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I . Introduction

An engineering structure under the action of external

load might lose its stability at particular critical load level

due to significant change in its structural geometry. Of

particular interest to structural analysts is the possible

occurence of the so-called elastic bifurcation buckling.

Furthermore information about structural behaviour after

bifurcation, represented by the so-called bifurcation path

is important when investigating the sensitivity of load

carrying capacity towards loading or geometrical im-

perfection (Fig. 1). For the above investigation, bifurca-

tion analysis is necessary. The two essential processes

involved in a bifurcation analysis are the detection of

bifurcation point and the subsequent switching from

primary to bifurcation path (Fig. 2). The first stage of the

analysis is usually treated as part of the process of

detecting critical points including both limit and bifurca-

tion point with the help of the so called detecting

parameter while equilibrium path is being traced' Recent-

ly, a new approach called direct method8-1l) has been

used to compute critical point and the associated buckling

mode of engineering structures simultaneously. Regard-

ing the formulation of path-switching strategies, two

main trends exist: the first one is where higher order

terms are used in the incremental equations5-7)'12)'73) and

the second one where only linear termf are

involvedla)-23) for obtaining an initial approximation for

a point on bifurcation path. Rift52)'3)'3a) has presented
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proposal based on both trends. In the later category' very

often additional constraints have to be introduced either

during the construction of approximate bifurcation

mode2),3),1s),18)-21) or during interation processl6)'rz).

In view of the vast number of methods being proposed,

this paper is written with the aim of providing an overall

view about recent research works concerning bifurcation

analysis. Only problems involving geometrically non-

linear conservative perfect elastic structures subjected to

single proportional loading with simple bifurcation point

will be treated. In section 2, a genenl theory of elastic

stability will be first described. Methods for detecting

bifurcation points and path-switching will be explained in

Section 3 and 4 respectively. Lastly, a concluding remark

about the present status of research activities will be

given.

2. Theory of elastic stabilitY

A structural system could lose its stability due either to

the change in its geometry or material properties or both.

Two phenomena associated with this lost of stability are

caused by snap-through (limit point) and bifurcation

buckling (bifurcation point) as shown in Fig. 3. Here,

only the theory about elastic stability problems arising

from geometrical changes will be described. According to

the energy concept of stabilityl), a complete relative

minimum of the total potential energy with respect to the

generalized coordinates for a conservative system is

necessary and sufficient for the stability of an equilibrium

state of the system. Assuming that a system at equilibrium
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con■guration P。= {ッ。,λ。}r is diSplaced to an adiacent
conflguration t″={ツ。ttε,ん分

r under the a9tion Of a

vcry small perturbation ε= (島}r, then the change in

potential could be writtcn as

ムΠ =Π α″
―Π。=二 ′a+1/2乳 ヴa彎+1/6Π ,夕 Q今ヽ

+..,ら ,た =1～ N               (1)

whcrc Πα4,II。
=′οたれ̀″′ιれιrgy ὰs″た Pα″ and P。

rcspcct市ely,( ),′=partial derivative with r,Spcct to

generalized coordinates,ッ=vector of flnitc gcneralセed

coordinates, λ=dimensionless loading parameter and

7V=total number of system degrees of freedom.Hereaf‐

ter supersc五pt r will denote transposition. SuninatiOn

convcntion is used hёre for rep9ated indices and they will

run fronl l to N unless othcrwise spccined sinceむ。is in

equilibrium,Π,′in cq(1)ShOuld Vanish Therefore the

important equation for thc stability of conseⅣative

system could be stated as

1/2Π,″Qら>0                 (2)

whcrc the contribution from the terms related to■Oεた,

a■,た助etc havc becn ncglcctcd sincc ε is assumed to be

inflnitesilnally small The stationary condition of II with

respect to generalized coordinates will yield a set of 7V

equ■ibriu面 equatiOns

Π,,=71(ッ,λ)=勇 (ツ)一″。′=0     (3)

for a discrctized systemwithⅣdegrees Offrccdom,where

∫=係 )r=internal force vector and′ 。=レ 。′}r=

generalized loading mode.Making use of eq.(3),the

stability condition could be written in matrix notation as

1 / 2 8 T  κε> 0              ( 4 1

wherc κ =α Ⅳ×Ⅳ tangent stiffncss matr破(K17=″らブ)・

Thus,thc stability of an equilibriuni connguratiOn could

be iudgcd by investigating the positive deiniteness of

tangent stiffncss matrix. At critical point where F is

semi‐positive dennite, the fo■owing relationship holds,

Kκ=θ                  ( 5 )

where x is an arbritary■o■―zero vector For χ to be a

non‐zero solutio■,deternlinant of tangcnt stiffncss mat―

rix,denoted as lK l must Vanish.This vanishing ofl K liS

cquivalcnt to the condition represented by the following

eigenvaluc problem with q=0

[κ
―

%r]衛
=0             (6)

where%,o=ノ th eigenvalue and the corrcsponding
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cigenvector of κ  respectively and r=identity matrix.

Differentiating eq。(3)repeatedly with respect to a path

parameter η , the fo■owing series of siinultallcous di■

ferential equations

κ″ち―′。ユ=0                    (7)

K17ら一′οノ十七ルッκ+2Lメ vJλ+■μλ?=0    (8)

could be obtained,where( ),λ =partial differentiation

with respect to λ,( )=グ ( )/グ and′。′=― Lλ lfeq.

C)iS premultiplicd with eigenvector φl cOrresponding to

the distinct smallest eigenvalue ωl and making use of eq.

(5),thc f0110wing will hold at critical point,

λφlつ。=0

TIvo cases are possible iom eq。(9),namely

φル 。≠0 ,λ = 0

and φル 。=0

which represent the occurence of limit point and bifurca-

tion point respectively.

3 . Bifurcation point detection

3.1 Indirect method

This is the most commonly uSed method in which the

encounter of bifurcation point is judged with the help of a

detecting parameter while equilibrium path is being

traced. As detecting parameter, the determinant I K I or

the smallest eigenvalue a;r of tangent stiffness matrix

which would vanish at critical point are the ones most

frequently used, :In order to differentiate between limit

point and bifurcation point, eq. (11) is often used8)'e).

Detecting parameters that show response only towards

bifurcation point have also been proposed2)-7)'26). With

indirect method, equilibrium path has to be traced until

the vicinity of bifurcation point if accuracy is required.

This requires that the increment size of path parameter

when approaching bifurcation point be appropriately

reduced. Linear extrapolation schemes3)'4)'10)'1s) in which

the increment size is adjusted according to the changes in

detecting parameter have been proposed. By using

extrapolation scheme, the intermediate equilibrium

points needed to be computed before reaching the desired

bifurcation point could be reduced thus saving unneces-

sary computational time. A method involving the solution

of a generalized eigenproblem formulated by using the

difference between two tangent stiffness matrix at points

corresponding to 4; *1 and 4; which straddle a bifurcation

( 9 )

(10)

(11)
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Fig Long-deflection path-Perfect and imperfect

stfucture

Fig. 3 Critical pointsi limit and bifurcation point

Fig. 5 The two process in path-switching

point has been proposed by Fujikake2s) to compute the

critical path parameter 4".. It is claimed that this method

is applicable even to problems with closely spaced critical

points.

3.2 Direct method8)-r1)'24)'2e)

In contrast with indirect method, constraint equations

which are composed of a set of singularity defining

equations and a normalizing equation ensuring non-

triviality of solution vectors are included in the systgm of

equations to be solved in direct method (Fig. a). This set

of new extended equations is then solved to yield both the

r = 0~国
= 0

The normalizing equations:

/(0,) ll0,ll-1= 0 (13a)

t(QJ-el t-0.-0 (13b)
Fig. 4 Concept of extended system

position of critical point and its associated eigenmode

directly (Fig. a). In this way,'the number of intermediate

points needed to be computed via the tracing of equilib-

rium path before reaching the desired critical points could

be reduced. In eq. (13b) (Fig. a), e; is the unit base vector

and Qb (o : 1-N ) is a specified critical component of

eigenvector @1. Wriggers and Simoe) has proposed a

criteria for the selection of index i. Addition of the

constraint Q,,'po :0 will ensure that only bifurcation

point is converged to. The linearized form of the

extended system of eq. (12c) which has been considered

by Abbot2e) is not suited for incorporation into the

Newton schemes)'e). Linearizing the extended system of

eq. (lza) with eq. (13a) as the normalizing equation will

r = 0
_KQ=0

′(Qり=0
(12al

(12b)

(12o

０
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κ    O    ん
7ッ“φl) K  7λ にφl)

OT  φ 17/l φl1   0

F~11ず1些
11 (14)

where 7ソ にφl)ムツ and 7λ (κφl)△λ arC directional

derivatives of F in the direction of△ッand ttλ respective―

ly An elinlination algorithm for cvaluating the iterat市c

changes of△″=(乙 ッムφl△λ)T has been proposed by

Wriggcrs ct a18)by taking into consideration thC Sparsity

of thc cocfflcicnt matr破of eq.(14).ThiS algOrithm could

be easily incorporated into any conventional inite ele‐

ment analysis code providcd that an extra routine for

evaluating the der市 at市es 7ν “φl)and 7λ “φl)iS

included. Wriggers and Siino9)have proposed a similar

algorithm whereby the near― singular condition of tangent

stiffness inatrix K when iterating near critical point could

be removed Also,instead of evaluating thc derivat市 es of

tangent stiffnes matrix analytically,a numerical approx―

imation for these derivat市 cs by using IInite differcnce

cquation has been proposcd by Wriggers and Simo9)

Criteria indicating the approaching Or cncOunter of

c五tical point is necessary in ordcr to switch the computa―

tional proccdurcs from that of usual path―tracing to that

involving extended system lnitial guess of the starting

eigenvector φl could be computed by using say inversc

interation procedures9)or an alternative method prop―

osed by Seyde124),30)and uscd by Skeie and Felippal° )

4. Path sw■ ching

An initial approximation Xll for a point lying on the

bifurcation path could bc obtained by adding a suitably

chosen  appro対 matc  branching  dircction  ill  with

appropriate magnitude ム η to the dctccted bifurcation

p o i n t  x B  a s  f 0 1 1 0 W s ,

X11=Xθ+ムⅢll          (15a)
111=(釣 '十のら)/‖ 鈎11+の う|,‖111‖

=1 (15b)

where ll=■ ormalized tangent vector to the primary

path in RN+1,う
=approxilnate bifurcation direction in

RN+l and α l,の =magnitude of ll and b resprectively.

From eq.(15b)and aSindicatcd in Fig.5,two mttortaSkS

involved in pathrswitching arc the determination of

appropriatc branching direction lll and of specincatiOn Of

suitablc magnitude△η.1■c simplest and most commonly

36
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used method is to adopt the vector {@1, Oir as the

approximate bifurcation direction D with a suitably

specified /4. Alternative strategies whereby no eigen-

problem is involved have also been proposedl6)'18)-21).

Methods where higher order derivatives of residual

vectors are used in the determination of.r11 are compara-

tively fewers)-7)'72r'73)'27) than those that make use of

only linear incremental stiffness €Quati6151a)'rs)'r6)-zl;'
28). As for the determination of Ar1, trial-and-error

method is the most commonly used method. Methods

whereby the magnitude of branching direction could be

computed directly have also been proposedl6)'20). Harto-

no et all3) obtained the incremental solution at bifurca-

tion point by solving system of equations involving higher

order derivatives of equilibrium equations. In order to

attain a point on the yet unknown bifurcation path from

the initial approximation, iterative process with various

special constraints introduced is often used2)'10)'16)'17)'28).

Riks2)'3)'3a) for example has proposed the following

expression for irr:

i" : ir'+ ur{Ei, 0}r, ll ;11 ll : 1 (16)

By requiring that i11 is perpendicular to;1 (Fig. 6), and

noting that ll ;t ll : t, a2 will be given by

oz: llltr Qt (17)

An iteration process according to Riks's arc-length

method2) is then carried out by using i11 as the normal to

the constraint plane with /4 selected on a trial-and-error

basis. This iteration process will force the iterative

corrections to lie on the constraint plane of Fig. 6 thus

preventing any convergence back onto the known prim-

ary path. A similar idea has also been mentioned by

Waszczysztnls).

Skeie and Felippalo) used the rather simple expression

〔'11,λll)r={△ηφl,0}r (18)

where only eigenvector is involved as the first approxima-

tion for ir, ={i,rr, 0}T. For the determination of @r, the

approximation method due to Seydel2a)'30) is used. In

order to compensate for this rather simple approximation

which might lead to possible failure especially in the case

of asymmetric bifurcation point, special locally defined

cylindrical constraintl0)'27) (Fig. 7) represented as

{ i -Ls} ' { r -As} -A"P tq 'q=  0  (19)

where q : K-l po, has been introduced into the iteration

process. Regarding the magnitude dri, Skeie and
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Primary path

Constrainl

Fig.7 A constraint in the form o{ cylin-

drical'surface used during itera-

tlon process

Fig.9 Stationary point ol

search direction ta

potential fI along

Fig. 11 Energy perturbation method by Kroplin

i = i,trp" + E-x-Kl & (21)

where & : arbitrary vector composed of the scaling

factors for the linearly independent column vectors of

matrix F-K-K]. Since rank of tr is N-1 at simple

bifurcation point, fank [f-K-X]wilI be equal to 1.

Denoting this single independent vector of fI-K-Kl as a,

eq. (21) will become

i ='lx-p. + i* Q2)

which contains two unknown scaling factor i and u. In

order to obtain a relationship between jt and iv, existence

condition of solutions for eq. (8), namely,

lI-KK-l'(Ip" - t' (t, i)} = o (23)

Fig. 6 Riks's proposal for locating a point on the

bifurcation path

Fig 10 Improved tangent vector tA' used as

search direction

Felippalo) stated that it could be chosen to be the same as

the increment of path parameter used when tracing the

primary equilibrium path in the vicinity of bifurcation

point.

The existence condition of solutions for eq. (12) could

be expressed by using generalized inverses)-7) as

It - xx-1rip"=s (20)

where 1 : identity matrix and K- : Moore-Penrose

generalized inverse matrix of K. Incremental solution at

bifurcation point where lI - KK-l'p':0 holds could

be written as

*stP

Fig. 8 Concept of l ine search
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and the condition for bifurcation point, namely

lI-KK-lrp, = 0 are used together to yield the following

equation

a'n 1i, )"1 = g Q4)

where lr : {hr}T and hr: r,,,ei,io+2r,,,7v,}"+r,r,i2. Sub-

stitution ot eq. (22) into (24) will result in a quadratic

equation as follow

Ai f+zB iv |+c t r? :o (25)

where,4, B, C : computed constants and q = K-p".By

using the ratio 4 e it I iyt) obtained from eq. (25), e<1.

(22) could be simplified to

{i , ;} ,  = ({",0}, +{K-p",\)r ki) Ai e6)

ixineq. (26) is determined based on a trial-and-error basis

until convergence onto bifurcation path is achieved.

In line searchls)-21), a search is carried out in the

vicinity of bifurcation point on a constant loading plane

along the direction of a tangent vector tA, in order to

locate a point D' which lies sufficently close to point D as

shown in Fig. 8. Search direction vector tA is the tangent

vector to curve C) at point ,4. Curve Q is defined by

replacing one of the equilibrium equation say

ra = 0 (d: 1-1V) with the equation

riv*r (: J"-1) = 0. Position of point D' corresponds to

the stationary point of potential fI along search direction

ta (Fig. 9). With point D' determined, iteration at

constant loading level Ia to obtain point D could then be

started by using

XD,=Xス +ζD・麟 @)

as the first approximation, where Xo', Xe: position

vector of point D' and A respectively, $1,: arc-length

along AD'measuring from point A. In this approach, by

using the proposed criteria of stationary condition of

potential d n I dE: 0 along search directiorl tA, the

magnitude (p' of approximate branching mode fa could

be determined through computation and not assigned on

trial-and-error basis. The proposed criteria could be

proved to be equivalent to

r r t o = g  ( 2 8 )

which is used in the actual numerical computation as the

search termination criteria2o) where r is the original

nonlinear equations given by eq. (3). The proposed line

search scheme might fail to detect any stationary point in

the direction of tA. h such cases, one possible remedial

38
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measure is to update the tangent vector of curve Q by

using Euler or Runge-Kutta method as shown in Fis.

(10).

Kroplin et all6) have proposed a path-switching

strategy similar to line search concept which is composed

of the following three steps: i) determination of a

perturbation pattern q) ii) computation of the critical

amplitude y of perturbation r/ and iii) iteration to the new

solution point (Fig. 11). This approach could be also

applied to determine the range of stability of an equilib-

rium point. Kroplin introduced a quantity termed per-

turbation ener1y ne which is being defined as

no -- eorAv

Av: y1p + Avp

no = ytpT KNtp + eorAvo

f r p :  T

(29a)

(2eb)

where eo = perturbation force vector, dv : incremental

displacement vector, y = amplitude of perturbation,

Avo -- part of /v which is perpendicular to eo and

V = displacement vector representing the perturbation

pattern. Using KN rp as the perturbation vector and

normalizing tprKNtp to 1, equation for perturbation

energy could be rewritten as

(30)
(31)

where KN = nonlinear part of tangent stiffness matrix K

which is a linear function of v and v = displacement

vector at known point A (Fig. 11). As perturbation

pattern, Kroplin proposed the use of eigenvector dl. The

eigenvector @1 and its critical magnitude corresponding to

y in eq. (31) are each computed by solving a similar

variational problem where the incremental energy is

constrained to be zero. The variational problem will each

lead to a similar set of linear simultaneous equations

where @1 and y could be computed through iteration. A

perturbation is imposed upon the structure in order to

arrive at a new equilibrium point with the same energy

level as follow

6n -- 6{1/2 afr fKL+KNp*ai] avi + A)u

lQrr lxNr"'tAvt-Y11 =g Q2)

ln eq. (32) , the perturbation energy is constratint to be

of size y. A point on new secondary equilibrium path is

obtained by carrying out the following iteration

I K L + K N , . * ^ " ,  K N , " r 6 ,  1 (  A v i  j  f  o  l|  ' ' - "  t i  ! : t
l O r ' K * , , ,  o  l l ^ i r J l v )

(33)
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In Kroplin's method,the iterative points will be forccd

to lie on a planc at a distance γ from the known pointノ 4

Since the secondary path searched for lnight not lie in the

vicinity of the known pointノ4 whcre thc perturbation is

ilnposed, very stable iteration scheme has to bc used.

After some iteratiOns,thc constraint will be removed and

usual unconstrained iteration will be continued until

convergёnce is achicved.

Kouhia and Mikkola17)uSed eigenvector φl as the nrst

approxilnation for bifurcation lllodcヽvith its initial magni―

tide △ηo evaluated as fo1low

△η。=△ λοV ` 1 2 c●
ソ
9 +′     ( 3 4 )

where Cν  and α  arc scaling matrix for displacement

cOmponent and scaling factor for loading paramcter

respcctively and♂
~19′ =′ 。 Herc supercript is uscd to

denote iteration step △ λo corresponds to the flrst load

increment specined during path tracing.This■ rst approx―

iination is then updated by using the fo■owing corrector

δデ=δξ
′
φl +机

' 9′+″         ( 3 5 )

where δッj=correction to the nrst approxilnate bifurca―

t i O n  m O d e  , 1 1 ,  ″= K  l r′ 1 ,  ` J 2 C‐ソ
φl = 0 ,

d′ζC ν φl=0,φ lζCソφl=l and δξ,a″=COmputed

coeffldents. An orthogonal constraint in thc form of

ツrr(ツ,ξ,7・l=0 (36)

is introduced in order to establish a linear relationship

betwcen δξ and猟
'(Fig 12)as fol10W

δξ
′=′+ノδλ′            (37)

whcre      が=―(ノ
~11″

)/(2ノ
~17φ

l)      and

/=― (ノ
1%′

)/(2ノ
~lr φ

l),The COCfflcients J and λ
′

are updated at each itcration stcp i.A modined elliptical

VB+△ηヽ
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constraint based on Crisfield's idea33) where the arc-

length is updated at each iteration step is then used to

obtain a quadratic equation in 6,1i. With 6l. obtained,

approximation for a point on bifurcation path could then

be updated until the required accuracy is achieved.

5. Concluding remark

Occurence of bifurcation point could be judged easily

with the help of certain detecting parameter obtained

during the path tracing process or alternatively direct

method could be used. Further classification could be

made based on eq. (11). On the contrary, further works

are necessary before a generally applicable path-switch-

ing procedures could be established. For all the methods

covered here, it is difficult to establish a common ground

which we can use to make comparison among them.

Methods that make use of higher order terms are

comparatively simple to implement and any source of

possible numerical trouble could be easily identified. On

the contrary, although computational time could be

reduced if only linear incremental equations are used, the

implementation of the solution algorithm involved might

not be a simple matter. Furthermore when numerical

trouble occurs during computation, its source might not

be easy to pinpoint. Based on this observation, the

question of which method to be used will eventually

depend on the complexity of problem to be solved and the

availablility of resources. Any future proposed method

should perhaps be formulated in such a way that

computer-human interaction could be carried out easily.

They should be simple in formulation with a clear physical

interpretation of their process. Even if this means that

extra amout of effort is needed, it is still worthwhile if we

could be sure that the solution algorithm is a stable one

b.l               kerK

Fig 12 Iterative procedure for obtaining a point on bifurcation path due to Kouhia and Mikkola
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that will provide us with a signincantly accurate result32).

(ManuSttpt rcccivcd,January 29, 1993)
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