proofs Chapter 6 Chosen Ciphertext Secure Construction

6.1.3 Trade-offs between Two IND-KE-CCA Schemes

These two IND-KE-CCA schemes are developed from the two IND-KE-CPA
schemes given in the previous section. As the discussion above for the IND-KE-CPA
schemes, in IND-KE-CCA schemes, the trade-off between the public key length and
ciphertext size remains unchanged, as well as the cost of decryption and encryption
algorithms.

6.2 Security and Proofs

We can prove that KwAH3 and KwAH4 are IND-KE-CCA under the CBDH as-
sumption in the random oracle model.

Theorem 4. Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and hash
functions G and H are random oracles. Then, KwAH3 and KwAH4 is (tkwah, εkwah)-
IND-KE-CCA secure as long as:

εkwah ≤ 3qGN

2
εcbdh +

2qF

2λ
+

2qD

q

tkwah ≤ tcbdh + Θ(τ(5qF + qH + 3qE + 5qD)),

where IND-KE-CCA adversary Akwah issues at most qH H-queries, qG G-queries, qF

F -queries, qD Decryption queries and qE Exposure queries. Here, τ is the maximum
time for computing an exponentiation in G1, G2, and pairing e.

Proof: The proof is almost identical to Theorem 1 except that here, Acbdh has to
simulate responses to Decryption queries as well. We show the general idea to prove
KwAH3. The proof for KwAH4 can be done similarly. For both cases for COIN=0
and 1, if (i 6= α) then it will be easy for Acbdh to calculate uski on his own, so the
decryption will be easily done as well. Therefore we only need to consider the case
for i = α. The simulation can be as follows:

F -queries: Akwah picks a random R∗ ∈ {0, 1}λ in advance. It issues up to qF queries
to the random oracle F . To respond to these queries, algorithm Acbdh forms a
list of tuples C = 〈i,M,R, σ〉 as explained below. We call this list Flist. The
list is initially empty. When Akwah gives Acbdh a query 〈i,M,R〉 to the oracle
F , Acbdh responds as follows:
1. If R = R∗, Acbdh aborts the simulation.
2. If the query 〈i,M,R〉 already appears on the Flist in a tuple 〈i,M,R, σ〉

– 57 –

6.2 Security and Proofs Chapter 6 Chosen Ciphertext Secure Construction

then outputs
F (i,M,R) = σ.

3. Acbdh chooses a random σ ∈ Z∗
q .

4. Acbdh adds the tuple 〈i,M,R, σ〉 to the Flist and outputs F (i,M,R) = σ.
Challenge: same as in the KwAH1 except that the challenge ciphertext C∗ =

〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = µ where µ ∈R {0, 1}n+λ

Decryption: Akwah issues up to qD Decryption queries. When Akwah gives a query
C = (i, c0, c1) Acbdh responds as follows:
1. if i 6= α Acbdh runs the algorithm to respond to Exposure queries to obtain

uski, decryptc C, and outputs the decryption results to Akwah.
2. If i = α, Acbdh searches for a tuple (α,M,R, σ) from Flist such that

c0 = gσ,

c1 =

G((e(h1,Hα−1).e(h2,Hα))σ) ⊕ (M ||R)

if α ≡ 0 mod `

G((e(h1,Hα).e(h2,Hm·`))σ) ⊕ (M ||R)
if α 6≡ 0 mod `

3. If there exists such a tuple, Acbdh outputs M to Akwah. Otherwise outputs
⊥.

Responses to G-queries, H-queries and Exposure queries can be simulated similarly
to the proof in theorem 1. With the same way of computation in Theorem 1, we can
have:

p0 ≥ 2
qGN

(εkwah − λ Pr[Emsk] − Pr[F-Fail] − Pr[D-Fail])

p1 ≥ 1
qGN

(εkwah − η Pr[¬Emsk] − Pr[F-Fail] − Pr[D-Fail])

where the F-Fail is an event assigned to be true if and only if there exists an F -query
(i,M,R) such that R = R∗, D-Fail is an event assigned to be true if and only if
Acbdh return ⊥ for a Decryption query which should no be rejected.

Here we need to calculate Pr[F-Fail] and Pr[D-Fail]. Since it is information-
theoretically impossible to obtain any information on R∗, Akwah submits R∗ as in one
of F -queries with probability at most qF /2λ. Acbdh fails to respond to a Decryption
query only when Akwah succeeds to generate a ciphertext C = Encrypt(pk, α, M ; R)
without submitting an F -query (α,M,R). Hence, Pr[D-Fail] will be at most qD/q.
By letting δ = 1/3 we have the bound of εcbdh is the same as written in Theorem 4.

The bound of Acbdh’s running time is easily seen from the proof.

– 58 –

Chapter 7

Conclusions

Chapter 7 Conclusions

In this thesis, we gave some cryptographic encrypion schemes of key insulated public
key encryption, using an auxiliary helper keys. All of the schemes are proven to be
secure, based on the ability to access the random oracles.

By using an auxiliary helper key besides of the normal helper key, the security of
the system can be more protected, in the meaning of reducing the damage when the
secret key is exposed. The damage, compared with the previous works, becomes much
smaller. Nevetherless, the use of auxiliary helper key is easy, which allows the general
users without the professional knowledge of security, can use the system conveniently.

We also gave an example of using our schemes in the real life.
We gave two different schemes to provide the flexibility for the system builder.

Furthermore, we proposed the schemes of chosen ciphertext attacks which have have
the strongest security. All the proposed schemes are proven to be secure under the
CBDH assumption.

The security of our schemes are proven in the random oracles, which might make us
worry to use them in the real life. There is an open problem to update our schemes
to be secure in the standard model.

– 60 –

Bibliography

[1] R. Anderson, “Two remarks on public key cryptology,” Invited Lecture, ACM
CCCS’97, available at http://www.cl.cam.ac.uk/users/rja14/.

[2] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,”
Proc. of Asiacrypt’00, LNCS 1976, Springer-Verlag, pp. 116-129, 2000.

[3] D. Boneh and X. Boyen, “Efficient selective-ID secure identity-based encryption
without random oracles,” Proc. of Eurocrypt’04, LNCS 3027, Springer-Verlag,
pp.223-238, 2004.

[4] D. Boneh and X. Boyen, “Secure identity based encryption without random or-
acles,” Proc. of Crypto’04, LNCS 3152, Springer-Verlag, pp.443-459, 2004.

[5] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Proc. of Crypto’01, LNCS 2139, Springer-Verlag, pp.213-229, 2001.

[6] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
SIAM J. of Computing, vol. 32, no. 3, pp.586-615, 2003 (full version of [5]).

[7] M. Bellare and A. Palacio, “Protecting against key exposure:
strongly key-insulated encryption with optimal threshold,” available at
http://eprint.iacr.org/2002/064/ .

[8] M. Bellare and S.K. Miner, “A forward-secure digital signature scheme,” Proc.
of Crypto’99, LNCS 1666, Springer-Verlag, pp. 431-448, 1999.

[9] C. Cocks, “An identity based encryption scheme based on quadratic residues,”
Proc. of IMA Int. Conf. 2001, Coding and Cryptography, LNCS 2260, Springer-
Verlag, pp. 360-363, 2001.

[10] R. Canetti, S. Halevi and J. Katz, “A forward secure public key encryption
scheme,” Proc. of Eurocrypt’03, LNCS 2656, Springer-Verlag, pp.255-271, 2003.

[11] Y. Dodis, J. Katz, S. Xu and M. Yung, “Key-insulated public key cryptosystems,”
Proc. of Eurocrypt’02, LNCS 2332, Springer-Verlag, pp.65-82, 2002.

[12] Y. Dodis, J. Katz, S. Xu and M. Yung, “Strong key-insulated signature schemes,”
Proc. of PKC’03, LNCS 2567, Springer-Verlag, pp.130-144, 2003.

[13] Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “Intrusion-resilient
public-key encryption,” Proc. of CT-RSA’03, LNCS 2612, Springer-Verlag,
pp.19-32, 2003.

[14] Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “A generic construction

– 61 –

Bibliography

for intrusion-resilient public-key encryption,” Proc. of CT-RSA’04, LNCS 2964,
Springer-Verlag, pp.81-98, 2004.

[15] E. Fujisaki and T. Okamoto, “How to enhance the security of public-key encryp-
tion at minimum cost,” Proc. of PKC’99, LNCS 1560, Springer-Verlag, pp.53-68,
1999.

[16] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.537-
554, 1999.

[17] G. Hanaoka, Y. Hanaoka and H. Imai, “Parallel key-insulated public key encryp-
tion,” Proc. of PKC’06, LNCS 3958, Springer-Verlag, pp.105-122, 2006.

[18] Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, “Identity-based hierarchical
strongly key-insulated encryption and its application,” Proc. of Asiacrypt’05,
LNCS 3958, Springer-Verlag, pp.495-514, 2005.

[19] Y. Hanaoka, G. Hanaoka and H. Imai,“Forward Secure Encryption, Key-
Insulated Encryption and Their Hybrid Schemes,” SITA2004.

[20] C. Gentry and A. Silverberg, “Hierarchical id-based cryptography,” Proc. of Asi-
acrypt’02, LNCS 2501, Springer-Verlag, pp.548-566, 2002.

[21] G. Itkis and L. Reyzin, “SiBIR: signer-base intrusion-resilient signatures,” Proc.
of Crypto’02, LNCS 2442, Springer-Verlag, pp.499-514, 2002.

[22] J.Katz, “Lecture note on introduction to cryptography”, available at
www.cs.umd.edu/̃jkatz/TEACHING/crypto F02/lectures.html.

[23] A. Menezes, P.V. Oorschot, S. Vanstone, “Handbook of Applied Cryptography,”
CRC Press, 1997.

[24] T. Okamoto and D. Pointcheval, “The gap-problems: a new class of problems for
the security of cryptographic schemes,” Proc. of PKC’01, LNCS 1992, Springer-
Verlag, pp.104-118, 2001.

[25] J. Pollard, “Theorems of factorization and primality testing”, Proceedings of
Cambridge Philosophical Society 76 (1974), 521-528

[26] M.J.B. Robshaw and Y.L. Yin, “Elliptic Curve Cryptosystems”, Technical Note,
RSA Laboratories, 1997.

[27] A. Shamir, “Identity-based cryptosystems and signature schemes,” Proc. of
Crypto’84, LNCS 196, Springer-Verlag, pp.47-53, 1984.

[28] S.R. Stinson, “Cryptography: Theory and Practice,” 2nd Edition, CRC Press,
Inc 2002.

[29] B. Waters, “Efficient identity based encryption without random oracles,” Proc.
of Eurocrypt’05, LNCS 3494, Springer-Verlag, pp.114-127, 2005.

– 62 –

Publications

With Reviews

P1. “Key-Insulated Public Key Encryption with Auxiliary Helper Key: Model,
Constructions and Formal Security Proofs”; Thi Lan Anh Phan, Goichiro
Hanaoka, Kanta Matsuura, Hideki Imai; IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Science, Special Section
on Information Theory and Its Application, September 2007；Vol.E90-A, No.9,
p.1814-1829.

P2. “Reduce the spread of key exposure in Key-Insulated Public Key Encryp-
tion”; Thi Lan Anh Phan, Yumiko Hanaoka, Goichiro Hanaoka, Kanta Mat-
suura, Hideki Imai; First International Conference on Cryptography in Viet-
Nam; September, 2006; HaNoi, VietNam; LNCS4341 p.366-384.

Without Reviews

P3. “A New Key-Insulated Public Key Encryption Scheme with Auxiliary Helper
Key”; Thi Lan Anh Phan，Goichiro Hanaoka, Kanta Matsuura, Hideki Imai;
Proceeding of the 29th Symposium of Information Theory and Its Application;
October 2006, Hakodate, p.77-80.

P4. “Formal Security Proofs of Key-Insulated Public Key Encryption with Aux-
iliary Helper Key”; Thi Lan Anh Phan, Goichiro Hanaoka, Kanta Matsuura,
Hideki Imai; Symposium on Cryptography and Information Security; January
2007; Nagasaki, CD-proceeding.

– 63 –

	Acknowledgement
	Abstract
	Chapter 1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Thesis Organisation

	Chapter 2 Preliminaries
	2.1 Factoring Problem and RSA algorithm
	2.2 Discrete Log Problem
	2.3 Elliptic Curves
	2.4 Bilinear Maps
	2.5 Random Oracle
	2.6 Security Notions

	Chapter 3 Key Insulated Public Key Encryption (KIE)
	3.1 Model
	3.2 Construction
	3.3 Security
	3.4 Related Works

	Chapter 4 Model and Security Definition of KwAH
	4.1 Model: KIE with an Auxiliary Helper Key(KwAH)
	4.2 Security Definition

	Chapter 5 KIE with Auxiliary Helper Key
	5.1 IND-KE-CPA Schemes
	5.2 Strongly IND-KE-CPA Schemes

	Chapter 6 Chosen Ciphertext Secure Construction
	6.1 Construction
	6.2 Security and Proofs

	Chapter 7 Conclusions
	Bibliography
	Publications

