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Abstract

The asymptotic solutions for the diffraction and radia-
tion problem of a vertical circle cylinder in short waves
are applied to the interaction problem of multiple
cylinders to obtain an estimation of hydrodynamic forces
acting on cylinders. The interactions are represented by
additional waves emitting from each cylinder towards the
others. The hydrodynamic forces are evaluated by formu-
lae at far field.

]. Introduction

Recently, with the development of large offshore
structure supported by a number of cylinders, more
attention has been paid to the problem of estimating
hydrodynamic wave forces acting on multiple bodies.
Much effort has been made to assess the effects of
interactions among these cylinders. Kinoshita [1] deals
with the problem in two-dimensional domain by a matrix
method. Ohkusu [2] uses an interation method to account
the interactive waves among multiple cylinders. Simon [3]
approximates the cylindrical interactive waves by plane
waves with appropriate amplitude. Mclver and Evans [4]
use the same approximation as Simon’s to a higher order
of expansion. Kagemoto and Yue [5] solves the problem
by a matrix method which takes both the cylindrical and
evanescent interactive waves into account.

However, when the oscillatory frequency is large or
equivalently when the wave is short, to obtain reasonable
accuracy, it is usually time consuming.

It is the purpose of this paper to present an approxi-
mate method to estimate hydrodynamic forces acting on
multiple cylinders in short waves. To this end, asymptotic
solutions for radiation and diffraction roblems of a single
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cylinder in short waves are used to represent the
interaction waves among multiple cylinders. Since
Simon’s [3] plane wave approximation gives a satisfactory
result, follwoing his method, the above cylindrical waves
are decomposed to plane waves with appropriate ampli-
tude. After solving the interactive problem, the hydrody-
namic forces are estimated by wave amplitudes at far
field.

Some numerical examples are also presented to verify
the medhod. the results are fairly good if the cylinders are

not arranged in line with the incoming waves.
1l. Interactions among multiple bodies

The interactions between bodies can be represented by
some additional waves emitting frm one body to another.
If the interactive effects from the j-th body to the i-th
body are to be considered, these effects can be repre-
sented by a wave with wave amplitude C; coming from
the j-th body toward the i-th body. In radiation problem,
this wave consists of a radiation wave due to the forced
oscillation of j-th body and diffraction waves due to the
interaction between j-th body and others, i.e. the diffrac-
tion of waves emitting from other bodies by j-th body. In
diffraction problem, instead of the radiation wave which
no longer exists, diffraction wave by j-th body due to
environmental incident waves should be included. Neg-
lecting the effects of evanescent waves, the interaction
waves are cylindrical waves which are expressed in the
local coordinate system of j-th body. They have to be
transferred to the coordinates corresponding to i-th body.
At mean time, to make calculation easier, the cylindrical
waves are decomposed to a plane wave with appropriate
wave amplitude. The fact that C; is the sum of all those
waves from j-th body to i-th body gives an equation
relating C;; to C (1+#)). Equations arising from every body
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5 A
yield a linear system to be solved for known wave
amplitude C;. Aslong as C;;is obtained, each body can be
considered as isolated with these additional incident
waves.

From the previous work, the radiation potential due to
the forced oscillation of j-th body in otherwise calm water

is given asymptotically by
P~ Amy(0)Ho(kry) F(kz) 1

when the oscillating frequency tends to large value. As
shown in the previous paper the diffraction potential due
to an incident plane wave with unit wave amplitude and
incident angle B has an asymptotic form as

Pa~Aqg(8;, BYH,(kr)F(kz) @

In egn. 1 and 2, (y;, 8)) is local polar coordinates of j-th
body in horizontal plane; m=1 to 6 indicates motion

modes in conventional manner;

¢ for water with infinite depth;

F(kz) = {
cos hk(z+ 4) . .
cos hkh for water with depth h;
2
k= { e B
g
, wave number;
L h<o
g tanh kh

w=wave frequency and g=acceleration of gravity;
H, is Hankel function of first kind and zeroth order.
The time factor e’ is omitted. Referring to the sketch

Fig. 1. Definition of global and local coordinate systems
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for the definition of local coordinate systems and a global
one (see Fig. 1), we have following geometric relations:

ol

ri=[rF+8%-25;; cos(m— 0+ a5))] - (3)
where (Sj;, o) is the distance and direction of i-th body
referring to j-th body. By means of Grab addition
theorem [6] for cylindrical functions,

Hy(kr) =3 H, (kS (krent==0r+a @)

where H,, is the first kind Hankel function of n-th order.
Since we are going to represent waves near i-th body, it
can be expected that

<S8

which is required by the validity of the theorem. At mean

time, i"H,,(kS;) is approximated by Hy(kS;;) with an error

of order O (F)’ the radiation potential can be written
ij

as
Doty Anf{ wij)Ho(kSij)F(kz)j ', (kr; =8 (5)

which is the potential of a plane wave with wave
amplitude

ay=An{a6;)Ho( k‘Sij) (6)

and propagating in the direction of &; referring to the i-th
body. The diffraction potential can be transferred and
then approximated in a similar way, i.e.

Gu~Adgcy BHLS)F(kz) D) 1, (kS ;e oo
@)

If this diffraction by j-th body is caused by waves
emitting from other body, say /-th body, the incident
angle will be a; referring to j-th body. Therefore the wave
amplitude of approximated plane wave is given by

a=A (e ﬂ’jl)Ha(kSij) t))
On the other hand, if the diffraction is the respond to

the environmental incident wave whose potential is

written as
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¢;=F(kz)eikixcos p+ysinf) ©

in the global system, to obtain appropriate wave ampli-
tude, this incident wave potential is to be expressed in the
Jj-th local system as follows

dy=F(kz) gikricos(0j— B)+ik(X; cos B+ Ysin ) (10)
=Ij(ﬁ)F(kz)eikr}cos(6j—ﬁ)
where
]i(ﬁ)z eik(Xjcos B+Yjsing) (102)

with (X, Y;) being the coordinates of the origin of j-th
local system in a global one.

After decomposing to a plane wave the diffracted wave
amplitude due to this incident wave is given by

TP Al PHL(KS;) (11)

From the above expressions, it can be seen that these
wave amplitudes of approximated plane waves are no-
thing else but the waves emitting from j-th body evaluated
at the origin of i-th local system.

The wave amplitude Cj; at i-th body caused by j-th
body’s interaction is the sum of all the waves emitting
from j-th body propagating toward i-th body. Therefore
we have, for the radiation problem,

L
Cij=aij+§ Ciaiz (12)

1%j
where L=total number of bodies. Each body will receive
interactive waves from the other L-1 bodies, so it has L-1
such kind of equation. Totally, for L bodies, there are
L(L-1) equations which form a linear system for L(L-1)
unknowns Cj; and can readily be solved. For diffraction
problem, the only difference is that g is replaced by ;.
After solving these equations for Cy,
considered as isolated with additional incident waves. The

each body can be

radiation wave potential of i-th body accounting for the
interaction can then be written asymptotically as

~[An(0)+ 2 Z CoAa(8y ay)|Ho(kr)F(kz) (13)
JTI
Similarly, the diffraction potential of i-th body due to

incident wave ¢; with interaction taken into account is

given by

I~[LBAG. B+ 2 CAa(0, )]

-H,(kr)f(kz) (14)
The quantities in the brackets in the above expressions
are wave amplitude at far fild and are denoted as a), (6;)
and 4" (0, PB) respectively for radiation and diffraction
waves. With these wave amplitudes we can evaluate wave
exciting forces, wave damping coefficients and wave
drifting forces as follows.
Wave exciting force:

FY —4iCC,

4 DB+, 15
peLah gh () 1
Wave damping coefficient:
;{mn -'CC (i) {i)%
o ngh Z=>sRe [ a(0)al*(6)do (16)
Wave drifting force:
F , 5
St [) cosp-n)lafd(6. plae (17
where
C=Tw wave celerity;
dow .
G, I group velocity;
Ca is amplitude of incident wave;
a is a typical dimensional scale of the
body;
h is water depth (or draft in the case of
infinitely deep water);
Ny, components of unit normal direction in

m-th direction.

11l. Numerical Resulis and Discussion

Some numerical calculations are carried out to verify
the present method. Wave exciting force acting on a
group of two cylinders in oblique wave ($=45°) is shown
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Wave exciting force in surge direction acting on a
group of two cylinders. Distance between cylinder cen-
ters S=da and wave incident angle B =45deg. —
asymptotic solution; --- exact solution.
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Wave exciting force in surge direction acting on a
group of three cylinders. Distance between cylinder
centers S=5a and wave incident angle B=0deg. —
asymptotic solution; --- exact solution.
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. Wave exciting force in surge direction acting on the

first cylinder in the above case. The force is normal-
ized by the force experienced by an isolated cylinder,
ie.

=_4 mrAtanhkh
K Hy(ka)

— asymptotic solution; --- exact solution.
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in Fig. 2 and ompared with the results by Simon’s
method. Presented in Fig. 3 are results of an array of
three cylinders which consist of a triangle.

From these figures, it can be seen the present results
are in fair agreement with those by Simon’s method.

From the comparison giving above, we can see that the
present method gives a good approximation to the
estimation of hydrocynamic forces acting on a group of
cylinders if the cylinders are not arranged in line with the
direction of incoming wave. The accuracy largely depends
on the behavior of the asymptotic solution for the single
body. Since in the present work, it fails to give a
reasonable approximation in the shadowed area, i.e.
6=0, the method can not be applied to the cylinder array
arranged in line with the incoming wave. Therefore it is
required to obtain an asymptotic solution valid in all
directions so that this method can be applied to more
general cases. This will be our work of next step.

(Manuscript received, June 25, 1992)
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