特集 8

究 速 報 UDC 551.46:626.02:007.52:621

複雑な形の海底面上を航行する海中ロボットの訓練 -その2:フォワードモデルの改良-

Unsupervised Learning System for Vehicle Guidance Constructed with Neural Network (2nd Report) -Improvement in Forward Model Network-

> 拓*・浦 須 藤 瑨 Taku SUTO and Tamaki URA

1. はじめに

前報等^{1).2)}においては自己生成型ニューラルネットコ ントローラシステム (SONCS: Self-Organizing Neuralnet-Controller System)³⁾を無索無人の航行型海中ロボッ トの定高度航行に適用した. そこでは手段を教えること なく目的を表現する評価関数を設定し訓練を繰り返すだ

Fig. 1 Configration of Robot and Direction of Echo Sounders

けで、地形の変化に対して適応的にコントローラを生成 することができるということを示した. しかしながら前 報のシステムにおいては能力を獲得する速度が遅く、地 形の変化に対して適応するために非常に多くの訓練を要 した. その原因の一つとしてフォワードモデルが現実を 正確に反映していないことが上げられる. そこで本報告 ではフォワードモデルの構造に変更を加え、コントロー ラがより速く適切に調整されるように考える.

制御目的は前報と同様に三角形断面で構成された地形 の上を定高度(10m)で航行するものとする(Fig.1参照).

2. フォワードモデルの改良

コントローラネットワークが適切に調整されるために はフォワードモデルネットワークがロボットのダイナミ クスやそのまわりの地形情報などを正確に表現できるこ とが必要である、特にコントローラの調整のためには、 制御量の変化がフォワードモデルの出力の変化にどのよ うに寄与するかが正確に表現されていることが必要であ

Overall Network for Constant Altitude Swimming

*東京大学生産技術研究所 第2部

る.しかしながら前報のような単純な形のフォワードモ デルの構造では表現することが複雑すぎて,充分な精度 のフォワードモデルを単純な教示データの構成では作る ことができない.ここでは,(1)フォワードモデルのモ ジュール化と,(2)各モジュールの出力を次の時間ス テップでの値から一つ前の時間すなわち現在の値を引い た時間差分とすることにより精度の向上を考える.

フォワードモデルを複数のモジュールに分割すること によって各モジュールの表現すべき写像関係が単純にな り、各モジュールの学習自体は容易になる.それによっ てモジュールを組み合わせた全体の精度が向上すると考 えられる.

Fig. 2 は前報のネットワークにおいてフォワードモデ ルを3つのモジュールに分割したものである.ただし, 今回は簡単のために $\dot{\theta}$ ついては考えない.一番左はコ ントローラネットワークで前報とほぼ同じだが第1層目 ではシグモイド関数を施さず,ただの分配器となってい る.フォワードモデルでは左からロボットのダイナミク スを表現するネットワーク (Dynamics Network),ロ ボットが移動することによる地形の変化を表現するネッ トワーク (Geometric Network),4つの測距データか ら高度を計算するネットワーク (Altitude Network)で ある.フォワードモデルの各モジュールにおいても同じ ように第1層目は分配器となっている.

次にネットワークの出力の変化の方向と大きさを正確 に評価するために、ネットワークの出力を前の時間ス テップでの値との差分とする.バックプロパゲーション による学習では出力の絶対値が教示データと合うように 学習が進められるので、単に次の時間ステップの値を出 力させたのでは変化量が絶対値に比べて小さい場合には 精度がでない.そこで、変化量を出力させた上で前の時 間ステップでの値に足し込むことによって次の時間ス テップでの値を得る.この方法をとることで出力の変化 の方向と大きさがより正確に表現される.以後この型の ネットワークを出力差分型ネットワークと呼ぶ.

Fig. 3 は Dynamics Network の I/O 関係である. こ れは現在の水平方向速度, 垂直方向速度, ピッチ角速度

Fig. 3 Structure of the Dynamics Network

Fig. 4 Structure of the Geometric Network

Fig. 5 Structure of the Altitude Network

およびエレベータトリム角を入力とし次の時間ステップ での水平方向速度,垂直方向速度,ピッチ角速度の値を 求めるネットワークである.これはさきに述べた出力差 分型ネットワークである.内部に回帰的結合を持つので 過去の履歴を考慮していることになる.

Fig. 4 は Geometric Network の I/O 関係である. こ れは現在までの測距データと状態量から次の時間ステッ プでの測距データを求めるものである. Dynamics Network と同様に出力差分型ネットワークであり,内部に 回帰的結合を持つ.

Fig. 5 は Altitude Network の I/O 関係である. この ネットワークは測距データと高度の間の静的な関係を表 わすだけなので回帰的結合のないコネクショニストモデ ルである.

3. ネットワークの初期化

Fig. 6 はコントローラの初期化およびフォワードモデ ルの形成の為に用いたデータである. このデータは δ_e に関して0.01Hz から1.0Hz までの周波数を含み,サンプ ル点の総数は約1000点である. なお, $b_0 \sim b_0$ は最大値を 200m とし,無限大を含めてそれ以上の値になった場合 には200m として扱っている.

Fig. 7 は Dynamics Network での学習後の結果である. 実線が教示データであり,破線はニューラルネットの出 力である.両者の差はいずれの出力においても非常に小 さくなっており,その結果状態量の変化の方向も大きさ

Fig. 6 Data for Controller Network Initialization & Forward Model Network Construction

Fig. 7 Outputs of the Dynamics Network after Learning

Fig. 8 Outputs of the Geometric Network after Learning

Fig. 9 Output of the Altitude Network after Learning

も良く合っているといえる. Fig. 8 は Geometric Network での学習後の結果である. ピッチ角の変化により 測距ビームの反射が起こらないような非線形性を含んで いるにもかかわらず誤差が小さくなるまで学習が進んで いる. Fig. 9 は Altitude Network での学習後の結果で,

4.訓練

評価関数 E については今回はフォワードモデルの出 力を高度 A だけとしたので,目標値を A₀ として,

$$E = \sum (A - A_0)^2$$

n

とした. 訓練によってこの評価関数の値を小さくしてい くことができるのでAは A_0 へ近づいていくこととなる. A_0 は前報同様10mとする.

比較のために前報と同様の3種の地形に対して訓練を 試みる. Fig. 10は底辺が100m,高さが10mの三角形か らなる地形への適応である.初期化しただけのコント ローラでは前報同様水平距離で約80m進んだ所で海底 面に衝突してしまうが,その後の訓練では前報では約50 回程かかっていた訓練が3回の訓練で同様の性能を得る に至っている.小刻みに振動するのは評価関数の中に ピッチ角についての項がないことが原因の一つと考えら れる. Fig. 11は底辺が100m,高さが20mの三角形から なる地形への適応である.最上段の図は Fig. 10の3回 訓練後のコントローラにより航行させたものである.同

Fig. 10 Training Process over Triangle Ridges 100 m in Width & 10 m in height

Width & 20 m in Height

Fig. 12 Training Process over Triangle Ridges 50 m in Width & 10 m in Height

様に前報では150回程度かかっていた訓練が2回の訓練 で行われている.Fig.12は底辺が50m,高さが10mの三 角形からなる地形への適応である.最上段の図はFig. 11の最初のものと同じコントローラにより航行させたも のである.同様に前報では300回程度かかっていたのに 比べて6回の訓練で同様の性能を得ており訓練のスピー ドは非常に速くなっている.

5.結論

フォワードモデルネットワークの扱う対象が複雑であ る場合,ネットワークをモジュール化することが有効で あることを示した.またコントローラの調整に対して出 力差分型ネットワークが有効に働くことを示した.これ らの手法を用いればニューラルネットワークを用いた自 己生成型のコントローラはより実用的になると考えられ る. (1992年 6月26日受理)

参考文献

- 浦 環,須藤 拓:"複雑な海底面上を航行する海中ロ ボットの訓練一その1:自己生成型ニューラルネット ワーク制御システムの適用一",生産研究, Vol. 43, No. 10 (1991), pp. 28~31.
- 2) Tamaki URA, Taku SUTO: "Unsupervised Learning System for Vehicle Guidance Constructed with Neural Network", Proc. of 7th International Symposium on Unmanned Untethered Submersible Technology, Durham, New Hampshire (1991), pp 203~212.
- 3) 藤井輝夫,浦 環,黒田洋司:"自己生成型ニューラ ルネットコントローラシステムの開発と潜水機の運動制 御への適用",日本造船学会論文集,Vol. 168 (1990), pp. 275~281.

~