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This is a review paper about research works in the field of bifurcation analysis of
geometrically nonlinear single-parameter conservative elastic structures. Only problems
involving simple bifurcation point are treated. After a brief introduction, general theory of
elastic stablity based on energy concept is first described. Direct and indirect methods for
detecting bifurcation points and various path-switching strategies are then explained in the
following two sections respectively. Lastly, a concluding remark about the present status of
research activities regarding bifurcation analysis is given.

1. Introduction

An engineering structure under the action of external
load might lose its stability at particular critical load level
due to significant change in its structural geometry. Of
particular interest to structural analysts is the possible
occurence of the so-called elastic bifurcation buckling.
Furthermore information about structural behaviour after
bifurcation, represented by the so-called bifurcation path
is important when investigating the sensitivity of load
carrying capacity towards loading or geometrical im-
perfection (Fig. 1). For the above investigation, bifurca-
tion analysis is necessary. The two essential processes
involved in a bifurcation analysis are the detection of
bifurcation point and the subsequent switching from
primary to bifurcation path (Fig. 2). The first stage of the
analysis is usually treated as part of the process of
detecting critical points including both limit and bifurca-
tion point with the help of the so called detecting
parameter while equilibrium path is being traced. Recent-
ly, a new approach called direct method®"" has been
used to compute critical point and the associated buckling
mode of engineering structures simultaneously. Regard-
ing the formulation of path-switching strategies, two
main trends exist: the first one is where higher order
terms are used in the incremental equations®"'?»'® and
the second one where only linear terms are
involved~?® for obtaining an initial approximation for
a point on bifurcation path. Riks®™*? has presented
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proposal based on both trends. In the later category, very
often additional constraints have to be introduced either
during the construction of approximate bifurcation
mode? 319182 or during interation process'®-'?,
In view of the vast number of methods being proposed,
this paper is written with the aim of providing an overall
view about recent research works concerning bifurcation
analysis. Only problems involving geometrically non-
linear conservative perfect elastic structures subjected to
single proportional loading with simple bifurcation point
will be treated. In section 2, a general theory of elastic
stability will be first described. Methods for detecting
bifurcation points and path-switching will be explained in
Section 3 and 4 respectively. Lastly, a concluding remark
about the present status of research activities will be

given.
2. Theory of elastic stabllity

A structural system could lose its stability due either to
the change in its geometry or material properties or both.
Two phenomena associated with this lost of stability are
caused by snap-through (limit point) and bifurcation
buckling (bifurcation point) as shown in Fig. 3. Here,
only the theory about elastic stability problems arising
from geometrical changes will be described. According to
the energy concept of stability?, @ complete relative
minimum of the total potential energy with respect to the
generalized coordinates for a conservative system is
necessary and sufficient for the stability of an equilibrium
state of the system. Assuming that a system at equilibrium
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configuration P, = {v,, A,}7 is displaced to an adjacent
configuration P,; = {v,+€, 4,}7 under the action of a
very small perturbation £ = {g}7, then the change in
potential could be written as

All = ILy;—T1,=II, &+12I1, ;&6+1/611, €86
+..,5jk=1~N 1

where I, 11, = potential energy at state P,,; and P,
respectively, (), ; = partial derivative with respect to
generalized coordinates, v = vector of finite generalized
coordinates, A = dimensionless loading parameter and
N = total number of system degrees of freedom. Hereaf-
ter superscript 7 will denote transposition. Summation
convention is used here for repeated indices and they will
run from 1 to N unless otherwise specified. Since P, is in
equilibrium, II, ; in eq. (1) should vanish. Therefore the
important equation for the stability of conservative

system could be stated as
1211, ;66> 0 )

where the contribution from the terms related to gsg;e;,
£;g68 etc have been neglected since ¢ is assumed to be
infinitesimally small. The stationary condition of IT with
respect to generalized coordinates will yield a set of N

equilibrium equations
IL;=r,(n,A) = f;(»—Ap; = 0 (3

for a discretized system with N degrees of freedom, where
f={f}T = internal force vector and p, = {p,;}7 =
generalized loading mode. Making use of eq. (3), the
stability condition could be written in matrix notation as

1126 Ke> 0 (4)

where K = ¢ NXN tangent stiffness matrix (K; = r; ;).
Thus, the stability of an equilibrium configuration could
be judged by investigating the positive definiteness of
tangent stiffness matrix. At critical point where K is
semi-positive definite, the following relationship holds,

Kx=10 )

where x is an arbritary non-zero vector. For x to be a
non-zero solution, determinant of tangent stiffness mat-
rix, denoted as | K | must vanish. This vanishing of | K | is
equivalent to the condition represented by the following

eigenvalue problem with ;=0
[K—~ a0 I]¢;=0 ©6)
where w;, ¢ =j th ejgenvalue and the corresponding
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eigenvector of K respectively and I = identity matrix.
Differentiating eq. (3) repeatedly with respect to a path
parameter 7, the following series of simultancous dif-
ferential equations

K "i'j_poii =0 )

Y

K= potryjept 2r, qvih 1,002 = 0 (8

could be obtained, where (), , = partial differentiation
with respectto A, ( ) =d( )/dandp, = —r;;. Ifeq.
(7) is premultiplied with eigenvector ¢, corresponding to
the distinct smallest eigenvalue o, and making use of eq.
(5), the following will hold at critical point,

AP, =0 ®
Two cases are possible from eq. (9), namely

¢:7p, 0, A=0
and ¢1Tpo =0

(10)
(1)

which represent the occurence of limit point and bifurca-

tion point respectively.

3. Bifurcation point detection

3.1 Indirect method

This is the most commonly used method in which the
encounter of bifurcation point is judged with the help of a
detecting parameter while equilibrium path is being
traced. As detecting parameter, the determinant | K | or
the smallest eigenvalue @, of tangent stiffness matrix
which would vanish at critical point are the ones most
frequently used. In order to differentiate between limit
point and bifurcation point, eq. (11) is often used®.
Detecting parameters that show response only towards
bifurcation point have also been proposed®~729. With
indirect method, equilibrium path has to be traced until
the vicinity of bifurcation point if accuracy is required.
This requires that the increment size of path parameter
when approaching bifurcation point be appropriately
reduced. Linear extrapolation schemes®-#19:19 in which
the increment size is adjusted according to the changes in
detecting parameter have been proposed. By using
extrapolation scheme, the intermediate equilibrium
points needed to be computed before reaching the desired
bifurcation point could be reduced thus saving unneces-
sary computational time. A method involving the solution
of a generalized eigenproblem formulated by using the
difference between two tangent stiffness matrix at points
corresponding to 1; 4, and 7; which straddle a bifurcation
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Fig. 3 Critical points: limit and bifurcation point
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Fig. 5 The two process in path-switching

point has been proposed by Fujikake® to compute the
critical path parameter 7,,. It is claimed that this method
is applicable even to problems with closely spaced critical

points.

3.2 Direct method®~!D-24-29)

In contrast with indirect method, constraint equations
which are composed of a set of singularity defining
equations and a normalizing equation ensuring non-
triviality of solution vectors are included in the system of
equations to be solved in direct method (Fig. 4). This set
of new extended equations is then solved to yield both the

SEISAN-KENKYU 269

Step 1:
Where is the
bifurcation point Step 2:
Which direction
Primary path

Fig. 2 Bifurcation analysis: detection and path-

~switching

Original equilibrium equation:
r(v,\)=0
+
Singularity defining equations
and
Normalizing equation

Extended system

r=0

. K¢ =0 (12a)
(§)=0
r=0

- II%‘#. )==°0 (12b)
¢/p, =0

- K20 (120)

The normalizing equations:
@) =ll4fi-1=0 (133)
I(9)=ed,~4,=0 (13b)

Fig. 4 Concept of extended system

position of critical point and its associated eigenmode
directly (Fig. 4). In this way, the number of intermediate
points needed to be computed via the tracing of equilib-
rium path before reaching the desired critical points could
be reduced. In eq. (13b) (Fig. 4), ¢; is the unit base vector
and ¢;, (0 = 1~N) is a specified critical component of
eigenvector ¢,. Wriggers and Simo® has proposed a
criteria for the selection of index i. Addition of the
constraint ¢,’p, = 0 will ensure that only bifurcation
point is converged to. The linearized form of the
extended system of eq. (12c) which has been considered
by Abbot®® is not suited for incorporation into the
Newton scheme®-?). Linearizing the extended system of
eq. (12a) with eq. (13a) as the normalizing equation will
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yield
K 0 Po Ay
V.(K¢)) K ViKey) Ay
0" ¢l 0 Ak
r(v, 1)
== K@ )¢ (14)
l g1l -1

where V,(K¢,) Av and V, (K¢;) AL are directional
derivatives of K in the direction of Av and AA respective-
ly. An elimination algorithm for evaluating the iterative
changes of Aw = {Av A¢; AA}T has been proposed by
Wriggers et al® by taking into consideration the sparsity
of the coefficient matrix of eq. (14). This algorithm could
be easily incorporated into any conventional finite ele-
ment analysis code provided that an extra routine for
evaluating the derivatives V., (K¢;) and V, (K¢) is
included. Wriggers and Simo® have proposed a similar
algorithm whereby the near-singular condition of tangent
stiffness matrix K when iterating near critical point could
be removed. Also, instead of evaluating the derivatives of
tangent stiffnes matrix analytically, a numerical approx-
imation for these derivatives by using finite difference
equation has been proposed by Wriggers and Simo®.
Criteria indicating the approaching or encounter of
critical point is necessary in order to switch the computa-
tional procedures from that of usual path-tracing to that
involving extended system. Initial guess of the starting
eigenvector ¢, could be computed by using say inverse
interation procedures” or an alternative method prop-
osed by Seydel?”? and used by Skeiec and Felippa'®.

4 . Path switching

An initial approximation X;, for a point lying on the
bifurcation path could be obtained by adding a suitably
chosen approximate branching direction x;; with
appropriate magnitude An to the detected bifurcation
point X5 as follows,

(15a)
(15b)

Xy = X+ Anky
X1 = (ax+anh) /| e+ b ||, || 2y [ = 1

where x; = normalized tangent vector to the primary
path in R¥N*1, b = approximate bifurcation direction in
R¥* and o, @, = magnitude of x; and b resprectively.
From eq. (15b) and as indicated in Fig. 5, two major tasks
involved in path-switching are the determination of
appropriate branching direction x,; and of specification of
suitable magnitude A#. The simplest and most commonly
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used method is to adopt the vector {¢;, 0}T as the
approximate bifurcation direction & with a suitably
specified A7n. Alternative strategies whereby no eigen-
problem is involved have also been proposed'®-1®~21,
Methods where higher order derivatives of residual
vectors are used in the determination of x,, are compara-
tively fewer”~712:13:2) than those that make use of
only linear incremental stiffness equations!®-1%)-19~21.
2 As for the determination of Ay, trial-and-error
method is the most commonly used method. Methods
whereby the magnitude of branching direction could be
computed directly have also been proposed'®-?®. Harto-
no et al'® obtained the incremental solution at bifurca-
tion point by solving system of equations involving higher
order derivatives of equilibrium equations. In order to
attain a point on the yet unknown bifurcation path from
the initial approximation, iterative process with various
special constraints introduced is often used?-19-16-17).28),
Riks?»3 for example has proposed the following

expression for ¥
(16)

By requiring that xy; is perpendicular to x; (Fig. 6), and

Xy = 5r1+w2{¢1, O}T: " X1t ” =1

noting that ||x, |=1, &, will be given by
(17

An iteration process according to Riks’s arc-length

® = 1/-;"1T @1

method? is then carried out by using x;, as the normal to
the constraint plane with A7 selected on a trial-and-error
basis. This iteration process will force the iterative
corrections to lie on the constraint plane of Fig. 6 thus
preventing any convergence back onto the known prim-
ary path. A similar idea has also been mentioned by
Waszczysztn'>.

Skeie and Felippa'® used the rather simple expression

{i’ll, /.111}T = {An¢y, O}T (18)

where only eigenvector is involved as the first approxima-
tion for x;; ={¥1;, 0}*. For the determination of ¢, the
approximation method due to Seydel®-*”. is used. In
order to compensate for this rather simple approximation
which might lead to possible failure especially in the case
of asymmetric bifurcation point, special locally defined
cylindrical constraint'®?? (Fig. 7) represented as

{(v—Aq)T (v—Ag)—Ar? /g7 =0

where ¢ = K~! p,,, has been introduced into the iteration

(19)

process. Regarding the magnitude An, Skeie and
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Bifurcation

Fig. 6 Riks’s proposal for locating a point on the
bifurcation path

£ ASSUMED
CONSTANT-LOADIN g
PLANE r, (= A-hd=0

Fig. 8 Concept of line search

Fig. 10 Improved tangent vector ta used as
search direction
Felippa'® stated that it could be chosen to be the same as
the increment of path parameter used when tracing the
primary equilibrium path in the vicinity of bifurcation
point.
The existence condition of solutions for eq. (12) could

be expréssed by using generalized inverse”™” as
[ — KK )Thp, =0 (20)

where I = identity matrix and K~ = Moore-Penrose
generalized inverse matrix of K. Incremental solution at
bifurcation point where [I — KK~]"p, = 0 holds could
be written as
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Primary path

Constraint
surface

Bifurcation path

Fig. 7 A constraint in the form of cylin-
drical' surface used during itera-
tion process

Equipotential lines

Fig. 9 Stationary point of potential II along
search direction ta

Plane where ileration
for 2 point on secondary
path 13 carried out

Fig. 11 Energy perturbation method by Kroplin

y = AKp, + [I-K K] & (1)

where & = arbitrary vector composed of the scaling
factors for the linearly independent column vectors of
matrix [[-K~K]. Since rank of K is N-1 at simple
bifurcation point, rank [[-K K]will be equal to 1.
Denoting this single independent vector of [I-K K] as a,
eq. (21) will become

y=AK"p, + oa (22)

which contains two unknown scaling factor A and . In
order to obtain a relationship between A and &, existence
condition of solutions for eq. (8), namely,

[I-KK~ "/, — b (3, 1)} = 0 @3)
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and the condition for bifurcation point, namely
[I-KK~1"p, = 0 are used together to yield the following

equation

a’h (v,2) =0 24

where k= (h}T and h; = 1, u¥b+2r, pvih+r A2, Sub-
stitution of eq. (22) into (24) will result in a quadratic
equation as follow

A& +2Bad + CA2=0 (25)

where A, B, C = computed constants and ¢ = K p,. By
using the ratio k; (= A,/ &) obtained from eq. (25), eq.
(22) could be simplified to

7 = (8,007 +{Kp,, 1} k) & (26)

«in eq. (26) is determined based on a trial-and-error basis
until convergence onto bifurcation path is achieved.
In line search!®2D, a search is carried out in the
vicinity of bifurcation point on a constant loading plane
along the direction of a tangent vector t,, in order to
locate a point D’ which lies sufficently close to point D as
shown in Fig. 8. Search direction vector ¢, is the tangent
vector to curve € at point A. Curve Q is defined by
replacing one of the equilibrium equation say
rg=0(d = 1~N) with the
rns1 (= A—144) = 0. Position of point D’ corresponds to

equation

the stationary point of potential IT along search direction
t, (Fig. 9). With point D’ determined, iteration at
constant loading level A, to obtain point D could then be
started by using

Xp=Xa+8pty (27)

as the first approximation, where X, X, = position
vector of point D’ and A respectively, £y = arc-length
along AD’ measuring from point A. In this approach, by
using the proposed criteria of stationary condition of
potential d IT/ d{ = 0 along search direction ¢4, the
magnitude {p- of approximate branching mode ¢, could
be determined through computation and not assigned on
trial-and-error basis. The proposed criteria could be
proved to be equivalent to

rfe, =0

(28)

which is used in the actual numerical computation as the

search termination criteria®® where r is the original
nonlinear equations given by eq. (3). The proposed line
search scheme might fail to detect any stationary point in
the direction of ¢,. In such cases, one possible remedial
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measure is to update the tangent vector of curve Q by
using Euler or Runge-Kutta method as shown in Fig.
(10).

Kroplin et al'® have proposed a path—switching
strategy similar to line search concept which is composed
of the following three steps: i) determination of a
perturbation pattern v ii) computation of the critical
amplitude y of perturbation 4 and iii) iteration to the new
solution point (Fig. 11). This approach could be also
applied to determine the range of stability of an equilib-
rium point. Kroplin introduced a quantity termed per-
turbation energy s, which is being defined as

7, = g, Ay
Av = yy + Av,

(29a)
(29b)

where g, = perturbation force vector, Av = incremental
displacement vector, y = amplitude of perturbation,
Av, = part of Ay which is perpendicular to ¢, and
y = displacement vector representing the perturbation
pattern. Using K™ vy as the perturbation vector and
TKN

normalizing @K™y to 1, equation for perturbation

energy could be rewritten as
7, = ypT KNy + g,7Av,

T, =y

(30)
@1

where KV = nonlinear part of tangent stiffness matrix K
which is a linear function of v and v = displacement
vector at known point A (Fig. 11). As perturbation
pattern, Kroplin proposed the use of eigenvector ¢;. The
eigenvector ¢; and its critical magnitude corresponding to
v in eq. (31) are each computed by solving a similar
variational problem where the incremental energy is
constrained to be zero. The variational problem will each
lead to a similar set of linear simultaneous equations
where ¢; and y could be computed through iteration. A
perturbation is imposed upon the structure in order to
arrive at a new equilibrium point with the same energy

level as follow
= 6{12 AVT [KL+KN(V+AV)] AV + AA
[¢1T [KN(v)AVi'“Y]} =0 (32)

In eq. (32), the perturbation energy is constratint to be
of size y. A point on new secondary equilibrium path is
obtained by carrying out the following iteration

K“+KNrnny  KNoyd1 { Av }_{ 0
¢1TKN(V) 0 AA,I Y

(33)
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In Kroplin’s method, the iterative points will be forced
to lie on a plane at a distance y from the known point A.
Since the secondary path searched for might not lie in the
vicinity of the known point A where the perturbation is
imposed, very stable iteration scheme has to be used.
After some iterations, the constraint will be removed and
usual unconstrained iteration will be continued until
convergence is achieved.

Kouhia and Mikkola'” used eigenvector ¢ as the first
approximation for bifurcation mode with its initial magni-

tude A, evaluated as follow
An, = AWV @TCq + o

where C” and « are scaling matrix for displacement

(34

component and scaling factor for loading parameter
respectively and K~' ¢° = p,,. Here supercript is used to
denote iteration step. AA, corresponds to the first load
increment specified during path tracing. This first approx-
imation is then updated by using the following corrector

SV=0OE g + NG +d (39)

where 6v' = correction to the first approximate bifurca-
tion mode ¥, d=K "l q7CY¢ = 0,
dTCV ¢, =0, ¢,7C" ¢, = 1 and 8, 61 = computed
coefficients. An orthogonal constraint in the form of

Vir(v,E,4) =0 (36)

is introduced in order to establish a linear relationship
between 68 and SA' (Fig. 12) as follow

SEi=d +y oM @37)

where é=— &) r Ty and
Y =—(F T ) 1 2F 77 ¢y). The coefficients & and A’

are updated at each iteration step i. A modified elliptical
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constraint based on Crisfield’s idea® where the arc-
length is updated at each iteration step is then used to
obtain a quadratic equation in 8. With 64’ obtained,
approximation for a point on bifurcation path could then
be updated until the required accuracy is achieved.

5. Concluding remark

Occurence of bifurcation point could be judged easily
with the help of certain detecting parameter obtained
during the path tracing process or alternatively direct
method could be used. Further classification could be
made based on eq. (11). On the contrary, further works
are necessary before a generally applicable path-switch-
ing procedures could be established. For all the methods
covered here, it is difficult to establish a common ground
which we can use to make comparison among them.
Methods that make use of higher order terms are
comparatively simple to implement and any source of
possible numerical trouble could be easily identified. On
the contrary, although computational time could be
reduced if only linear incremental equations are used, the
implementation of the solution algorithm involved might
not be a simple matter. Furthermore when numerical
trouble occurs during computation, its source might not
be easy to pinpoint. Based on this observation, the
question of which method to be used will eventually
depend on the complexity of problem to be solved and the
availablility of resources. Any future proposed method
should perhaps be formulated in such a way that
computer-human interaction could be carried out easily.
They should be simple in formulation with a clear physical
interpretation of their process. Even if this means that
extra amout of effort is needed, it is still worthwhile if we
could be sure that the solution algorithm is a stable one

Bifurcation path Primary path
Cunstrf.mt uﬁd
BEme+yBh, to evaluate
__________ g
)»n ]
1 M
1 : n
a. L Ve +Ang,

A Variable arc-length
constraint =
4»—-. = i -
% £ g2
&
(]
g 4
= 5§¢|
, d+BAq
B N\,@. \" =
41]‘ ;
4;;‘
SE=e+y5M
b. kerK

Fig. 12 Iterative procedure for obtaining a point on bifurcation path due to Kouhia and Mikkola
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that will provide us with a significantly accurate result®?.
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