密度変化を伴う高浮力流れの数値シミュレーションに関する研究 ——密度変化を考慮した2種類のk-εモデルによる

鉛直加熱壁近傍の自然対流解析---

Numerical Simulation of Variable Dencity Flow with High Buoyancy

Calculation of Turbulent Free Convection Along a Heated Vertical Flat Plate by Two Variable Dencity k-& Model

加藤信介*・村上周三**・義江龍一郎*** Shinsuke KATO, Syuzo MURAKAMI and Ryuichiro YOSHIE

1. 序

本研究は、火災時の煙流動など流体の密度変化が大き い浮力乱流の予測手法を開発することを目的とする.筆 者らはこの種の流れ場では密度変動 ρ の相関項が本質 的に重要な役割を果していると考え、既報^{4),5)}において、 To & Humphrey らによる ρ の影響を考慮する圧縮性流 体の $k \cdot \epsilon$ 型2方程式乱流モデル²⁾(表1)を導入し、鉛 直加熱壁近傍の乱流解析を試みた.このモデルは大変複 雑で計算時間も多く必要とされるため、本報では実用の 観点から ρ 'との相関項を含まない簡易な圧縮性 $k \cdot \epsilon$ デルも併せて検討する.そしてこれら2つの圧縮性 $k \cdot \epsilon$ モデルの妥当性と非圧縮 $k \cdot \epsilon \cdot \epsilon \cdot \tau \cdot k$ の妥当性と非圧縮 $k \cdot \epsilon \cdot \epsilon \cdot \tau \cdot k$ の ために、鉛直加熱壁近傍流れについて低 Re数モデル³⁾ に基づく2次元解析を行った.計算は加熱壁の温度が比 較的低い場合と高い場合の2とおりとし、前者について は既住の実験結果と詳細に比較検討した.

2. エネルギー方程式に対する密度変動相関項の連成

1) 連続式 ρ' との相関項は流れ場, 温度場にしばしば 大きな影響を与える.特に連続式, エネルギー式におい てその役割が大きい.表1にTo & Humphrey のモデル を示す. (1)式は近似のない厳密式である. 定常状態では 密度変動フラックス $\rho'u_i'$ (ρ' は*T*'に密接に関係するの で, $\rho'u_i'$ はヒートフラックス $\overline{T'u_i'}$ に良く対応)の発散 があればこれに対応して平均質量フラックス (平均流に よるエネルギー流出入)の発散が生ずることを示す.

2) エネルギー方程式 状態方程式 $\rho T = \rho_o T_o c = \delta^{-1} \sqrt{2}$ (7)式の仮定を(3)式に課すと乱流ヒートフラックス項が存在しなくなってしまう.(3)式右辺の $-\rho u_j T td(7)$ 式より、(3)式左辺の $\rho'u_j T c$ 相殺され消えてしまう.) これらの項相殺後の方程式において $\rho' \rightarrow 0$ とした場合、

*東京大学生産技術研究所	第5部
**東京大学生産技術研究所	付属計測技術開発センター

***民間等共同研究員(前田建設工業(株)

〈記号〉 u;: i方向の流速(u: 鉛直方向、v: 水平方向) .
ρ:密度 R:気体定数 T:温度 μ:粘性係数	𝔥 𝔄 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘
g:重力加速度 $\nu:$ 動粘性係数	
 	
p': p-p0 p': p-p0-p0gx	
ρ_0 :代表密度 T_0 :代表温度 T_w :壁面温度	$\Delta T: T_w - T_0$
k:乱流エネルギー ε:kの消散率 D:ε/ν	<u>u</u> m:uの最大値
P_k :速度勾配による k の生産項 G_k ;浮力による	kの <u>生産</u> 項
DK:低Re型モデルにおけるk方程式の付加項	
EK:同e方程式の村加項	
x:加熱壁下端からの鉛直距離 y:加熱壁か	らの水平距離
μ_t : 渦粘性係数 ν_t : 渦動粘性係数 δ : クロネ	ッカーデルタ
wの添字は壁面での値、一はアンサンブル平均、	~はファブル平均、
'はアンサンブル平均からの変動量、はファブル	平均からの変動量

非圧縮の温度輸送方程式に漸近しないという矛盾を生じ る.実際, $-\rho u_i T$ が陽に現れないこの式を用いて計 算を行うとさまざまの問題が生じ,正しい予測を行うこ とが困難であった.しかし,実はこのような矛盾と問題 は,エネルギー方程式のみに着目しているために生ずる みかけ上のものである.実際には前述のように,連続式 中の密度変動フラックス $\overline{\rho u_i}$ が乱流ヒートフラックス の働きを有しているので,連続式を含めた方程式系全体 としては矛盾がないのである.ただし,数値計算を行う 際には,連続式とエネルギー方程式を陽に連成させなけ ればならない.そこでエネルギー方程式に $\overline{\rho u_i}$ を陽に 連成して解くモデルを考える.まず上記の項を相殺後の (3)式左辺第1項と第3項を展開すると(20)式を得る.

$$\frac{\overline{\rho} \cdot \overline{\partial T}}{\partial t} + \overline{T} \cdot \overline{\partial \rho} = -\frac{\partial}{\partial t} \langle \overline{\rho'T'} \rangle - \overline{T} \cdot \frac{\partial (\overline{\rho u_j})}{\partial x_j} - \overline{\rho} \cdot \overline{u_j \cdot \partial x_j} \\
- \frac{\partial}{\partial x_j} \langle \overline{\rho'T'u_j} \rangle + \frac{\partial}{\partial x_j} \left(\frac{K \cdot \partial \overline{T}}{C_p \cdot \partial x_j} \right)$$
(26)

ここで(26)式右辺第2項に連続式(1)式を代入し整理する.

$$\frac{\partial \overline{T}}{\partial t} = \frac{1}{\overline{\rho}} \left[\overline{T} \frac{\partial (\overline{\rho' u_j})}{\partial x_j} - \frac{\partial}{\partial t} (\overline{\rho' T}) - \overline{\rho} \overline{u_j} \frac{\partial \overline{T}}{\partial x_j} - \frac{\partial}{\partial x_j} (\overline{\rho' T'} \overline{u_j}) + \frac{\partial}{\partial x_j} (\frac{K}{C_p} \frac{\partial \overline{T}}{\partial x_j}) \right]$$

$$(27)$$

(27)式は右辺第1項に密度変動フラックス $\rho'u_j$ を含む. $\rho'u_j$ は前述のようにヒートフラックスに対応している.

21

讶 究	速	報						I
Го & Hum	phrey	のモラ	ドルでは $\rho'u_j$ は(7),	(10)式より次	表1	To & Humphrey の圧縮	生 & 82 方程式モデル	
のようにモ	デル化	されて	こいる.			$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_j} (\overline{\rho u_j} + \overline{\rho' u_j'}) = 0$	(1)	

$$\rho' u_{j}' = -\frac{r}{\overline{T}} T' u_{j}' = \frac{r}{\overline{T}} \frac{\mu}{pr_{t} \partial x_{j}}$$
これを切式右辺第 1 項に代入すると

(初式右辺第 1 項= $\frac{\overline{T}}{\overline{\rho}} \frac{\partial}{\partial x_{j}} \left(\frac{1}{\overline{T}} \frac{\mu}{pr_{t} \partial x_{j}} \right)$

$$= \frac{1}{\overline{\rho}} \left\{ \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t} \partial \overline{T}}{pr_{t} \partial x_{j}} \right) \right\} + \frac{\overline{T}}{\overline{\rho}} \frac{\mu}{pr_{t} \partial x_{j} \partial x_{j}} \left(\frac{1}{\overline{T}} \right)$$
(28)

となりこの項に渦粘性表現によるヒートフラックス項が 含まれている。また上記の代入を行えば(27)式は $\rho' \rightarrow 0$ とした場合、非圧縮の温度輸送方程式に漸近する。(27)式 を用いて計算を行うと、4章に示すように妥当な解が安 定して得られた.

3. 簡易圧縮性乱流モデル

To & Humphrey のモデルは ρ' との相関項を多く含 んでおり複雑である. そこで実用性の点も考えρ'との 相関項を、①陽に含まず陰に含む形式のものと、②p' をまったく無視しこの相関を含まないものの2つの簡易 な圧縮性乱流モデルを考える(表2).前者はファブル 平均 fを導入することにより導かれる^{6),7)}. この場合, 密度の重みをかけた平均化を施すので G_kを除き ρ'との 相関項が生じない.後者は近似的な圧縮性流体の基礎方 程式^{1),5)}をアンサンブル平均量と変動量に分解し、ρ'を 無視して平均操作を施すことにより得られる. ρ'を無 視しているので, 浮力による乱流エネルギーの生産項 $G_{\mu} = \rho' u_i g \delta_{i3}$ は無い.

4. 鉛直加熱壁近傍の乱流解析

4.1 加熱壁の温度が比較的低い場合(Δ*T*=43.3°C)

4.1.1 計算概要

図1に示す長さh=400 cm の鉛直加熱壁近傍流を To & Humphrey の圧縮性 k- モデル (以下, TH 圧縮), 簡易圧縮性 k- モデル (以下, 簡易圧縮), 非圧縮性 k-εモデル(以下,非圧縮)で解析. 簡易圧縮はρ単純 無視モデルとし G_k=0として計算した.加熱壁近傍の 低イノルズ数効果を考慮するために、本解析では長野ら の低 Re 数型モデル(表4)³⁾を用いた.加熱壁の相対 温度 ΔTは43.3℃、計算メッシュは80(x)×39(y)、境 界条件は表5.計算結果は辻,長野らの実験結果8)と比 較検討する.

4.1.2 計算結果と実験結果の比較

壁温が低いので予想どおり TH 圧縮, 簡易圧縮, 非 圧縮の計算結果には、まったく差が生じなかった.以下 計算結果を実験結果と比較して,

連続式 $\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_j} (\bar{\rho} \overline{u_j} + \bar{\rho'} \overline{u_j'}) = 0$	(1)
運動方程式 $\frac{\partial}{\partial t} (\overline{\rho} \overline{u}_i) + \frac{\partial}{\partial x_i} (\overline{\rho} \overline{u}_i \overline{u}_i) + \frac{\partial}{\partial t} (\overline{\rho} \overline{u}_i') + \frac{\partial}{\partial x_i} (\overline{\rho} \overline{u}_i' \overline{u}_i + \overline{\rho} \overline{u}_i' \overline{u}_i)$	Þ
$=-\frac{\partial \overline{p'}}{\partial x_i}+\overline{p}g_i+\frac{\partial}{\partial x_j}\left[\mu(\frac{\partial \overline{u_i}}{\partial x_j}+\frac{\partial \overline{u_j}}{\partial x_i})-\overline{p}\overline{u_i'u_j'}\right]$	(2)
$\texttt{I} \bigstar \texttt{V} \bigstar \texttt{I} \overset{\partial}{\rightarrow} (\overline{\phi} T) + \frac{\partial}{\partial t} (\overline{\phi} T') + \frac{\partial}{\partial x_j} (\overline{\phi} \overline{u_j} T + \overline{\phi} \overline{u_j'} T + \overline{\phi} \overline{T'} \overline{u_j})$	
$=\frac{\partial}{\partial x_{f}}\left(\frac{K}{C_{P}}\frac{\partial\overline{T}}{\partial x_{j}}-\overline{\rho}\overline{u_{f}'T'}\right)$	(3)
状態方程式 $\overline{\rho T} + \overline{\rho'T'} = \rho_0 T_0$	(4)
k 方程式 $\frac{\partial}{\partial t}(\bar{\rho}_k) + \frac{\partial}{\partial x_j}(\bar{\rho}_{u_j}k) = \frac{\partial}{\partial x_j} \left\{ (\mu + \frac{\mu_t}{\sigma_k}) \frac{\partial k}{\partial x_j} \right\} + P_k + G_k - \bar{\rho}e$	
$-\frac{\overline{\rho' u_i'}}{\overline{\rho}} \left[\frac{\partial (\overline{\rho u_i})}{\partial t} + \frac{\partial (\overline{\rho u_i} u_j)}{\partial x_j} + \overline{u_i} \frac{\partial (\overline{\rho' u_j})}{\partial x_j} \right] + \mathrm{DK}$	(5)
ϵ 方程式 ^{i注2)} $\frac{\partial}{\partial t}(\bar{\rho}\epsilon) + \frac{\partial}{\partial x_j}(\bar{\rho}\overline{u_j}\epsilon) = \frac{\partial}{\partial x_j} \left[(\mu + \frac{\mu_t}{\sigma_s}) \frac{\partial \epsilon}{\partial x_j} \right] + \frac{\epsilon}{k} (C_{s1} P_k - C_{s1} P_k)$	C _{ε2} ρε)
$+\frac{\varepsilon}{k}C_{\varepsilon 3}G_{k}-\frac{\varepsilon}{k}C_{\varepsilon 3}\frac{\overline{\rho'u_{i}}}{\rho}\Big\{\frac{\partial(\overline{\rho u_{i}})}{\partial t}+\frac{\partial(\overline{\rho u_{i}} \overline{u_{i}})}{\partial x_{j}}+\frac{\partial(\overline{\rho u_{i}'})}{\partial x_{j}}\Big\}+\mathbf{E}$	(6)
$\overline{\rho' u_i'} \overline{T} + \overline{\rho} \overline{u_i' T'} = 0 \qquad (7) \qquad \overline{\rho' T'} \overline{T} + \overline{\rho} \overline{T'^2} = 0$	(8)
$-\overline{\rho} \overline{u_i' u_j'} = \mu_i \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) - \frac{2}{3} \overline{\rho} k \delta_{ij} (9) -\overline{\rho} \overline{u_i' T'} = \frac{\mu_i}{p r_i} \frac{\partial \overline{T}}{\partial x_i}$	(10)
$\mu_i = C_{\mu} \bar{\rho} \frac{k^2}{\epsilon} \qquad (11) \qquad \epsilon = \nu D = \nu \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j}$	(12)
$P_{k} = -\overline{\rho u_{i}' u_{j}'} \frac{\partial u_{i}}{\partial x_{j}} $ (13) $G_{k} = \overline{\rho' u_{i}'} g_{i} \delta_{i3}$	(14)
$\overline{\rho} \overline{T'^2} = C_T \frac{k}{\nu D} \left(-2\overline{\rho} \overline{u_j T'} \right) \frac{\partial \overline{T}}{\partial x_j} (15)$	

		đõ	ð			a 1	(注)		77	ブノ	LΨ	均	ŦŦ	×л	/
7	ア	ブル	平	均モ	デル	と	ρ'.	単	純紅	肤礼	見モ	テ	ル)	
		表	2	簡易	易圧網	宿住	生ん	k-€	モ	デノ	V				

連続式 $\frac{\partial p}{\partial t} + \frac{\partial}{\partial x_j} (\overline{\rho u_j}) = 0$ (16) [注) アリアルキックリアル	替
運動方程式 $\frac{\partial}{\partial t}(\widetilde{\rho u_i}) + \frac{\partial}{\partial x_i}(\widetilde{\rho u_j u_i})$ える。詳しくは文6,7参照	ļ
$= -\frac{\partial \overline{p}'}{\partial x_i} + \overline{\rho} g_i + \frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right) - \overline{\rho} \overline{u_i' u_j'} \right]$	(17)
$ \mathtt{I} \bigstar \mathcal{W} \breve{\mathtt{H}} - \mathtt{x} \frac{\partial}{\partial t} (\overline{\rho} \overline{T}) + \frac{\partial}{\partial x_j} (\overline{\rho} \overline{u_j} \overline{T}) = \frac{\partial}{\partial x_j} \left(\frac{K}{C_P} \frac{\partial \overline{T}}{\partial x_j} - \overline{\rho} \overline{u_j' T'} \right) $	(18)
状態方程式 $\overline{\rho T} = \rho_0 T_0$	(19)
k方程式 $\frac{\partial}{\partial t}(\overline{\rho}k) + \frac{\partial}{\partial x_j}(\overline{\rho}u_jk) = \frac{\partial}{\partial x_j}[(\mu + \frac{\mu_t}{\sigma_k})\frac{\partial k}{\partial x_j}] + P_k + C_j G_k - \overline{\rho}e$	(20)
ϵ 方程式 $\frac{\partial}{\partial t}(\bar{\omega}_{\epsilon}) + \frac{\partial}{\partial x_{j}}(\bar{\omega}_{ij}_{\epsilon}) = \frac{\partial}{\partial x_{j}}\left[(u + \frac{\mu_{t}}{\sigma_{\epsilon}})\frac{\partial e}{\partial x_{j}}\right]$	(20)
$+\frac{\varepsilon}{k}(C_{\epsilon 1}P_{k}+C_{f}C_{\epsilon 3}G_{k}-C_{\epsilon 2}\overline{\rho}\varepsilon)+\text{EK}$	(21)
$-\overline{\rho}\overline{u_i'u_j'} = \mu_t \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right) - \frac{2}{3}\overline{\rho}k\delta_{ij} (22) \qquad -\overline{\rho}\overline{u_i'T'} = \frac{\mu_t}{pr_t}\frac{\partial \overline{T}}{\partial x_i}$	(23)
$\mu_t = C_\mu \overline{\rho} \frac{k^2}{\epsilon} \qquad (24) \qquad P_k = -\overline{\rho} \overline{u_i' u_i'} \frac{\partial \overline{u_i}}{\partial x_j}$	(25)

(1) u (図 2) は実験結果ときわめて良く一致する. (2) T(図3)の計算結果は、壁からの水平距離が約 0.2~1 cmの領域で実験結果より低めとなる.これは

他の計算事例⁹⁾から判断して、ここで用いた低 Re 数モ デルの性質に基づくものと考えてよい. (3) u'v'(図4)は、実験ではすべての領域で正となっ

ているが、計算では壁から約0.7 cm までの領域で負と

45卷1号(1993.1)

究 速 銦

4.2.1 計算概要

加熱壁の長さ h=250 cm, 加熱壁の相対温度 ΔT = 404°C. 計算メッシュは50(x)×39 (y). $T_{o}=288°K$, ρ_{o}

=0.001225g/cm³, その他の条件は △T=43.3°C の場合 と同じ.

4.2.2 計算結果

(1) u(図6) 非圧縮の計算結果は圧縮の計算結果より 壁の近傍で最大30 cm/s 程度速度が高い. TH 圧縮は簡 易圧縮より速度が若干低い結果となっている. これには 状態方程式(4)式における $\overline{\rho'T'}$ が大きく影響している. 実際、状態方程式中の $\rho'T'$ みを0として計算すると簡 易圧縮の計算結果とほとんど一致する. また иのみな らず以下に述べる kも簡易圧縮とほとんど一致し. T も簡易圧縮の結果に近づいた.

(2) T(図7)壁面近傍で非圧縮は圧縮より最大で40℃ 程低い、これは非圧縮の場合、加熱面による空気の膨脹 (*ρ*u) による熱輸送がないことが一因として考えられ る.

(3) k(図8) 非圧縮, 簡易圧縮, TH 圧縮の順に小さ くなる. これは иの大小関係に対応するものである.

(4) kの収支(図9) TH 圧縮の結果のみ示す.この流 れ場では鉛直方向の温度勾配が小さいため G₄は P₄等と 比較しきわめて小さくほとんど0の値となっている.し たがって TH 圧縮と簡易圧縮の若干の差異は、簡易圧 縮で G₄=0としたことが原因ではない. また

 $\frac{\overline{\rho'u_i'}}{2} \left(\frac{\partial(\overline{\rho}u_i)}{2} + \frac{\partial(\overline{\rho}u_iu_j)}{\partial x} + \frac{\partial}{u_i} \right)$ $-\frac{\partial(\overline{\rho'u_j})}{\partial}$ の項もほと (∂t ∂x_i ∂x_i

んど0 であり kの値への影響は小さい.

4.2.3 TH モデルにおける ρ との相関項の分布 (1) $\overline{\rho'u'}$, $\overline{\rho'v'}$ の分布 (図10) ρ_{o} および uの最大値 $\overline{u_{m}}$ で $\mu_t \partial \overline{T}$ 無次元化して示す. $\rho'u'$, $\overline{\rho'v'}$ はそれぞれ

とモデル化されているが、 Pvは最大でも

 $\partial \overline{T}$

 $\overline{T} pr_t \partial y$

1 μ_{t}

Ż3

 \overline{T} $\overline{pr_l} \ \partial x$

速

 $\rho_{o}\overline{u_{m}}$ の0.5%程度である. ρu は鉛直方向の温度勾配 $\frac{\partial T}{\partial x}$ が小さいため、 ρv よりもさらに小さくほとんど0 の値となっている. 43.3°C の場合、 ρv は $\rho_{o}\overline{u_{m}}$ の0.1%

程度であり(図省略)、40.3 C の場合、 $\rho v a \rho_{0} a_{m}$ の17% 程度であり(図省略)、404°C の場合の $\rho v d$ にこれと比 べてもさほど大きくはない、ただし運動方程式中の ρu_{i} のみを除いて計算した場合、最大風速が7%程度 減少し(簡易圧縮との差がさらに大きくなる傾向)、

 $\overline{\rho' u_i}$ はこの程度の小さな値でも流れ場にすくなからず 影響を持つ.

(2) $\rho'T'$ の分布 (図 11) $\rho_{o}T_{o}$ で無次元化して示 す. $\rho'T'$ は $-2C_{r}\frac{k}{vD}\frac{1}{T}\frac{\mu}{pr_{t}}\frac{\partial T}{\partial x_{j}}\frac{\partial T}{\partial x_{j}}$ とモデル化されて いるが, $\frac{\partial T}{\partial x}$ は小さいため結果に寄与するのは $\frac{\partial T}{\partial y}$ に 基づくものである. この場合 $\rho'T'$ は $\rho_{o}T_{o}$ の約 6%にも達している. 43.3°C の場合は0.1%程度(図省 略)に過ぎないが, 高温時にはこの相関項がきわめて大 きくなり, 状態方程式を介して ρ の値に大きく影響する.

5.まとめ

① To & Humphrey のモデルでエネルギー方程式に(7) 式を課すと,見かけ上乱流ヒートフラックス項が相殺さ れ消えてしまい,このままの形式では正しい予測計算を 行うことができない.

② 同式に連続式を代入して Pui を連成させることに より、乱流ヒートフラックス項が含まれる形にすること ができる.この変形により、正しい予測計算を行うこと が可能となった.

③ ρ'との相関項を含まない簡易圧縮性乱流モデルの導 出方法を2つの立場から示した.

△T=43.3℃の場合の計算結果は,

④ 予想どおり TH 圧縮, 簡易圧縮, 非圧縮の計算結果には差が生じず, この程度の温度では密度変化の影響は無視できるといえる.

⑤ <u>u</u>は実験値ときわめて良く一致し,<u>T</u>,<u>u´v´, v´T´</u> もおおむね一致する.

ΔT=404℃の場合の計算結果は,

24

> された.また TH 圧縮, 簡易圧縮の間にも若干の差が 見られる.

> ⑦ TH 圧縮における $\rho'T'$ は43.3°C の場合と比較して きわめて大きく、これが ρ の値に大きく影響し簡易圧 縮との差異に寄与するものと考えられる.

> ⑧ Pu はかなり小さな値ではあるが流れ場に少なから ず影響を及ぼす。

> ⑨ 現在高温加熱実験を行っており、高温の場合の圧縮 性乱流モデルの検証を今後行っていく予定である。

謝辞

加熱壁近傍流れの実験結果に関して日本機械学会乱流 伝熱モデル研究会(主査:東京理科大学,河村洋教授) における研究活動の一環として,名古屋工業大学,長野 靖尚教授,辻俊博助教授から詳細な実験データベースを 提供していただきました.ここに記して深く謝意を表し ます. (1992年11月4日受理)

参考文献

- Ronald G. Rehm and Howard R. Baum: the Equations of Motion for Thermally Driven, Buoyant Flows: Journal of Research of the National Bureau of Standards volume 83, No. 3, May-June 1978
- W.M. TO and J.A.C. Humphrey: Numerical simulation of buoyant, turbulent flow-1. Free convection along a heated, vertical, flat plate: Int. J. Heat Mass Transfer. Vol. 29. No. 4, pp. 573-592. 1986
- 3) 長野, 菱田, 浅野:壁面乱流の特性を考慮した改良 k-ε モデル:日本機械学会論文集, Vol. 50, No457, PP. 2022-2031, (昭59-9)
- 4) 義江,村上,加藤:圧縮性高浮力流れの数値シミュレーションに関する研究(その1),(その2):建築学会大会,1991.(その3):空調学会大会1991.(その4):建築学会関東支部1992.
- 5) 加藤,村上,義江:圧縮性高浮力流れの数値シミュレー ションに関する研究:生産研究, Vol. 44, No. 2, pp 1-9, 1992
- 6) 義江,村上,加藤:圧縮性高浮力流れの数値シミュレーションに関する研究(その5),(その6):建築学会大会,1992.(その7):空調学会大会1992
- A. Yoshizawa: Statistical modeling of compressible turbulence: shock-wave/turbulence interactions and buoyancy effects: J. Phys. Soc. Jpn. 1991
- T. Tyuji and Y. Nagano: Characteristics of a Turbulent Natural Convection Boundary Layer along a Vertival Flat Plate: Int. J. Heat mass Transfer. Vol. 31, No. 8, pp. 1723-1734. 1988
- R.A.W.M. Henkes and C.J. Hoogendoorn: Comparison of turbulence models for the natural convection boundary layer along a heated vertical plate: Int. J. Heat. Mass Transfer. Vol. 32, No. 1, pp. 157-169, 1989

究

研