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An Asymptotic Solution for the Diffraction Problem of a Vertical Circle

Cylinder in Short Ocean Waves

海洋波の直立円柱による散乱問題の短波長域の漸近解

Weiguang Bao* and Takeshi Kinoshita*
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AbStraCt

An asymptotic solution for the diffraction problem of a

circle cylinder in short waves is derived mathematically.

Physically it represents the perfect re且ection by the

cylinder･ Calculated results are in good agreement with

those of the exact solution except in the `shadowed area'･

). Introduction

ln the past decades, a lot of works have been done to

obtain asymptotic solutions of radiation waves due to the

oscillation of noatlng body･ Among these works, Lep-

pington l1], Davis l2], Takagi l3], Hermans l4], Bao and

Kinoshita 【5] derive asymptotic solutions for three-

dimensional radiation problem by different methods･

However, it seems that less effort has been made to the

diffraction waves･ In the present paper the diffraction

problem of a circle cylinder in short plane waves is

considered･ An asymptotic solution is derived mathemati-

cally･ It turns out that the first order approximation

represents the perfectly renected waves by the cylinder･ It

glVeS a qulte good approximation in most directions of

propagation except the shadowed area abehind the

cylinder where no renected waves can reach.

ll. Djffractjon Prob一em of a Circ一e CyJinder

When a train ofplane waves hits a circle cylinder sittlng

at the sea bottom and pierclng through water surface, the

solution to the linearized diffraction problem is well

known･ 【6日f the incident wave potential is given by

4),～- F(kz)eLkrcos 0

I

-F(kz) Z gnz'fZJn(kr)cos nO
n=n

the diffraction potential is expressed as

Qd--F,kz, ∑ Enin轟訟H,(,1',kr,cos nO (1,
n=11

where

F(kz) -
cosh k(Z+h)

cosh kh
k-wave number; h-water

depth; (r, 0)-horizontal polar coordinates', Z-vertical

coordinate positive upwards; 〃〃(I)-Hankel function of

the first kind and n-th order; Jn-Bessel function of the

first and n-th order; gn-1 as n-0, or 2 as n>O

superscrlpt prlme indicates derivative with respecHo

the argument･

The diffraction potential can be written as a series

expansion in Hankel function Hn(I)(kr), i.e.

血- F(kz) ,A inanHy '(kr)

where

J" I(*a)
an= -gJ7所万一cos nO

(2a)

(2b)

By means of the properties of Bessel function and Hankel

function, it can be shown that

n禁仰-0

Then according to the theorem glVen by Von Jasef

Meixner, 【7] the diffraction potential has an asymptotic

expansi0品when kr>>1 as follows

Qd～F'kz'信eL,A,jJ嘉7=芸紡　(3a)

The coefficient bm is given by
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1

b--義--a

F(n ･-･‡)

F(n-如‡)　　(3b)

an

Now, We are golng tO Seek an asymptotic solution

when the incident wave is very short or equlValently,

when ka>>1. This can be done by obtaining an asymptotic

expression of bm for very large value of ka. To the Brst

order of approximation, only the first coefBcient bo is

considered in the present work･ The other coefficients can

similarly be obtained to get higher order approximation.

Written explicitly, bo is glVen by

bo-ni -#cos no　　　(4)

This series can be related to a controur integral on the

complex plane of γ i.e.

I-i lc f(V)dv

The integrand is defined as

i,V, -A cos l(方一句

Sln VJt

(5)

(6)

Tbe integral contour C consists of the imaglnary axis

with a small half circle around the orlgln and a half circle

wit large radius R on the right part of the v-plane (see Fig･

1)･ The integral is equal to the sum of residues at poles

enclosed by the contour according to the Cauchy

theorem. There are two kinds of poles to be taken into

account. One comes from zeros of sin γ方, i.e. γ-0, 1, 2,

", while the other one is zeros ofHv(1)I(ka). At each pole

of the翁rst kind, we have

/cn i(V)dγ- -2ReslF(V)]γ-n

-12Xcos no
(n-0, 1, 2,...)

(7)

where Cn is a clockwise small circle around the real

integer n.

If the radius R of the large circle tends to in氏nity so that

all the poles on the real axis will be enclosed, the sum of

Figl 1･ Contour of the integalon the v-plane

series required for calculating bo. Meanwhile the integ-

rand ftγ)will vanish llniformly as R-∞ which means no

contribtltion Will be made by the integral along the path of

large half circle Therefore the coefBcient bo is given by

b0-2∑ ResU(V)]V-vv +意I: A(V)dv　(8)

Here, V, represents solutions of the equation

Hfvl)I (ka) -0

The contribution of v, to bo is considered as a higher

order of approximation･ In the present work, We will

concentrate on the work of obtaining an asymptotic value

of integral along lmaglnary axis which is explained as a

prlnCiple value of Cauchy type. The integral can be done

by the method of steepest descent･ To do so we丘rst split

the integrand into two parts, 1.e.

i(V)-

where

HJv'(ka)　eiv (a- a)+e-L'V (H- a)

2務1)′(ka)

-fl (V) +f2(V)

Jv'(ka)

2　Hy())I(ka)sinvx
jl. :･,,-三･

Sin VX

･e±LIv(JTl P)　　　　(9b)

with upper (lower) sign corresponding to fJ(f2),

Substituting -v for v inf2(V), and by means of formulae

HLJjl (ka) -eivxHil)(ka)　　　　　　　　(10a)

the residues at these poles, together with the contribution

from the small half circle around the orlgln, yields the isin vJtHi2)′rka)-eivJtJvJ (ka)-J_V'(ka)　　(lob)
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the integral can be manlpulated to the following form, i.e.

志願V)dγ-i J三
e-tl vqI(Y2)′ (ka)

a(1)′(ka)

dγ　　　(ll)

To make this integral easier to be evaluated, the

asymptotic expansions of Hankelfunctions are to be

used. Referring to Waston l8], we have, to the first order

of approximation,

Hv (Z) ～

expi ±lv(tanh γ-Y)-if])

(12)

where γ-zcosh γ is assumed and upper (lower) sign

corresponds to the hankel function of the丘rst (second)

kind･ Taking derivative with respecHo the argument z,

the following expansion can be obtained

Hv'(Z)～±
慧exp (±伸anh γ-γ)-i3])(13)

AIong the integralpath ofAD, i･e･ the imaginary axis,

v is a pure imaglnary Variable while the argument ka is a

realnumber, therefore the integral dummy variable v is

replaced by y such that v-kacosh y, where yruns from

--+if to +co･i-fcorresponding to γ varymg fr0-

2
-i00to+i00･ The integralis then transferred t0

..7co+lT

忘I: f(γ)dv～i I.-nexp(-2kalsinhγ
-00+一丁

-(Y写)cosh y])kasinh ydy (14)

According to the method of steepest descent, main

contributions come from the saddle points which is the

zeros of the derivative of exponential index. Here the

index is glVen by

g(Y)- -lsinh γ-(γ一言)cosh y]　(15a)

Equating its derivative to zero yields following equation:

g,(Y)-2(Y-%)sinh y-0　　　(15b)

iO
One solution is located at y=T

By some tedious derivation, the integraland the coef-

ficient bo as well isfinally glVen by

bo～意I: i(V)dγ

mkas,･n言exp (-i2kasin言･if) (16)

Physical1y this representsthe wave amplitude at far

held caused by the perfect reflection of the incident wave

by the circle cylinder. It gives a qulte good approximation

in the most of the reglOn. Nevertheless, in the direction of

incident wave, 1.e., 0-0, it fails to give a reasonable

solution. The reason for this is that as 0-0, the zero of

g'(Y), i.e. Y-0, is a zero of order two and the method of

steepest descentgives a result to the order of (ka)1/3

which is neglected in the present work･ The region around

0-0 is so-called "shadowed area" behind the cylinder and

no renected wave can reach it. This explains the failure of

present work physically.

The diffraction potemialis asymptotically expressed as

¢d～boF(kz) (17)

with bo glVen in the above expression･

If the incident angle of the incoming wave is β, then the

0 in the above should be replaced by 0-P.

日J. Numerica) ResuJts and Discussion

To verify the asymptotic solution for the diffraction

problem of circle cylinder, numerically calculated results

are compared with those of exact solution for ♂-1800,

loo° and 600 shown in Fig. 2 throllgb 5. For ♂-1800, i･e･

Opposite to the direction of income wave, the asymptotic

solution is in good agreementwith the exact solution even

when ka (nondimensional wave number) and kS (distance

form the cylinder) are not very large. For the other

direction, the asymptotic solution is a good approxima-

tion as ka and kr are large enough. lt should be pointed

out that as ♂ becomes smaller, 1.e. Close to the direction of

incoming Wave, the values of ka and kS to make the

asymptotic solution valid, become larger･

(Manuscript received, June 25, 1992)
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Fig･ 2･ Real and imaglnary Part Of diffracted wave by a circle

cylinder at 0-180deg and r-4a･ - asymptotic solu-

tion;一一一exact solution
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Fig･ 3･ Amplitude of diffracted wavewith wave number ka-4

at 0-180 deg･ kS is nondimensionaldistance from the

cylinder center. - asymptotic solution; - exact solu-

tion.
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