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1. Introduction

Hoerner stated that “the deformation of a structure
shall be called homologous, if a given geometrical relation
holds, for a given number of structural points, before,
during and after the deformation”?. The concept of the
homologous deformation was applied by Morimoto et al.
to structural design of huge radio telescope, the mirror
surface of which is to be finished in parabolic form at any
tilt angle?. A methodology was proposed by Hangai et al.
to form homologous deformation based on existence
condition of the solution of the formulation by use of
generalized inverse®. The concept of homologous de-
formation is considered applicable to dynamic problems
as well as static problems. It can be devised to make use
of homologous vibration mode in order to control or
mitigate the effect of vibration, for instance.

This note proposes a formulation of how to form
homologous vibration mode based on generalized inverse
technique and finite element discretization. Linear and
undamped eigenvalue problem is dealt with. The sensitiv-
ity analysis of the eigenpair derived from asymmetric
matrices is exploited to approximate the behavior change.
The validity of the proposed method is examined through
formation of the homologous mode in problem of the
out-of-plane vibration of a lattice structure.

2. Description of problem
Suppose that a baseline structure vibrates with the

modes governed by the following eigenvalue problem (1),

(IK]=-A[M]){¢}={0} M
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where [K], [M], A and {¢} denote the stiffness matrix,
mass matrix, eigenvalue and eigenvector, respectively.
We partition the N components of {¢} into / independent
ones denoted by {¢;} and J dependent ones by {¢,},
which is governed by the following equation (2) through
JxI matrix [C], which expresses homologous constraint.
N is equal to I+J.

{9a}=[Cl{$:} @

‘When such a constraint is imposed on the eigenvector, the
original eigenvalue problem cannot hold anymore in
general. The problem is how to change the baseline
structure to satisfy the homologous constraint.

3. Formulation Based on Generalized Inverse

The eigenvalue problem is partitioned in the form of
Eq. (3) according to the partition of the eigenvector
components, while attention is paid to an eigenmode.
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The upper part and lower one of the above equation can

be rewritten in the separate form as given below,

respectively,
(KI=MM,]){$:}={0} @
([K,J=AM,D{ ¢} ={0} Q)

where [K|] is IX] square, asymmetric matrix, and [K,] is
JXI rectangular matrix defined as follows.

[K]=[Ka+[Kial[C] (6)

[K)=[Ku)+[Kad[C] (7
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Similar formulae are applied to [M,] and [M,]. Equation
(4) constitutes modified eigenvalue problem, and yields
new eigenpair of A and {¢;}, which take different values
from those governed by Eq. (1). No constraint is provided
for the new eigenpair, because {¢;} is independent. On
the other hand, Eq. (5) does not hold when the eigenpair
thus obtained is substituted together with the original
matrices of [K,] and [M,]. This means that [K,] and [M,]
have to be changed so as to make Eq. (5) hold.

We assign M design variables a,, for judiciously chosen
parameters P,, to change the baseline structure to form

homologous vibration mode as given below,
Pp=P,(I+a,) (®)

where the upper bar means current value of the para-
meters. The rates of change of the eigenpair 4,, and {¢;,,}
can be calculated with respect to the design variables and
based on Eq. (4), when the first-order approximation is
applied to the change of [K,], [M,] and so forth in the
following form.

[KI=[KJ+ 2 (Koo, ©
[M]=[M,]+ 2 (M) (10)

It is necessary to calculate both the right and left
eigenvectors for the evaluation of {¢,,,}, because {K] and
[M,] are asymmetric. In doing so, we employ the method
proposed by Nelson®. The change of the eigenpair is
approximated in the following form of Taylor series

expansion when the rates of change of the eigenpair are

calculated.
A=A+ ﬁ; DGl (11
(9={®}+ 2 (B} (12)

The matrices [K,] and [M,] are changed also by the design
change. The first-order approximation is employed for
the change as follows.

K=K+ 3 [K,nle, (13)
[M)=[M,]+ Z [M,.,)at. (14)
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Equation (5), which ie required to hold always, is
rewritten as Eq. (15) by means of substituting the
first-order approximate formulae given above,

> (Kond =AM} ~2, 0341} 8)
H{IK =AM} { i)
R CARIITAIEY (15)
and is summarized further in the following form,
(Al ()= () (16)

where [A]is JX M rectangular matrix. Equation (16) is the
governing equation for the design variables. The eigenva-
lue analysis and sensitivity analysis are to be carried out
by current use of the renewed parameters at each
renewal. The coefficient matrix [A] of Eq. (16) is
rectangular. The unknown design variables can be deter-
mined by use of the generalized inverse [A]™. We employ
the particular solution of Eq. (16) calculated by the

Moore-Penrose generalizedrinverse® as follows.
{an}=[A]"{b} (17)

The design variables thus determined are affected by
deficient first-order approximation so that the design
change has to be renewed to overcome the deficiency
until the right hand of Eq. (16) is made equal to nil

vector.
4, Numerical Example

Figure 1 illustrates a lattice structure, flat in the x-y
plane, supported simply at four points marked by black
triangle. The structure is discretized by beam elements, a
member being represented by an element, to analyse its
out-of-plane vibration. The cross-section of all members
is circular. The first mode shape of a base-line design is
found to be warped in saddle-shape as shown in Fig. 2.
The section diameter of the baseline design is 0.05 m and
Young’s modulus and Poisson’s ratio are 70 GPa and 0.3,
respectively. The first eigenvalue is 826.8.

Suppose that we set a homologous vibration mode that
the deflection of the nodes arrayed in the y direction is the
same. Such a constraint can be expressed easily by Eq.
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Fig. 1. Finite element model of lattice structure

Fig. 2. Warped mode shape of baseline design

A=L.677x102

Fig. 3. Flattened mode shape at the third renewal

(2). Figure 3 shows the mode shape obtained at the third
renewal, in which the design variables are assigned to all
the section diameters. The mode shape is flattened, partly
homologous to the flat lattice plane, as is aimed at. The
increase or decrease of the section diameters after the
design change with respect to the initial values are given
in Figs. 4 and 5. The eigenvalue is reduced to 467.7 by the

Distribution of section diameter at the third renewal
(x direction)

Fig. 4.

Distribution of section diameter at the third renewal
(y direction)

Fig. 5.

design change, however. When we make all the members
arrayed in the y direction so stiff that any deformation
does not take place, the hogging pattern of the warped
mode shape is anticipated to be flattened in the y
direction. Different from the anticipation, the proposed
formulation reveals that the flat pattern can be formed by
means of increasing the stiffness of the members in the y
direction a little and decreasing the stiffness in the x
direction also a little.

5. Concluding Remarks

The proposed formulation is proved to succeed in
forming a homologous vibration mode for a structure.
The existence and uniqueness of homologous vibration
mode is still left unknown for various structures. Validity
of a particular choice of design variables is also to be

examined in future. (Manuscript received, June 9, 1992)
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